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Abstract. We consider the use of Al techniques to expand the coverage,
access, and equity of urban data. We aim to enable holistic research on
city dynamics, steering Al research attention away from profit-oriented,
societally harmful applications (e.g., facial recognition) and towards
foundational questions in mobility, participatory governance, and jus-
tice. By making available high-quality, multi-variate, cross-scale data
for research, we aim to link the macro study of cities as complex sys-
tems with the reductionist view of cities as an assembly of independent
prediction tasks. We identify four research areas in Al for cities as key
enablers: interpolation and extrapolation of spatio-temporal data, using
NLP techniques to model speech- and text-intensive governance activi-
ties, exploiting ontology modeling in learning tasks, and understanding
the interaction of fairness and interpretability in sensitive contexts.

1 Introduction

Cities are complex systems: collections of interacting agents that exhibit non-trivial
collective behavior [2,19]. This observation has guided research in general principles
of city planning that can govern the behavior of the complex adaptive system the city
manifests. Early work by Jacobs proposed ideal sizes and specific guidelines for city
neighborhoods [25], and more recently researchers have begun to empirically validate
these ideas using mobile phone data [46]. West and Kempes model scaling behavior
for cities as balancing sublinear growth in resource consumption (as a function of
population) against the superlinear growth of socioeconomic effects, both positive
(per capita wages) and negative (inequity, disease) as a power law with an exponent
of about 0.15 (as opposed to, for example, the exponent of 0.25 identified in many
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biological processes) [28,67]. More recently, the rate of COVID-19 spread has been
shown to approximate the same power law [57]. As West and Kempes argue “Cities are
machines we evolved to facilitate, accelerate, amplify, and densify social interactions.”

The holistic study of cities as complex systems complements the rapid (yet ulti-
mately opportunistic) proliferation of artificial intelligence technology in the public
sector. Although conventional machine learning techniques are common in urban ap-
plications [65,71,44], neural architectures are opening new opportunities by adapting
convolutional, recurrent, and transformer architectures to spatiotemporal data [35,
38,56,73,70,76,75]; see Grekousis 2020 for a recent survey [17].

These two lines of inquiry — top-down modeling of cities as complex systems and
bottom-up modeling of specific urban systems using deep learning — are difficult
to reconcile. Complex systems are not amenable to reductionist statistical experi-
ments: comparing the results of an agent-based model with observed data (e.g., for
autonomous vehicle research [11]) is often the best we can do, despite the challenges
of addressing the inverse problems implied [8,59]. The central issue is that observa-
tional micro-data for cities are inconsistent in availability and quality, limiting the
opportunity for validation of sophisticated models.

This inconsistency persists despite significant investments in open data. Over the
last two decades, cities have increasingly released datasets publicly on the web, proac-
tively, in response to transparency regulation. For example, in the US, all 50 states
and the District of Columbia have passed some version of the federal Freedom of
Information (FOI) Act. While this first wave of open data was driven by FOI laws
and made national government data available primarily to journalists, lawyers, and
activists, a second wave of open data, enabled by the advent of open source and web
2.0 technologies, was characterized by an attempt to make data “open by default” to
civic technologists, government agencies, and corporations [64]. While open data has
indeed made significant data assets available online, their uptake and use has been
weaker than anticipated [64], an effect many attribute to inconsistent availability of
high-value data across cities [32]. Ultimately, open data exhibit convenience sampling
effects.

In this paper, we consider four research thrusts all aimed at using AI techniques
to improve the coverage, access, and equity of urban data, and thereby reduce bar-
riers and attract attention to the study of critical questions in city dynamics and
socioeconomic interactions. Machine learning research is broadly recognized to be too
narrow in applications and datasets, focusing on opportunistic, discriminatory, and
profit-oriented applications [53,68,50]. By making high-quality urban data available
across cities, across variables, across time-scales, and at multiple resolutions, we aim
to make Al research on societally important problems the path of least resistance. But
to accomplish this long-term goal, we need to address specific challenges in working
with urban data.

Expanding existing sources By simultaneously modeling multiple heterogeneous datasets [69],
we aim to identify the underlying relationships and interactions between urban sys-
tems as a middle path between reductionist, application-specific prediction tasks and
holistic, simulation-oriented inference. But where our earlier work assumed uniform
data coverage, we now need to apply advanced learning techniques to interpolate and
extrapolate dense spatiotemporal datasets to account for inconsistent coverage (Sec-
tion 2). These techniques help expand the utility and reach of data-hungry predictive
models to counteract the sparse and inconsistent availability of public and private
data. As an example, we show how the interpolation of urban transportation data is
remarkably amenable to deep learning architectures developed for image inpainting
on the web.
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Developing new sources Open data in urban contexts is typically either spatio-
temporal (vector or raster) or administrative (structured). But by investing in in-
frastructure, we can develop and make available data sources around governance,
economics, decision-making, public participation. As an example, we show how tran-
scripts from public meetings are amenable to computational processing to increase
oversight and participation, if we can first establish an infrastructure and appropriate
standards to collect and manage this data (Section 5).

Exploiting rich ontologies The use of large, noisy, and heterogeneous data motivates
investment in data curation: associating contextual information with the data to
mediate its collection and use. But manual curation activities (e.g., human labeling of
data) scale poorly. In complex domains, human expertise is better invested developing
richer labeling schemes than actually labeling data. For example, ontologies have been
developed for electric mobility [55], humanitarian [3], and smart city applications
[13,1,61,18,9]. But categorizing public data (e.g., social media posts) using these
ontologies requires new techniques in hierarchical multi-label classification. As an
example, we show how graph encoding techniques can be used to significantly improve
performance in these contexts (Section 4).

Incorporating fairness and interpretability In every application of urban machine
learning, prediction and modeling carries enormous risk of exacerbating inequity and
opacity [21,49,42,43]. Building on recent advances in fair and explainable AI, we
consider the interactions between accuracy, fairness, and explainability in urban ap-
plications. We then propose new methods for controlling these tradeoffs in response
to emerging regulation (Section 3).

2 Interpolation of Spatiotemporal Data Using Deep Learning

Image inpainting is a task of synthesizing missing pixels in images. In computer vision,
there are two board branches to inpaint images. The first branch contains diffusion-
based or patch-based methods that utilize low-level image features to reconstruct
the missing regions. The second branch contains learning-based methods that involve
the training of deep learning models. Traditional diffusion-based methods transfer
information from the valid regions to the missing regions, which are convenient to
apply but limited to small missing regions only. Learning-based approaches aim to
recover the images based on the patterns learned from large amount of training data.
Such methods include context encoders by Pathak et al. [47], global and local image
inpainting by Lizuka et al.[22], partial convolution method by Liu et al. [36] etc.

Image inpainting techniques have wide application potentials, including the geo-
spatial domain that works frequently with satellite images. Zhang et al. [77] proposed
a unified spatial-temporal-spectral deep convolutional neural network (CNN) image
inpainting architecture to recover information obscured by poor atmospheric con-
ditions in satellite images. Kang et al. [27] modified the architecture from [72] to
restore the missing patterns of sea surface temperature from satellite images. Tas-
nim and Mondal [60] also applied the inpainting architecture from [72] to remove
redundancies in satellite images and restore the imagery.

We build on prior work from our group in learning fair integrations of heteroge-
neous urban data [69]. We originally assumed uniform spatial and temporal coverage
data, but in practice urban datasets are spatially imbalanced: one neighborhood may
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be missing a variable of interest defined everywhere else, undermining trust in the re-
sults. Conventional statistical approaches to impute missing data, such as global/local
mean imputing, interpolations, spatial regression models are limited in their ability
to capture non-linear interactions, where deep learning methods, including image
inpainting techniques in geo-spatial imputation, excel.

Given the similar nature of images and gridded urban data, we conjecture that
image inpainting techniques can be adapted to impute missing urban data, improving
coverage and quality, and therefore usability. As far as we know, no prior work that has
exploited image inpainting techniques to reconstruct missing values in raster urban
data. In this section, we present our preliminary experiments and results of utilizing
an image inpainting technique to compute missing values in gridded urban data.

2.1 Example: Interpolating Urban Mobility Data

We use taxi trip data as a representative example of urban data, though the coverage
of urban data is much broader. We used NYC taxi trip data from 2011 to 2016 from
NYC Open Data Portal [10]. The years 2011 — 2014 cover the trips throughout
the entire year, while 2015 and 2016 only cover half of the year. The raw data are
collected tabular format, where each record/row contains the information of each
taxi trip, including the longitude and latitude of the starting location. We considered
the demand prediction problem, interpreting each record as an indicator of demand
following Mooney et al. [43]. We processed the tabular data into raster format given
the following steps:

— We defined a rectangular subset of the greater metropolitan area of New York
City representing lower Manhattan. We only consider the taxi trips that began
within this rectangular region.

— We imposed a 32x32 grid over our selected region. This choice of dimensions is
somewhat arbitrary, balancing fidelity (reducing the need to upsample or down-
sample datasets too much), computational efficiency, and interpretability (1 grid
cell is approximately 1 km?.) For each year, each unique date, and each unique
hour, we count how many taxi trips are within each grid and interpret these values
as a an estimate of taxi demand in that cell, at that time.

— In total, we have 32,616 samples to model with, each having 32x32 dimension.
70% of samples (23,482) are used as training data, 10% (2,610) as validation set
and the rest 20% (6,524) as test data.

2.2 Modeling & Results

We implemented the architecture from Liu et al.[36]. Many prior works in image in-
painting only considered rectangular-shaped missing regions, but rarely are the pat-
terns of missing data so regular. In urban data, the missing regions could be scattered
or in irregular shapes corresponding to irregular political boundaries or inconsistent
data collection. Therefore, Liu et al.’s work fits well into the urban scheme. Liu et al.
used the summation of four different losses as the objective function, to account for
different factors related to the perception of the resulting image, which was appro-
priate for web images but less appropriate for quantitative urban data. We only used
the ¢; regularization loss between the original data and inpainted data. The model
hyper-parameters are set to be consistent with Liu’s work. The learning rate is set
to le™* flat. The batch size is set to 32. The maximum iteration is 10,000 and we
evaluated the model on validation set every 100 iterations.
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Fig. 1. Inpainting results of taxi trip data. From left to right, the columns are: ground truth
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images; the irregular masks; the masked ground truth; the final inpainting results.

Five inpainted examples are visually presented in Figure 1. We can see that the
inpainting technique can be naturally applied to gridded urban data and yield promis-
ing results. Imputing the missing values in urban setting could also be viewed an a
type of synthesis. The synthesis of partial urban data could improve the applicability

and usability of urban data, but will require future work in multiple areas:

— Though deep learning methods are powerful, we need rigorous evaluation against
traditional imputation techniques to see if these complex methods are warranted.
Additionally, visual similarities are subjective, which is appropriate for web images
but not if we intend to use these datasets for quantitative analysis. Additional

quantitative measurements should be incorporated.
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— The region of the experiment (NYC) and the dimensions of the urban grid (32x32)
are both limited. Expanding the region to cover more area would capture more
urban dynamics, while evaluating the effect of different grid sizes, will be necessary
to test generalizability.

— We treat each date and each hour as a unique sample. But in reality, the current
hour timestamp is closely related to the demand from the previous hour. Modeling
each sample separately ignores such dependency. Therefore, we hypothesize that
modifying the architecture to work with temporal blocks would help improve
performances.

3 Trade-off among Distributive and Procedural Fairness

Real world datasets often contain societal biases, which are perpetuated in the ma-
chine learning models, leading to discriminatory decisions in high-stake domains. In
response, many methods were developed to mitigate fairness by achieving some sta-
tistical measure of equity between majority and minority groups (e.g. equalized odds,
equality of opportunity)[4,74,7,30,39]. This line of work is guided primarily by the
notion of distributive fairness, which emphasizes on a fair allocation of resources.

However, prior work has shown that procedural fairness, the perceived fairness
of the process that leads to the outcome, is equally as important as distributive
fairness[5,63]. For example, in court systems, studies have shown that “most people
care more about procedural fairness ... than they do about winning or losing the
particular case.” [63] Recent studies have also shown that procedural fairness is critical
to automated decision systems [33,40]. For instance, through a cross-sectional survey
study at a large German university, Marsinkowski et al. found that both distributive
and procedural fairness have significant implications on higher education admission
that uses an automated decision system[40].

The interaction between distributive fairness, interpretability, and procedural fair-
ness are rapidly becoming a compliance issue. In April 2021, the EU released a pro-
posal for sweeping regulation of algorithmic bias [14]. The same week, the Federal
Trade Commission released a blog post [26] that described a legal framework for
evaluating Al bias, foreshadowing enforcement. In the California, a bill regulating
automated decision systems is in committee [23].

Drawing from procedural fairness theory, we propose Explanation Loss (See Equa-
tion 1), a novel fairness metric that measures procedural fairness and a method to
optimize for it[34]. In particular, this metric measures the neutrality of the decision
process to different demographic groups. Since complex black-box models (E.g. deep
neural networks, tree-based ensemble models) are often used due to their high pre-
dictive power, we use interpretability methods to generate explanations that reveal
the model decision process for each datum. The metric then computes the average
absolute differences of the explanations between all possible pairs of input samples,
one from the minority group and one from the majority group. The intuition is that
the difference in the model’s explanation for two groups can be approximated by
the average differences of all pairs of individual explanations. Therefore, Explanation
Loss measures how far away the decision process is from being perfectly neutral. In
the following sections, we describe the data we used, the method that optimizes for
the metric, and the preliminary results we obtained.

3.1 Data

We used the COMPAS dataset [31] for the preliminary study. COMPAS dataset,
which contains attributes of criminal defendants, is often being used to study (deeply
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flawed) recidivism models: whether a person will reoffend within 2 years). It is known
to exhibit severe biases against minority groups. Specifically, studies have shown that
models trained on COMPAS tend to overpredict recidivism for black defendants and
underpredict recidivism for white defendants [31].

We preprocessed the dataset following Rieger et al. [52]. The dataset contains a
total of 7214 samples. We filtered 1042 due to missing information about the recidi-
vism. We categorized age into under 25, between 25 and 45, inclusively, and above 45.
We categorized sex into Male and Female. We also categorized the crime description
based on matching words, resulting in categories Possession (of drugs), Driving, Vio-
lence, Theft, and No Charge. For example, descriptions that are matched with “theft”
or “burglary” are categorized as Theft. We then one-hot encoded all categorical vari-
ables, and used the numeric variables as is. We focused on equalizing explanations of
the Black and Caucasian records, since these two are the predominant groups of the
data.

We split the data into train, validation, and test sets, with a ratio of 80/10/10.

3.2 Method

Interpretability techniques aim to generate explanations for a model’s individual pre-
dictions. A popular class of such techniques is known as feature attribution, which,
given an input, the model, and prediction, assigns a number to each feature of the
input to represent how much it contributes to the prediction [37,45,51,58]. There
are two reasons that feature attribution methods are appropriate for our study: 1)
they allow us to compare model’s explanation for each prediction at the feature level,
which is especially important for fairness since certain features are more sensitive
than others 2) feature attribution vectors can be interpreted as attribution priors to
incorporate the notion of procedural fairness in the model.
We propose the following regularization to achieve procedural fairness:

R . 1
d=agmin 3 Ll Ao Y feapllay)—eapl(an)] ()
zi,y: €D sUIEs2l 4 eDoymneDas

The regularization computes the average L1 norm of difference between expla-
nations of every pair of instances (one from each group), z € Dy, &' € Dyy. Each
explanation, expl(z), is a vector of feature importance scores with dimension equal
to the number of features of the input. This vector is generated using any feature
attribution method. In this study, we used Contextual Decomposition (CD) as the
feature attribution method [45]. This regularization term takes the exact form of our
proposed metric for procedural fairness.

We trained a simple multi-layer neural network model with 1 hidden fully con-
nected layer of 100 neurons and ReLU activation, and varied a weight for the regu-
larization term of 0 (no explanation loss), 0.2, 0.4, 0.6, 0.8, and 1.0. The model was
trained with a batch size of 256 and a learning rate of 0.001 for 5 seeds, and the aver-
age results were reported. While the regularization equation refers to explanations of
the entire dataset, in practice, this term is computed per batch for faster convergence.
Specifically, for each batch, we partition the instances into two groups, then for every
possible pair (one from each group), we compute the L1 norm of the difference of the
feature attributions, and lastly we average the differences. An ablation study of the
effect of batch size on results remains future work.
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Reg Rate | Explanation Loss | Accuracy | Equality of Opportunity | Equalized Odds
0 1.68 70.40 0.19 0.50
0.2 0.05 70.11 0.22 0.56
0.4 0.03 70.16 0.22 0.58
0.6 0.02 70.90 0.21 0.56
0.8 0.01 70.65 0.23 0.56
1 0.02 69.70 0.24 0.60

Table 1. The effect of equal explanations on accuracy and fairness distances of the model.

3.3 Metrics

In addition to our proposed metric of procedural fairness (Explanation Loss), the
metrics we used to evaluate the model include 1) accuracy and 2) fairness. We con-
sidered two popular fairness metrics: equality of opportunity [20] and equalized odds
[54]. A model is said to satisfy equality of opportunity if the false positive rates are
equivalent across two demographic groups. Similarly, equalized odds requires false
negative rates to be equivalent across two groups in addition to false positive rates.

The loss term represents the notion of fairness distance: how far away the model
is from perfectly fair. The fairness distance we consider is based on equality of op-
portunity [], and measures the absolute difference between the false positive rates
of one demographic group (FPR1) and another (FPR2): |[FPR1 — FPR2|. On the
other hand, fairness distance based on equalized odds measures [| |FPR1 — FPR2|
+ |FNR1 — FNR2|, which adds an additional absolute difference between the false
negative rates.

3.4 Results

The results are summarized in Table 1. From the first two columns of the table,
we can see that the regularization effectively encourages the model to predict with
similar explanations across two demographic groups, which we interpret as improved
procedural fairness by penalizing the tendency for a model to essentially learn two
separate submodels, one for each group. Second, adding the regularization term does
not reduce the accuracy of the model. Third, equalizing the explanations has a minor
effect on fairness of the outcomes, causing a slight increase on fairness distances.

4 Hierarchical Multi-label classification

We demonstrate hierarchical multi-label classification (HMC) in the urban domain.
HMC tasks involve a large set of labels organized into parent-child relationships, typ-
ically representing increasing specificity or isa relationships. Each input record is as-
sociated with multiple labels in the hierarchy, representing the uncertainty associated
with a large label space in a complex domain. HMC has received increasing atten-
tion with the adoption of neural networks [16,78,15,66], often in contexts requiring
significant human expertise, making large-scale labeling exercise infeasibly expensive.
In other words, human expertise is invested in modeling the world through a com-
plex ontology rather than labeling data using that ontology. As a result, the machine
learning tasks represent a different set of requirements: the number of labels can be
large relative to the number of labeled items, but there is structure among the labels
that algorithms can exploit for distance supervision.
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Ontology development is common in urban planning, where the complexity of the
domain and multiplicity of perspectives require building consensus around a universe
of discourse. For example, ontologies have been developed by teams of experts to
describe electric mobility [55], humanitarian efforts [3], and smart city applications
[13,1,61,18,9]'. The HMC literature rarely considers these urban applications, instead
favoring biological and scientific domains where public data is more readily available.

We are exploring new approaches for HMC that involve learning reusable rep-
resentations of the ontology itself (using graph encoding techniques) to tame the
complexity, then using these learned representations as the labels when training a
classifier. We show that using these ontologies as a source of supervision can signifi-
cantly improve the classification performance over other HMC techniques, motivating
greater investment in developing comprehensive ontologies to represent the complex
urban domain as a whole rather than expending resources on creating expensive la-
beled datasets for myriad specific applications.

4.1 Case Study: Community Listener

We worked with a local non-profit organization to identify the community needs from
several sources of the data, such as social media (Twitter, Reddit, and Facebook
conversations) and long-form survey responses. We classify these discourses into the
Sustainable Development Goals Ontology (SDG)[3]? and the Social Progress Index
(SPI)3. The data and the predicted labels are then aggregated and visualized on an
online dashboard serving policymakers and entrepreneurs. The Sustainable Develop-
ment Goals Interface Ontology (SDG) was developed by United National Environment
Programme to support the achievement of the 17 United National Sustainable Devel-
opment Goals to promote human rights and equity. The ontology includes 169 nodes
with 3 levels. Social Progress Index (SPI) was introduced by Social Progress Im-
perative to promote improvement and actions for social progress. They define Social
Progress as “the capacity of a society to meet the basic human needs of its citizens,
establish the building blocks that allow citizens and communities to enhance and sus-
tain the quality of their lives, and create the conditions for all individuals to reach
their full potential.” SPI includes 3 levels with 124 nodes.

4.2 Experimental Settings

Table 2. Dataset Statistics

Programs Organization
Train Val Test | Train Val Test
6412 801 802 | 4558 570 570

There are two datasets used in this experiment, Programs and Organizations.
Programs is a list of descriptions of humanitarian programs; the task is to determine

! https://techcommunity.microsoft.com/t5/internet-of-things/
smart-cities-ontology-for-digital-twins/ba-p/2166585

2 https://www.unep.org/explore-topics/sustainable-development-goals/
what-we-do/monitoring-progress/sdg-interface-ontology

3 nttps://www.socialprogress.org/2020-Social-Progress-Index-Methodology.pdf
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which areas of humanitarian need are intended by the Program. The description typ-
ically mentions the mission and areas of focus for the program, which we anticipated
would make Programs relatively easy to classify. The Organizations dataset is a list
of companies and non-profits that may work in areas of interest for humanitarian
causes. In this case, the descriptions are less likely to explicitly mention areas of hu-
manitarian need. For both datasets, we associate each record with zero or more labels
from the SDG and SPI ontologies. Statistics of the two datasets are shown in Table
2. We split each dataset into training, validation, and test set with 8:1:1 ratio. The
models are optimized with validation set and the experimental results are reported
from the test set.

We experimented with different text
embedders and classification models to

find the best combinations. Because Graph AutoEncoder (Kipf et al.)

the organization did not have abun- ® ®
dant computation resources, we lim- ol0) @) ()
ited our choices within computation ef- ®6 ® Embeddings OJO)0.
ficient models. We chose TF-IDF and O® ©O
Glove [48] as our text embedders. For o .
the classification model, we adopted Smilaity B: G
two frameworks for classification, one _>®,‘ ®
considered the hierarchical structure X = - = e lC)
with graph encoding (named Ontol-

ogy) within the labels and the other did ¢ FC

not (named naive). The naive model . .

considered the labels as a flat list. The Fig. 2. Iustration of our framework.

model consisted of two fully connected

layers and iwas optimized with Binary

cross entropy, which is often used for multi-label classification. The diagram of the
ontology framework is shown in Figure 2. The framework learned a representation
for the label ontology using a graph autoencoder [29]. Then, the model considered the
node embeddings and mapped the input instances onto the node embedding space
with cosine similarity. Finally, the model was optimized with binary cross entropy and
produce probability confidence as output. The threshold for classification is set to be
0.5. Finally, we evaluated all models with Precision (P), Recall (R), and F1 score
which are commonly used in multi-label classification community. Following the liter-
ature, a data record is considered correctly classified when the predicted leaves match
the ground truth exactly: there is no partial credit for siblings, for example.

Experimental Results We demonstrate our experimental results in Table 3. Because
these two datasets are custom and not publicly available, we provide results from
two baseline methods — majority vote and random selection. We can observe that
considering the label ontology significantly improve the results. The trained model
then allows us to tag the discourses on social media based on the humanitarian
ontologies from SPI and SDG and to visualize within an online dashboard serving
policymakers and entrepreneurs. As a result, we can organize public discourse and
participation to capture levels of interest in various topics.

This approach is potentially critical for addressing data scarcity in practice. As we
have argued, in complex domains, obtaining labeled data is expensive and requires sig-
nificant human expertise. For example, determining whether a potential project is re-
lated to a goal to enhance inclusive and sustainable urbanization (SDG 11.3), achieve
sustainable management of resources (SDG 12.2), encourage adoption of sustainable
practices (SDG 12.6), or all three, requires significant expertise with the SDG ontol-
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Table 3. Experimental results on the Program and Organization datasets. Acc indicates
accuracy, P means precision, R is recall, and F'1 suggest F1 score. Because these are custom
datasets that are not publicly available, we also provide results from two baseline methods,
majority vote and random selection. We can observe that considering ontology improves the
results significantly.

Programs Organization
Acc P R F1 Acc P R F1

Majority 0.075  0.006  0.075 0.01 0.056  0.003  0.056  0.006
Random 0.003  0.016  0.003  0.003 | 0.006 0.018 0.006 0.008
TFIDF + naive 0.102  0.085 0.132  0.087 | 0.090 0.032 0.090 0.030
Glove + naive 0.202  0.143 0.201  0.158 | 0.249 0.141 0.249 0.171
TFIDF + Ontology | 0.145 0.134 0.167 0.159 | 0.143 0.095 0.123  0.117
Glove + Ontology | 0.245 0.175 0.254 0.219 | 0.286 0.176 0.287 0.256

ogy, municipal government practices, and the data being labeled. Moreover, labeled
datasets can be rendered obsolete with only minor changes to the ontology, requiring
an expensive re-labeling exercise. To enable comprehensive cross-sector models that
can be deployed in a variety of contexts, we need to make efficient use of the human
attention invested in creating the ontology.

5 Modeling Governance Behaviors

The source of municipal democracy in the United States is found in city halls across
the country. Even as our collective work in the analysis of urban space is used to create,
debate, and ultimately enact urban policy, there is a lack of large-scale quantitative
studies on municipal government. Comparative research into municipal governance in
the USA is often prohibitively difficult due to a broad federal system where states,
counties, and cities divide legislative powers differently. This power distribution has
contributed to the lack of necessary research into the procedural elements of admin-
istrative and legislative processes because it affords each municipality to each have
their own standards for archival and publishing of municipal data [62].

To better study the complexities of municipal councils across the county, multiple
tools are needed to standardize and aggregate data into large research databases and
access portals. The data from municipal government meetings (videos, transcripts,
voting records, etc.) must be made more accessible to both the general public and
to researchers, and, such tools must be deployed in multiple municipalities across the
nation so that data can be used in aggregate to study the spread of policy, topic
coverage, public sentiment, and more.

Once this infrastructure is available, it becomes possible to conduct large-scale
quantitative studies on the dynamics of discourse in policy deliberation and enact-
ment, quantifying how much of policy is decided upon using community sentiment as
the policy basis, how such policy is supported or not from the public, and how similar
policy proposals in different municipalities (or levels of government) are discussed and
either enacted or rejected.

5.1 Council Data Project

To enable such large-scale studies, we have begun work on “Council Data Project,”
[6] a suite of tools for deploying and managing infrastructure for rapidly generating,
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Fig. 3. Examples of analysis made possible through CDP infrastructure. Using the produced
transcripts we can build topic models to tag topics both in a single meeting’s transcript and
track topic trends over time. With multiple CDP instances we can show how these trends
hold (and spread — investigating the topical latency between municipalities) over entire
regions. Additionally, building models for tracking the sentiment of discussions regarding
specific pieces of legislation as they move through council.

archiving, and analyzing transcript datasets of municipal council meeting content.
Council Data Project (CDP) is easily deployable and generalizes to many different
meeting venues but is specifically built with municipal council meetings in mind.

For each meeting a CDP deployment processes, our tools generate a transcript
of timestamped sentences, and archives the produced transcript and all attached
metadata (minutes items, presentations and attachments, voting records, etc.). CDP
deployments additionally create a keyword based index multiple times a week to
enable plain-text search of events.

To further the utility of the CDP produced corpus we are creating audio classifica-
tion models for labeling each sentence with the classified speaker, aligning sentences
in the transcript to the provided list of minutes item, re-using the generated keyword
based index for a municipality level n-gram viewer [41], and much more. Such work
will enable the creation of datasets such as a dataset of discussions where only a set
of specific councilmembers are present, or a dataset of discussions regarding specific
pieces of legislation (minutes items).

Council Data Project enables large-scale quantitative studies by generating stan-
dardized municipal governance corpora — including legislative voting records, times-
tamped transcripts, and full legislative matter attachments (related reports, presenta-
tions, amendments, etc.). CDP enables the reproduction of political science research
such as studying the effects of gender, ideology, and seniority in council deliberation
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[24], and, studying the effects that adopting information communication technologies
have on the civic participation process [12].

In constructing CDP to be as easily deployable as possible, we enable studies to
understand how these behaviors generalize (or act as outliers) in different municipal-
ities and settings.

Effective use of this new source of data motivates research in adapting deep learn-
ing techniques to multi-speaker, structured settings. Tasks include identifying speak-
ers, topic and sentiment labeling by speaker to understand political positions, labeling
speech by agenda topic, summarizing public sentiment to guide outreach and commu-
nication investments. These problems appear to be within the capabilities of emerging
deep learning techniques, but require research attention in formulating the problem
and evaluating competing techniques, which in turn require access to high-quality
labeled datasets. Moreover, linking public discourse over social media with formal
discourse in public hearings, administrative data collected through municipal service
delivery, and geospatial data collected through sensing technologies will be required
to meet our goal of a holistic study of the science of cities.

6 Conclusions

We aim to improve the coverage, access, and equity of urban data to advance under-
standing of city dynamics, unifying a top-down, holistic view of cities as a complex
system and bottom-up, application-oriented view of cities as an assembly of inde-
pendent subsystems. We aim to combat the disproportionate attention received by
online advertising, face recognition, image labeling, and NLP tasks that dominate the
machine learning literature by making high-quality, comprehensive urban datasets
available for research. We identify four areas of research, with promising preliminary
results, that involve the application of Al in urban contexts: spatiotemporal inter-
polation of data, unifying fairness and interpretability in the context of emerging
regulation of algorithms, accommodating the complex domain models that are nec-
essary to describe cities holistically, and engaging with new sources of data at the
intersection of public discourse and policymaking.
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