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ARTICLE INFO ABSTRACT

Keywords: Predicting baseflow dynamics, protecting aquatic habitat, and managing legacy contaminants requires explicit
Groundwater discharge characterization and prediction of groundwater discharge patterns throughout river networks. Using handheld
Seepage thermal infrared (TIR) cameras, we surveyed 47 km of stream length across the Farmington River watershed
;hgg;l::)lvr\l]ﬁared (1,570 km? CT and MA, USA), mapping locations of bank and waterline groundwater discharges based on their

thermal signature. Using the observed groundwater discharge locations and predicted groundwater discharge
rates from 6 variations of a numerical groundwater-flow model (MODFLOW-NWT), we compared 1) predicted
groundwater-discharge rates in areas with and without observed groundwater discharge, 2) spatial patterns of
observed and predicted groundwater discharge locations, and 3) density of observed groundwater discharge
locations with predicted discharge rates. Five of six models reasonably predicted the spatial patterns of discharge
locations along the 5th order mainstem, but fewer models predicted groundwater discharge patterns in smaller
streams. Our results highlight 1) the feasibility of using TIR observations to evaluate groundwater models, 2)
model parameters that influence discharge prediction accuracy (riverbed sediment and bedrock hydraulic con-
ductivity and river-aquifer connections), and 3) current strengths and future opportunities for improved

model evaluation

modeling of groundwater-discharge patterns.

1. Introduction

Model predictions of spatially explicit groundwater discharge pat-
terns along stream networks are not often evaluated using field obser-
vations. However, accurate prediction regarding the spatial distribution
and other physical characteristics of groundwater discharge to streams
and rivers is critical for protecting aquatic habitat and managing
contaminant inputs to streams (Briggs and Hare, 2018; Dent et al., 2001;
Torgersen et al., 2012). For example, identifying the locations and
source depth of groundwater discharge is essential to predicting the
occurrence of thermal refuges and refugia in the face of climate change
(Hare et al., 2021; Johnson et al., 2020). Similarly, groundwater flow-
path depth and discharge location are important for understanding ni-
trogen loads to river systems (Kolbe et al., 2019; Wherry et al., 2021).
Accurate prediction of groundwater discharge across river networks,
however, remains challenging due to gaps in model evaluation and a
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lack of field data at model-relevant spatial extents and resolutions
(Barclay et al., 2020a).

Groundwater models are commonly implemented at the river-
network scale (drainage areas > 10° kmz) and simulate groundwater
discharge to streams and rivers at the model cell resolution (model-
specific, typically hundreds of meters) (Befus et al., 2017; Feinstein
et al., 2010; Masterson et al., 2016; Sanford et al., 2012). This suggests
that groundwater models can simulate sub-reach heterogeneity in
groundwater discharge at the spatial extent of river networks. Yet, the
accuracy of simulated discharge patterns has not been assessed at this
scale. Recently, Barclay et al. (2020a) demonstrated that groundwater
models (MODFLOW-NWT, n = 11) with identical recharge inputs but
differing parameterization resulted in similar fit to observed water levels
but 1) differences of 50% in the fraction of groundwater discharge
directed to 1st order streams, 2) three-fold differences in simulated
source groundwater flowpath depth, and 3) seven-fold differences in
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subsurface travel times among models. Differences of this magnitude in
simulated flow distribution could have consequential implications for
maintaining environmental flows (including stream temperature),
managing contaminant legacies, or understanding nutrient processing
(Barlow and Leake, 2012; Barnes et al., 2018; Chen et al., 2018; Kolbe
et al.,, 2019; Kurylyk et al., 2015). This lack of precision regarding
critical physical characteristics of groundwater discharge across a river
network highlights the need for new approaches to evaluate and refine
simulated patterns of discharge such as the position along the river
network.

Calibration or evaluation data for groundwater-flow models
commonly include groundwater head, stream elevation, stream
discharge in sub-basins, and occasionally age tracer data (Sanford, 2011;
Starn and Brown, 2007). Information on spatial patterning of ground-
water discharge (seepage) to streams is typically not included. Although
discharge rates from individual groundwater-discharge zones (Vaccaro,
2011; Yager et al., 2008, 2007) and discharge patterns in small water-
sheds (< 50 kmz) (Ala-aho et al., 2015; Danielescu et al., 2009; Glaser
et al., 2016; Jeannot et al., 2019) have been used in a few instances,
studies that explicitly assess sub-reach (hundreds of meters) spatial
patterns of simulated groundwater discharge across larger watersheds
(> 10% km?) are lacking. This absence of assessment is due, in part, to a
lack of empirical data that can be meaningfully compared to modeled
discharge patterns and a lack of approaches for incorporating new types
of field data into the modeling process.

Existing empirical approaches typically identify and quantify
groundwater discharge at the point to reach scale (discrete lengths of
river, typically hundreds of meters to a few kilometers), but neither
point measurement nor reach-scale aggregations of groundwater
discharge are straightforward to compare to model outputs due to
mismatches in measurement and model resolution. At discrete points,
seepage meters and temperature profilers can be robust for quantifying
groundwater discharge below the waterline under favorable conditions
(Caissie and Luce, 2017; Irvine et al., 2016; Rosenberry, 2008), but
measuring the total groundwater discharge for a single model cell using
physical point measurements would require many time-consuming in-
dividual measurements as extreme heterogeneity precludes interpola-
tion. This is impractical over spatial extents comparable to most
predictive models. Spanning the reach and point scale, fiber-optic
distributed temperature sensing (FO-DTS) can identify spatial patterns
of groundwater discharge along linear cables at sub-meter resolution, as
well as high-frequency (< 15 min intervals) temporal variation in
groundwater discharge (Hare et al., 2015; Matheswaran et al., 2014).
Groundwater-discharge observations made with FO-DTS can be easily
aggregated to the model resolution, but deploying and managing the
cables requires at least a week per 2 — 3 km length of river, making them
impractical for river-network scale applications. At the reach scale
(hundreds of meters), chemical tracers and differential gaging allow
calculation of aggregate groundwater discharge assuming conservation
of mass (Kalbus et al., 2006; Kilpatrick and Cobb, 1985; McCallum et al.,
2012; Xie et al., 2016), but net groundwater inflow along the mea-
surement reach must be relatively large compared to streamflow for
groundwater inputs to be captured with confidence, and
spatially-explicit discharge information is lost. Network-scale ground-
water discharge analysis conducted using baseflow separation tech-
niques are useful in testing net groundwater exchange (as baseflow)
predictions (Cartwright and Miller, 2021; Miller et al., 2017), but as
with tracer injections, specific discharge zone information is not
preserved.

Newly refined remote-sensing and geophysical-based methodologies
offer promise in better aligning the scales of discharge-specific field-data
collection and watershed groundwater-flow model resolution (Briggs
and Hare, 2018; Toran et al., 2015). In particular, thermal infrared
imagery (TIR) (e.g. Ala-aho et al., 2015; Briggs et al., 2016; Schuetz and
Weiler, 2011), which greatly enhances potential spatial coverage while
preserving high spatial resolution of discharge-zone mapping (Briggs
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and Hare, 2018), may be an ideal empirical method for integrating with
river-network scale groundwater models. TIR provides a time-specific
map of water surface and bank temperatures along contiguous sur-
veys. This surface temperature map can be used to identify zones, or
areas, of ‘preferential’ groundwater discharge at times of year with
contrasting groundwater and surface-water or stream-bank tempera-
tures (Torgersen et al., 2001). Preferential groundwater discharge dif-
fers from spatially diffuse discharge in that groundwater emerges at a
relatively high flux rate in discrete patches such that source ground-
water temperature signatures are preserved, allowing identification via
heat tracing (Briggs and Hare, 2018). Generally, groundwater discharge
observed with TIR at or above the water line (on riverbanks) occurs as
discrete points at the sub-meter scale, or when multiple discharge points
occur in close proximity over more extensive (tens of meters) bank areas,
as preferential discharge faces (Mundy et al., 2017). Drone-based TIR
has recently been applied to the evaluation of groundwater
discharge-based large wetland restoration design (Harvey et al., 2019),
validation of discharge patterns from integrated hydrologic models in
small (< 5 km?) watersheds using handheld instruments (Glaser et al.,
2016; Jeannot et al., 2019) and mapping potential thermal refugia zones
based on the occurrence of discharge faces along higher-order rivers
across hundreds of kilometers using airborne platforms (Ala-aho et al.,
2015; Dugdale et al., 2015).

Field surveys conducted with TIR have the potential to provide field
observations at a spatial extent and resolution that can be meaningfully
compared with river-network scale groundwater-flow models. TIR is
more efficient to implement than other empirical methods (e.g., seepage
meters, differential gaging, chemical tracers), though unlike several
such methods TIR cannot be used to determine groundwater discharge
flux rates, except potentially under highly specific circumstances such as
frozen discharge faces (Pandey et al., 2013). Warm weather riverbank
discharge plume size and temperature is governed by a range of local-
ized hydrodynamic factors, and relatively cold discharge water tends to
plunge downward into the water column out of the view of TIR,
hampering efforts to directly infer discharge rates from TIR images.
However, TIR can be used to quickly identify discharge areas, or zones,
across contiguous space in perhaps a more complete manner than any
other current groundwater/surface water exchange processes method-
ology. The mapped locations of observed preferential
groundwater-discharge, particularly when they occur along more
extensive discharge faces, could potentially be used to evaluate spatial
patterns of groundwater discharge predicted by river-network scale flow
models as the development of discharge faces is likely driven by geologic
and hydraulic factors more similar to model scales than singular
discharge points.

Our primary objective in this study was to test the utility of TIR-
based field measurements of preferential groundwater-discharge
points and faces for evaluating model-cell scale spatial patterns of
groundwater discharge predicted by a river-network scale groundwater
model. This is a substantial step towards resolving the disparate scales of
detailed stream-reach field studies and coarse river-network scale sim-
ulations. In this project, we characterized spatial patterns of ground-
water discharge at the river-network scale using extensive TIR field
surveys and then evaluated six groundwater models for a 5th order
watershed representing different spatial patterns of groundwater
discharge but similar model fit metrics to groundwater levels (Barclay
et al., 2020a) against the field observations. Ultimately, this study
demonstrates an approach to field verifying the predicted spatial pat-
terns of groundwater discharge from river-network scale groundwater
models, thereby highlighting areas for future improvement in our ability
to simulate groundwater discharge at the river-network scale.

2. Methods

Briefly, we characterized spatial patterns of preferential ground-
water discharge across a river network using spatially extensive ground-
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based TIR field surveys, then compared these empirical results to river-
network scale groundwater-flow models. We surveyed 47 km of total
stream length (across stream orders) with TIR imagery to map areas of
groundwater discharge across headwater areas, 3rd order tributaries
and the mainstem of a 5th order watershed. We then selected six
meaningful physical variations of a previously published groundwater-
flow model (Barclay et al., 2020a, 2020b) with similar calibration-fit
metrics but differing predicted spatial patterns of groundwater
discharge. We used the field-mapped spatial distributions of ground-
water discharge locations to evaluate predicted patterns of groundwater
discharge from the calibrated models. This independent evaluation of
the models with observed spatial patterns of discharge is not typical for
groundwater models and is a unique strength of our approach. Details of
our methods are given in the following sections.

2.1. Site description

The study site was the Farmington River watershed (MA and CT,
USA) (Fig. 1). The Farmington River drains an area of 1570 km?and is a
5th order tributary of the Connecticut River. Glacial till overlies crys-
talline bedrock over most of the watershed with areas of stratified glacial
sediments over sedimentary rock in the river valleys (Olcott, 1995;
Soller et al., 2012). Previous geophysical mapping has indicated that
groundwater discharge patterns may be driven in part by near-surface
bedrock type, in addition to the unconsolidated surficial geology
(Lane et al., 2020). Land cover is predominantly forest, particularly in
the central and northern regions of the watershed; developed land is
focused along the eastern river valley (Homer et al., 2015). In the up-
lands the stream channels were predominantly cobbled with some areas
of exposed bedrock and the canopies were typically closed. In the
eastern river valley, the stream gradients were lower, bed sediment was
primarily coarse or fine sand, and the canopy was open, particularly
along the 5th order section of the Farmington River. Further description
of the site is given in Barclay et al. (2020a).

42.25°N
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2.2. Field surveys

To map locations of groundwater discharge along stream banks, we
surveyed 47 km of non-contiguous stream reaches within the Farm-
ington River watershed using TIR. Due to practical considerations, we
surveyed small streams by wading/walking along banks and larger
rivers by canoe from the center of the channel. We waded eight 1st order
stream sites (4.7 km total), 6 km of a 2nd order stream, and three 3rd
order stream sites (1.6 km total). We paddled 2.7 km of a 3rd order
stream and 32 km of the main stem of the Farmington River (5th order)
(Table 1). We conducted the surveys over 13 days between July 6 and
October 5, 2017 and 7 days between August 2 and September 22, 2019.
Streams were surveyed once, though some reaches required multiple
days.

During the surveys, we scanned the banks using one of four FLIR
cameras (T640, T620, E8, and i7; FLIR Systems, www.flir.com), with
instrument emissivities set consistent with fresh water in summer (0.96
—0.98) (Handcock et al., 2012), and viewfinder temperature ranges set
for the T640, T620, and E8 cameras to span stream and groundwater
temperatures. In areas with apparent colder thermal anomalies of mul-
tiple degrees on the banks and along waterline, we collected TIR images,
noted the latitude and longitude using a hand-held GPS unit (Garmin
Colorado 400t or Garmin GPSMAP 64 s, www.garmin.com), and
recorded the subsurface (11 cm depth) temperature using a precise
hand-held digital thermometer (https://www.traceable.com/4000-t
raceable-digital-thermometer.html). Absolute temperatures calculated
from TIR images can be affected by reflected radiation (Baker et al.,
2019; Handcock et al., 2012), therefore we identified groundwater
discharge based on multiple lines of evidence: thermal anomalies in the
surface temperature, subsurface temperatures consistent with dis-
charging groundwater, and qualitative indicators of groundwater
discharge, such as wet soil or flowing water above the water line.
Because the TIR images were used for mapping the locations of cold
thermal anomalies attributable to groundwater discharge and not for

Massachusetts
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Fig. 1. Farmington River Watershed. Numbers refer to survey sites listed in Table 1.
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Table 1
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Field Sites (P = Paddled, W = Waded; DF = Discharge Face, Pt = Discharge Point; GT = Glacial Till, CG = Coarse-grained stratified sediment, FG = Fine-grained

stratified sediment).

Site Site Name Stream Survey Access  Discharge Survey Dates Drainage Area Survey Surficial Materials in

Number Order Length (m) Types (km?) Elevation (m) Survey Reach

1 Tributary to Mad River 1 250 w Pt 9-Aug-17 0.9 306 GT

2 Hurricane Brook 1 1300 w Pt 7-Aug-17 2 298 GT

3 Falls Brook 1 400 w Pt 7-Aug-17 0.8 347 GT

4 Beaver Brook 1 300 w Pt 9-Aug-17 6 237 GT

5 Morgan Brook 1 500 w DF, Pt 8-Sep-17 18 169 GT

6 Tributary to Salmon 1 400 w Pt 8-Sep-17 8 266 GT
Brook, West Branch

7 Tributary to Punch Brook 1 650 w Pt 2-Aug-17; 0.7 201 CG

8-Aug-17

8 Tributary to Scott Swamp 1 700 w DF, Pt 8-Aug-17 3 62 CG; GT
Brook

9 West Branch Salmon 2 750 w DF, Pt 12-Aug-19; 49 96 CG; GT
Brook 19-Sep-19

10 West Branch Salmon 2 5300 w DF, Pt 2-Aug-19; 5- 55 68 CG; GT
Brook Aug-19

11 Farmington River, West 3 700 w Pt 11-Sep-17 133 327 GT
Branch

12 Sandy Brook 3 100 w Pt 9-Aug-17 89 245 GT

13 West Branch Salmon 3 350 w DF, Pt 6-Aug-19 67 60 CG; GT
Brook

14 Salmon Brook 3 1400 P DF, Pt 20-Aug-19 174 50 FG; CG

15 Salmon Brook 3 1250 P DF, Pt 22-Sep-19 188 50 FG; CG

16 Farmington River, Access 5 9750 P Pt 15-Sept-17; 1202 47 FG; CG
Point 21 - 22 2-Oct-17

17 Farmington River, Access 5 5500 P DF, Pt 26-Jul-17 1235 45 CG
Point 22 - 23

18 Farmington River, Access 5 3400 P DF, Pt 6-Jul-17; 1279 45 CG; FG
Point 23 - 24 26-Jul-17

19 Farmington River, Access 5 5100 P DF, Pt 26-Jul-17; 1292 45 FG; CG
Point 24 - 25 1-Aug-17

20 Farmington River, Access 5 2500 P Pt 6-Jul-17; 1303 45 FG; CG
Point 25 - 26 27-Sept-17

21 Farmington River, Access 5 5400 P DF, Pt 13-Sep-17 1518 29 CG; GT
Point 28 - 29

quantitative analysis of the absolute temperatures, we did not discharge  observed along  streambanks: 1)  preferential

post-process the images or apply corrections to the calculated temper-
atures. We delineated the approximate linear discharge-zone length
along the bank. We categorized two types of preferential groundwater

groundwater-discharge points (one or more individual sub-meter scale
zones of preferential discharge) and 2) discharge faces (extensive
lengths, tens to hundreds of meters long, of grouped cold anomalies

A) Stream bank discharge face

B) Individual discharge points

Fig. 2. Examples of preferential, bankside groundwater-discharge observed with handheld thermal infrared (TIR) cameras: A) Stream-bank groundwater discharge
face and B) Individual groundwater-discharge points. In each box, photos on the top are visible color and photos on the bottom are the corresponding thermal
infrared image. In the thermal infrared images, cooler colors indicated colder temperatures and warmer colors indicate warmer temperatures. Groundwater discharge

can be identified by the dark blue, cold anomalies. Images provided by Eric Moore.
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along the bank) (Fig. 2). In this study, we use the term “discharge zones”
to refer to all areas of groundwater discharge, regardless of spatial
extent, and “discharge point” and “discharge face” to distinguish be-
tween spatially limited and spatially extensive areas of groundwater
discharge as defined above. Images from the TIR surveys are available in
Barclay et al. (2019) and Moore et al. (2020).

2.3. Groundwater-flow model

We selected a subset (n = 6) of previously implemented
groundwater-flow models for our study site that had similar fit to
groundwater level and stream elevation calibration data, but varied in
their predictions of spatial patterns, flowpath depth, and travel time of
groundwater discharge (Barclay et al., 2020a). Similarities across
models are described here; differences are discussed in the next para-
graph. The models were developed in MODFLOW-NWT (Niswonger
etal., 2011) and they simulate flow under steady-state conditions, with a
uniform horizontal grid and 4 vertical layers. The unconsolidated sur-
ficial materials are split vertically into three layers, with decreasing
horizontal hydraulic conductivity with depth. The lowest layer is a
bedrock layer. The horizontal hydraulic conductivity was calibrated
using PEST++ (Welter et al., 2015), mean head measurements from 990
wells and water levels from 1st order streams in flat areas (land surface
slope <= 2%), and a grid of pilot points. Pilot points are preselected
points at which hydraulic conductivity is calibrated; hydraulic conduc-
tivity at all other locations is interpolated from the pilot points. Simu-
lated water levels were compared to head measurements from 984 wells
and 525 stream water levels with root mean squared errors (RMSE)
ranging from 9.8 to 11.6 m (Table 2). The models were also evaluated
using an OverallError metric, defined as the percent of flooded terres-
trial cells (incorrectly simulated as flooded) plus the percent of dry river
cells (incorrectly simulated as dry) plus a penalty for excessive losing
river reaches (in excess of 5 percent of recharge). The OverallError
metric is based on the work of Starn and Belitz (2018).

The selected models differ in the zonation of pilot points, degree of
variation in bedrock and riverbed hydraulic conductivity, allowed
directionality of river-aquifer exchange and horizontal grid resolution
(Table 2). The Initial model was developed based on readily available
data and common simplifying assumptions. It has a 300 m horizontal
grid, uniform riverbed hydraulic conductivity (0.1 m d’l), literature-
based bedrock hydraulic conductivity (Domenico and Schwartz, 1997;
U.S. Geological Survey, 2007), and a 4000 m grid of pilot points.

Table 2
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Streams were simulated using the RIV package, which allows stream
reaches to be net gaining or losing at the model cell resolution (Har-
baugh, 2005). In SurfMatZone, the pilot points are assigned to one of four
zones based on surficial material type (glacial till, coarse stratified
sediments, fine stratified sediments, and open water) and a finer grid
(1000 m) was used for the pilot points in the coarse sediments, fine
sediments and open water zones because these zones occupied a smaller
area where the 4000 m spacing was impractical (442 pilot points total vs
102 with the Initial model). RiverbedK is identical to the Initial model,
except that the riverbed hydraulic conductivity is spatially varying and
assigned as 0.01 times the hydraulic conductivity of the surrounding
surficial material. RivK BedK is similar to RiverbedK, except that the
hydraulic conductivity in the bedrock is calibrated on a 4000 m grid of
pilot points, rather than being based on literature values. HighRes is
identical to RivK_BedK, except that the grid cell size is reduced to 100 m.
Finally, RivK BedK_drn is similar to RivK BedK except that rivers are
represented using the DRN package in MODFLOW, which allows flow
only from aquifer to river (streams are all gaining or disconnected),
instead of the RIV package (Harbaugh, 2005). Further details of model
development are available in Barclay et al. (2020a) and the model input
and output files are available in Barclay et al. (2020b).

Despite the similarity in model fit as indicated by the RMSE and the
OverallError metrics, the models had substantial differences in
groundwater flowpath characteristics (Table 2 and Fig. 3). For example,
the fraction of groundwater discharge directed to small (1st order)
streams ranged by a factor of 1.4, from 29 — 40%; the median travel time
ranged by a factor of 3.8, from 1.1 to 4.2 years, and the median flowpath
depth ranged by a factor of 2.6, from 6.8 to 17.9 m (Table 2). Similar
differences in simulated discharge characteristics were seen in the subset
of reaches included in the field surveys of this study (Fig. 3). For
example, mean groundwater discharge rates to 1st order streams ranged
by a factor of 4, from 0.4 to 1.2 m®m~'d™!, with a mean of 0.8
m®m~1d~L. In this paper, simulated discharge rates are expressed as a
volume of discharge per length of stream per day.

2.4. Comparing locations of modeled and observed groundwater
discharge

To evaluate the simulated spatial patterns of groundwater discharge,
we compared the simulated discharge predictions with our field obser-
vations of preferential discharge points and faces. First, we quantita-
tively compared simulated groundwater-discharge rates in sections with

Groundwater model cases. A notation of “~* indicates the model is identical to the Initial Model. Modified from Table 1 in Barclay et al. (2020a).

Name Grid Calibration Pilot River Riverbed K Bedrock K RMSE Overall Percent of Subsurface Max Flowpath
Data Points Package (m) Error' Discharge to Travel Time®, Depth®, 1Q*
1st Order IQ" Range Range
Rivers (median) (yr) (median) (m)
Initial 300 990 wells, 525 4000 RIV Uniform Literature 11.2 7% 40% 0.5-6.3(1.8) 1.6 - 25.7 (6.8)
m stream m grid (0.1mp')  Values
elevations
SurfMatZone - - Zones - - - 11.6 5% 36% 0.3-5.8(1.4) 3.5-28.4(7.0)
RiverbedK - - - - Spatially - 10.7 6% 29% 0.3-7.2(1.1) 4.0-27.8(7.1)
Varying”
RivK_BedK - - - - Spatially Calibrated 10.0 5% 29% 0.7 - 45.0 (4.0) 4.0 -55.4
Varying” (16.0)
RivK_BedK_drn - - - DRN Spatially Calibrated 10.2 6% 35% 0.7 — 46.8 (4.2) 4.5-58.9
Varying” (17.9)
HighRes 100 984 wells, - - Spatially Calibrated 9.8 8% 32% 0.7 -47.2 (4.2) 5.8-54.4
m 2962 stream Varying” (13.4)
elevations

1 OverallError is a percentage of model cells in error, as noted by flooded terrestrial cells and dry river cells, plus a penalty for excessive losing reaches (modified

from Starn and Belitz, 2018). .

2 Riverbed hydraulic conductivity in each reach was 0.01 times the hydraulic conductivity of the surficial materials in the surrounding cell.

3 Based on particle tracking.
4 1Q is the interquartile range of the values.

5 This is the interquartile range and median of the maximum depths of each flowpath within the model domain, calculated using particle tracking.
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Small Streams Mid-Sized Streams Large Streams Large River
(1st Order) (2nd Order) (3rd Order) (5th Order)
0.8m’md”" 29m’m'd” 34m’m’d” 57m’m'd™
—e —e *——
_ —e —e — e — e
§ o — —eo 00— —e
= RivK_BedK- *— [ —@
RivK_BedK_drn- ® |® L o—
HighRes @— ———— *———
50 -25 0 25 -10 0 10 -0 0 10 20 30 40 -2 0 2 4

Percent difference in simulated discharge relative to the multi-model median

Direction of Change @ Decreased

No Change @ Increased

Fig. 3. Variation in simulated groundwater discharge in surveyed reaches by network position, represented as differences from the multi-model median. Numbers at
the top of each panel indicate the mean discharge per length of stream for the multi-model median to streams of the respective size. Colors indicate changes (red =
decrease, blue = increase, gray = no change) from the multi-model median. Note variation in x-axis scale across panels.

and without observed groundwater-discharge locations. Based on our
field observations, model cells were classified into two groups by the
presence or absence of observed areas of groundwater discharge,
regardless of the number or spatial extent of the observed discharge, and
we analyzed statistical differences in mean modeled discharge rate be-
tween the two groups. Models with statistically significant differences at
the p < 0.05 level were considered “strongly distinguishing” and at the
0.05 < p < 0.1 level were considered “weakly distinguishing”. All other
models were considered poorly performing. We considered the stream
sections by stream order due to differences in simulated discharge rate
and survey length. We analyzed all data at the model cell resolution and
also aggregated the observations and simulated discharge rates to
stream lengths of approximately 500 m for the 5th order river. Obser-
vations were not aggregated in the small streams due to short survey
lengths. We determined statistically significant differences using a
comparison of means that does not require normality, equal variance or
equal sample size (Herberich et al., 2010). All statistical analyses were
completed in R (R Core Team, 2019).

Finally, we qualitatively and semi-quantitatively compared the
observed and simulated spatial patterns of groundwater discharge across
models and within and across sites for each stream order. To semi-
quantitatively analyze the spatial patterns of groundwater discharge
we calculated the correlations between the simulated discharge rate and
the observed discharge density (number of locations per length of
stream, faces were counted once for every 10 m of length) for each
stream order. We calculated the correlations at the model cell resolution,
and for the 1st — 3rd order surveys across sites / sub-sites, and for the 5th
order survey at aggregated lengths of approximately 500 m, 1 km, and 2
km. Because the survey lengths varied substantially among 1st — 3rd
order stream sites, sites with long survey lengths were subdivided into
subsites with lengths similar to the median for the stream order. We
compared the discharge-location density to the simulated discharge rate
using a parametric correlation (Pearson’s r) for normally distributed
model-survey pairings and a non-parametric correlation (Spearman’s
rho) for the other pairings. Models with statistically significant (p <
0.05) correlations between observed discharge-location density and
simulated discharge were considered better performing models.

3. Results

We observed preferential groundwater discharge at or above the
waterline in all mapped stream sections, but discharge points and faces

were not evenly distributed along sections and varied in occurrence
between sections. Further, some discharge zones were clearly higher
flux (based on visible bank-surface flow; Fig. 2B) colder groundwater,
with discharge temperature approaching the annual surface mean (6.9 —
10.5 °C, PRISM Climate Group, 2012), while other zones of presumed
lower flux (based on the absence of visible flow) discharge were of
warmer temperatures. Discharge faces in the 5th order river tended to be
longer in length (e.g., Fig. 2A) than discharge faces in the smaller
streams, though there was substantial variation. Also, some discharge
zones in the 5th order river had flow channels visible in the infrared
(note the dark blue flow lines in Fig. 2A) or visible color images (without
infrared).

Temperatures in the observed groundwater-discharge zones were
consistent with groundwater temperatures in our study area (inter-
quartile range = 10.0 - 13.0 °C, mean = 11.5 °C, U.S. Geological Survey,
2020)(Fig. 4). Bank surface temperatures from the TIR images ranged
from 7.1 to 16.6 °C, and subsurface (11 cm depth) temperatures ranged
from 7.9 to 16.0 °C, with most groundwater-discharge zones between 10
and 15 °C on both the surface and in the subsurface. Even at similar
elevation groundwater can be expected to show a range of temperatures
in summer based on the depth of the contributing flowpath (Briggs et al.,
2018). Most of the coldest discharge zones (surface temperature < 9.5 °C
or subsurface temperature < 11.0 °C) were in the 5th order survey,
though they were typically separated by warmer discharge zones and
hundreds of meters of inactive banks.

Groundwater-discharge zones were not uniformly distributed along
stream reaches. In both the larger river and smaller streams,
groundwater-discharge points tended to cluster (Figs. 4 and 5) so that
some stream sections contained multiple discharge points and others
were relatively inactive. The grouping of discharge faces is even more
pronounced (Fig. 5). In the upstream 10 km of the larger-river survey we
observed no discharge faces, but in the next 12 km, we observed 12
distinct discharge faces covering approximately 1.5 km of river length.
During the 1st to 3rd order stream surveys, we only observed discharge
faces at 7 out of 16 sites, Salmon Brook (Sites 9, 10, 13, 14, and 15)
Morgan Brook (Site 4) and the Tributary to Scott Swamp Brook (Site 8).
Most of the discharge faces found in 1st to 3rd order streams are tens of
meters in extent.
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Fig. 4. Observed groundwater discharge at 4 example sites. Sites 4 & 8 (A & B)
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boundaries of the 300 m model cells. Circles and squares indicate observed
discharge locations, colored by the observed temperature.

3.1. Model evaluation

3.1.1. Predicted groundwater discharge in areas with and without observed
discharge zones

In the 5th order river, most models predicted significantly higher
rates of groundwater discharge in areas where we observed groundwater
discharge than in areas without observed discharge zones when the
observations and simulated rates were aggregated to stream lengths of
approximately 500 m (p < 0.05, Fig. 6, bottom row). The one model that
did not predict a statistically significant difference between areas with
and without observed discharge zones in the larger river was SurfMat-
Zone, where the pilot points were assigned to zones based on the sur-
rounding surficial material. The source of this misfit in the larger river
with the SurfMatZone model may be anomalously high calibrated hy-
draulic conductivity values in coarse stratified sediments (median for
SurfMatZone =243 md ~ 1vs39-44md ! for all other models). When
the observations and simulated discharge rates were compared at the
model cell resolution (100 m for HighRes; 300 m for all other models),
only the HighRes model weakly predicted higher rates of groundwater
discharge in areas where we observed groundwater discharge than in
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areas without observed groundwater discharge zones (p < 0.10).

In contrast, in the smaller streams and rivers (1st — 3rd order, Fig. 6,
rows 1 through 3), fewer models aligned with observed discharge pat-
terns, i.e., predicted significantly higher rates of groundwater discharge
in areas with TIR-observed discharge zones (p < 0.05, Fig. 6, rows 1
through 3), with greater agreement in 3rd order rivers than in 1st and
2nd order streams. The best performing model across 1st, 2nd, and 3rd
order streams was SurfMatZone, where calibration is by surficial deposit
zones. This is in contrast to the larger river where SurfMatZone per-
formed poorly. The differences in mean simulated discharge rates be-
tween areas with and without observed discharge zones was smaller for
1st and 2nd order streams (differences of —0.18 m®d~' and —0.87
m>d !, respectively, across all models, the negatives indicate that some
models predicted higher discharge rates where we observed no
discharge than where we observed discharge) than for 3rd order rivers
(mean difference of 1.77 m3d™!), suggesting that the models better
simulated observed discharge zones in 3rd order streams than in smaller
1st and 2nd order streams.

3.1.2. Location comparison of modeled and observed groundwater
discharge

In the 5th order river, all models reflected the general spatial pat-
terns of discharge we observed (Fig. 5D), consistent with the above
quantitative analysis (Fig. 6A). All models predicted relatively constant
discharge from km 1 to km 10, a section where we saw little evidence of
preferential bank groundwater discharge, and all models predicted the
apparent increase in discharge that we observed from km 11 - 21. None
of the models predicted the increased discharge we observed in km 21 —
22, and only SurfMatZone predicted the greater discharge we observed at
km 30-32, but SurfMatZone predicted discharge we did not observe
along the banks at km 35 - 36.

In the 1st — 3rd order streams, most models simulated similar
magnitude discharge across the sites (Fig. 5, A-C). Notable exceptions
occurred in the 1st order survey at sites 7 and 4 and in the 3rd order
survey at sites 11, 13, and 14. At site 7 in the 1st order survey (Fig. 5A), 3
models (RiverbedK, HighRes, and RivK BedK) predicted substantial flow
from the stream to the aquifer across the entire site, while the remaining
3 models simulated near-zero net discharge. These models (RiverbedK,
HighRes, and RivK BedK) have spatially varying riverbed hydraulic
conductivity and simulate streams using the RIV package (which allows
net gains or losses to the stream), a combination that can result in un-
realistically high flows from river to aquifer. Although the simulation
results might suggest predominantly losing conditions at site 7, this is
unlikely. Stream temperatures at site 7 suggest substantial groundwater
exchange and net gaining conditions, and the lack of a stream network
upstream of the site suggests streamflow is sourced locally, likely from
groundwater discharge. More likely the groundwater models are unable
to simulate the near-surface water table needed to generate gaining
conditions, possibly due to the coarse model resolution and headwaters
location. At site 4 in the 1st order survey, the three models with cali-
brated hydraulic conductivity in the bedrock (HighRes, RivK_BedK, and
RivK_BedK_drn) simulated no-flow or slight losses from stream to aquifer,
while the other 3 models simulated gaining conditions throughout the
site. At site 11 in the 3rd order survey, the higher-resolution model
(HighRes) simulated slightly different locations for the higher discharge
peaks than the remaining models. This could be a consequence of
differing model resolutions that led to differing locations of breaks and
gradients in the hydraulic conductivity. At sites 13 and 14 in the 3rd
order survey (Fig. 5C), SurfMatZone, in which hydraulic conductivity
was calibrated by zones of surficial-material type, simulated higher rates
of discharge over portions of the survey than the other models. Zonation
of the hydraulic conductivity results in sharper breaks in the spatial
patterns of the calibrated values, which likely caused differing patterns
of simulated discharge. In the 2nd order survey, all models simulated
similar spatial patterns, and all models simulated higher rates of
discharge in the downstream end of site 10 as compared with the
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upstream end, consistent with the increased aerial extent of observed
discharge at the downstream end.

In summary, across all stream orders, the spatial alignment between
simulated and observed (river bank) discharge patterns varied. In some
locations, such as km 12 in the 5th order river (Fig. 5D), peaks in
simulated discharge align spatially with peaks in the spatial extent of
observed discharge. In other locations, peaks in simulated discharge
occur upstream or downstream of peaks in the spatial extent of observed
discharge. For example, in site 14 of the 3rd order river (Fig. 5C), a peak
in simulated discharge occurs slightly upstream of an extensive area of
observed groundwater discharge. Misalignment in simulated and
observed discharge locations is more likely due to lack of precision in the
simulated location than to errors in the mapped location of the observed
discharge. Observed discharge was aggregated to the model cell reso-
lution (300 m or 150 m for the HighRes model), making it unlikely that
observed discharge would be mapped to the incorrect model cell, except
when the discharge occurred near the cell boundary. The groundwater
models were based on relatively coarse datasets, with hydraulic con-
ductivity for individual cells determined by interpolation. Together, this
makes it more likely that simulated locations of high discharge will be
less accurate than field mapped locations, though our field mapping
technique is not expected to capture direct riverbed discharge, which
may be substantial in some areas.

3.1.3. Discharge-location density and simulated groundwater discharge

In the 5th order survey, the observed discharge density and simu-
lated discharge were correlated for one model when the results were
aggregated to 500 m lengths (HighRes, tho = 0.26, n = 61; p < 0.05) and
weakly correlated for five model-aggregation pairs (RivK BedK, rho =
0.21, 500 m lengths, n = 61; RivK_BedK_drn, rho = 0.24, 500 m lengths,
n = 61; HighRes,rho = 0.34, 1 km lengths, n = 33; RivK_BedK, r = 0.46, 1
km lengths, n = 17; RivK_BedK_drn,r = 0.48, 2 km lengths, n = 17; p <
0.10). In the 3rd order survey, the density of observed discharge loca-
tions (observations per length of stream) was strongly correlated with
the simulated groundwater discharge rate for three models (RivK_BedK,
r=0.73; RivK_BedK_drn, r = 0.71; SurfMatZone, r = 0.71; p < 0.05) when
the results were compared across sites / sub-sites (subdivisions of longer
length surveys, shown with vertical bars on the x axis in Fig. 5C, n = 8)
and weakly correlated for two models (SurfMatZone, rho=0.90, model
cell resolution, n = 22; RiverbedK, r = 0.67, site / sub-site aggregation, n
= 8; p <0.10). In the 1st and 2nd order surveys, the observed discharge-
location density was not significantly correlated with the simulated
groundwater discharge.

4. Discussion

Accurate simulation of spatially explicit groundwater-discharge
characteristics at the river-network scale requires an approach that
links together models and empirical methods at comparable spatial
resolutions. We demonstrate an approach to integrating empirical TIR
observations of preferential groundwater-discharge occurrence and
river-network scale groundwater-flow modeling. To our knowledge, this
is one of the most spatially extensive high-resolution sets of observed
groundwater-discharge locations that includes small streams to date,
and represents a first attempt to use the spatial patterns of discharge
locations to evaluate a river-network scale groundwater-flow model at
the grid-cell scale.

4.1. Cross-scale integration of groundwater discharge: physical drivers,
observations, and simulations

Simulation and assessment of groundwater discharge patterns at the
river-network scale involves a complex cross-scale integration of phys-
ical drivers of groundwater discharge, empirical observation methods,
and groundwater models. Although TIR provides spatially extensive
observations at relevant spatial resolutions, our findings suggest that
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scale-integration challenges remain. In particular, we found that the
river-network scale models worked well in the 3rd and 5th order river
reaches where the stream channels cut through a thicker sand and gravel
aquifer. Along the 2nd order reach, which also overlaid sand and gravel
deposits, the models accurately predicted more discharge at the end of
site 10 (Fig. 5B) where extensive seep faces were also found. Within 1st
order stream reaches, where bedrock was often near-surface and there
was prevalence of low-permeability glacial till, the models did not
reflect observed variation in discharge.

4.1.1. The scale of physical drivers of groundwater discharge

Groundwater discharge is driven by three-dimensional patterns of
hydraulic conductivity and hydraulic head (Freeze and Witherspoon,
1967), which are driven by a complex array of patterns in groundwater
recharge, surficial material properties (type, layering, thickness, etc.),
bedrock properties (type, layering, fracture patterns, etc.), and geo-
morphology (slope, sinuosity, confinement, etc.) (Haitjema and Mitch-
ell-Bruker, 2005; Winter et al., 1998). These drivers operate at nested
scales ranging from centimeters to tens of kilometers (Freeze and
Witherspoon, 1967; Rosenberry and Pitlick, 2009). The importance of
each scale varies by network position, with local drivers dominating in
headwaters areas and regional drivers dominating in larger rivers, but
even in larger rivers, fine scale patterns are important (Rosenberry and
Pitlick, 2009).

4.1.2. The scale of TIR observations

TIR observation spatial resolution is a function of the temperature
differential between groundwater and surface materials, as well as the
survey speed and distance from the discharge points. By paddling down
the center of the 5th order river, we were able to survey multiple kilo-
meters a day, but faster travel at a longer distance from the banks
resulted in a coarse-resolution survey, we noted the larger areas of
groundwater discharge, but likely not every small point. In contrast,
slower travel while wading along small narrow streams resulted in a
finer level of detail in the smaller stream surveys compared to the large
river surveys. Even where we paddled the 3rd order river, the narrower
channel and lower water levels resulted in slower travel, and conse-
quently, in a finer-resolution survey than in the 5th order river.

The observed temperature differentials also differed by stream size,
likely due to different thermal regimes in the smaller versus larger
rivers. In the 5th order river reaches during late summer and early fall,
the temperature of the stream channel was consistently > 20 °C and the
observed groundwater-discharge zones on the banks were < 15 °C (some
below 11 °C); this large difference made the thermal contrast between
the stream banks and groundwater discharge relatively obvious. In
contrast, the channel temperatures in the 1st order streams tended to be
lower, some as cold as 15 °C, with the result that the thermal contrast of
groundwater-discharge along the stream banks were less apparent with
TIR and the viable survey season was shorter (channel temperatures
approached groundwater temperatures earlier in the fall and remained
lower later in the spring). Cooler stream channels in the small streams
are likely a combination of land cover (the small streams were pre-
dominantly in forested areas with closed canopies, whereas the paddled
section had an open canopy and were bordered by agricultural and
developed land), elevation, and overall groundwater dominance of
streamflow in summer. The smaller temperature differentials, finer
survey resolution, and shorter survey lengths in the small streams made
it more difficult to distinguish river sections with a varying density of
groundwater discharge areas as compared to the larger river.

4.1.3. The scale of simulated groundwater discharge

The resolution of simulated groundwater discharge is a function of
the model resolution, the resolution of the input data, and the available
calibration data. Most input data for river-network scale groundwater
models is of a coarser resolution than the model cell. For example,
important drivers of groundwater discharge including the thickness and



J.R. Barclay et al.

permeability of surficial materials and bedrock, as well as groundwater
recharge rates, are generally known only at a resolution much coarser
than the model grid. In addition, local scale heterogeneity in calibrated
hydraulic conductivity patterns is constrained by both the spacing of the
pilot points and the available calibration data. Increasing the density of
pilot points without a corresponding density of observation data, how-
ever, will not increase heterogeneity in calibrated values because, in the
absence of data, hydraulic conductivity values will reflect default
values.

4.1.4. Integration insights

In the 3rd and 5th order rivers, the resolution of the model,
groundwater-discharge drivers, and survey method matched well. The
model resolution is relatively coarse (300 m or 100 m) and is expected to
reflect the general, coarse scale patterns. The 3rd and 5th order rivers
traverse a large area of relatively high hydraulic conductivity sediments
(coarse and fine-grained stratified sediments), creating large areas of
groundwater discharge that were easily observed and modeled. In the
5th order river, we were able to paddle extensive distances (3 —5 km per
day), and the combination of longer survey lengths and larger discharges
allowed us to identify spatial patterns of groundwater discharge at a
similar (coarse) resolution as the model resolution. Likewise, the 3rd
order survey lengths were long enough to distinguish between areas of
higher and lower discharge-location density. In both the 3rd and 5th
order rivers, the better performing models distinguished gradients of
observed discharge-location density, not only the difference between
areas with and without observed discharge locations.

In contrast, within the 1st and 2nd order stream sites the resolution
of the model, groundwater-discharge drivers, and survey method did not
match. The model resolution was the same (300 m or 100 m, relatively
coarse) as in the larger river. In 1st and 2nd order streams discharge is
more strongly controlled by local-scale topography, preferential flow
paths, and surficial-material patterns than by regional features. It is
likely that the resulting spatial patterns of groundwater discharge were
below the resolution of the coarse-scale model, even when we reduced
the resolution to 100 m. For example, the complex near-surface geology
that is common in headwaters areas, such as near-surface (or scoured to)
bedrock dynamics and the prevalence of low-permeability till that in-
hibits discharge even where predicted based on water table elevations, is
not well represented in the groundwater models. In addition, the survey
resolution was fine, which may have matched well with the resolution of
the drivers of groundwater discharge, but not with the groundwater-
flow model.

4.2. Using TIR at the river-network scale for groundwater model
evaluation

Use of TIR at the river-network scale requires multiple survey
methods. River size and morphology determine how each stream or river
can be accessed and surveyed. In this study, wading would have been
impractical or unsafe in the larger river, and paddling impossible in the
smaller streams. We were unable to survey high-gradient or high-
velocity streams, due to practical and safety considerations. The use of
airborne TIR (on unmanned aerial systems) could allow surveys in these
otherwise inaccessible reaches (Harvey et al., 2019), but cannot be used
in small forested settings with a closed canopy and likely would result in
coarser resolution than our paddled surveys due to faster travel
compared to paddling.

Different TIR survey methods, as demonstrated in this study, have
differing spatial resolutions that must be acknowledged and addressed
in investigations across stream and river sizes. One aspect of addressing
the differing spatial resolutions could be analyzing data from different
TIR survey types separately, as well as developing consistent survey
metrics to classify observed discharge locations. It is also important to
ensure sufficient survey lengths to adequately distinguish between river
lengths with higher and lower densities of groundwater-discharge zones.
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We found this challenging in the small streams, but easy in the larger
river. Finally, it will be important to consider the optimum comparison
metric for TIR and simulated discharge. We used two metrics: 1) a binary
presence / absence metric, which is simple, but does not capture vari-
ation in observed discharge, and 2) a correlation of observed discharge-
location density and simulated groundwater discharge. Particularly in
the small streams, where wading results in high resolution surveys,
metrics that capture the extent of discharge, and not simply the presence
/ absence, are needed. Other possibilities include a qualitative metric
based on site observations (e.g. presence of visible flow or channels in
the sediment).

Simulated discharge from groundwater models includes both
discharge above the waterline and submerged seeps. Another possible
limitation of TIR is that it assumes the majority of the discharge occurs
above the waterline (i.e. bank seeps), so submerged discharge zones in
deeper, faster water may be missed. In river systems, however, discharge
is typically weighted toward the water line due to expected highest
hydraulic gradients and generally decreases with distance from shore
exponentially in homogeneous sediments (Anibas et al., 2011). Also,
fines tend to accumulate in deeper water forming a low-K “cap” that
inhibits discharge, while fines are actively scoured by wave action along
the water line (Rosenberry et al., 2015). We conducted one survey
during an extensive reservoir draw down that exposed the majority of
the streambed and the seeps we observed were at the pre-draw-down
water line. Together these suggest that submerged discharge zones are
a relatively minor component of the total groundwater discharge and
will not substantially limit the use of TIR for mapping areas of
groundwater discharge or evaluating groundwater-flow models in sys-
tems similar to our study watershed.

Across all stream sizes, the models predicted groundwater discharge
in most model cells with rivers, including where we did not observe
preferential bank discharge zones with TIR (Fig. 5). The presence of
modeled discharge in areas without TIR-observed discharge zones could
be a result of both the limitations of TIR imaging and model deficiencies,
which we cannot distinguish here. Higher predicted rates in areas
without visible preferential groundwater discharge could reflect wide-
spread spatially diffuse discharge and/or discharge below the water
surface that is not adequately mapped with TIR imaging, since it is based
on strong thermal anomalies and does not penetrate the water surface.
Conversely, the higher rates could indicate areas where the models do
not accurately represent the processes driving groundwater discharge.
For example, areas with greater local-scale heterogeneity in hydraulic
conductivity values and variable depth-to-bedrock may not be well
modeled.

4.3. Implications for modeling groundwater discharge at the river-network
scale

We found that a common approach to modeling groundwater suc-
cessfully predicted broad patterns of groundwater discharge, but failed
to predict local patterns within headwaters sites. In the 3rd and 5th
order rivers, discharge patterns were robust across model variations.
Within 1st order streams, only 1 model (SurfMatZone) weakly distin-
guished between areas with and without observed discharge locations,
and no model predicted the observed patterns in the 2nd order stream.

This work suggests several important implications for improved
modeling of groundwater discharge at the river-network scale. First,
modeling efforts should focus on improving predicted discharge patterns
in smaller reaches, particularly in areas of glacial till and near-surface
bedrock. This might involve finer-resolution data on surficial-material
type and thickness, calibrating by zones based on stream order (as was
the case for the SurfMatZone model), or better representing the bi-
directional nature of river-aquifer exchange in headwaters areas.
Geophysical methods could be used to better map the thickness and
character of sediments in stream corridors (Auken et al., 2017; McLa-
chlan et al., 2017). Second, bedrock hydraulic conductivity values
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should be calibrated, not based on established literature values.
Although this increased the computational requirements of calibration
and requires data on groundwater heads in bedrock, we found that it
improved the accuracy of predicted discharge patterns. Third, careful
attention should be paid to the conceptualization of river-aquifer ex-
change. This is particularly true in the smaller streams, where
bi-directional exchange between groundwater and surface water can be
particularly complex (Payn et al., 2009). Varying the magnitude of the
riverbed hydraulic conductivity improved the model fit in some in-
stances, but created unreasonably large fluxes from river to aquifer in
other locations. Eliminating losing reaches (limiting river-aquifer ex-
change to discharge) improved the model fit in some cases, but prevents
accurate representation of losing reaches.

4.4. Next steps

This work takes an important step in evaluating spatial patterns of
groundwater discharge at the river-network scale and demonstrating the
viability of comparing groundwater-flow model predictions to observed
groundwater-discharge zone spatial clustering. Improving this approach
will involve more spatially expansive field surveys that better cover the
extensive headwater stream lengths. For example, at most of the waded
(non-boatable) sites, the survey length was less than 800 m; longer
surveys in these sites may have highlighted more within-site variation.
In this project we were limited to stream reaches that were accessible
through wading or paddling. Recent advances in remote sensing of
groundwater discharge using TIR and unmanned aerial surveys offer a
potential methodology to survey reaches through steep or wetland areas
that were inaccessible in our work (Briggs et al., 2019; Harvey et al.,
2019), though forested headwater streams will remain challenging for
aerial surveys. Extensive spatial surveys have the potential to be used as
a numerical calibration target, if a method is developed to convert
predicted discharge rates to a probability of observing discharge in the
field, possibly incorporating channel and landscape geomorphology (e.
g. Dugdale et al., 2015).

In addition, although TIR provides an easy method of identifying
groundwater-discharge zones, it does not enable quantification of
discharge rates or identification of losing reaches. Using TIR in combi-
nation with a toolbox of quantification approaches (flow tracers, weirs,
vertical temperature profilers, differential gaging, etc.) may provide the
best evaluation of groundwater discharge patterns. For this study we
compared model results to general spatial patterns of observed
groundwater-discharge zones. The use of additional field methodology
beyond TIR will also allow comparison to discharge rate, presuming
field-measured fluxes can be aggregated at the model-grid-cell scale.

5. Conclusions

We demonstrate an approach to using TIR to assess model-cell scale
groundwater discharge patterns predicted by river-network scale
groundwater-flow models. The spatial patterns of discharge identified
by TIR provided a way to differentiate between the performance of the
models and to evaluate the modeled patterns. In the larger (3rd and 5th
order) rivers, spatial patterns of discharge were relatively well repre-
sented by most models, particularly those where the bedrock hydraulic
conductivity was calibrated instead of based on literature values. In
smaller streams (1st and 2nd order), most models did not simulate the
observed groundwater discharge patterns. More spatially extensive
surveys, including remotely-sensed TIR mapping, combined with a
toolbox of discharge quantification methods, can further refine this
work and provide a spatially distributed groundwater discharge target
for numerical calibration. In addition, new approaches are needed for
simulating groundwater discharge in headwater streams, and may
necessitate refined geologic data.
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