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A B S T R A C T   

Predicting baseflow dynamics, protecting aquatic habitat, and managing legacy contaminants requires explicit 
characterization and prediction of groundwater discharge patterns throughout river networks. Using handheld 
thermal infrared (TIR) cameras, we surveyed 47 km of stream length across the Farmington River watershed 
(1,570 km2; CT and MA, USA), mapping locations of bank and waterline groundwater discharges based on their 
thermal signature. Using the observed groundwater discharge locations and predicted groundwater discharge 
rates from 6 variations of a numerical groundwater-flow model (MODFLOW-NWT), we compared 1) predicted 
groundwater-discharge rates in areas with and without observed groundwater discharge, 2) spatial patterns of 
observed and predicted groundwater discharge locations, and 3) density of observed groundwater discharge 
locations with predicted discharge rates. Five of six models reasonably predicted the spatial patterns of discharge 
locations along the 5th order mainstem, but fewer models predicted groundwater discharge patterns in smaller 
streams. Our results highlight 1) the feasibility of using TIR observations to evaluate groundwater models, 2) 
model parameters that influence discharge prediction accuracy (riverbed sediment and bedrock hydraulic con
ductivity and river-aquifer connections), and 3) current strengths and future opportunities for improved 
modeling of groundwater-discharge patterns.   

1. Introduction 

Model predictions of spatially explicit groundwater discharge pat
terns along stream networks are not often evaluated using field obser
vations. However, accurate prediction regarding the spatial distribution 
and other physical characteristics of groundwater discharge to streams 
and rivers is critical for protecting aquatic habitat and managing 
contaminant inputs to streams (Briggs and Hare, 2018; Dent et al., 2001; 
Torgersen et al., 2012). For example, identifying the locations and 
source depth of groundwater discharge is essential to predicting the 
occurrence of thermal refuges and refugia in the face of climate change 
(Hare et al., 2021; Johnson et al., 2020). Similarly, groundwater flow
path depth and discharge location are important for understanding ni
trogen loads to river systems (Kolbe et al., 2019; Wherry et al., 2021). 
Accurate prediction of groundwater discharge across river networks, 
however, remains challenging due to gaps in model evaluation and a 

lack of field data at model-relevant spatial extents and resolutions 
(Barclay et al., 2020a). 

Groundwater models are commonly implemented at the river- 
network scale (drainage areas > 103 km2) and simulate groundwater 
discharge to streams and rivers at the model cell resolution (model- 
specific, typically hundreds of meters) (Befus et al., 2017; Feinstein 
et al., 2010; Masterson et al., 2016; Sanford et al., 2012). This suggests 
that groundwater models can simulate sub-reach heterogeneity in 
groundwater discharge at the spatial extent of river networks. Yet, the 
accuracy of simulated discharge patterns has not been assessed at this 
scale. Recently, Barclay et al. (2020a) demonstrated that groundwater 
models (MODFLOW-NWT, n = 11) with identical recharge inputs but 
differing parameterization resulted in similar fit to observed water levels 
but 1) differences of 50% in the fraction of groundwater discharge 
directed to 1st order streams, 2) three-fold differences in simulated 
source groundwater flowpath depth, and 3) seven-fold differences in 
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subsurface travel times among models. Differences of this magnitude in 
simulated flow distribution could have consequential implications for 
maintaining environmental flows (including stream temperature), 
managing contaminant legacies, or understanding nutrient processing 
(Barlow and Leake, 2012; Barnes et al., 2018; Chen et al., 2018; Kolbe 
et al., 2019; Kurylyk et al., 2015). This lack of precision regarding 
critical physical characteristics of groundwater discharge across a river 
network highlights the need for new approaches to evaluate and refine 
simulated patterns of discharge such as the position along the river 
network. 

Calibration or evaluation data for groundwater-flow models 
commonly include groundwater head, stream elevation, stream 
discharge in sub-basins, and occasionally age tracer data (Sanford, 2011; 
Starn and Brown, 2007). Information on spatial patterning of ground
water discharge (seepage) to streams is typically not included. Although 
discharge rates from individual groundwater-discharge zones (Vaccaro, 
2011; Yager et al., 2008, 2007) and discharge patterns in small water
sheds (< 50 km2) (Ala-aho et al., 2015; Danielescu et al., 2009; Glaser 
et al., 2016; Jeannot et al., 2019) have been used in a few instances, 
studies that explicitly assess sub-reach (hundreds of meters) spatial 
patterns of simulated groundwater discharge across larger watersheds 
(> 103 km2) are lacking. This absence of assessment is due, in part, to a 
lack of empirical data that can be meaningfully compared to modeled 
discharge patterns and a lack of approaches for incorporating new types 
of field data into the modeling process. 

Existing empirical approaches typically identify and quantify 
groundwater discharge at the point to reach scale (discrete lengths of 
river, typically hundreds of meters to a few kilometers), but neither 
point measurement nor reach-scale aggregations of groundwater 
discharge are straightforward to compare to model outputs due to 
mismatches in measurement and model resolution. At discrete points, 
seepage meters and temperature profilers can be robust for quantifying 
groundwater discharge below the waterline under favorable conditions 
(Caissie and Luce, 2017; Irvine et al., 2016; Rosenberry, 2008), but 
measuring the total groundwater discharge for a single model cell using 
physical point measurements would require many time-consuming in
dividual measurements as extreme heterogeneity precludes interpola
tion. This is impractical over spatial extents comparable to most 
predictive models. Spanning the reach and point scale, fiber-optic 
distributed temperature sensing (FO-DTS) can identify spatial patterns 
of groundwater discharge along linear cables at sub-meter resolution, as 
well as high-frequency (≤ 15 min intervals) temporal variation in 
groundwater discharge (Hare et al., 2015; Matheswaran et al., 2014). 
Groundwater-discharge observations made with FO-DTS can be easily 
aggregated to the model resolution, but deploying and managing the 
cables requires at least a week per 2 – 3 km length of river, making them 
impractical for river-network scale applications. At the reach scale 
(hundreds of meters), chemical tracers and differential gaging allow 
calculation of aggregate groundwater discharge assuming conservation 
of mass (Kalbus et al., 2006; Kilpatrick and Cobb, 1985; McCallum et al., 
2012; Xie et al., 2016), but net groundwater inflow along the mea
surement reach must be relatively large compared to streamflow for 
groundwater inputs to be captured with confidence, and 
spatially-explicit discharge information is lost. Network-scale ground
water discharge analysis conducted using baseflow separation tech
niques are useful in testing net groundwater exchange (as baseflow) 
predictions (Cartwright and Miller, 2021; Miller et al., 2017), but as 
with tracer injections, specific discharge zone information is not 
preserved. 

Newly refined remote-sensing and geophysical-based methodologies 
offer promise in better aligning the scales of discharge-specific field-data 
collection and watershed groundwater-flow model resolution (Briggs 
and Hare, 2018; Toran et al., 2015). In particular, thermal infrared 
imagery (TIR) (e.g. Ala-aho et al., 2015; Briggs et al., 2016; Schuetz and 
Weiler, 2011), which greatly enhances potential spatial coverage while 
preserving high spatial resolution of discharge-zone mapping (Briggs 

and Hare, 2018), may be an ideal empirical method for integrating with 
river-network scale groundwater models. TIR provides a time-specific 
map of water surface and bank temperatures along contiguous sur
veys. This surface temperature map can be used to identify zones, or 
areas, of ‘preferential’ groundwater discharge at times of year with 
contrasting groundwater and surface-water or stream-bank tempera
tures (Torgersen et al., 2001). Preferential groundwater discharge dif
fers from spatially diffuse discharge in that groundwater emerges at a 
relatively high flux rate in discrete patches such that source ground
water temperature signatures are preserved, allowing identification via 
heat tracing (Briggs and Hare, 2018). Generally, groundwater discharge 
observed with TIR at or above the water line (on riverbanks) occurs as 
discrete points at the sub-meter scale, or when multiple discharge points 
occur in close proximity over more extensive (tens of meters) bank areas, 
as preferential discharge faces (Mundy et al., 2017). Drone-based TIR 
has recently been applied to the evaluation of groundwater 
discharge-based large wetland restoration design (Harvey et al., 2019), 
validation of discharge patterns from integrated hydrologic models in 
small (< 5 km2) watersheds using handheld instruments (Glaser et al., 
2016; Jeannot et al., 2019) and mapping potential thermal refugia zones 
based on the occurrence of discharge faces along higher-order rivers 
across hundreds of kilometers using airborne platforms (Ala-aho et al., 
2015; Dugdale et al., 2015). 

Field surveys conducted with TIR have the potential to provide field 
observations at a spatial extent and resolution that can be meaningfully 
compared with river-network scale groundwater-flow models. TIR is 
more efficient to implement than other empirical methods (e.g., seepage 
meters, differential gaging, chemical tracers), though unlike several 
such methods TIR cannot be used to determine groundwater discharge 
flux rates, except potentially under highly specific circumstances such as 
frozen discharge faces (Pandey et al., 2013). Warm weather riverbank 
discharge plume size and temperature is governed by a range of local
ized hydrodynamic factors, and relatively cold discharge water tends to 
plunge downward into the water column out of the view of TIR, 
hampering efforts to directly infer discharge rates from TIR images. 
However, TIR can be used to quickly identify discharge areas, or zones, 
across contiguous space in perhaps a more complete manner than any 
other current groundwater/surface water exchange processes method
ology. The mapped locations of observed preferential 
groundwater-discharge, particularly when they occur along more 
extensive discharge faces, could potentially be used to evaluate spatial 
patterns of groundwater discharge predicted by river-network scale flow 
models as the development of discharge faces is likely driven by geologic 
and hydraulic factors more similar to model scales than singular 
discharge points. 

Our primary objective in this study was to test the utility of TIR- 
based field measurements of preferential groundwater-discharge 
points and faces for evaluating model-cell scale spatial patterns of 
groundwater discharge predicted by a river-network scale groundwater 
model. This is a substantial step towards resolving the disparate scales of 
detailed stream-reach field studies and coarse river-network scale sim
ulations. In this project, we characterized spatial patterns of ground
water discharge at the river-network scale using extensive TIR field 
surveys and then evaluated six groundwater models for a 5th order 
watershed representing different spatial patterns of groundwater 
discharge but similar model fit metrics to groundwater levels (Barclay 
et al., 2020a) against the field observations. Ultimately, this study 
demonstrates an approach to field verifying the predicted spatial pat
terns of groundwater discharge from river-network scale groundwater 
models, thereby highlighting areas for future improvement in our ability 
to simulate groundwater discharge at the river-network scale. 

2. Methods 

Briefly, we characterized spatial patterns of preferential ground
water discharge across a river network using spatially extensive ground- 
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based TIR field surveys, then compared these empirical results to river- 
network scale groundwater-flow models. We surveyed 47 km of total 
stream length (across stream orders) with TIR imagery to map areas of 
groundwater discharge across headwater areas, 3rd order tributaries 
and the mainstem of a 5th order watershed. We then selected six 
meaningful physical variations of a previously published groundwater- 
flow model (Barclay et al., 2020a, 2020b) with similar calibration-fit 
metrics but differing predicted spatial patterns of groundwater 
discharge. We used the field-mapped spatial distributions of ground
water discharge locations to evaluate predicted patterns of groundwater 
discharge from the calibrated models. This independent evaluation of 
the models with observed spatial patterns of discharge is not typical for 
groundwater models and is a unique strength of our approach. Details of 
our methods are given in the following sections. 

2.1. Site description 

The study site was the Farmington River watershed (MA and CT, 
USA) (Fig. 1). The Farmington River drains an area of 1570 km2 and is a 
5th order tributary of the Connecticut River. Glacial till overlies crys
talline bedrock over most of the watershed with areas of stratified glacial 
sediments over sedimentary rock in the river valleys (Olcott, 1995; 
Soller et al., 2012). Previous geophysical mapping has indicated that 
groundwater discharge patterns may be driven in part by near-surface 
bedrock type, in addition to the unconsolidated surficial geology 
(Lane et al., 2020). Land cover is predominantly forest, particularly in 
the central and northern regions of the watershed; developed land is 
focused along the eastern river valley (Homer et al., 2015). In the up
lands the stream channels were predominantly cobbled with some areas 
of exposed bedrock and the canopies were typically closed. In the 
eastern river valley, the stream gradients were lower, bed sediment was 
primarily coarse or fine sand, and the canopy was open, particularly 
along the 5th order section of the Farmington River. Further description 
of the site is given in Barclay et al. (2020a). 

2.2. Field surveys 

To map locations of groundwater discharge along stream banks, we 
surveyed 47 km of non-contiguous stream reaches within the Farm
ington River watershed using TIR. Due to practical considerations, we 
surveyed small streams by wading/walking along banks and larger 
rivers by canoe from the center of the channel. We waded eight 1st order 
stream sites (4.7 km total), 6 km of a 2nd order stream, and three 3rd 
order stream sites (1.6 km total). We paddled 2.7 km of a 3rd order 
stream and 32 km of the main stem of the Farmington River (5th order) 
(Table 1). We conducted the surveys over 13 days between July 6 and 
October 5, 2017 and 7 days between August 2 and September 22, 2019. 
Streams were surveyed once, though some reaches required multiple 
days. 

During the surveys, we scanned the banks using one of four FLIR 
cameras (T640, T620, E8, and i7; FLIR Systems, www.flir.com), with 
instrument emissivities set consistent with fresh water in summer (0.96 
– 0.98) (Handcock et al., 2012), and viewfinder temperature ranges set 
for the T640, T620, and E8 cameras to span stream and groundwater 
temperatures. In areas with apparent colder thermal anomalies of mul
tiple degrees on the banks and along waterline, we collected TIR images, 
noted the latitude and longitude using a hand-held GPS unit (Garmin 
Colorado 400t or Garmin GPSMAP 64 s, www.garmin.com), and 
recorded the subsurface (11 cm depth) temperature using a precise 
hand-held digital thermometer (https://www.traceable.com/4000-t 
raceable-digital-thermometer.html). Absolute temperatures calculated 
from TIR images can be affected by reflected radiation (Baker et al., 
2019; Handcock et al., 2012), therefore we identified groundwater 
discharge based on multiple lines of evidence: thermal anomalies in the 
surface temperature, subsurface temperatures consistent with dis
charging groundwater, and qualitative indicators of groundwater 
discharge, such as wet soil or flowing water above the water line. 
Because the TIR images were used for mapping the locations of cold 
thermal anomalies attributable to groundwater discharge and not for 

Fig. 1. Farmington River Watershed. Numbers refer to survey sites listed in Table 1.  
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quantitative analysis of the absolute temperatures, we did not 
post-process the images or apply corrections to the calculated temper
atures. We delineated the approximate linear discharge-zone length 
along the bank. We categorized two types of preferential groundwater 

discharge observed along streambanks: 1) preferential 
groundwater-discharge points (one or more individual sub-meter scale 
zones of preferential discharge) and 2) discharge faces (extensive 
lengths, tens to hundreds of meters long, of grouped cold anomalies 

Table 1 
Field Sites (P = Paddled, W = Waded; DF = Discharge Face, Pt = Discharge Point; GT = Glacial Till, CG = Coarse-grained stratified sediment, FG = Fine-grained 
stratified sediment).  

Site 
Number 

Site Name Stream 
Order 

Survey 
Length (m) 

Access Discharge 
Types 

Survey Dates Drainage Area 
(km2) 

Survey 
Elevation (m) 

Surficial Materials in 
Survey Reach 

1 Tributary to Mad River 1 250 W Pt 9-Aug-17 0.9 306 GT 
2 Hurricane Brook 1 1300 W Pt 7-Aug-17 2 298 GT 
3 Falls Brook 1 400 W Pt 7-Aug-17 0.8 347 GT 
4 Beaver Brook 1 300 W Pt 9-Aug-17 6 237 GT 
5 Morgan Brook 1 500 W DF, Pt 8-Sep-17 18 169 GT 
6 Tributary to Salmon 

Brook, West Branch 
1 400 W Pt 8-Sep-17 8 266 GT 

7 Tributary to Punch Brook 1 650 W Pt 2-Aug-17;  
8-Aug-17 

0.7 201 CG 

8 Tributary to Scott Swamp 
Brook 

1 700 W DF, Pt 8-Aug-17 3 62 CG; GT 

9 West Branch Salmon 
Brook 

2 750 W DF, Pt 12-Aug-19; 
19-Sep-19 

49 96 CG; GT 

10 West Branch Salmon 
Brook 

2 5300 W DF, Pt 2-Aug-19; 5- 
Aug-19 

55 68 CG; GT 

11 Farmington River, West 
Branch 

3 700 W Pt 11-Sep-17 133 327 GT 

12 Sandy Brook 3 100 W Pt 9-Aug-17 89 245 GT 
13 West Branch Salmon 

Brook 
3 350 W DF, Pt 6-Aug-19 67 60 CG; GT 

14 Salmon Brook 3 1400 P DF, Pt 20-Aug-19 174 50 FG; CG 
15 Salmon Brook 3 1250 P DF, Pt 22-Sep-19 188 50 FG; CG 
16 Farmington River, Access 

Point 21 - 22 
5 9750 P Pt 15-Sept-17;  

2-Oct-17 
1202 47 FG; CG 

17 Farmington River, Access 
Point 22 - 23 

5 5500 P DF, Pt 26-Jul-17 1235 45 CG 

18 Farmington River, Access 
Point 23 - 24 

5 3400 P DF, Pt 6-Jul-17; 
26-Jul-17 

1279 45 CG; FG 

19 Farmington River, Access 
Point 24 - 25 

5 5100 P DF, Pt 26-Jul-17; 
1-Aug-17 

1292 45 FG; CG 

20 Farmington River, Access 
Point 25 - 26 

5 2500 P Pt 6-Jul-17; 
27-Sept-17 

1303 45 FG; CG 

21 Farmington River, Access 
Point 28 - 29 

5 5400 P DF, Pt 13-Sep-17 1518 29 CG; GT  

Fig. 2. Examples of preferential, bankside groundwater-discharge observed with handheld thermal infrared (TIR) cameras: A) Stream-bank groundwater discharge 
face and B) Individual groundwater-discharge points. In each box, photos on the top are visible color and photos on the bottom are the corresponding thermal 
infrared image. In the thermal infrared images, cooler colors indicated colder temperatures and warmer colors indicate warmer temperatures. Groundwater discharge 
can be identified by the dark blue, cold anomalies. Images provided by Eric Moore. 
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along the bank) (Fig. 2). In this study, we use the term “discharge zones” 
to refer to all areas of groundwater discharge, regardless of spatial 
extent, and “discharge point” and “discharge face” to distinguish be
tween spatially limited and spatially extensive areas of groundwater 
discharge as defined above. Images from the TIR surveys are available in 
Barclay et al. (2019) and Moore et al. (2020). 

2.3. Groundwater-flow model 

We selected a subset (n = 6) of previously implemented 
groundwater-flow models for our study site that had similar fit to 
groundwater level and stream elevation calibration data, but varied in 
their predictions of spatial patterns, flowpath depth, and travel time of 
groundwater discharge (Barclay et al., 2020a). Similarities across 
models are described here; differences are discussed in the next para
graph. The models were developed in MODFLOW-NWT (Niswonger 
et al., 2011) and they simulate flow under steady-state conditions, with a 
uniform horizontal grid and 4 vertical layers. The unconsolidated sur
ficial materials are split vertically into three layers, with decreasing 
horizontal hydraulic conductivity with depth. The lowest layer is a 
bedrock layer. The horizontal hydraulic conductivity was calibrated 
using PEST++ (Welter et al., 2015), mean head measurements from 990 
wells and water levels from 1st order streams in flat areas (land surface 
slope <= 2%), and a grid of pilot points. Pilot points are preselected 
points at which hydraulic conductivity is calibrated; hydraulic conduc
tivity at all other locations is interpolated from the pilot points. Simu
lated water levels were compared to head measurements from 984 wells 
and 525 stream water levels with root mean squared errors (RMSE) 
ranging from 9.8 to 11.6 m (Table 2). The models were also evaluated 
using an OverallError metric, defined as the percent of flooded terres
trial cells (incorrectly simulated as flooded) plus the percent of dry river 
cells (incorrectly simulated as dry) plus a penalty for excessive losing 
river reaches (in excess of 5 percent of recharge). The OverallError 
metric is based on the work of Starn and Belitz (2018). 

The selected models differ in the zonation of pilot points, degree of 
variation in bedrock and riverbed hydraulic conductivity, allowed 
directionality of river-aquifer exchange and horizontal grid resolution 
(Table 2). The Initial model was developed based on readily available 
data and common simplifying assumptions. It has a 300 m horizontal 
grid, uniform riverbed hydraulic conductivity (0.1 m d− 1), literature- 
based bedrock hydraulic conductivity (Domenico and Schwartz, 1997; 
U.S. Geological Survey, 2007), and a 4000 m grid of pilot points. 

Streams were simulated using the RIV package, which allows stream 
reaches to be net gaining or losing at the model cell resolution (Har
baugh, 2005). In SurfMatZone, the pilot points are assigned to one of four 
zones based on surficial material type (glacial till, coarse stratified 
sediments, fine stratified sediments, and open water) and a finer grid 
(1000 m) was used for the pilot points in the coarse sediments, fine 
sediments and open water zones because these zones occupied a smaller 
area where the 4000 m spacing was impractical (442 pilot points total vs 
102 with the Initial model). RiverbedK is identical to the Initial model, 
except that the riverbed hydraulic conductivity is spatially varying and 
assigned as 0.01 times the hydraulic conductivity of the surrounding 
surficial material. RivK_BedK is similar to RiverbedK, except that the 
hydraulic conductivity in the bedrock is calibrated on a 4000 m grid of 
pilot points, rather than being based on literature values. HighRes is 
identical to RivK_BedK, except that the grid cell size is reduced to 100 m. 
Finally, RivK_BedK_drn is similar to RivK_BedK except that rivers are 
represented using the DRN package in MODFLOW, which allows flow 
only from aquifer to river (streams are all gaining or disconnected), 
instead of the RIV package (Harbaugh, 2005). Further details of model 
development are available in Barclay et al. (2020a) and the model input 
and output files are available in Barclay et al. (2020b). 

Despite the similarity in model fit as indicated by the RMSE and the 
OverallError metrics, the models had substantial differences in 
groundwater flowpath characteristics (Table 2 and Fig. 3). For example, 
the fraction of groundwater discharge directed to small (1st order) 
streams ranged by a factor of 1.4, from 29 – 40%; the median travel time 
ranged by a factor of 3.8, from 1.1 to 4.2 years, and the median flowpath 
depth ranged by a factor of 2.6, from 6.8 to 17.9 m (Table 2). Similar 
differences in simulated discharge characteristics were seen in the subset 
of reaches included in the field surveys of this study (Fig. 3). For 
example, mean groundwater discharge rates to 1st order streams ranged 
by a factor of 4, from 0.4 to 1.2 m3m− 1d− 1, with a mean of 0.8 
m3m− 1d− 1. In this paper, simulated discharge rates are expressed as a 
volume of discharge per length of stream per day. 

2.4. Comparing locations of modeled and observed groundwater 
discharge 

To evaluate the simulated spatial patterns of groundwater discharge, 
we compared the simulated discharge predictions with our field obser
vations of preferential discharge points and faces. First, we quantita
tively compared simulated groundwater-discharge rates in sections with 

Table 2 
Groundwater model cases. A notation of “–“ indicates the model is identical to the Initial Model. Modified from Table 1 in Barclay et al. (2020a).  

Name Grid Calibration 
Data 

Pilot 
Points 

River 
Package 

Riverbed K Bedrock K RMSE 
(m) 

Overall 
Error1 

Percent of 
Discharge to 
1st Order 
Rivers 

Subsurface 
Travel Time3, 
IQ4 Range 
(median) (yr) 

Max Flowpath 
Depth5, IQ4 

Range 
(median) (m) 

Initial 300 
m 

990 wells, 525 
stream 
elevations 

4000 
m grid 

RIV Uniform 
(0.1 m D-1) 

Literature 
Values 

11.2 7% 40% 0.5 – 6.3 (1.8) 1.6 – 25.7 (6.8) 

SurfMatZone – – Zones – – – 11.6 5% 36% 0.3 – 5.8 (1.4) 3.5 – 28.4 (7.0) 
RiverbedK – – – – Spatially 

Varying2 
– 10.7 6% 29% 0.3 – 7.2 (1.1) 4.0 – 27.8 (7.1) 

RivK_BedK – – – – Spatially 
Varying2 

Calibrated 10.0 5% 29% 0.7 – 45.0 (4.0) 4.0 – 55.4 
(16.0) 

RivK_BedK_drn – – – DRN Spatially 
Varying2 

Calibrated 10.2 6% 35% 0.7 – 46.8 (4.2) 4.5 – 58.9 
(17.9) 

HighRes 100 
m 

984 wells, 
2962 stream 
elevations 

– – Spatially 
Varying2 

Calibrated 9.8 8% 32% 0.7 – 47.2 (4.2) 5.8 – 54.4 
(13.4)  

1 OverallError is a percentage of model cells in error, as noted by flooded terrestrial cells and dry river cells, plus a penalty for excessive losing reaches (modified 
from Starn and Belitz, 2018). . 

2 Riverbed hydraulic conductivity in each reach was 0.01 times the hydraulic conductivity of the surficial materials in the surrounding cell. 
3 Based on particle tracking. 
4 IQ is the interquartile range of the values. 
5 This is the interquartile range and median of the maximum depths of each flowpath within the model domain, calculated using particle tracking. 
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and without observed groundwater-discharge locations. Based on our 
field observations, model cells were classified into two groups by the 
presence or absence of observed areas of groundwater discharge, 
regardless of the number or spatial extent of the observed discharge, and 
we analyzed statistical differences in mean modeled discharge rate be
tween the two groups. Models with statistically significant differences at 
the p ≤ 0.05 level were considered “strongly distinguishing” and at the 
0.05 < p ≤ 0.1 level were considered “weakly distinguishing”. All other 
models were considered poorly performing. We considered the stream 
sections by stream order due to differences in simulated discharge rate 
and survey length. We analyzed all data at the model cell resolution and 
also aggregated the observations and simulated discharge rates to 
stream lengths of approximately 500 m for the 5th order river. Obser
vations were not aggregated in the small streams due to short survey 
lengths. We determined statistically significant differences using a 
comparison of means that does not require normality, equal variance or 
equal sample size (Herberich et al., 2010). All statistical analyses were 
completed in R (R Core Team, 2019). 

Finally, we qualitatively and semi-quantitatively compared the 
observed and simulated spatial patterns of groundwater discharge across 
models and within and across sites for each stream order. To semi- 
quantitatively analyze the spatial patterns of groundwater discharge 
we calculated the correlations between the simulated discharge rate and 
the observed discharge density (number of locations per length of 
stream, faces were counted once for every 10 m of length) for each 
stream order. We calculated the correlations at the model cell resolution, 
and for the 1st – 3rd order surveys across sites / sub-sites, and for the 5th 
order survey at aggregated lengths of approximately 500 m, 1 km, and 2 
km. Because the survey lengths varied substantially among 1st – 3rd 
order stream sites, sites with long survey lengths were subdivided into 
subsites with lengths similar to the median for the stream order. We 
compared the discharge-location density to the simulated discharge rate 
using a parametric correlation (Pearson’s r) for normally distributed 
model-survey pairings and a non-parametric correlation (Spearman’s 
rho) for the other pairings. Models with statistically significant (p ≤

0.05) correlations between observed discharge-location density and 
simulated discharge were considered better performing models. 

3. Results 

We observed preferential groundwater discharge at or above the 
waterline in all mapped stream sections, but discharge points and faces 

were not evenly distributed along sections and varied in occurrence 
between sections. Further, some discharge zones were clearly higher 
flux (based on visible bank-surface flow; Fig. 2B) colder groundwater, 
with discharge temperature approaching the annual surface mean (6.9 – 
10.5 ◦C, PRISM Climate Group, 2012), while other zones of presumed 
lower flux (based on the absence of visible flow) discharge were of 
warmer temperatures. Discharge faces in the 5th order river tended to be 
longer in length (e.g., Fig. 2A) than discharge faces in the smaller 
streams, though there was substantial variation. Also, some discharge 
zones in the 5th order river had flow channels visible in the infrared 
(note the dark blue flow lines in Fig. 2A) or visible color images (without 
infrared). 

Temperatures in the observed groundwater-discharge zones were 
consistent with groundwater temperatures in our study area (inter
quartile range = 10.0 - 13.0 ◦C, mean = 11.5 ◦C, U.S. Geological Survey, 
2020)(Fig. 4). Bank surface temperatures from the TIR images ranged 
from 7.1 to 16.6 ◦C, and subsurface (11 cm depth) temperatures ranged 
from 7.9 to 16.0 ◦C, with most groundwater-discharge zones between 10 
and 15 ◦C on both the surface and in the subsurface. Even at similar 
elevation groundwater can be expected to show a range of temperatures 
in summer based on the depth of the contributing flowpath (Briggs et al., 
2018). Most of the coldest discharge zones (surface temperature < 9.5 ◦C 
or subsurface temperature < 11.0 ◦C) were in the 5th order survey, 
though they were typically separated by warmer discharge zones and 
hundreds of meters of inactive banks. 

Groundwater-discharge zones were not uniformly distributed along 
stream reaches. In both the larger river and smaller streams, 
groundwater-discharge points tended to cluster (Figs. 4 and 5) so that 
some stream sections contained multiple discharge points and others 
were relatively inactive. The grouping of discharge faces is even more 
pronounced (Fig. 5). In the upstream 10 km of the larger-river survey we 
observed no discharge faces, but in the next 12 km, we observed 12 
distinct discharge faces covering approximately 1.5 km of river length. 
During the 1st to 3rd order stream surveys, we only observed discharge 
faces at 7 out of 16 sites, Salmon Brook (Sites 9, 10, 13, 14, and 15) 
Morgan Brook (Site 4) and the Tributary to Scott Swamp Brook (Site 8). 
Most of the discharge faces found in 1st to 3rd order streams are tens of 
meters in extent. 

Fig. 3. Variation in simulated groundwater discharge in surveyed reaches by network position, represented as differences from the multi-model median. Numbers at 
the top of each panel indicate the mean discharge per length of stream for the multi-model median to streams of the respective size. Colors indicate changes (red =
decrease, blue = increase, gray = no change) from the multi-model median. Note variation in x-axis scale across panels. 
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3.1. Model evaluation 

3.1.1. Predicted groundwater discharge in areas with and without observed 
discharge zones 

In the 5th order river, most models predicted significantly higher 
rates of groundwater discharge in areas where we observed groundwater 
discharge than in areas without observed discharge zones when the 
observations and simulated rates were aggregated to stream lengths of 
approximately 500 m (p ≤ 0.05, Fig. 6, bottom row). The one model that 
did not predict a statistically significant difference between areas with 
and without observed discharge zones in the larger river was SurfMat
Zone, where the pilot points were assigned to zones based on the sur
rounding surficial material. The source of this misfit in the larger river 
with the SurfMatZone model may be anomalously high calibrated hy
draulic conductivity values in coarse stratified sediments (median for 
SurfMatZone = 243 m d − 1 vs 39 – 44 m d − 1 for all other models). When 
the observations and simulated discharge rates were compared at the 
model cell resolution (100 m for HighRes; 300 m for all other models), 
only the HighRes model weakly predicted higher rates of groundwater 
discharge in areas where we observed groundwater discharge than in 

areas without observed groundwater discharge zones (p ≤ 0.10). 
In contrast, in the smaller streams and rivers (1st – 3rd order, Fig. 6, 

rows 1 through 3), fewer models aligned with observed discharge pat
terns, i.e., predicted significantly higher rates of groundwater discharge 
in areas with TIR-observed discharge zones (p ≤ 0.05, Fig. 6, rows 1 
through 3), with greater agreement in 3rd order rivers than in 1st and 
2nd order streams. The best performing model across 1st, 2nd, and 3rd 
order streams was SurfMatZone, where calibration is by surficial deposit 
zones. This is in contrast to the larger river where SurfMatZone per
formed poorly. The differences in mean simulated discharge rates be
tween areas with and without observed discharge zones was smaller for 
1st and 2nd order streams (differences of − 0.18 m3d− 1 and − 0.87 
m3d− 1, respectively, across all models, the negatives indicate that some 
models predicted higher discharge rates where we observed no 
discharge than where we observed discharge) than for 3rd order rivers 
(mean difference of 1.77 m3d− 1), suggesting that the models better 
simulated observed discharge zones in 3rd order streams than in smaller 
1st and 2nd order streams. 

3.1.2. Location comparison of modeled and observed groundwater 
discharge 

In the 5th order river, all models reflected the general spatial pat
terns of discharge we observed (Fig. 5D), consistent with the above 
quantitative analysis (Fig. 6A). All models predicted relatively constant 
discharge from km 1 to km 10, a section where we saw little evidence of 
preferential bank groundwater discharge, and all models predicted the 
apparent increase in discharge that we observed from km 11 - 21. None 
of the models predicted the increased discharge we observed in km 21 – 
22, and only SurfMatZone predicted the greater discharge we observed at 
km 30–32, but SurfMatZone predicted discharge we did not observe 
along the banks at km 35 – 36. 

In the 1st – 3rd order streams, most models simulated similar 
magnitude discharge across the sites (Fig. 5, A-C). Notable exceptions 
occurred in the 1st order survey at sites 7 and 4 and in the 3rd order 
survey at sites 11, 13, and 14. At site 7 in the 1st order survey (Fig. 5A), 3 
models (RiverbedK, HighRes, and RivK_BedK) predicted substantial flow 
from the stream to the aquifer across the entire site, while the remaining 
3 models simulated near-zero net discharge. These models (RiverbedK, 
HighRes, and RivK_BedK) have spatially varying riverbed hydraulic 
conductivity and simulate streams using the RIV package (which allows 
net gains or losses to the stream), a combination that can result in un
realistically high flows from river to aquifer. Although the simulation 
results might suggest predominantly losing conditions at site 7, this is 
unlikely. Stream temperatures at site 7 suggest substantial groundwater 
exchange and net gaining conditions, and the lack of a stream network 
upstream of the site suggests streamflow is sourced locally, likely from 
groundwater discharge. More likely the groundwater models are unable 
to simulate the near-surface water table needed to generate gaining 
conditions, possibly due to the coarse model resolution and headwaters 
location. At site 4 in the 1st order survey, the three models with cali
brated hydraulic conductivity in the bedrock (HighRes, RivK_BedK, and 
RivK_BedK_drn) simulated no-flow or slight losses from stream to aquifer, 
while the other 3 models simulated gaining conditions throughout the 
site. At site 11 in the 3rd order survey, the higher-resolution model 
(HighRes) simulated slightly different locations for the higher discharge 
peaks than the remaining models. This could be a consequence of 
differing model resolutions that led to differing locations of breaks and 
gradients in the hydraulic conductivity. At sites 13 and 14 in the 3rd 
order survey (Fig. 5C), SurfMatZone, in which hydraulic conductivity 
was calibrated by zones of surficial-material type, simulated higher rates 
of discharge over portions of the survey than the other models. Zonation 
of the hydraulic conductivity results in sharper breaks in the spatial 
patterns of the calibrated values, which likely caused differing patterns 
of simulated discharge. In the 2nd order survey, all models simulated 
similar spatial patterns, and all models simulated higher rates of 
discharge in the downstream end of site 10 as compared with the 

Fig. 4. Observed groundwater discharge at 4 example sites. Sites 4 & 8 (A & B) 
were waded and sites 14 & 16 (C & D) were paddled. Gray boxes indicate 
boundaries of the 300 m model cells. Circles and squares indicate observed 
discharge locations, colored by the observed temperature. 
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Fig. 5. Observed and simulated groundwater discharge from the 1st order (A); 2nd order (B); 3rd order stream (C); and 5th order river surveys (D). Observations are 
grouped by site (numbers refer to sites from Table 1) and 100 m model cells, and ordered from left to right by the multi-model mean discharge by site. Models with a 
300 m resolution (all models except HighRes) were linearly downscaled to 100 m prior to plotting. Gray bars (left axis) indicate the length of discharge face (extended 
areas of discharge), circles indicate individual discharge points within each model cell and the x’s in panels A – C indicate cells without observed groundwater- 
discharge zones. Short vertical lines on the x axis indicate the subsite breaks used for observed discharge density and simulated discharge rate correlation anal
ysis. The lines are modeled discharge for the respective reach or cell (right axis). In SurfMatZone, plotted in yellow, zones of surficial materials were used in cali
brating the hydraulic conductivity. RiverbedK, plotted in light blue, has spatially varying riverbed hydraulic conductivity, uses the RIV package, which allows net 
losing reaches, and uses literature values for the hydraulic conductivity in the bedrock. RivK_BedK, plotted in dark blue, is similar to RiverbedK, but the hydraulic 
conductivity in the bedrock is calibrated. HighRes, plotted in dark green, is similar to RivK_BedK, but with a finer resolution grid. RivK_BedK_drn, plotted in dark red, 
has calibrated hydraulic conductivity in the bedrock layer and spatially varying riverbed hydraulic conductivity combined with the DRN package, which allows net 
gaining or no-exchange reaches. Simulated discharge is expressed as a volume of discharge per length of stream per day. 
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Fig. 6. Modeled discharge grouped by Model (columns), Stream Order (rows) and Aggregation (model cell or 500 m lengths) (rows), and the presence or absence of 
observed groundwater discharge (x axis) during thermal infrared field surveys. Numbers above the boxplots are the p-values for differences between the groups, with 
values less than or equal to 0.05 in bold red, values greater than 0.05 and less than or equal to 0.1 in italic black, and all other values in light gray. The non-gray 
colors in the column headers correspond to similar model characteristics and to the colors in Fig. 5. Simulated discharge is expressed as a volume of discharge per 
length of stream per day. In the boxplots, boxes depict the first quartile, median, and third quartile, whiskers extend no more than 1.5 times the interquartile range 
beyond the first and third quartile, and outliers beyond the whiskers are depicted as single points. 
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upstream end, consistent with the increased aerial extent of observed 
discharge at the downstream end. 

In summary, across all stream orders, the spatial alignment between 
simulated and observed (river bank) discharge patterns varied. In some 
locations, such as km 12 in the 5th order river (Fig. 5D), peaks in 
simulated discharge align spatially with peaks in the spatial extent of 
observed discharge. In other locations, peaks in simulated discharge 
occur upstream or downstream of peaks in the spatial extent of observed 
discharge. For example, in site 14 of the 3rd order river (Fig. 5C), a peak 
in simulated discharge occurs slightly upstream of an extensive area of 
observed groundwater discharge. Misalignment in simulated and 
observed discharge locations is more likely due to lack of precision in the 
simulated location than to errors in the mapped location of the observed 
discharge. Observed discharge was aggregated to the model cell reso
lution (300 m or 150 m for the HighRes model), making it unlikely that 
observed discharge would be mapped to the incorrect model cell, except 
when the discharge occurred near the cell boundary. The groundwater 
models were based on relatively coarse datasets, with hydraulic con
ductivity for individual cells determined by interpolation. Together, this 
makes it more likely that simulated locations of high discharge will be 
less accurate than field mapped locations, though our field mapping 
technique is not expected to capture direct riverbed discharge, which 
may be substantial in some areas. 

3.1.3. Discharge-location density and simulated groundwater discharge 
In the 5th order survey, the observed discharge density and simu

lated discharge were correlated for one model when the results were 
aggregated to 500 m lengths (HighRes, rho = 0.26, n = 61; p ≤ 0.05) and 
weakly correlated for five model-aggregation pairs (RivK_BedK, rho =
0.21, 500 m lengths, n = 61; RivK_BedK_drn, rho = 0.24, 500 m lengths, 
n = 61; HighRes,rho = 0.34, 1 km lengths, n = 33; RivK_BedK, r = 0.46, 1 
km lengths, n = 17; RivK_BedK_drn,r = 0.48, 2 km lengths, n = 17; p ≤
0.10). In the 3rd order survey, the density of observed discharge loca
tions (observations per length of stream) was strongly correlated with 
the simulated groundwater discharge rate for three models (RivK_BedK, 
r = 0.73; RivK_BedK_drn, r = 0.71; SurfMatZone, r = 0.71; p ≤ 0.05) when 
the results were compared across sites / sub-sites (subdivisions of longer 
length surveys, shown with vertical bars on the x axis in Fig. 5C, n = 8) 
and weakly correlated for two models (SurfMatZone, rho=0.90, model 
cell resolution, n = 22; RiverbedK, r = 0.67, site / sub-site aggregation, n 
= 8; p ≤ 0.10). In the 1st and 2nd order surveys, the observed discharge- 
location density was not significantly correlated with the simulated 
groundwater discharge. 

4. Discussion 

Accurate simulation of spatially explicit groundwater-discharge 
characteristics at the river-network scale requires an approach that 
links together models and empirical methods at comparable spatial 
resolutions. We demonstrate an approach to integrating empirical TIR 
observations of preferential groundwater-discharge occurrence and 
river-network scale groundwater-flow modeling. To our knowledge, this 
is one of the most spatially extensive high-resolution sets of observed 
groundwater-discharge locations that includes small streams to date, 
and represents a first attempt to use the spatial patterns of discharge 
locations to evaluate a river-network scale groundwater-flow model at 
the grid-cell scale. 

4.1. Cross-scale integration of groundwater discharge: physical drivers, 
observations, and simulations 

Simulation and assessment of groundwater discharge patterns at the 
river-network scale involves a complex cross-scale integration of phys
ical drivers of groundwater discharge, empirical observation methods, 
and groundwater models. Although TIR provides spatially extensive 
observations at relevant spatial resolutions, our findings suggest that 

scale-integration challenges remain. In particular, we found that the 
river-network scale models worked well in the 3rd and 5th order river 
reaches where the stream channels cut through a thicker sand and gravel 
aquifer. Along the 2nd order reach, which also overlaid sand and gravel 
deposits, the models accurately predicted more discharge at the end of 
site 10 (Fig. 5B) where extensive seep faces were also found. Within 1st 
order stream reaches, where bedrock was often near-surface and there 
was prevalence of low-permeability glacial till, the models did not 
reflect observed variation in discharge. 

4.1.1. The scale of physical drivers of groundwater discharge 
Groundwater discharge is driven by three-dimensional patterns of 

hydraulic conductivity and hydraulic head (Freeze and Witherspoon, 
1967), which are driven by a complex array of patterns in groundwater 
recharge, surficial material properties (type, layering, thickness, etc.), 
bedrock properties (type, layering, fracture patterns, etc.), and geo
morphology (slope, sinuosity, confinement, etc.) (Haitjema and Mitch
ell-Bruker, 2005; Winter et al., 1998). These drivers operate at nested 
scales ranging from centimeters to tens of kilometers (Freeze and 
Witherspoon, 1967; Rosenberry and Pitlick, 2009). The importance of 
each scale varies by network position, with local drivers dominating in 
headwaters areas and regional drivers dominating in larger rivers, but 
even in larger rivers, fine scale patterns are important (Rosenberry and 
Pitlick, 2009). 

4.1.2. The scale of TIR observations 
TIR observation spatial resolution is a function of the temperature 

differential between groundwater and surface materials, as well as the 
survey speed and distance from the discharge points. By paddling down 
the center of the 5th order river, we were able to survey multiple kilo
meters a day, but faster travel at a longer distance from the banks 
resulted in a coarse-resolution survey; we noted the larger areas of 
groundwater discharge, but likely not every small point. In contrast, 
slower travel while wading along small narrow streams resulted in a 
finer level of detail in the smaller stream surveys compared to the large 
river surveys. Even where we paddled the 3rd order river, the narrower 
channel and lower water levels resulted in slower travel, and conse
quently, in a finer-resolution survey than in the 5th order river. 

The observed temperature differentials also differed by stream size, 
likely due to different thermal regimes in the smaller versus larger 
rivers. In the 5th order river reaches during late summer and early fall, 
the temperature of the stream channel was consistently > 20 ◦C and the 
observed groundwater-discharge zones on the banks were < 15 ◦C (some 
below 11 ◦C); this large difference made the thermal contrast between 
the stream banks and groundwater discharge relatively obvious. In 
contrast, the channel temperatures in the 1st order streams tended to be 
lower, some as cold as 15 ◦C, with the result that the thermal contrast of 
groundwater-discharge along the stream banks were less apparent with 
TIR and the viable survey season was shorter (channel temperatures 
approached groundwater temperatures earlier in the fall and remained 
lower later in the spring). Cooler stream channels in the small streams 
are likely a combination of land cover (the small streams were pre
dominantly in forested areas with closed canopies, whereas the paddled 
section had an open canopy and were bordered by agricultural and 
developed land), elevation, and overall groundwater dominance of 
streamflow in summer. The smaller temperature differentials, finer 
survey resolution, and shorter survey lengths in the small streams made 
it more difficult to distinguish river sections with a varying density of 
groundwater discharge areas as compared to the larger river. 

4.1.3. The scale of simulated groundwater discharge 
The resolution of simulated groundwater discharge is a function of 

the model resolution, the resolution of the input data, and the available 
calibration data. Most input data for river-network scale groundwater 
models is of a coarser resolution than the model cell. For example, 
important drivers of groundwater discharge including the thickness and 
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permeability of surficial materials and bedrock, as well as groundwater 
recharge rates, are generally known only at a resolution much coarser 
than the model grid. In addition, local scale heterogeneity in calibrated 
hydraulic conductivity patterns is constrained by both the spacing of the 
pilot points and the available calibration data. Increasing the density of 
pilot points without a corresponding density of observation data, how
ever, will not increase heterogeneity in calibrated values because, in the 
absence of data, hydraulic conductivity values will reflect default 
values. 

4.1.4. Integration insights 
In the 3rd and 5th order rivers, the resolution of the model, 

groundwater-discharge drivers, and survey method matched well. The 
model resolution is relatively coarse (300 m or 100 m) and is expected to 
reflect the general, coarse scale patterns. The 3rd and 5th order rivers 
traverse a large area of relatively high hydraulic conductivity sediments 
(coarse and fine-grained stratified sediments), creating large areas of 
groundwater discharge that were easily observed and modeled. In the 
5th order river, we were able to paddle extensive distances (3 − 5 km per 
day), and the combination of longer survey lengths and larger discharges 
allowed us to identify spatial patterns of groundwater discharge at a 
similar (coarse) resolution as the model resolution. Likewise, the 3rd 
order survey lengths were long enough to distinguish between areas of 
higher and lower discharge-location density. In both the 3rd and 5th 
order rivers, the better performing models distinguished gradients of 
observed discharge-location density, not only the difference between 
areas with and without observed discharge locations. 

In contrast, within the 1st and 2nd order stream sites the resolution 
of the model, groundwater-discharge drivers, and survey method did not 
match. The model resolution was the same (300 m or 100 m, relatively 
coarse) as in the larger river. In 1st and 2nd order streams discharge is 
more strongly controlled by local-scale topography, preferential flow 
paths, and surficial-material patterns than by regional features. It is 
likely that the resulting spatial patterns of groundwater discharge were 
below the resolution of the coarse-scale model, even when we reduced 
the resolution to 100 m. For example, the complex near-surface geology 
that is common in headwaters areas, such as near-surface (or scoured to) 
bedrock dynamics and the prevalence of low-permeability till that in
hibits discharge even where predicted based on water table elevations, is 
not well represented in the groundwater models. In addition, the survey 
resolution was fine, which may have matched well with the resolution of 
the drivers of groundwater discharge, but not with the groundwater- 
flow model. 

4.2. Using TIR at the river-network scale for groundwater model 
evaluation 

Use of TIR at the river-network scale requires multiple survey 
methods. River size and morphology determine how each stream or river 
can be accessed and surveyed. In this study, wading would have been 
impractical or unsafe in the larger river, and paddling impossible in the 
smaller streams. We were unable to survey high-gradient or high- 
velocity streams, due to practical and safety considerations. The use of 
airborne TIR (on unmanned aerial systems) could allow surveys in these 
otherwise inaccessible reaches (Harvey et al., 2019), but cannot be used 
in small forested settings with a closed canopy and likely would result in 
coarser resolution than our paddled surveys due to faster travel 
compared to paddling. 

Different TIR survey methods, as demonstrated in this study, have 
differing spatial resolutions that must be acknowledged and addressed 
in investigations across stream and river sizes. One aspect of addressing 
the differing spatial resolutions could be analyzing data from different 
TIR survey types separately, as well as developing consistent survey 
metrics to classify observed discharge locations. It is also important to 
ensure sufficient survey lengths to adequately distinguish between river 
lengths with higher and lower densities of groundwater-discharge zones. 

We found this challenging in the small streams, but easy in the larger 
river. Finally, it will be important to consider the optimum comparison 
metric for TIR and simulated discharge. We used two metrics: 1) a binary 
presence / absence metric, which is simple, but does not capture vari
ation in observed discharge, and 2) a correlation of observed discharge- 
location density and simulated groundwater discharge. Particularly in 
the small streams, where wading results in high resolution surveys, 
metrics that capture the extent of discharge, and not simply the presence 
/ absence, are needed. Other possibilities include a qualitative metric 
based on site observations (e.g. presence of visible flow or channels in 
the sediment). 

Simulated discharge from groundwater models includes both 
discharge above the waterline and submerged seeps. Another possible 
limitation of TIR is that it assumes the majority of the discharge occurs 
above the waterline (i.e. bank seeps), so submerged discharge zones in 
deeper, faster water may be missed. In river systems, however, discharge 
is typically weighted toward the water line due to expected highest 
hydraulic gradients and generally decreases with distance from shore 
exponentially in homogeneous sediments (Anibas et al., 2011). Also, 
fines tend to accumulate in deeper water forming a low-K “cap” that 
inhibits discharge, while fines are actively scoured by wave action along 
the water line (Rosenberry et al., 2015). We conducted one survey 
during an extensive reservoir draw down that exposed the majority of 
the streambed and the seeps we observed were at the pre-draw-down 
water line. Together these suggest that submerged discharge zones are 
a relatively minor component of the total groundwater discharge and 
will not substantially limit the use of TIR for mapping areas of 
groundwater discharge or evaluating groundwater-flow models in sys
tems similar to our study watershed. 

Across all stream sizes, the models predicted groundwater discharge 
in most model cells with rivers, including where we did not observe 
preferential bank discharge zones with TIR (Fig. 5). The presence of 
modeled discharge in areas without TIR-observed discharge zones could 
be a result of both the limitations of TIR imaging and model deficiencies, 
which we cannot distinguish here. Higher predicted rates in areas 
without visible preferential groundwater discharge could reflect wide
spread spatially diffuse discharge and/or discharge below the water 
surface that is not adequately mapped with TIR imaging, since it is based 
on strong thermal anomalies and does not penetrate the water surface. 
Conversely, the higher rates could indicate areas where the models do 
not accurately represent the processes driving groundwater discharge. 
For example, areas with greater local-scale heterogeneity in hydraulic 
conductivity values and variable depth-to-bedrock may not be well 
modeled. 

4.3. Implications for modeling groundwater discharge at the river-network 
scale 

We found that a common approach to modeling groundwater suc
cessfully predicted broad patterns of groundwater discharge, but failed 
to predict local patterns within headwaters sites. In the 3rd and 5th 
order rivers, discharge patterns were robust across model variations. 
Within 1st order streams, only 1 model (SurfMatZone) weakly distin
guished between areas with and without observed discharge locations, 
and no model predicted the observed patterns in the 2nd order stream. 

This work suggests several important implications for improved 
modeling of groundwater discharge at the river-network scale. First, 
modeling efforts should focus on improving predicted discharge patterns 
in smaller reaches, particularly in areas of glacial till and near-surface 
bedrock. This might involve finer-resolution data on surficial-material 
type and thickness, calibrating by zones based on stream order (as was 
the case for the SurfMatZone model), or better representing the bi- 
directional nature of river-aquifer exchange in headwaters areas. 
Geophysical methods could be used to better map the thickness and 
character of sediments in stream corridors (Auken et al., 2017; McLa
chlan et al., 2017). Second, bedrock hydraulic conductivity values 
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should be calibrated, not based on established literature values. 
Although this increased the computational requirements of calibration 
and requires data on groundwater heads in bedrock, we found that it 
improved the accuracy of predicted discharge patterns. Third, careful 
attention should be paid to the conceptualization of river-aquifer ex
change. This is particularly true in the smaller streams, where 
bi-directional exchange between groundwater and surface water can be 
particularly complex (Payn et al., 2009). Varying the magnitude of the 
riverbed hydraulic conductivity improved the model fit in some in
stances, but created unreasonably large fluxes from river to aquifer in 
other locations. Eliminating losing reaches (limiting river-aquifer ex
change to discharge) improved the model fit in some cases, but prevents 
accurate representation of losing reaches. 

4.4. Next steps 

This work takes an important step in evaluating spatial patterns of 
groundwater discharge at the river-network scale and demonstrating the 
viability of comparing groundwater-flow model predictions to observed 
groundwater-discharge zone spatial clustering. Improving this approach 
will involve more spatially expansive field surveys that better cover the 
extensive headwater stream lengths. For example, at most of the waded 
(non-boatable) sites, the survey length was less than 800 m; longer 
surveys in these sites may have highlighted more within-site variation. 
In this project we were limited to stream reaches that were accessible 
through wading or paddling. Recent advances in remote sensing of 
groundwater discharge using TIR and unmanned aerial surveys offer a 
potential methodology to survey reaches through steep or wetland areas 
that were inaccessible in our work (Briggs et al., 2019; Harvey et al., 
2019), though forested headwater streams will remain challenging for 
aerial surveys. Extensive spatial surveys have the potential to be used as 
a numerical calibration target, if a method is developed to convert 
predicted discharge rates to a probability of observing discharge in the 
field, possibly incorporating channel and landscape geomorphology (e. 
g. Dugdale et al., 2015). 

In addition, although TIR provides an easy method of identifying 
groundwater-discharge zones, it does not enable quantification of 
discharge rates or identification of losing reaches. Using TIR in combi
nation with a toolbox of quantification approaches (flow tracers, weirs, 
vertical temperature profilers, differential gaging, etc.) may provide the 
best evaluation of groundwater discharge patterns. For this study we 
compared model results to general spatial patterns of observed 
groundwater-discharge zones. The use of additional field methodology 
beyond TIR will also allow comparison to discharge rate, presuming 
field-measured fluxes can be aggregated at the model-grid-cell scale. 

5. Conclusions 

We demonstrate an approach to using TIR to assess model-cell scale 
groundwater discharge patterns predicted by river-network scale 
groundwater-flow models. The spatial patterns of discharge identified 
by TIR provided a way to differentiate between the performance of the 
models and to evaluate the modeled patterns. In the larger (3rd and 5th 
order) rivers, spatial patterns of discharge were relatively well repre
sented by most models, particularly those where the bedrock hydraulic 
conductivity was calibrated instead of based on literature values. In 
smaller streams (1st and 2nd order), most models did not simulate the 
observed groundwater discharge patterns. More spatially extensive 
surveys, including remotely-sensed TIR mapping, combined with a 
toolbox of discharge quantification methods, can further refine this 
work and provide a spatially distributed groundwater discharge target 
for numerical calibration. In addition, new approaches are needed for 
simulating groundwater discharge in headwater streams, and may 
necessitate refined geologic data. 
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