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ABSTRACT

We consider multi-label classification in the context of complex
hierarchical relationships organized into an ontology. These situa-
tions are ubiquitous in learning problems on the web and in science,
where rich domain models are developed but labeled data is rare.
Most existing solutions model the problem as a sequence of simpler
problems: one classifier for each level in the hierarchy, or one clas-
sifier for each label. These approaches require more training data,
which is often unavailable in practice: as the ontology grows in size
and complexity, it becomes unlikely to find training examples for
all expected combinations. In this paper, we learn offline represen-
tations of the ontology using a graph autoencoder and separately
learn to classify input records, reducing dependence on training
data: Since the relationships between labels are encoded indepen-
dently of training data, the model can make predictions even for
underrepresented labels, naturally generalize to DAG-structured
ontologies, remain robust to low-data regimes, and, with minor
offline retraining, tolerate evolving ontologies. We show empiri-
cally that our label predictions respect the hierarchy (predicting a
descendant implies predicting its ancestors) and propose a method
of evaluating hierarchy violations that properly ignores irrelevant
violations. Our main result is that our model outperforms all state-
of-the-art models on 17 of 20 datasets across multiple domains by
a significant margin, even with limited training data.
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1 INTRODUCTION

Hierarchy- and graph-structured domains are becoming ubiqui-
tous for learning tasks on and off the web. In high-expertise do-
mains, human attention tends to be invested in designing and cu-
rating application-agnostic ontologies rather than on hand-labeling
application-specific datasets. WordNet, first introduced by Miller et
al. [34] in 1998 and since adopted in over 200 languages and used
in tens of thousands of papers, is characterized by rich thesaurus
relationships between terms. ImageNet [13], designed as a Word-
Net analoogue for images, contains over 3 million images labeled
with 60,942 terms organized into a hierarchy (actually a DAG, but
represented as a hierarchy by repeating nodes). For learning tasks
on the web, ontological relationships between labels have been
used to improve document classification [36, 38], study zero-shot
learning [21], and improve recommendation systems [17, 27, 39, 53].

Despite the opportunity for supervision, relationships among
labels are often ignored. For example, the ImageNet dataset led
to AlexNet [28], ResNet [23], and VGG [42], but all three models
ignore the hierarchical structure of the labels. In response, an emerg-
ing community is studying hierarchical multi-label classification,
aiming to use the hierarchy to help supervise multi-label learning.

Current hierarchical multi-label classification models, however,
tend to emphasize particular domains and are computationally ex-
pensive to train. Wehrmann et al. [48] proposed HMCN, a cascade
neural network that simultaneously optimizes local hierarchical
label relationships and the global hierarchy while penalizing hi-
erarchical violations. However, the amount of the parameter of
HMCN-F grows with the number of hierarchical levels. It gets com-
putational expensive when the hierarchies are large. Xu et al. [50]
introduced a hierarchical classification model which represents the
correlation among labels with the label distribution and learns a
mapping function from the instance to the label distribution, but
the model is only tested for single-label problem. HyperIM [10]
learns label-aware document representations and model the word
and label hierarchies in hyperbolic space, but the model is only
suitable for the text domain.

Existing approaches to hierarchical multi-label classification also
tend to assume the availability of data to provide balanced coverage
of the ontology, a condition that becomes increasingly unlikely as
the ontology grows in size, and becomes impossible when the ontol-
ogy is bigger than the training data or when the ontology changes
after training data has been collected. This latter situation is espe-
cially insidious: ontologies undergo constant revision in practice,
meaning that training datasets face continual obsolescence.

While several methods aim to prevent hierarchy violations (rec-
ommending a child label without also recommending a parent label),
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there has been no principled model-agnostic evaluations of hier-
archy violations. Despite the emphasis on preventing hierarchy
violations by Wehrmann et al. [48] and Giunchiglia et al[22], no
direct evaluation of hierarchy violations was conducted.

In this paper, we propose an algorithm for hierarchical multi-
label classification that separates the problem into learning reusable
embeddings of the ontology itself, then training a classifier using
these embeddings. Since the structure of the ontology is encoded in
the learned representation, trained classifiers can predict a correct
label even with no examples of that label available, which in turn
allows a trained classifier to be more robust when the ontology
changes. We use a graph autoencoder to learn label representations
from the structure of the ontology, then use a simple model to learn
the function mapping the input space into the label embedding
space using binary cross entropy loss. We call this framework Surj .

We show that Surj outperforms current state-of-the-art algo-
rithms on 20 benchmark datasets, usually by a significant margin.
We also propose one metric to quantify hierarchy violations, Global
Hierarchy Violation. The metric is applied to Surj and it reveals that
there is no hierarchy violation from Surj in all 20 datasets. Surj is
also trained up to 40 times faster than the current state-of-the-art
C-HMCNN. We demonstrate the effectiveness of the ontology learn-
ing with an ablation study. We also show that Surj is robust to lower
data size and remain superior even when only half of the training
data is provided.

We make the following contributions:

e We propose a framework Surj to perform hierarchical multi-
label classification with ontology learning. The framework
learns a representation for the label ontology and then uses
the representation as the labels for multi-label classification
learning.

e We introduce Global Hierarchy Violation to comprehen-
sively measure whether predicted results from a HMC model
violate hierarchical constraint.

o We show that the proposed method achieves the-state-of-the-
art results in hierarchical multi-label classification learning
in 17 out of 20 benchmark datasets and that it is hierarchy-
violation-free and computation efficient compared to com-
petitive methods.

e We show a number of auxiliary studies to show the individ-
ual effects of the graph encoding, performance in low-data
regimes, tolerance for changing ontologies, and a signifi-
cantly faster training time than competitive methods.

2 RELATED WORK

Hierarchical multi-label classification has been a long standing
problem due to the ubiquity of ontologies. Ontologies are used to
organize knowledge in wide variety of domains on the web[43, 44],
in urban settings [1, 18], finance[45, 46], oceanography[39], and
art[12]. Some models are tailored to Natural Language Processing
for text multi-label classification [9, 10, 24, 31]. While these models
present novel networks, they are limited to NLP applications and
not applicable in our evaluation. We review studies for general
hierarchical multi-label classification problem.

Hierarchical Multi-label Classification. Most HMC algorithms can
be categorized into global and local approaches. Global approaches
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are designed to handle the entire hierarchy. Vens et al. proposed
Clus-HMC [47], based on the concept of Predictive Clustering Trees
and involving a decision tree learner to map the entire hierarchy.
Schietgat et al. extended the idea from Clus-HMC in Clus-Ens
[40], adopting a bagging strategy to create decision tree ensembles.
MHC-CNN [4] consists of a Competitive Neural Network where
each neuron represents a node in the hierarchy and the whole
network is a clone of the hierarchy. Masera et al. [33] proposes AWX
(Adjacency Wrapping Matrix), which incorporates the hierarchy
into their model architecture and the learned knowledge propagates
through each layer. C-HMCNN [22] has a hierarchy-coherent layer
to produce coherent predictions by construction.

Local approaches break down the problem into smaller classifi-
cation tasks, often by level [5-7, 30, 52] or by node[3, 8, 19, 29, 50].
Cerri et al. [5-7] proposed HMC-LMLP, a approach based on a chain
of Multi-Layer Perceptrons (MLPs) with a single layer represents a
level in the hierarchy. The input of a given MLP is the output of the
previous MLP. Bi et al.[3] utilize Kernel Dependency Estimation
(KDE) to transforms the number of labels in a hierarchy into a
workable number of single-label learning problems. Condensing
Sort and Select Algorithm (CSSA) is employed to find an optimal
approximation subtree to preserve tree structure and they use ridge
regression in the learning step. Wehrmann et al. [48] presented
HMCN-R and HMCN-F, which are optimized by a global and a local
loss. HMCN-F is a feed-forward network and HMCN-R is a recur-
rent architecture. While HMCN-F produces better overall results
but the network parameters increase significantly as the hierarchy
grows. While there has been significant progress on this problem,
our approach of directly embedding the ontology using graph neu-
ral networks has not been considered, and as we will show, offers
significant improvements. We explore how graph neural networks
can contribute to hierarchical multi-label classification and review
graph representation methods in the next subsection.

Deep Learning on Graphs. Graph representation learning with
graph neural network has created opportunities for applications
such as node classification, link prediction, and spatial-temporal
graph forecasting. Jurisch et al. utilizes graph convolution networks
to solve ontology alignment problem. Schlichtkrull et al. [41] models
relational data with graph convolutional networks. Zang et al. [51]
apply graph embeddings for gene ontology annotations to predict
protein-protein interaction. In our work, we propose to learn node
embeddings to capture the structure information of a hierarchy and
use these embeddings to train a multi-label classifier.

3 METHOD

In this section, we define the problem of hierarchical multi-label
classification and introduce our framework.

3.1 Preliminaries

We define a label hierarchy H = (V,E) as a graph with labels V'
and edges E, where edges are typically parent-child relationships
representing specificity. Given a space of input instances X where
each element is a vector of features x1, x2, ..., XN .

Our framework consists of a learned function g : V — ZP
that embeds each vertex in the ontology into a D-dimensional
representation, and another learned function m : X — P(R) to
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Figure 1: Illustration of our framework. We learn a repre-
sentation for the label ontology using a graph autoencoder.
Then, the model considers the node embeddings and maps
the input instances X onto the node embedding space with
cosine similarity. Finally, the model is optimized with bi-
nary cross entropy and produce probability confidence as
output.

take input instances and produces a probability distribution over
the learned embedding space R. The classifier is trained to map
the input instances X into an embedding space R, followed by a
cosine similarity layer to compute the cosine similarity between the
embedding space and the ontology representation. The classifier is
optimized with the binary cross entropy (BCE). The intuition behind
this framework is that graph representation learning models allow
us to capture the structural information from the label hierarchies:
labels that are “close” in the hierarchy are “close” in the learned
space. The learned embedding allows us to accommodate complex
graphs, enforce parent-child relationships in predicted labels, make
better use of limited training data, and tolerate ontology changes
without requiring new training data.

3.2 Ontology Learning

For the label hierarchy learning, we use a graph auto-encoder [25]
to learn the node embeddings. Graph auto-encoders are easy to im-
plement and computationally efficient. We introduce an adjacency
matrix A constructed from the label graph H and its degree matrix
D. Node features are constructed in an N X D matrix S. The graph
autoencoder includes a two-layer Graph Convolutional Network
(GCN) defined as:

A = 5(zZ"), with Z = GCN(S, A) (1)
The two-layer GCN is defined as:
GCN(S, A) = AReLU(ASW ()W 2)

where ReLU(- - - ) = max(0, - - - ), Wj suggests weights, and A =
D 7AD" is the normalized adjacency matrix. Finally, o(---) is
the logistic sigmoid function.

Hierarchy nodes are frequently equipped with semantic features.
For example, every node of WordNet consists of words which can
be converted into word embeddings. Protein and gene possesses
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observed features within the hierarchies. While there is no feature
vectors provided for the node in the benchmark dataset, the learned
embeddings with feature vectors provided can be more representa-
tive and further improve the overall HMC performance. The graph
autoencoder takes both dense feature vectors and an affinity matrix
as inputs, allowing the ontology learner to learn the semantic and
latent features of the nodes.

We perform an experiment to verify this premise using the on-
tology from one of the benchmark datasets, cellcycle(FUN).

For this framework to succeed, the learned hierarchy embedding
needs to reflect the structural information. To show a simple veri-
fication of the correspondence, we take the label hierarchy from
the CellCycle(FUN) dataset and compare the shortest path of all
node pairs and the cosine similarity of their learned embeddings
from the graph autoencoder. The results are shown in Figure 2. The
x-axis is the length of the shortest path and the y-axis is the cosine
distance dcosine, defined as:

deosine =1 — COS(Pa Q) (3)
where
__P9Q
«os®-Q) = 1B gl @

P and Q are two dense vectors. We can simply observe from the
figure that the closer the two nodes are in the ontology, the more
similar they are in the learned embedding space.

3.3 Multi-label Classification

The framework leverages the learned representation by learning
to map the input instances on to the learned node representations.
This is achieved by inserting a cosine similarity layer to compute
the cosine similarity between the output from the fully connected
layers and the node embeddings. The cosine similarity layer follows
equation 4.

The cosine similarity layer is followed by another fully connected
layer and a sigmoid layer for multi-label classification. The model
is optimized by Binary Cross Entropy Loss:
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Figure 2: The relationships between the shortest path length
of all node pairs and the cosine similarity of their learned
embeddings. The closer the two nodes are in the tree, the
more similar they are in the embedding space.
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Table 1: Datasets used in the evaluation

Taxonomy Dataset # Classes # Attributes Depth Train Validation Test
ENRON 56 1000 3 692 296 660

DIATOMS 398 371 3 1085 464 1054

Tree IMCLEF07A 96 80 3 7000 3000 1006
IMCLEF07D 46 80 3 2100 900 3000
CELLCYCLE 499 77 6 1628 848 1281

DERSI 499 63 6 1608 842 1275

EISEN 461 79 6 1058 529 837

FUNCAT EXPR 499 551 6 1638 849 1291
(Tree) GASCH1 499 173 6 1634 846 1284
GASCH2 499 52 6 1639 849 1291

SEQ 499 478 6 1701 879 1339

SPO 499 80 6 1600 837 1266

CELLCYCLE 4122 77 12 1625 848 1278

DERSI 4116 63 12 1605 842 1272

EISEN 3570 79 12 1055 528 835

Gene EXPR 4128 551 12 1636 849 1288
Ontology GASCH1 4122 173 12 1631 846 1281
GASCH2 4128 52 12 1636 849 1288

SEQ 4130 478 12 1692 876 1332

SPO 4116 80 12 1597 837 1263

|4
L=-3 25 v X 1og(p(un) + (1= o) X1og1 = ((u0) ©

where y € 0,1 is the label and p(y) is the predicted probability
of the node being true.

4 EXPERIMENTAL EVALUATION

In this section, we describe the empirical experimentation to verify
the effectiveness of Surj for hierarchical multi-label classification.
We evaluate Surj on 20 benchmark datasets across biological se-
quencing (protein function prediction), images, and text and com-
pare our framework against six other state-of-the-art algorithms
in the HMC space. While several recent HMC models are designed
based on the premise of avoiding hierarchy violations, there is no
metrics to quantitatively measure hierarchy violations. Global Hi-
erarchy Violations proposed to determine the magnitude of the
hierarchy violations of the predicted outputs. The implementation
of the experiments are detailed in Sec. 4.4.

4.1 Datasets

We consider 20 datasets across multiple domains used in previous
hierarchical multi-label classification studies [22, 48]. The datasets
consist of protein function prediction [11], annotation of medical
images [15, 16], or text classification [26]. The datasets are con-
structed as trees (MIPS functional Catalogue for protein function)
or directed acyclic graphs (Gene Ontology). The statistics for the
datasets are shown in 1.

As mentioned by Wehrmann et al [48], these datasets are chal-
lenging for neural networks for multiple reasons: (1) The training
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samples are relatively low. (2) The number of features vary sig-
nificantly across the datasets (varying from 52 to 1000) (3) The
hierarchies exhibit a wide range of depths and number of classes.

4.2 Competitive Methods

We compare Surj against several models that are considered the
state-of-the-art for Multi-label Hierarchical Classification:

e C-HMCNN[22]: C-HMCNN leverages a constraint layer to
ensure the predictions are coherent with the hierarchy con-
straints.

e HMCN[48]: Wehrmann et al. two neural network architec-
tures, HMCN-F and HMCN-R, for HMC based on the concept
of finding the local hierarhical class-relationships and en-
tire class hierarchy with penalizing hierarchical violations.
HMCN-F is a feed forward network designed for optimizing
the hierarhical structure of the labeled data and HMCN-R is
a recurrent network where the global flow shares weights
throughout the hierarchy.

e HMC-LMLP[7]: HMC-LMLP is the first study to utilize neu-
ral networks for HMC problems. They associate one multi-
layer perception (MLP) to each hierarchical level and the
MLP is only fed by the output from the previous MLP from
the second level onwards.

e CLUS-HMC[47]: A global approach based on the concept of
Predictive Clustering Trees (PCT) to generate a decision tree
to cover the entire tree hierarchy.

e CLUS-HMC-Ens[40]: This algorithm considerably improves
upon CLUS-HMC by integrating a bagging strategy for cre-
ating ensembles of Clus-HMC trees.
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4.3 Evaluation Metrics

Our framework and the competitive methods generate a probabil-
ity distribution as output. Thresholding is a common practice to
acquire binary prediction, but the selection of the threshold value is
difficult to obtain and arbitrary. Following Wehrmann et al. [48] and
Giunchiglia et al. [22], we provide quantitative evaluation using the
area under the average precision-recall curve (AU(PRC)), whose
points (Prec, Rec) is calculated as following:

N n_TP;

Prec = = Lzt :l 6)
i=1 TP; + Zi:l FP;

_ $n TP

Rec = =1 7)

?:1 TP; + Z?:l EN;
where TP;, FP;, and FN; are the number of true positives, false
positives, and false negatives for class i, respectively.

In addition to AU(PRC), we propose algorithms to detect global
hierarchy violations. Hierarchy violations occur when the predicted
probability of a child node is higher than a parent node. This defi-
nition is threshold-independent. In real applications, thresholds are
required to generate predictions, and hierarchy violations occur
when predictions do not include ancestors of a predicted node.

Wehrmann et al. [48] and Giunchiglia et al. [22] emphasized
that a hierarchical multi-label classification model should not have
any hierarchy violations and designed their models accordingly.
Wehrmann et al. [48] penalize hierarchical violation by employing
a regularizer to ensure the prediction score of a node is lower
than its parent nodes. Giunchiglia et al. [22] proposed a modified
binary cross-entropy loss (MCLoss), which constrains the predicted
probability of a child node to only be as high as its parent node.
Both papers demonstrate the improvement in AU(PRC) from the
hierarchical structural constraints, but do not evaluate hierarchy
violations. We introduce Global Hierarchy Violation to measure
hierarchy violations.

Consider the example in Fig. 3(a). We have a subtree of 6 nodes.
The letters identify the nodes and the p annotations indicate the
predicted probability scores. The right branch of this subtree has
no hierarchy violation because all child nodes have lower predicted

(a)

p=23% p=62% p=13%

p=42% p=54% p=24%

Figure 3: Demonstration of a hierarchy violation with pre-
dicted probabilities. Letters identify nodes and p annota-
tions indicate predicted probabilities (pp). Hierarchy viola-
tions occur when the pp of a descendant node is higher than
that of one of its ancestors. (a) B-D, B-E, and A-E pairs are hi-
erarchy violations. (b) While the same hierarchy violation
pairs are present, they are irrelevant due to low predicted
confidence.
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outputs than their parent nodes. On the other hand, we can observe
hierarchy violations on the left branch where node B, as a parent
node, has a lower score than node D and node E. Node E also has
higher predicted probability than node A.

Global Hierarchy Violation compares all valid node pairs and
computes the number of hierarchical violation occurrences. Given
a label hierarchy H = (V, E) as a tree or ontology with labels V and
edges E. Each label v; is associated with a predicted probability p;. A
valid node pair (v;, v;) is defined as the shortest path between v; and
v; does not go through the root node. Global Hierarchy Violation
is defined as the total number of occurrences of the ancestor node
associated with lower probability in all valid node pairs. Ancestor
node is the node that has shorter shortest path to the root node
in a valid node pair. For the example in Fig. 3(a), the algorithm
would consider 8 node pairs in this subtree: A-B, A-D, A-E, A-
C, A-F, B-D, B-E, and C-F, and compute the number of violation
occurs in these pairs. The Global Hierarchy Violation would be
3 for this scenario. However, Global Hierarchy Violation might
have a blind spot. Consider the scenario in Fig. 3(b), it remains the
similar predicted probability pattern as Fig. 3(a) but with much
lower probability confidence. In real life applications, most set
the thresholds around 50%. The violations happen in this scenario
would be irrelevant. Global Hierarchy Violation is designed to detect
all hierarchy violations and we encourage future HMC research to
incorporate this metric in the evaluation purpose.

4.4 Implementation

To conduct a fair comparison, we adopt the code! provided by
Giunchiiglia et al [22] for dataset pre-processing and evaluation.
For pre-processing, all nominal features were converted to nu-
meric values via one-hot encoding. The feature vectors were then
normalized. All missing values were replaced by the correspond-
ing mean. For evaluation, we remove root nodes ("root" for FUN
datasets, "root", "GO0003674", "GO0005575", and "GO0008150" for
GO datasets?). All the experiments were trained with 32 CPU cores
and all reported results are the average of 10 trials. Code for all
experiments will be published on github.

The hyper-parameters in our framework are the dimensions
of the fully connected layers and the learning rate. These hyper-
parameters are optimized with the validation set. We find that the
dimension of the fully connected layers marginally impact the over-
all performance and the framework produces the best overall results
with learning rate = 0.001. The hyper-parameters are consistent
across datasets.

5 EXPERIMENTAL RESULTS

We report the evaluation results against the state-of-the-art models
in this section. We first assess the overall performance of our model
with AU(PRC) against six other models in 20 real-life benchmark
datasets (Sec.5.1). We also compute the Global Hierarchy Violation
to verify that the generated predictions follow the hierarchical
constraints (Sec. 5.2). Computation cost analysis is provided in Sec.
5.3. Finally, the ablation study is conducted to demonstrate the
impact of the ontology learning process (Sec. 5.5).

!https://github.com/EGiunchiglia/C-HMCNN
Zhttps://dtai.cs.kuleuven.be/clus/hmedatasets/
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Table 2: Quantitative comparison with the state-of-the-art in the hierarchical multi-label classification. The numbers reported
are AU(PRC). Average ranking is the average of the rankings compared to other competitive algorithms among all datasets.
Higher numbers are better. Our models produce superior results in 17 of 20 real-life benchmark datasets and have 1.3 average

ranking.

Dataset Ours C-HMCNN HMCN-F HMCN-R HMC-LMLP CLUS-HMC CLUS-ENS
CELLCYCLE 0.269 0.255 0.252 0.247 0.207 0.172 0.227
DERSI 0.231 0.195 0.193 0.189 0.182 0.175 0.188
EISEN 0.392 0.306 0.298 0.298 0.245 0.204 0.271
FUNCAT EXPR 0.382 0.302 0.301 0.300 0.242 0.210 0.271
GASCH1 0.369 0.286 0.284 0.283 0.235 0.205 0.267
GASCH2 0.273 0.258 0.254 0.249 0.211 0.195 0.227
SEQ 0.341 0.292 0.291 0.290 0.236 0.211 0.284
SPO 0.241 0.215 0.211 0.210 0.186 0.186 0.210
CELLCYCLE 0.460 0.413 0.400 0.395 0.361 0.357 0.387
DERSI 0.445 0.370 0.369 0.368 0.343 0.355 0.363
EISEN 0.487 0.455 0.440 0.435 0.406 0.380 0.433
GO EXPR 0.477 0.447 0.452 0.450 0.373 0.368 0.418
GASCH1 0.481 0.436 0.428 0.416 0.380 0.371 0.415
GASCH2 0.473 0.414 0.465 0.463 0.371 0.369 0.395
SEQ 0.478 0.446 0.447 0.443 0.370 0.386 0.435
SPO 0.439 0.382 0.376 0.375 0.342 0.345 0.372
ENRON 0.743 0.756 0.724 0.710 - 0.638 0.681
DIATOMS 0.772 0.758 0.530 0.514 - 0.167 0.379
IMCLEF07A 0.943 0.956 0.950 0.904 - 0.574 0.777
IMCLEF07D 0.917 0.927 0.920 0.897 - 0.749 0.863
AVERAGE RANKING 1.3 2.05 2.75 3.85 6.19 6.6 4.95

5.1 Overall Performance vs. State-of-the-Art

Table 2 shows the empirical results for the current state-of-the-art
models on 20 real-world benchmark HMC datasets. The results for
C-HMCNN and HMC-LMLP are adopted from those published by
Giunchiglia et al. [22] and results for HMCN and CLUS models are
adopted from those of Wehrmann et al. [48]. For C-HMCNN, we
ran their published code and verified that the results are consistent
with the published results in the paper.

Our method outperforms other algorithms on 17 of 20 datasets
by a significant margin. We also have the best average ranking (1.3).
To demonstrate the statistical significance of the reported results,
we follow previous work [22, 48] to perform Friedman test [20]
and Wilcoxon Test [49]. Friedman test is a non-parametric test to
compare three or more matched groups by ranks. It is used to deter-
mine if a particular factor has an effect. Wilcoxon Test calculates the
difference between sets of pairs and analyze whether these differ-
ences establish statistically significant differences between the two
groups. Friedman test indicates statistically significant difference
with p-value of 1.06x10717. We then apply Wilcoxon Test to our
results and C-HMCNN and it concludes that there is a statistical
significant difference between the performance of our model and
C-HMCNN with p-value of 3.05x107%

To better visualize the dominant performance of our model, we
create a dot chart (Figure 4 to show the margins to the-state-of-the-
art (sota) performance. Our model outperforms all other models
in FUN and GO datasets. Among the three datasets (Enron_corr,
ImCLEF07A, and InCLEF07D) that our models do not produce the
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best results, we still remain competitive (within 1.5%) with the best
performance.

5.2 Hierarchy Violation Analysis

We then apply Global Hierarchy Violation to our model to examine
if the predictions follow the hierarchical structure. There are no oc-
currences of hierarchy violations in any of the 20 datasets. We also
perform Global Hierarchy Violation for C-HCMNN in FUN datasets
and C-HMCNN also achieves zero hierarchy violations. This analy-
sis shows that our model achieves the superior performance with
perfect hierarchy constraints.

5.3 Comparing Training Time

In this subsection, we consider training time of Surj relative to C-
HMCNN][22]. C-HMCNN is assumed to be significantly faster than
other competitive neural models: Unlike HMCN-F, HMCN-R, and
HMC-LMLP, the training time of C-HMCNN does not depend on
the size of the ontology — the main contribution is a post-processing
step to avoid hierarchy violations. The training time in seconds for
both models on FUN datasets is shown in Table 3. We report results
on the FUN datasets because they are smaller; C-HMCNN training is
exhorbitantly expensive on larger datasets. We include training time
for both ontology learning and classification learning steps. The
weak correlation between the training times of the two models is
due to high variance in the number of epochs needed for C-HMCNN.
Our model takes significantly less time to train compared to C-
HMCNN, ranging from 5x to 40x less time. In practice, ontologies
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Figure 4: Margins to the state-of-the-art (sota) performance
among 20 benchmark datasets. The x axis is the margin of
between a model performance and the sota number. We can
observe that our model (red dots) demonstrate dominance
among FUN and GO datasets. Our model remains competi-
tive (within 1.5%) even when we are not the best.

Table 3: Training Time Analysis. We measure the train-
ing time in seconds of our model and C-HMCNN on FUN
datasets. We ran both models on a virtual machine with 32
cores. Our model is 5X to 40X faster to train.

Ours C-HMCNN

OntOIng clasmﬁctatlon total total

Learning Learning
CELLCYLE 0.8 45.3 46.1 1937
DERSI 0.4 44.2 44.4 1147
EISEN 0.3 24.4 24.7 1254
EXPR 0.4 55.7 56.1 694
GASCH1 0.3 56.8 57.1 748
GASCH2 0.6 58.6 59.2 2113
SEQ 0.2 61.3 61.5 320
SPO 0.3 44.3 44.6 1927

change very frequently (for example, the gene ontology database
releases monthly updates 3). Low training cost allows users to adopt
and integrate new ontologies more efficiently.

3http://geneontology.org/docs/downloads/
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Table 4: Response to an Evolving Ontology. Surj is more tol-
erant to ontology changes than a naive baseline (in paren-
theses). "% changes" indicates delta of the performance on
evolving ontology.

V1 data V1 data %
V1 ont. V2 ont. changes
CELLCYCLE | 0.269 (0.211) | 0.213 (0.137) | -20.8% (-35.1%)
DERISI 0.231(0.209) | 0.144(0.114) | -37.6% (-45.5%)
EISEN 0.392(0.281) | 0.277(0.179) | -29.3% (-36.2%)

EXPR 0.382(0.223) | 0.288(0.149) | -24.6% (-33.1%)

GASCH1 | 0.369(0.256) | 0.271(0.175) | -26.6% (-31.6%)
GASCH2 | 0.273(0.208) | 0.213(0.118) | -21.9% (-43.2%)
SEQ 0.341(0.218) | 0.242(0.146) | -29.0% (-33.0%)
SPO 0.241(0.209) | 0.207(0.129) | -14.1% (-38.2%)

5.4 Tolerance for Evolving Ontologies

We simulate an evolving ontology by removing 20% of the leaf labels
from the ontology, and removing all references to the removed leaf
nodes in the training data. We consider this reduced ontology the
Version 1 (V1) ontology and the corresponding training data the V1
training data. We then train our model (and a competitive baseline)
as usual on V1 ontology and V1 data. Then, we restore the missing
nodes to the ontology to simulate Version 2 (V2), but we do not
replace the labels in the training data. That is, we now have a V2
ontology (with the 20% of nodes restored) and an (out-of-date) V1
training dataset. We relearn the ontology embeddings on the V2
ontology, and retrain the model on V1 data to simulate the situation
where a new ontology version has been released, but new training
data has not yet been created.

The results of this experiment are show in Table 4. We trained a
2-layer fully connected network with binary cross entropy loss as
our naive baseline. Surj is more tolerant of the evolving graph than
the baseline. As part of our future work, we are considering more
realistic simulations of ontology evolution, as well as real change
histories, to develop methods of improving performance on unseen
data.

5.5 Ablation Analysis

Finally, we analyze the impact of the ontology learning process. In
Table 5, we show results using the baseline (3 fully connected layers
trained with binary cross-entropy loss and conventional one-hot
encoded vectors) against our model (same baseline trained with
embeddings learned from the graph-autoencoder). The performance

is measured as AU(PRC). Ontology learning produces significant
improvement, accounting for the majority of the difference between
Surj and its closest competitors.

5.6 Varying Data Size

Ontologies often exist in high-value applications where training
data is difficult or expensive to acquire. It is important for HMC
models to capture meaningful signal with minimum data provided.
While the data sizes for the benchmarks are already small, we
challenge Surj with extreme cases to evaluate its robustness to
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Table 5: Ablation Analysis. We measure the benefit of learn-
ing ontology representations. The performance is measured
in AU(PRC) and we can observe that ontology learning pro-
duces significant improvement, accounting for most of the
difference between our model and competitors.

w/o with .
. . % improvement
ontology learning | ontology learning
CELLCYLE 0.211 0.269 6.7%
DERSI 0.209 0.231 10.5%
EISEN 0.281 0.392 39.5%
EXPR 0.223 0.382 71.3%
GASCH1 0.256 0.369 44.1%
GASCH2 0.208 0.273 31.2%
SEQ 0.218 0.341 21.3%
SPO 0.209 0.241 15.3%
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Figure 5: Evaluation on Surj ’s robustness to varying data
size. We test the Surj ’s sensitivity to low data scenarios. We
perform the experiments using GO datasets with 80%, 60%,
40%, 20% of the training data. The gray dashed lines on the
background indicate the performance of the next best model
with full training data. Surj remains superior even with only
half of the training data provided compared to competitors
with full training data.

little data environment. Figure 5 shows the results of varying data
size environment. We train Surj with varying training data sizes,
80%, 60%, 40%, and 20%, from GO datasets. The red lines are Surj ’s
performance and the gray dashed lines indicate the next best model
with full training data. We can see that the performance deteriorates
gracefully as the data size shrinks and it remains superior in all
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datasets to the next best model even with only half of the training
data (around 800 data records). All predictions in this experiment
remain hierarchy violation-free. The robustness of Surj to low data
regimes affords broad use.

6 DISCUSSION AND FUTURE WORK

Our results show Surj outperforms competitive methods on a wide
variety of datasets and is robust to low data / large ontology regimes.
The design of Surj is based on a simple fully connected network
and can be easily adapted to a more advanced neural network ar-
chitecture targeting specific applications. For example, Surj can be
attached to ResNet [23] to classify images or BERT [14] to classify
web documents, depending on the given ontology[44]. Surj has also
been used by a non-profit organization to classify heterogeneous
social media posts (including crawls of Twitter, Reddit, and Face-
book threads) and long-form survey responses into the Sustainable
Development Goals Ontology (SDG) [2] # and the Social Progress
Index (SPI)°. We trained Surj on 13k discourses labeled with SPI
and SDG, and achieved a F1 score of 0.353 on 2k holdout posts,
compared to 0.171 with baseline multi-label classification without
ontology learning. Surj is deployed within an online dashboard
serving policymakers and entrepreneurs and has processed over
2M posts in specific areas. Being easy to implement and quick to
train allows people with limited technical experience or access to
computational resources to achieve state of the art Surj . We expect
Surj to have a broader impact across different disciplines.

As future work, we intend to evaluate Surj for different data
modalities, such as raw image and text. We would like to explore
how Surj compares to models tailored for natural language pro-
cessing [9, 10, 24, 31]. We also plan to more thoroughly investigate
how Surj performs in zero-shot or few-shot scenarios. Since the
relationships between labels are encoded independently of training
data, Surj can predict “nearby" labels in the embedding space even
without seeing labeled examples.

7 CONCLUSION

We propose Surj , a lightweight neural framework for hierarchical
(and graph-structured) multi-label classification. The framework
learns a representation of a label hierarchy and maps the input
instances onto the label representation space. We also present an
algorithm Global Hierarchy Violation to measure the hierarchy
violations from the predicted outputs. To our knowledge, no existing
HMC work presents any evaluation on the hierarchy violations.
Surj outperforms HMC models in 17 out of 20 datasets from three
domains by significant margins and do not violate the hierarchical
constraints in all datasets. We also show that Surj trains up to 40
times faster than the current state-of-the-art model C-HCMNN.
Easy and quick to train allows Surj to be adaptable to ontology
changes. For evaluation purpose, we focus on genomics datasets,
but Surj is generalized and is flexible to different data modalities.
We foresee Surj as relevant for applications for the web [32, 35, 43],
document processing [37], finance [45, 46], and more.

*https://www.unep.org/explore-topics/sustainable- development-goals/what-we-
do/monitoring-progress/sdg-interface-ontology
Shttps://www.socialprogress.org/2020-Social- Progress-Index-Methodology.pdf
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