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Abstract (163/200)

Animals can evolve dramatic sensory functions in response to environmental constraints,
but little is known about the neural mechanisms underlying these changes. The Mexican tetra,
Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution
by comparing eyed surface populations and blind cave populations. We compared
neurophysiological responses of posterior lateral line afferent neurons and motor neurons across
A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity.
These studies indicate differences in intrinsic afferent signaling and gain control across
populations. Elevated endogenous afferent activity identified a lower response threshold in the
lateral line of blind cavefish relative to surface fish. We next measured the effect of inhibitory
corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We
discovered that three independently-derived cavefish populations have evolved persistent afferent
activity during locomotion, suggesting for the first time that regression of the efferent system can

be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.
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Introduction

Our understanding of the sensory systems and behavior of animals is challenging to
contextualize within the framework of evolution. Anatomical comparisons between species have
allowed us to infer sensory capabilities, but this approach cannot directly reveal neural function.
Discovery of neural mechanisms that underlie behavior are often constrained to a limited number
of model species (Jourjine & Hoekstra, 2021). Like morphology, neural circuits can adapt to the
environment. Of these, many circuits are sensory and regulate essential behaviors such as foraging,
navigation, and escapes (Blin et al., 2018; Hoke et al., 2012; Hiippop, 1987; Paz et al., 2020).

The Mexican blind cavefish, Astyanax mexicanus, is a powerful model to understand the
evolution of physiological and molecular traits that contribute to behaviors such as sleep (Duboué
et al., 2011; J. B. Jaggard et al., 2018) and prey capture (Lloyd et al., 2018; Yoshizawa et al.,
2014). Astyanax mexicanus exists in two morphs; 1) eyed surface-dwelling populations and 2)
blind cave populations. There are at least 30 independently evolved cavefish populations in the
caves of the Sierra de El Abra region of Northeast Mexico (Herman et al., 2018; McGaugh et al.,
2020; RW Mitchell et al., 1997). Astyanax mexicanus populations are interfertile, and this attribute
has allowed investigators to demonstrate independent convergence of numerous behavioral,
developmental, and physiological traits (Chin et al., 2018; Kowalko, 2020; Riddle et al., 2018;
Stockdale et al., 2018; Varatharasan et al., 2009). Our goal is to apply a neurophysiological
approach across multiple 4. mexicanus populations to examine the functional evolution of the
lateral line sensory system.

The mechanoreceptive hair cells of the lateral line system detects fluid motion relative to
the body and play an important role in essential behaviors (McHenry et al., 2009; Mekdara et al.,

2018; Olszewski et al., 2012; Oteiza et al., 2017; Stewart et al., 2013). Cavefish have evolved
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anatomical enhancements of the lateral line, presumably to compensate for the loss of vision
(Kowalko, 2020; McGaugh et al., 2020; Teyke, 1990; Yoshizawa et al., 2014). These anatomical
alterations have been linked to substantial changes in behavior (Lloyd et al., 2018; Yoshizawa et
al., 2010). However, almost nothing is known about physiological changes that accompany
evolution, despite the fact that the response of peripheral senses to environmental change has been
well documented (Kelley et al., 2018; McBride, 2007).

Endogenous depolarizations within sensory cells are transmitted to afferent neurons
(hereafter “afferents”) as spontaneous action potentials (hereafter “spikes”), and are essential for
maintaining a state of responsiveness and sensitivity (Dey et al., 2021; Douglass et al., 1993;
Koppl, 1997) (Kiang, 1965; Manley & Robertson, 1976). This is true in the lateral line, where
spontaneous depolarizing currents within the hair cell maintain a resting potential within the
critical activation range of channels. This range is required to ensure transmitter release; thus these
currents decrease the detection threshold of the system (Trapani & Nicolson, 2011). Spontaneous
afferent activity is an established and reliable target for probing the neurophysiological basis of
sensitivity across taxa (Hedwig, 2006; Krasne & Bryan, 1973; Mohr et al., 2003). Here, we use
spontaneous afferent activity as an entry point into understanding the neural mechanism
underlying lateral line function in cavefish.

Another important mechanism that determines lateral line sensitivity is an inhibitory
feedback effect of the efferent system during swimming. Feedback mechanisms in general sculpt
sensory systems in important ways; for example, by changing detection thresholds by altering the
transmission frequency of afferent spikes (Crapse & Sommer, 2008; Straka et al., 2018). The
efferent system of hair cells in particular has repeatedly evolved to modulate sensory processing

(Koppl, 2011). More specifically, hindbrain efferent neurons (hereafter “efferents”) issue
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96  predictive signals that transmit in parallel to locomotor commands, termed corollary discharge
97 (CD). CDs inhibit afferent activity to mitigate sensor fatigue that can result from self-generated
98  stimuli (Russell & Roberts, 1972). CD is an important mechanism for sensitivity enhancement but
99  has rarely been implicated for ecologically-relevant behaviors. For example, active-flow sensing
100 by cavefish depends on detecting reafferent signals while swimming (Tan et al., 2011). Increased
101 reliance on self-generated fluid motion (Odstreil et al., 2021; Patton et al., 2010; Teyke, 1985) is
102 divergent from our current understanding of the CD’s role in predictive motor signaling in the
103  lateral line (Lunsford et al., 2019; Pichler & Lagnado, 2020).
104 For the first time, we identify a neurophysiological mechanism that has convergently
105  evolved across A. mexicanus populations to increase hair cell sensitivity after eye loss. By
106  investigating how differences in afferent and efferent signaling contribute to sensory enhancement
107  in a comparative model, we provide insight into a potentially ubiquitous mechanism for sensory

108  evolution.
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Figure 1. Spontaneous afferent neuron activity is elevated in blind cavefish. DASPEI staining of 6 dpf

0.01 mv

F
110

surface (A) and cavefish (B) show significantly different quantities of anterior lateral line neuromasts (C) and
similar quantities of posterior neuromasts (D). Extracellular recordings were made in posterior lateral line
afferents where the neuromast densities were similar in order to resolve the differences observed in afferent
activity between larval surface fish (E) and Pachon cavefish (F) between 4-7 dpf. Number of occurrences and
median intrinsic spike rates in both surface (blue; 12.4 Hz, n=10 fish) and Pachon (red; 18.6 Hz, n=5 fish) fish

suggests that lateral line response thresholds in cavefish are lower than those of surface fish (G). Error bars are +

111 SE.

112 Neuromasts of surface fish and Pachon cavefish larvae (6 days post fertilization; dpf) were
113 labeled via 2-[4- (Dimethylamino)styryl]-1-ethylpyridinium iodide (DASPEI) staining and
114  subsequently imaged (Figure 1A-B).Anterior lateral line neuromasts had previously been shown
115  to differ in quantities and morphology as early as 2 months post fertilization between surface and
116  cave fish (Yoshizawa et al., 2010). Here we show that Pachdn cavefish exhibit this significant

117  increase in anterior neuromast quantity as early as 6 dpf (p <0.01, t = 3.168, df = 29; Figure 1C).
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118  In contrast, both populations exhibit a similar number of posterior lateral line neuromasts (p =
119  0.77,U=111.5; Figure 1D). Therefore, to investigate differences in underlying neurophysiology,
120  we concentrated on the posterior lateral line system where neuromast density is similar across
121 blind and surface morphs. We exclusively probed the posterior lateral line afferent neurons to
122 establish whether sensory systems that are anatomically similar exhibit neurophysiological
123 differences that contribute to enhanced sensitivity.

124 To examine the physiological basis of differences in lateral line function across surface and
125  cavefish we used extracellular lateral line recordings adapted from protocols used in zebrafish
126 (Figure 1E-F). Extracellular recordings of posterior lateral line afferents revealed intrinsic
127  spontaneous activity was higher in Pachon cavefish (18.6 + 0.2 Hz) while the animal was at rest,
128  relative to surface fish (12.4 £ 0.3 Hz; p < 0.01, t = 15.97, df = 5,795; Figure 1G). Instantaneous
129  afferent spike rate demonstrates substantial decreases during swimming in surface fish (surface =
130 3,167 swim bouts) and little effect in Pachon cavefish (Pachon = 2,612 swim bouts; Figure 2 A-
131 B). We quantified and compared spike rates during swimming relative to the pre-swim period to
132 examine patterns of the inhibitory effect between populations. During most surface fish swim
133 bouts there was a reduction in afferent activity (n = 1,966/2,291, 85.8%), many of which resulted
134 in complete quiescence of transmissions (n = 1,112/2,291, 48.5%). Conversely, afferent activity
135  partially reduced during many swim bouts in Pachon cavefish (n = 1,303/2,439, 53.4%), but very
136  few instances led to complete inhibition (n =275/2,439, 11.3%). The distributions of relative spike
137  rates during swimming reveal surface fish have a higher likelihood of experiencing no afferent
138  activity during swimming while cavefish experience afferent activity during swimming similar to
139  that of pre-swim activity levels (Figure 2 C). Therefore, surface fish experience significantly

140  higher levels of inhibition (68.5 + 0.01%) compared to cavefish (28.9 = 0.01%; p <0.01, t =36.5,
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141 df = 4449; Figure 2 D). Surface fish demonstrate lateral line inhibition during swimming
142 comparable to other fishes with intact visual systems (Flock & Russell, 1973; Lunsford et al.,
143 2019; Pichler & Lagnado, 2020; Russell & Roberts, 1972) suggesting cavefish have evolved a

144  unique functional phenotype for sensory gain control.
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Figure 2. Afferent spike rate decreases during swimming in surface fish but not cavefish. Simultaneous
recordings from afferent neurons from the posterior lateral line afferent ganglion and ventral motor roots along
the body in (Ai) surface fish and (Bi) Pachon cavefish. Afferent spike rate decreases at the onset of swimming
(time = 0) in (Aii) surface fish while (Bii) Pachon cavefish spike rate remained relatively constant during
swimming. Bars represent average swim duration for surface fish (0.39 sec, n = 2,272 swims) and Pachon
cavefish (0.27 sec, n = 2,429 swims). C. Kernel density estimate of spike rate during swimming relative to the
pre-swim interval in both surface fish (blue) and cavefish (red). D. Surface fish experience greater levels of

inhibition during swimming than cavefish. Significance level indicated by “***’. Error bars are + SE.
145

146 We imaged hindbrain cholinergic efferent neurons to determine anatomical and functional
147  connectivity. Between populations, backfilled efferents revealed similar soma quantities (surface:
148 2.4+0.3;cave: 3.2+ 0.5; p=0.2, t = 1.36, df = 18) and size (surface: 62.1 £ 3.6 um?; cave: 70.9

149  £4.5 um% p=0.1,t=1.50, df = 51; Figure 3 A-C). From electrophysiological recordings, we
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150  observed average spike rates during and prior to a swim were not positively correlated in control
151 surface fish (1 = 0.15, Fi13 = 2.3, p = 0.2), but the slope of the line indicates a fractional
152 suppression of 78% that is significantly less than unity (slope 0.1, confidence interval (CI): -0.2-
153 0.4; Figure 3 Di). After efferent ablation, surface fish average spike rates during and prior to a
154  swim were not distinguishable from unity (slope 1.2, CI = -0.1-2.4) indicating that spike rates
155  during swimming intervals differ from non-swimming intervals no differently than chance and
156  therefore there is no detectable inhibitory effect. While swimming, surface fish without
157  functioning efferent neurons demonstrated a signaling phenotype similar to both intact cavefish
158  (slope 0.88, CI = -0.5-2.2) and cavefish with ablated efferents (slope 0.9, CI = 0.1-1.8; Figure 3
159  Dii). Therefore, putative cholinergic hindbrain efferents are necessary for afferent inhibition in
160  surface fish, but do not demonstrate modulatory control of afferents in cavefish.

161 We compared pre-swim and swim spike rates across populations and treatments to
162  determine efferent contribution to inhibition (Figure 3 E). We found significant differences in
163  afferent activity among pre-swim and swim intervals (F740 = 7.6, p < 0.01; Figure 3 F). Surface
164  fish afferent spike rates during swimming (3.9 + 0.1 Hz) were 71% lower than the immediate pre-
165  swim period in control fish (13.7 = 0.2 Hz; Tukey’s post hoc test, p < 0.01). Post-swim spike rate
166  (13. 7+ 0.3 Hz) recovered to pre-swim spike rate. In control Pachén cavefish, we observed some
167  decrease in afferent spike rate during swimming (16.8 + 0.2 Hz) but it was not statistically
168  discriminated from pre-swim (20.5 + 0.2 Hz; Tukey’s post hoc test, p = 0.94). Efferent ablation in
169  surface fish resulted in afferent activity during swimming (17.4 + 0.3 Hz) to increase to pre-

170 swim levels (20.7 £ 0.3 Hz; Tukey’s post hoc test, p=0.99). Ablated surface fish also demonstrated
171  spike dynamics during swimming comparable to ablated and control cavefish (Pachon ablated,

172 pre-swim: 18.6 £ 0.3 Hz; Pachon ablated, swimming: 14.7 + 0.3 Hz). These findings indicate that
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173 efferents are necessary for inhibition of afferents during swimming in surface fish, but not
174  cavefish.
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Figure 3. Efferent neurons are necessary for inhibition observed in afferents during swimming in surface
fish but not cavefish. A. Backfilled hindbrain cholinergic efferent neurons were present in comparable numbers
(2-3 cells) in both surface fish (n = 14) and cavefish (n = 6). Bi. Efferent soma size in surface (blue) and
cavefish (red) is similar in both populations (ii). C. Efferent cell bodies were identified by backfilling rhodamine
through posterior lateral line neuromasts in both surface fish (i) and cavefish (ii) and were ablated with a 30-s
UV pulse. Scale bar: 20 um. D. The line of best fit of spike rates before compared to during the swim
significantly excludes unity in non-ablated, control surface fish (circle), but not in ablated surface fish (square),
implying spike rate suppression in the former but not the latter (i). The slope of the line for control fish suggests
the inhibition is not correlated to the spontaneous afferent activity preceding the swim. The line of best fit of
Pachon cavefish pre-swim and swim spike rates did not exclude unity in both control (circle) and ablated
(square) treatments (ii). Dashed line indicates the line of unity, corresponding to no average difference of spike
rate during swimming. E. Instantaneous spike rates of Pachon cavefish were unaffected by ablating the lateral
line whereas the inhibitory effect was eliminated in ablated surface fish. Time is relative to the onset of motor
activity. F. Surface fish (blue) display reduced spike rates during swimming compared to before swimming in
control fish. Pachén cavefish (red) did not display reduced spike rate during swimming in neither control nor
ablated treatments. Ablated surface individuals also did not display reduced spike rate during swimming
resulting in a signaling phenotype comparable to cavefish. Groupings of statistical similarity are denoted by ‘a’
and ‘b’, whereas a is significantly different from b. All error bars represent + SE.

176

177 We compared lateral line activity between three different cave populations (Figure 4 A); the Tinaja
178  and Pachén populations, which are derived from similarly timed colonization events, and the
179  Molino population that is derived from a more recent colonization event (Bradic et al., 2012;
180  Dowling et al., 2002; Herman et al., 2018). Blind cavefish populations exhibited similar
181  spontaneous spike rates across populations (F217 = 0.68, p = 0.52), and swimming showed little
182  effect on lateral line activity across blind cavefish populations (Figure 4 B). We observed a minor
183  decrease in afferent spike rates across cavefish populations and the relative change (i.e. inhibition)
184  was similar in Pachon and Tinaja (Tukey’s post hoc test; Pachon: 0.28 +0.01; Tinaja: 0.32 + 0.02;
185  Figure 4 C). Molino demonstrated an intermediate phenotype compared to Pachén and Tinaja
186  (Tukey’s post hoc test; Molino: 0.23 = 0.01; p < 0.01). The Molino population (new lineage) is
187  most distantly related to the Pachon and Tinaja populations (old lineage), originating from a more

188  recent surface fish colonization of caves thus providing phylogenetic evidence that
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Figure 4. Enhanced lateral line sensitivity during swimming convergently evolved across three blind
populations. A. Molino cave populations (pink; New Lineage) have evolved more recently relative to Pachon
(red) and Tinaja (purple; Old Lineage) cave populations. Lineage delineations inferred from phylogenetic data
(Herman et al. 2018). B. Mean spontaneous afferent spike rate remains constant at the onset of fictive swimming
(time = 0) in Pachon (n = 5), Molino (n = 8), and Tinaja (n = 5) populations. Bar represents average swim
duration for Pachoén (0.27 sec, n = 2,429 swim bouts), Molino (0.42 sec, n = 1,474 swim bouts), and Tinaja (0.35
sec, n = 464). C. Percent change in spike rate from pre-swim to swim intervals (i.e. inhibition) was small, but
significantly different between blind cave populations. Post-hoc Tukey test revealed that Molino cavefish
experienced significantly less reduction in spike rate when compared to Pachon and Tinaja populations.
Statistically similar groups are indicated by ’a’ and ‘b’. D. The line of best fit of pre-swim and swim spike rates
does not significantly exclude unity in any of the blind cavefish populations implying there is no detectable
inhibitory effect. Dashed line indicates the line of unity, corresponding to no average difference of spike rate
during swimming. All values represent mean + SE.

190

191  coincides with statistically similar groupings (Herman et al., 2018). We examined the correlation
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192 between non-swimming and swimming spike rates across cave populations to determine whether
193  the inhibitory effect was significant. Spike rates during swimming and pre-swim intervals were
194  not positively correlated in all cave populations, and afferent spike rates during swimming were
195  not statistically distinguishable from unity across populations (Pachoén: slope = 0.88, CI = -0.5 —
196  2.2; Tinaja: slope = 1.03, CI = -0.2 - 2.2; Molino: slope = 1.02, CI = 0.8 - 1.2; Figure 4 D),
197  indicating there was no significant decrease in afferent activity during swimming within blind
198  cavefish populations.

199  Discussion

200 Our principle finding indicates that elevated afferent activity underlies the increased
201  responsiveness of cavefish to flow stimuli. The increased afferent activity in cavefish is a likely
202 consequence of eye-loss, which has robust effects on other physiological systems (Duboué¢ et al.,
203  2011; Varatharasan et al., 2009). Heightened lateral line sensitivity in adults has been previously
204  attributed to increased neuromast density in the anterior lateral line (ALL) (J. Jaggard et al., 2017;
205 Lloydetal., 2018; McHenry et al., 2008; Patton et al., 2010; Teyke, 1990; Yoffe et al., 2020, 2020;
206  Yoshizawa et al.,2010). This difference in neuromast quantity does not exist in the posterior lateral
207  line at the larval stage, allowing us a unique opportunity to investigate the neural mechanisms that
208  can enhance flow sensing in a strong model for evolution. Our discovery of increased spontaneous
209 activity in cavefish is a powerful addition for flow sensing, and we predict that this in combination
210  with the increased density of neuromasts in the ALL is what ultimately enables cavefish to perform
211 active flow sensing (Yoshizawa et al., 2010).

212 Higher spontaneous activity is one of two mechanisms that are responsible for higher
213 lateral line sensitivity. The other involves the inhibitory effects of the efferent system during
214  swimming, a feedback mechanism that is conserved across the diversity of fishes (Flock & Russell,

215 1973; Lunsford et al., 2019; J. Montgomery et al., 1996; J. C. Montgomery & Bodznick, 1994;
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216  Roberts & Russell, 1972; Tricas & Highstein, 1991). This is true in swimming surface fish but not
217  in cavefish. We found that three blind populations of cavefish (i.e. Pachon, Molino, Tinaja) have
218  repeatedly lost the capability for efferent modulation during swimming. When one considers that
219  lateral line efferent activity can be driven by direct inputs from the visual system in zebrafish
220  (Reinig et al., 2017), it seems possible that eye degeneration induces the loss of efferent function.
221 This interpretation is consistent with the idea that lateral line efferents are thought to have
222 undergone regressive loss before in the ancestral lamprey and hagfish (Kishida et al., 1987; Koppl,
223 2011; Koyama et al., 1990), both of which are nearly or completely blind during development
224  (Dickson & Collard, 1979; Fernholm & Holmberg, 1975). However, our results illustrate that
225  cholinergic efferent system is still present in cavefish, having lost functionality rather than
226  disappearing (the efferent system is functional in surface fish). Exploring pre- and postsynaptic
227  differences such as acetylcholine release or the density of nicotinic acetylcholine receptors
228  (nAChR) may explain the reduced inhibitory efficacy and reveal molecular targets that could
229  disrupt efferent function over the course of evolution (Dawkins et al., 2005).

230 Our demonstration of CD inactivity in cavefish provides an alternative mechanism by
231 which evolution can enhance sensitivity, one that proceeds by decreasing inhibition rather than
232 augmenting sensor morphology or density (Yamamoto et al., 2009; Yoshizawa et al., 2010, 2014).
233 The impact of increasing sensitivity through a lack of inhibition is apparent during active-flow
234 sensing in adult 4. mexicanus. Active-flow sensing occurs during swimming and involves using
235  the reflection of self-generated flow fields (Bleckmann et al., 1991) to follow walls (Patton et al.,
236 2010), avoid obstacles (Teyke, 1985; Windsor et al., 2008), and discrimination between shapes

237  (De Perera, 2004; Hassan, 1989; Von Campenhausen et al., 1981). The repeated loss of inhibitory
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238  feedback across blind cavefish populations suggests that it is easier to cease function than to
239 develop more neuromasts or other additive alternatives.

240 Cavefish swim by using different body motions than surface fish. This finding has been
241  interpreted as a mechanism to enhance wall following, which occurs when the bow wake of a
242  swimming cavefish is reflected off of a solid surface and then detected (Patton et al., 2010; Sharma
243 etal., 2009). Altered swimming kinematics is also thought to have arisen from a general increase
244 in sensitivity to flow (Tan et al., 2011; Windsor et al., 2008). Our results provide an alternate
245  suggestion; the lack of efferent function in cavefish precludes the sensory feedback necessary for
246  sensing self-movement and body position in water (proprioception). Corollary discharge, a parallel
247  motor command that decreases the afferent activity of fishes when swimming, has recently been
248  found to play a critical role in swimming efficiency by enabling the tracking of the traveling body
249  wave during undulation (Skandalis et al., 2021). We hypothesize that the evolved loss of efferent
250  function that enables cavefish to successfully avoid collisions in subterranean habitats is likely
251  favored over optimizing swimming efficiency (Nakamura, 1997; Uysal et al., 2010). We predict
252 that loss of efferent function will be found in other blind hypogean species (Costa Sampaio et al.,
253 2012) and that their respective surface populations will possess intact efferent functionality, as we
254  have found in 4. mexicanus. Neurophysiological recordings across a wider diversity of species
255  would provide valuable insight into how efferent function may be sculpted by environmental
256  selection and phylogenetic membership.

257 By employing neurophysiological approaches in the lateral line system of 4. mexicanus for
258  the first time, we show that elevated lateral line afferent activity and loss of efferent function have
259  repeatedly evolved together across cavefish populations. Our findings come at a time when genetic

260  tools in 4. mexicanus enable brain-wide imaging and gene-editing based screening to identify
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261  candidate neural circuits and genes critical in the evolution of sensory systems (Jaggard et al.,
262 2020; Warren et al., 2021). Going forward, applying genetic and electrophysiological tools in well-
263  characterized neural circuits promises to inform our understanding of the evolution of neural
264  systems and behavior more broadly.

265  Materials and Methods

266 Animals: Fish were progeny of pure-bred stocks originally collected in Mexico (Duboué et
267  al., 2011) that have been maintained at the Florida Atlantic University core facilities. Larvae were
268  raised in 10% Hank’s solution (137 mM NaCl, 5.4 mM KCl, 0.25 mM Na,HPOs, 0.44 mM
269  KH>PO4, 1.3 mM CaClp, 1.0 mM MgSOs, 4.2 mM NaHCOq, pH 7.3) at 26°C. All experiments
270  were performed according to protocols approved by the University of Florida or Florida Atlantic
271 University Institutional Animal Care and Use Committee. Animal health was assessed by
272 monitoring blood flow throughout each experiment.

273 Neuromast imaging: To assess neuromast quantities, larvae aged six dpf were submerged in 5
274 pg/ml DASPEI dissolved in embryo medium for 15 minutes as previously described (Van Trump
275  etal, 2010). Larvae were then transferred to ice-cold water for 30-45 seconds then immersed in
276 8% methylcellulose for imaging. Images were taken using a Nikon DS-Qi2 monochrome
277  microscope camera mounted on a Nikon SMZ25 Stereo microscope (Nikon; Tokyo, Japan).
278  Neuromasts innervated by posterior lateral line afferents and anterior lateral line afferents were

279  tabulated separately.

280 Electrophysiology: Prior to recordings, 4. mexicanus larvae (4-7 dpf) were paralyzed using
281 0.1% o-bungarotoxin (Lunsford & Liao, 2021). Once paralyzed, larvae were then transferred into

282  extracellular solution (134 mM NaCl, 2.9 mM KCI, 1.2 mM MgCl, 2.1 mM CaCl,, 10 mM
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283  glucose, 10 mM HEPES buffer; pH 7.8, adjusted with NaOH) and pinned with etched tungsten
284  pins through their dorsal notochord and otic vesicle into a Sylgard-bottom dish.

285 Multiunit extracellular recordings of the posterior lateral line afferent ganglion were made
286 in surface fish (n = 10) and Pachoén cave fish (n = 5). Prior to recording from the afferent neurons,
287  abore pipette was used to break through the skin to expose the afferent soma. Recording electrodes
288  (~30 um tip diameter) were pulled from borosilicate glass (model G150F-3, inner diameter: 0.86,
289  outer diameter: 1.50; Warner Instruments, Hamden, CT) on a model P-97 Flaming/Brown
290  micropipette puller (Sutter Instruments, Novato, CA) and filled with extracellular solution. Once
291  contact with afferent somata was achieved, gentle negative pressure was applied (20-50 mmHg;
292 pneumatic transducer tester, model DPM1B, Fluke Biomedical Instruments, Everett, WA).
293  Pressure was adjusted to atmospheric (0 mmHg) once a stable recording was achieved.
294  Simultaneously, ventral root (VR) recordings were made through the skin (Masino & Fetcho,
295  2005) to detect voluntary fictive swimming. All recordings were sampled at 20 kHz and amplified
296  with a gain of 1000 in Axoclamp 700B, digitized with Digidata 1440A and saved in pClamp10
297  (Molecular Devices).

298 All recordings were analyzed in Matlab (vR2016b) using custom written scripts. Both
299  spontaneous afferent spikes and swimming motor activity identified using a combination of spike
300 parameters previously described (Lunsford et al., 2019). Afferent neuron activity within a time
301 interval equal to the subsequent fictive swim bout, hereafter termed “pre-swim”, was quantified
302 and compared to afferent activity during swimming to measure relative changes in spontaneous
303  firing.

304 Efferent Ablations: Hindbrain efferent neurons were backfilled with tetramethylrhodamine

305 (TRITC, 3 kDa; Molecular Probes, Eugene, OR). 4. mexicanus larvae (4 dpf) were anesthetized
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306  in MS-222 (Tricaine, Western Chemical Inc. Ferndale, WA) and embedded in agar. To selectively
307 label the hindbrain cholinergic efferent neurons, we systematically electroporated (Axoporator
308  800A Single Cell Electroporator, Axon CNS Systems, Molecular Devices LLC, San Jose, CA)
309 TRITC into the efferent terminals that innervate the D1, D2, L1, and L2 neuromasts of the lateral
310  line in surface fish (n = 14) and Pachon cavefish (n = 7). Electroporation does not ensure labelling
311 of all efferent neurons so we standardized parameters (30 V, 50 Hz, 500 ms, square pulse) and
312  targeted the same neuromasts across populations to minimize variation in labelling efficacy.
313  Larvae were then gently freed from the agar and allowed to swim freely and recover overnight.
314  Larvae (5 dpf) were then paralyzed via oa-bungarotoxin immersion, remounted in agar dorsal
315  surface down, and imaged on a Leica SP5 confocal microscope (Leica Microsystems, Wetzlar,
316  Germany). Efferent soma size and quantity was measured within identified TRITC-labelled cells
317 in ImageJ (v1.48; U. S. National Institutes of Health, Bethesda, MD). To perform targeted
318  ablations of surface fish (n = 5) and cavefish (n = 6) efferent neurons, a near-ultraviolet laser was
319  focused at a depth corresponding to the maximum fluorescence intensity of each soma, to ensure
320  we were targeting its centre. We applied the FRAP Wizard tool in Leica application software to
321  target individual cells. We ablated target cells with a 30 s exposure to the near-ultraviolet laser line
322 (458 nm), and successful targeting was confirmed by quenching of the backfilled dye. This method
323 has been successfully applied and validated in similar systems (Liu & Fetcho, 1999; Soustelle et
324 al, 2008). Fish were again freed from agar and allowed to swim freely and recover overnight.
325  Electrophysiological recordings were performed on ablated surface fish (n = 4) and cavefish (n =
326 5) at 6 dpf to simultaneously monitor afferent activity and motor activity.

327 Statistical analysis: Neuromast data were analyzed using GraphPad Prism 8.4.3. Normality

328  was assessed via Shapiro-Wilk test. Anterior lateral line neuromast count data were found to be
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329  normally distributed. Anterior lateral line neuromast quantities in surface and cave larvae were
330 compared using an unpaired t-test. Posterior lateral line neuromast count was found to not be
331  normally distributed and was subsequently analyzed via Mann-Whitney U-test

332 Analyses of electrophysiological data were performed using custom written models in the
333  Rlanguage (R development core team, vR2016b) using packages car, visreg, reshape2, plyr, dplyr,
334 ggplot2, gridExtra, minpack.lm, nlstools, investr, and cowplot (Auguie et al., 2017; Baty et al.,
335  2015; Breheny & Burchett, 2017; Fox & Weisberg, 2018; Wickham, 2007, 2009; Wickham et al.,
336 2019; Wilke, 2019). Spontaneous afferent spike rate was calculated by taking the number of spikes
337  over the duration of time where the larva was inactive. Instantaneous afferent spike rate was
338  calculated using a moving average filter and a 100 ms sampling window. Pre-swim and swim spike
339  rate were calculated by taking the number of spikes within the respective period over its duration.
340  Pre-swim periods of inactivity made it challenging to interpret changes in afferent activity, so we
341  restricted the dataset to only include swim bouts that were preceded by a minimum of one afferent
342  spike within the pre-swim interval (surface = 2,291 swim bouts; Pachon = 2,429 swim bouts;
343  Molino = 1.474 swim bouts; Tinaja = 464 swim bouts). Swim frequency was calculated by taking
344 the number of bursts within a swim bout over the duration of the swim bout. Relative spike rate
345  was calculated by taking the swim spike rate over the pre-swim spike rate. All variables were
346  averaged for each individual fish. The precision of estimates for each individual is a function of
347  the number of swims, so we analyzed variable relationships using weighted regressions, with
348  individual weights equal to the square root of the number of swims. We log transformed variables
349  in which the mean and the variance were correlated. To quantify the inhibition of the afferent spike
350 frequency during swimming we tested for a significant difference in afferent spike frequency

351  during swimming as compared to non-swimming periods using a paired sample student’s t-test.
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352 Differences in afferent spike rates between the periods of interest (pre-swim and swim) across
353  populations and treatments were tested by N-way analysis of variance (ANOVA) followed by
354  Tukey’s post-hoc test to detect significant differences in spike rates between swim periods or
355  treatments. Linear models were used to detect relationships between spike rate during swimming
356 and other independent variables (e.g. spike rate pre-swim). Data is shown throughout the
357  manuscript as mean =+ standard error. Statistical significance is reported at o. = 0.05.
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