2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE) | 978-1-6654-3576-5/21/$31.00 ©2021 IEEE | DOI: 10.1109/CACRE52464.2021.9501311

Design and Implementation of a Small-scale
Autonomous Vehicle for Autonomous Parking

Tianhao Yu, Wei Lu, Yanshen Luo, Chenguang Niu, and Wencen Wu

Computer Engineering Department
San José State University

San José,

CA, USA

Email: {tianhao.yu, wei.lu, yanshen.luo, chenguang.niu, wencen.wu} @sjsu.edu

Abstract—In this paper, we introduce the design and imple-
mentation of a low-cost, small-scale autonomous vehicle equipped
with an on-board computer, a camera, a Lidar, and some other
accessories. We implement various autonomous driving-related
modules including mapping and localization, object detection,
obstacle avoidance, and path planning. In order to better test
the system, we focus on the autonomous parking scenario. In
this scenario, the vehicle is able to move from an appointed start
point to a desired parking lot autonomously by following a path
planned by the hybrid A* algorithm. The vehicle is able to detect
objects and avoid obstacles on its path, and achieve autonomous
parking.

I. INTRODUCTION

With the rapid development of autonomous driving tech-
nologies, vehicles on the street are becoming more intelligent
with various kinds of autonomous driving capabilities includ-
ing localization, perception, prediction, planning, and motion
control. Without human interaction, autonomous vehicles have
the ability to understand their environment with the help of
sensors, such as cameras, Lidar, and radar. However, research
on real vehicles associates with high cost including vehicle
cost and high-cost sensors, which may pose challenges for
researchers to develop and test autonomous driving algorithms.
Thus, there is a need to develop low-cost and easy-to-integrate
vehicles with high processing capability as the replacement
to test various autonomous driving-related algorithms in lab
environments[1], [2].

In this paper, we introduce the design and implementation
of a low-cost, small-scale autonomous vehicle and develop
an autonomous parking strategy to test the performance of
the vehicle in a lab-based parking scenario. In addition to
the basic components, the 1/20 scale autonomous vehicle is
equipped with a Ydlidar G4 Lidar and a ZED stereo camera
for object detection and recognition, and uses a Jetson TX2
as the processing unit. We implement various autonomous
driving-related modules including mapping and localization,
object detection, obstacle avoidance, and path planning.

Autonomous parking enables a vehicle to drive and park
without any human interaction. There exist many literature
introducing various autonomous parking strategies [3], [4]. To
test the functionalities of the hardware components as well

978-1-6654-3576-5/21/$31.00 ©2021 IEEE

as the autonomous driving-related software modules of the
vehicle, we build a simple autonomous parking scenario in
lab and design a simple autonomous parking strategy for the
vehicle. The autonomous driving scenario consists of eight
parking lots, an entrance, and an exit, with some obstacles
spreading over the parking lot. Hybrid A* algorithm [5] is
used for path planning and YOLOv4 [6] is used for object
detection. The experimental results show good performance
of the vehicle.

The rest of the paper is organized as follows. Section
I introduces the hardware and software architectures of
the autonomous vehicle. Section III presents the proposed
autonomous parking strategy. Section IV demonstrates the
experimental results, and Section V concludes the paper and
introduces future directions.

II. SYSTEM DESIGN

In this section, we introduce the system design of the small-
scale autonomous vehicle, including the hardware architecture
and software architecture.

A. Hardware Architecture

The hardware architecture consists of a vehicle chassis, an
on-onbard computer, batteries, and sensors such as a stereo
camera, a Lidar, and an IMU. The vehicle is separated into
three levels to hold different components. The lowest level
is the vehicle chassis, which came from the Traxxas 1/20
Scale Remote Control AWD Car. After removing all electrical
components that were attached to the original chassis, the
remaining basement serves as the base structure of the vehicle.
The battery system and the automotive power system are
placed on this level. The battery system is responsible for
charging the Jetson computer and other sensors through USB
connections. Fig. 1 illustrates the first level components. With
four standoffs supported, the second level is equipped with
a Jetson TX2 computing board. This embedded computer is
designed for high-performance Al computing and contains
both the graphic processing unit (GPU) and the central pro-
cessing unit (CPU). It is able to deal with huge amounts of
data and transfer data quickly. Fig. 2 shows the Jetson TX2
module and other components on the second layer. Next to
the computing board, there is a ZED stereo camera installed

398

Authorized licensed use limited to: San Jose State University. Downloaded on March 14,2022 at 23:53:36 UTC from IEEE Xplore. Restrictions apply.

at the front of the second level. This camera is able to detect
3D objects and perform long-range 3D sensing and motion
tracking. The Ydlidar G4 Lidar scanner that is used for object
detection, obstacle avoidance, and mapping and localization
is placed on the top level. It can rotate at a very fast speed
and emit vertical rays to measure the surrounding distance.
All the sensors transfer data to the computing board through
a USB port. Once the computing board has collected data, it
will transfer the data into signals and send it to the motion
control unit (MCU). The MCU is responsible for controlling
the vehicle moving and braking. Fig. 3 illustrates the sensors
equipped on the vehicle and Fig. 4 shows the front and back
views of the vehicle.

High-Capacity Heat Sink With Efficient
Low-Loss MOSFET Design
Thermal Stutdown Protection §

Watergroaf Steering |
Digital High Torue

E-MAXX 2075

SAMSUNG

Fig. 2: Jetson TX2 module
second level.

and other components on the

-

Fig. 3: ZED stereo camera and Ydlidar G4 Lidar on the
vehicle.

B. Software Architecture

The base platform for the software is the ARM-based
Ubuntu 18.04 Operating system. As illustrated in Fig. 5, the
core of this architecture is Robot Operating System (ROS),
which is the center to process, exchange, and coordinate the
data from different autonomous driving-related modules, and
issue decisions. The autonomous driving-related modules in-
clude localization, mapping, perception, prediction, planning,
and control, which accept sensor inputs from the camera,
Lidar, and IMU, and exchange information and data with ROS
to achieve final decisions for the motion control for motors
through Arduino.

Key: — Data Lines
— Control Lines

_ Jetson TXZ
Linux O Initialization &

~—» Robot Operating System
{ROS)

I |

Perception

;

Prediction l

I 1 s

-y

Mapping

— Planning <

v

Decision & Contral

l

Arduino (Teensy MCU)

Fig. 5: Software architecture. Red lines are data lines and black
lines are control lines.

III. AUTONOMOUS PARKING
In this section, we introduce the autonomous driving-related
modules that enable autonomous parking.
A. Localization

Given the hardware components, we adopt the laser scan
matcher as our localization method. This method is based on

399

Authorized licensed use limited to: San Jose State University. Downloaded on March 14,2022 at 23:53:36 UTC from IEEE Xplore. Restrictions apply.

the PL-ICP [7] algorithm, which only uses Lidar data. PL-
ICP utilizes the point-to-line metric to accelerate the iterative
closest point method, which makes the method fast enough to
deal with real-time localization. However, one disadvantage of
this algorithm is that its performance will be hugely affected
when taking large rotation. Fortunately, this large rotation will
barely happen in our scenario (parking lot).

B. Path Planning

In our experiment, we implement the hybrid A* algorithm
[5] as our planner to generate a drivable path given the starting
point and endpoint coordinates in a fixed map. The hybrid A*
algorithm is an advanced algorithm based on the traditional A*
algorithm. Hybrid A* searches in a discretized grid by splitting
the direction radius. Thus, Hybrid A* has a search space of
(z,y,0), while 0 is the orientation. By introducing one more
dimension (direction) than A*, hybrid A* could generate a
path considering its start orientation and end orientation. We
also take advantage of hybrid A*’s collision check and make
sure the generated path could avoid the obstacles.The summary
of the Hybrid A* algorithm is shown in Algorithm 1.

Algorithm 1: Path Planning: Hybrid State A*

Input: Starting State, Destination State, Local Map,
Obstacles Info

Output: Path: a list of points

Pre-Compute a shortest-distance matrix H from each
point to the destination by Dynamic Programming

while A path to the destination is not found do

Select the state (X, y, §) with shortest path cost
from the priority queue as the current state

if a reed-shepp path is found then
| Path is found and Stop the program

else

L

Push the neighbour states of the current state
into the queue

C. Controller

For the controller side, we keep the car driving at a constant
speed, thus, we only need to consider the lateral control.
Considering that the results from the planner is a list of
points along the planned path and the car knows where the
next point it should go is, we adopt the simple open-loop
controller. Based on the difference between the current point
and the next point as well as the direction bias, we can
easily calculate a turning angle ¢ as the driving command.
Algorithm 2 illustrates the summary of the control module
implementation. It is well-know that open-loop controller
needs accurate localization and motion controller, and has
accumulated errors. Thus, we will continue improving the
controller design by using a PID controller and takes into
consideration of the vehicle kinematic and dynamic models
in the future.

Algorithm 2: Control module implementation

Input: The configuration file of the vehicle, The
coordinate information of the parking lot map,
Start point coordinate, End point coordinate

while Vehicle status is normal do

if The distance between vehicle current position

and end point < threshold then

STOP the vehicle ; // Arrive at the
end point

if Path planner generates empty results then
STOP the vehicle ; // No valid path
else
while Exist valid next point on the path do
if Turning angle ¢ == 0° then
| The vehicle go straight
else if Turning angle ¢ > 0° and
Turning angle ¢ <= 90° then
| The vehicle turn left
else
| The vehicle turn right

D. Obstacle Avoidance

Obstacle avoidance is critical in autonomous driving [8].
We also enable the car to avoid obstacles. When the Lidar or
the camera detects an obstacle, the position and size of the
obstacle will be sent to the planning module and the obstacle
will be labeled in the planner’s map. Then, the planner updates
the map and generates a new path that considers the obstacles.
In this way, the vehicle could follow the new path to drive
away from the obstacles.

With the basic principles, we set up a efficient workflow in
our experiment. The Lidar will always be spinning to detect
obstacles. Once it detects an obstacle on its way, it will hold
on to the controller, and the camera will start to perform
obstacle recognition. If the obstacle is recognized as a people,
the vehicle will wait until the people moves away. But if the
obstacle is recognized as a static obstacle such as a bottle
or box, the controller will restart and the vehicle will follow
the re-planned path generated by the planner. This work flow
has an advantage of saving computational load. Opening the
camera and running the perception model all the time will
heavily weaken the computation unit’s performance. Request
once needed is a good compromise to our limited-resource
situation.

E. Perception

The autonomous vehicle is equipped with a ZED camera,
which is a stereo camera. Thus, we can implement object
detection and depth perception using the camera. Considering
the limited GPU performance on the NVIDIA Jetson TX2 on-
board computer, we decide to adopt the YOLO series models
as object detection module. The ZED and its SDK are natively

400

Authorized licensed use limited to: San Jose State University. Downloaded on March 14,2022 at 23:53:36 UTC from IEEE Xplore. Restrictions apply.

supported within the Darknet framework[9]. In our object
detection module, we select one of YOLOv4 model, which
is described in [6]. The authors made some modifications
on YOLOV4 architecture. For example, it added Cross Stage
Partial Network (CSPNet) to the original backbone(Darknet53)
and created a new backbone named CSPDarknet53 to enhance
learning capability. Besides, it adopted spatial pyramid pool-
ing(SPP) and modified path aggregation network(PANet) as
the neck in order to increase the receptive field of the net-
work and enhance information propagation in representative
pipelines respectively. Above modifications make the YOLOv4
has increased about 10 % accuracy compared with YOLOv3.
Based on the object detection model, the ZED 3D camera can
calculate the distance between objects and camera according
to the detection results.

The summary of the autonomous parking algorithm we
implement in experiments is shown in Algorithm 3.

Algorithm 3: Autonomous parking implementation

Input: The configuration file of the vehicle, The
coordinate data of the parking lot map, Start
point coordinate, End point coordinate

Initialization:

Start the vehicle Start the Localization, Perception,

Planning, and Control modules

The planning module generates a path between start

point and end point

while Exist valid path and the vehicle status is normal
do

if The distance between vehicle current position
and end point < threshold then

STOP the vehicle ; // Arrive at the
end point

if Detects an obstacle then

Calculate the distance to the obstacle and
recognize the type of the obstacle ;
// Perception module

Record the coordinate data of the obstacle on
the map ; // Using Lidar

Update the next way point ; // Path
planner module

if The next way point is NULL then
‘ STOP the vehicle ; // No valid path
else
Move the vehicle to next way point ;
L // Control module

IV. EXPERIMENTS
A. Experimental Setting

To test the performance of the autonomous vehicle and to
verify the autonomous driving algorithms, we build a small
parking lot as the experimental test-bed. Due to the limited
resource, we use yellow tapes to make the boundary of the

parking lot and each parking space. Besides, we use some
cardboard and cut them to surround the parking lot boundary
as the wall. Thus, the vehicle can use the localization algorithm
to calculate its coordinates. Fig. 6 shows the parking lot layout
with some obstacles inside. The entire parking lot is 4.28
meters long and 3 meter wide. It has an entrance, exit, and
eight parking areas. Based on the size of the vehicle, we design
the length and width of each parking area to be 0.7 meter.

To evaluate the performance of the planner, we develop
an openCV drawing tool to generate a virtual parking lot
map, which corresponds to the experimental test-bed and is
calibrated accordingly. Fig. 7 shows the virtual parking lot
map, where the entrance and exit are marked with “Entrance
and exit”. We set the lower left corner as the origin of the
parking lot. Therefore, we can calculate coordinates for each
line. This calibrated map is used by the path planning module
to generate the path for autonomous vehicle.

(3.5,189) (63.5,183])
Entrance
and exit
3.5,124) (63.5,124)
(3.5,120.5) (63.5,120.5)

1 2 | 3| 4

(93.5,3.5f (99.2.5) _i1sa.rsilinras s (2453500020505 (315,350 | (3165350 (asnsas | (52.35)
—

(0,0)

Fig. 7: Calibrated parking lot.

B. Results

We conducted many test runs to verify the proposed
autonomous parking algorithm and the performance of the
associated modules. In each run, we select one parking lot
as the destination and let the autonomous vehicle start from
the entrance. The Lidar scans the surrounding environment
for obstacles, sends data back to the central processing unit.
With the detected obstacles, the planning module plans the

401

Authorized licensed use limited to: San Jose State University. Downloaded on March 14,2022 at 23:53:36 UTC from IEEE Xplore. Restrictions apply.

correct route for the vehicle according to Algorithm 2. The
control module commands the vehicle to bypass the obstacle
and finish the remaining route according to Algorithm 1. In
the meanwhile, the camera detects and recognizes objects in
the environment, and the vehicle reacts based on the different
types of the objects.

Figs. 8 (a)-(d) show the trajectories of the autonomous
vehicle in four test runs, which we draw in the calibrated
map. In Figs. 8 (a) and (b), the destinations are Lot 2 and
Lot 4, respectively, without obstacles. We can observe that
the vehicle moves smoothly to the destinations. In Figs. 8 (c)
and (d), the destination is also Lot 4, but with obstacles of
different shapes (the vertical line in (c) and the box in (d)).
We can observe that the vehicle is able to move around the
obstacle and reach the destination. In Fig. 8 (d), giving the
size of the obstacle, the vehicle needs to adjust its motion by
backing up twice in order to reach Lot 4, which demonstrates
the robustness of our proposed algorithm.

(a) Destination: Lot (b) Destination: Lot

2, no obstacle. 4, no obstacle.

1] 3 * 1 z 3 r

(c) Destination: Lot 4, with an obstacle.

o O O

(d) Destination: Lot 4, with an obstacle.

Fig. 8: The trajectories of the autonomous vehicle in four test
runs.

Figs. 9 (a)-(c) show three images of one test run with
obstacles. As we can observe, the autonomous vehicle is able
to detect and recognize obstacles of different types, avoid
obstacles, and move smoothly to the destination (Lot 4).

V. CONCLUSIONS AND FUTURE WORK

This paper introduces the design and implementation of
a small-scale autonomous vehicle equipped with a Nvidia
Jetson TX2 computer, a stereo camera, a Lidar, and some
accessories. In the software side, various modules are loaded
into the vehicle through ROS. To test the system, we focus
on the autonomous parking scenario, in which the vehicle is
able to move from a start point to a destination autonomously
by following a planned path. The vehicle can detect objects
and avoid obstacles on its path. In the future, we will work
on improving the hardware architecture of the system within
allowed budget, improving the autonomous parking algorithm,
and testing in more complex parking scenarios.

(c) The vehicle reaches the designation.

Fig. 9: One test run in the experimental test-bed. The upper
right figures show the object detection results.

REFERENCES

[11 R. Krauss, “Combining raspberry pi and arduino to form a low-cost,
real-time autonomous vehicle platform,” in 2016 American Control Con-
ference (ACC). 1EEE, 2016, pp. 6628-6633.

W. Zong, C. Zhang, Z. Wang, J. Zhu, and Q. Chen, “Architecture design
and implementation of an autonomous vehicle,” IEEE access, vol. 6, pp.
21956-21970, 2018.

X. Shen, X. Zhang, and F. Borrelli, “Autonomous parking of vehicle fleet
in tight environments,” in 2020 American Control Conference (ACC).
IEEE, 2020, pp. 3035-3040.

W. Wang, Y. Song, J. Zhang, and H. Deng, “Automatic parking of
vehicles: A review of literatures,” International Journal of Automotive
Technology, vol. 15, no. 6, pp. 967-978, 2014.

D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” in Proceedings
of the First International Symposium on Search Techniques in Artificial
Intelligence and Robotics (STAIR-08), 2008.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed
and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.
A. Censi, “An icp variant using a point-to-line metric,” 2008 IEEE
International Conference on Robotics and Automation, pp. 19-25, 2008.
Y. Peng, D. Qu, Y. Zhong, S. Xie, J. Luo, and J. Gu, “The obstacle
detection and obstacle avoidance algorithm based on 2-d lidar,” in 2015
IEEE international conference on information and automation. IEEE,
2015, pp. 1648-1653.

J. Redmon, “Darknet: Open source neural networks in c,” 2013.

(2]

(3]

[4

—

(5]

[6

[t}

[7

—

[8

=

(91

402

Authorized licensed use limited to: San Jose State University. Downloaded on March 14,2022 at 23:53:36 UTC from IEEE Xplore. Restrictions apply.

		2021-08-06T11:11:19-0400
	Certified PDF 2 Signature

