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ABSTRACT
Analyzing classroom video data provides valuable insights about

the interactions between students and teachers, albeit often through

time-consuming qualitative coding or the use of bespoke sensors

to record individual movement information. We explore measuring

classroom posture and movement in secondary classroom video

data through computer vision methods (especially OpenPose), and

introduce a simple but effective approach to automatically track

movement via post-processing of OpenPose output data. Analysis

of 67 videos of mathematics classes from middle school and high

school levels highlighted the challenges associated with analyzing

movement in typical classroom videos: occlusion from low camera

angles, difficulty detecting lower body movement due to sitting, and

the close proximity of students to one another and their teachers.

Despite these challenges, our approach tracked person IDs across

classroom videos for 93.0% of detected individuals. The tracking

results were manually verified through randomly sampling 240 in-

stances, which revealed notable OpenPose tracking inconsistencies.

Finally, we discuss the implications for supporting more scalability

of video data classroom movement analysis, and future potential

explorations.
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•Applied computing→ Education; • Computingmethodolo-
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1 INTRODUCTION
Video recordings of traditional classrooms capture detailed interac-

tions of students and the instructor. The value of video recordings as

data has been established in educational research, where they have
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long been used for qualitative research to analyze pedagogy and

to obtain rich classroom insights through teacher reflection [28],

classroom comparison [22], and stimulated recall [24]. Furthermore,

qualitative coding of video data has been used to identify patterns

in classroom dialogue [15]. Gestures are also readily recognizable

in video; thus, teacher and student gestures have been a central in-

terest of embodied cognition research, which has examined roles of

gestures in mathematics education such as communicating abstract

representations [3] and scaffolding [2] concepts. When combined

with machine learning methods, qualitative video coding (and other

types of manual coding) can serve as ground-truth labels to help au-

tomatically detect attentional states [6], analyze patterns in student

group collaboration [16], and other constructs (e.g., [9, 33, 34]).

Although recorded classroom videos are a valuable source of

information-rich data for education researchers and teachers, they

can be difficult to translate into insights because of their hetero-

geneity. Videos can capture a variety of learning environments,

and researchers may collect video data to answer various project-

specific research questions about diverse modalities. Using existing

analysis methods designed for an entirely different set of research

questions can lead to issues. These incompatibility issues have led

to researchers needing to develop project-specific video coding

schemes, which are a set of definitions that the researcher deter-

mines to be representative of particular behaviors, such as whether

students are on task or verbally interacting with their peers [30].

Developing video coding schemes can be a time-consuming pro-

cess that relies on researchers’ domain expertise and idiosyncratic

observations from the video. Once created, video coding schemes

are usually most applicable to the researchers’ own dataset. Man-

ual coding of video data introduces further complexities as project

members need to be trained on the coding process and the coders

need to obtain a reasonable level of inter-coder reliability.

More recently, as a result of the progress made with applying

machine learning approaches to educational data, there is a body

of work in developing automated methods for analyzing video data

[8, 12, 13, 19, 29]. These methods have provided alternate means of

obtaining person movement, position, and posture information that

enable larger-scale qualitative and quantitative analyses. Constructs

like movement alone may be too low-level for automatically coding

variables of interest like student engagement or affect, however.

Consequently, researchers have used multimodal approaches to

study movement in learning to account for the unpredictability of

movement, such as developing affect detectors using facial expres-

sions as the primary channel and body movements as the secondary

channel [7], and physiological sensors (camera, pressure mouse,

pressure-sensitive chair, and conductance bracelet) along with stu-

dents’ self-reports [4]. Movement and related variables that can be
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extracted from videos serve to complement these detailed data for

quantitative analyses (e.g., machine learning), and may serve quali-

tative research by guiding researchers toward interesting points in

videos for in-depth analysis.

1.1 Novelty and Contribution
Little is currently known about the specific challenges that arise

when applying automatic video analysis methods for secondary

analysis of classroom data. Classroom video data exist widely for

a few reasons: they may originally be collected for different pur-

poses and research questions [27], they may be publicly available

on YouTube, or teachers may record and store their classroom ses-

sions for their own instructional development and reflection [31].

Modern computer vision tools such as OpenPose [10], Deepcut [25],

RMPE [14], and VIBE (Video Inference for human Body pose and

shape Estimation) [17] are easily applied to videos to explore new

research questions. In particular, the scalability of video data analy-

sis may potentially be increased via investigating the application

of computer vision tools on existing data. However, whether or not

such tools are already well suited to the kinds of video that arise

from typical middle school and high school classroom recordings

is another matter.

In this paper, we examine one such computer vision method,

OpenPose, to analyze classroom videos that were not originally

recorded for such analysis. We examine the extent to which Open-

Pose can be useful for detecting the position, posture, and move-

ment of students and teachers in the context of middle school and

high school classrooms, and propose a simple yet effective approach

for extending OpenPose’s capabilities via post-processing of output

data to address challenges encountered during secondary analyses

of classroom video data. We aim to explore the particular charac-

teristics of classrooms videos when analyzing movement data.

We first discuss methods that researchers have previously used to

track and study movement in learning, and describe the secondary

video data used for our analysis. Then, we describe the OpenPose

configurations we used and introduce our post-processing meth-

ods to track individuals throughout the videos. We then discuss

the results, our manual verification process to better support the

validity the results, and the implications of this type of analysis

for potentially increasing the scalability of analyzing existing class-

room videos.

We organize our analysis in this paper around the following two

research questions:

RQ1: What challenges arise when automatically measuring

movement in classroom video data via OpenPose?

RQ2: How well can the issues be resolved via post-processing

OpenPose output?

2 RELATED WORK
There is a growing body of work using diverse methodological

approaches to examine movement data in learning. Research in

the area has been partly motivated by the idea of spatial pedagogy

as coined by Lim et al. [18], who describe spatial pedagogy as the

teacher’s physical positioning and movement through the learning

environment with respect to the students and learning materials,

and these spatial factors’ meaning in relation to creating effective

pedagogy.

In order to track and analyze positioning and movements of

individuals in classrooms, some researchers have utilized low-cost

wearable badge sensors to track individuals’ patterns of movement,

which have been represented and analyzed as visual heatmaps in

higher education contexts in design courses [20] and lab sections

[21]. Researchers have also developed systems using a variety of

different custom sensors and features [26]. Perhaps the most devel-

oped work published on multimodal approaches for automatically

analyzing classroom interactions is EduSense [1]. EduSense is a

system for instructor-facing dashboards in higher education in-

structional feedback. It integrates various visual and audio features,

such as detecting sitting and standing, hand-raising, and speech

data patterns. EduSense researchers utilized a single wide-lens cam-

era mounted onto electric boxes near the ceiling to give a bird’s-eye

view that is able to capture a comprehensive perspective of class-

room activity. They then processed video data through EduSense,

which consists of applying custom-tuned OpenPose processing to

reduce false-positive body detection.

Video recording is often less invasive than other sensors (e.g.,

sensors worn on the body), which may improve the ecological valid-

ity of the work as it may be less likely to impact subjects’ behaviors.

While there is work which has analyzed existing classroom video

data (collected through videos publicly available on YouTube) to

automatically analyze types of movements in video such as eye

gaze following [5], there is no such work on automatically track-

ing persons across time in existing videos from real-world middle

school and high school classroom contexts. Thus, it may be valu-

able to develop these methods for positioning and movement on

existing video in order to help improve the empirical understanding

of spatial pedagogy.

3 DATA
In line with our research motivation, the data used for analysis

were not originally collected for the purposes of this research. The

video data were collected in 2014 and 2015 for a different research

project which closely examined the processes teachers engage in

when teaching using point-of-view cameras; specifically, the project

aims were to better understand mathematics teachers’ responsive

teaching practices. To that end, cameras were positioned in various

middle school and high school mathematics classrooms located in

the United States to capture the interactions between students and

instructors.

We utilized our tracking approach with diverse video data to

evaluate its generalizability. Our study analyzed a sample of 67

classroom videos of around 90 minutes in length in class periods

of one hour long—videos started earlier and later than classes in

order to capture footage of the full class period. The collection

of videos represent videos from 6 different teachers, across two

years mathematics classes with different students. The videos were

recorded with either a Sony HDR-MV1 camera or a ZoomQ4Handy

Video Recorder in 1080p (1920×1080 pixels) resolution at 30 frames

per second. The Sony and Zoom cameras had 120-degree and 130-

degree fields of view, respectively. The cameras used to record the
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Figure 1: An example video frame from a classroom video Figure 2: Example video frames showing the variety of
video data

videos in this paper had been positioned in locations of classrooms

that were able to capture interactions from the entire class, such

as stage left or stage right. Figures 1 and 2 show the wide variety

of videos, with each video having differences in camera placement,

captured perspective, and classroom lighting.

4 METHODS
We randomly sampled one-minute video clips for analysis from

each of the 67 videos in the collection and extracted keypoints from

each clip using OpenPose. Then, we performed post-processing

on the resulting data in order to implement inter-frame tracking

of individuals. Finally, we performed manual verification of our

tracking method to assess its accuracy. In this section, we describe

these processes in more detail.

4.1 Video Sampling and OpenPose Processing
We sought to explore the generalizability of our tracking method.

We thus focused on analyzing short clips from many classroom

videos to capture data diversity, rather than focusing in depth on

specific videos. Based on our preliminary observations from the

videos, the 30 to 60 minute time span represented portions of the

video when the classroom was fully settled, and the most repre-

sentative of typical classroom activity for the respective classes.

This time span included instances of students moving around, en-

gaging with the course material and instructor, and interacting

with each other in the classroom. Thus, we randomly sampled one-

minute video clips from the 67 videos starting from from the 30th

to the 59th minute of class. The resulting 67 one-minute videos

were subsequently processed via OpenPose in order to extract body

keypoints (x and y coordinates of various points on each visible

body).

Like other pose estimation tools such as Deepcut [25], and RMPE

[14], OpenPose is a computer vision tool for identifying individuals

in video data by jointly detecting human body, hand, facial, and

foot keypoints on a single image [10]. For our analysis, we used the

25-keypoint body and foot keypoint configuration. We expected

that the addition of the other facial features and hands keypoints

provided by other configurations would not substantially improve

our planned tracking implementation of persons in post-processing,

while complicating output interpretation and greatly increasing

the processing time. OpenPose output consists of JavaScript Object

Notation (JSON) files, each of which holds an array of objects repre-

senting identified persons with body part locations as coordinates

and detection confidence. Since OpenPose processes videos per

frame, the total number of output files per video was ≈ recorded

frames-per-second × seconds of video.

4.2 Post-processing OpenPose Output Data
OpenPose does not have native support for inter-frame person

tracking. Each frame of video is newly analyzed and persons in

the current frame are detected without information about the pre-

viously processed frames. This makes it difficult to use OpenPose

for analyses like examining teacher interaction patterns or peer

movement interactions over a class period, since the analyses re-

quire tracking individual people over time. Here, we outline an

approach to track students and teachers between frames through

post-processing. We applied our approach to the output data of

each one minute video (at 30 frames per second), or around 1,800

frames per video.

First, we concatenated the JSON output files containing the key-

point coordinates and confidence values of each detected person

per frame, forming a single output file per video for easier access to

values during calculation. We considered low-confidence keypoint

detections (≤ 0.3) as non-detections and filtered them out prior to

calculations, based on empirical observations that the coordinates of

these low-confidence keypoints varied widely. Then, for each frame

in each video output, we calculated individual Euclidean distances

from the 25 keypoints of each person in the current frame to the

coordinates of all corresponding keypoints in the previous frames.

The calculations continued with progressively earlier frames in the

video until finding a distance of less than 10 pixels or until reaching

5 frames previous. We recorded the two smallest non-zero distance

values along with the keypoint index of the smallest distance. This

allowed us to determine if the best match across frames is close (i.e.,

closest distance is small) and unambiguous (i.e., second-smallest

distance is large).

We then assigned person IDs based on these inter-frame matches

by iterating through frames in reverse order and linking IDs based

on close matches. If a detected person had no clear matches, we

assigned a new person ID. Alternatively, if a person had multiple
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matches in the same frame, the ambiguity was resolved via voting

for the most keypoints matched. Furthermore, our tracking also

accounted for instances when OpenPose briefly failed to detect a

person or where one personwas detected asmore than one, which is

described in section 5.1 in further detail. In cases when one person’s

keypoints were fragmented into two or more sets of keypoints and

incorrectly detected by OpenPose to belong to different people,

we automatically merged them into one person with one person

ID if the keypoints were complementary and there was evidence

from adjacent frames that they corresponded to a single person.

On the other hand, in instances when OpenPose had inconsistent

person detection between frames, we estimated missing keypoints

by interpolating the missing information from earlier and later

frames.

4.3 Manual Verification of Inter-frame
Tracking

We performed a manual verification step in order to support the

validity of our tracking approach. Each of the 240 randomly selected

samples represented the 25 keypoints’ coordinates (x , y) of one
person in one frame of one video. These data were then compared

to the keypoint data of the person which was determined by our

tracking approach to belong to the same person (same person ID).

The two corresponding video frames of comparison were opened in

a photo editing tool which displayed photo pixel coordinate values.

The identity of the person was checked by carefully examining

keypoint coordinates via the photo editing tool. We then recorded

whether the person ID belonged to the same person in both frames.

We conducted a binomial distribution power analysis to deter-

mine how many samples (i.e., pairs of consecutive frames) were

needed to detect an error rate of 20% or higher with 80% power,

using the pwr package in R [11, 32]. Power analysis showed that

197 samples would be needed. We selected slightly more samples to

account for incomplete or empty data points and to allow for even

sampling across the 6 teachers; specifically, we randomly selected

40 per teacher for a total of 240 samples.

5 FINDINGS
In this section, we describe our observations from examining Open-

Pose output data in this classroom context and findings from our

post-processing tracking method. While OpenPose output revealed

consistency issues with keypoint and person detection, inter-frame

tracking was highly accurate for the individuals detected. Further-

more, we describe the instances when tracking was unsuccessful

during the manual verification process.

5.1 Inconsistencies in Person Detection
An exploration of OpenPose’s detection process revealed consis-

tency issues with person detection. During observations of Open-

Pose’s detection process (viewing detected keypoints in the video

while the software was extracting keypoints), we observed numer-

ous instances of intermittent detection failures. Identified keypoints,

and sometimes entire individuals, would alternate unpredictably

between being detected and not being detected. This resulted in

inconsistent numbers of persons detected across the video as shown

in the density plot of the numbers of detected individuals in Figure 3.
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Figure 3: Density plot of the frequency of persons
detected byOpenPose across all 67 videos. The true
number of individuals in each video ranged from
16 to 31 (avg. 22.4)

Across all videos, the average percentage of individuals detected by

OpenPose out of the manually-counted true number of classroom

individuals was 77.2%.

Intermittent detection manifested in two ways. OpenPose some-

times split one individual’s keypoints into multiple different individ-

uals, increasing the apparent number of individuals detected. The

split-up keypoints coordinates were so close to the keypoints of mul-

tiple individuals that all keypoints could be interpreted as correctly

detected, which complicated tracking. Alternatively, OpenPose can

merge multiple individuals’ keypoints into one single detected in-

dividual, leading to a smaller number of detected individuals.

5.2 Tracking Performance
Our tracking approach was largely successful. There were an av-

erage of 30,868 instances of OpenPose person detections per one-

minute video clip. Persons were tracked across 93.0% of these detec-

tions. We calculated this success rate as the percentage of detections

for which person IDs could be matched (versus creating a new ID).

5.3 Observations from Manual Verification of
Tracking Approach

Out of 240 manually checked samples, there were 15 samples when

our tracking method did not identify the same person ID. These

instances of unsuccessful tracking manifested due to either Open-

Pose’s person detection inconsistencies as outlined in section 5.1

above, or our tracking method was unable to accommodate differ-

ent keypoints being detected in cases when few keypoints were

detected in both frames. Out of the 15 instances of tracking failure,

13 instances were due to OpenPose detection inconsistencies, and

2 were due to our tracking method failing to track persons with a

small number of keypoints. Figure 4 shows an example of when

OpenPose detected a person in one frame (Frame A) but did not in

the next frame (Frame B), despite very little movement differences

between the two frames. On the other hand, Figure 5 shows the

tracking method failing due to a small number of detected key-

points in both frames: 8 keypoints in Frame A, and 10 keypoints

in Frame B. The small number of total keypoints for the person,

combined with different keypoints identified in the two frames, led

to the inability of our tracking approach to track effectively.
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Figure 4: An example of when the tracking method failed to recognize the individual as the
same person due to inconsistency in person detection. Relevant person is circled in yellow in
Frame A.

Figure 5: An example of when the tracking method failed to recognize the individual as the
same person due to a small number of detected keypoints which varied between frames. Rele-
vant person is circled in yellow in Frame A.

6 DISCUSSION
Compared to collecting original video data for movement analysis,

we had no control over optimizing the data collection process for

our analysis. Occlusions may have been a major contributor to our

tracking performance not reaching greater tracking accuracy. In

ideal scenarios, cameras near the ceiling avoid issues with occlusion

[1]; however, in secondary data analyses like ours, comparatively

low angles are common since this typically makes camera setup

more straightforward. This created many instances of occlusion,

as students positioned very close together appear even closer in

the 2D plane. Furthermore, the lower half of students’ bodies were

often obscured since students were seated at or around desks, so

OpenPose was not able to consistently detect many lower-body

keypoints. Thus, the keypoints that were more rarely detected were

those located in the lower half of the body. As shown in the box

plots in Figure 6, some keypoints (1, 2, 5, 0) were detected with

reasonable consistency, while some keypoints (13, 10, 11, 14, and 19

through 24) were rarely detected across the 67 videos—the bottom

10 least often detected keypoints were found in the legs.

Further analysis into keypoint differences revealed movement

magnitude difference patterns based on location. The five most

frequently detected keypoints (1, 2, 5, 0, 8) were found in the torso,

lower, or head and neck, and had average inter-frame distances (in

pixels) of 1.67, 2.03, 2.07, 1.93, and 3.54, respectively. The five least

frequently detected keypoints (22, 19, 20, 23, 21) were all found

in the legs, and had average inter-frame distances (in pixels) of

9.80, 10.01, 9.66, 9.72, and 9.57, respectively. Despite these larger

distances for some keypoints, the tracking performance was still

quite good across the videos since the difference between closest

and second-closest distance typically provided strong evidence of

matches even when keypoint detection was imprecise. Our manual

verification process revealed that our approach successfully tracked

225 out of 240 instances, with 15 instances of tracking failures.

A majority of these instances (13) were due to persons having

variable detection between the two consecutive frames. This shows

that there is room for improving our tracking approach through

accounting for instances when keypoint information is more sparse.

7 FUTUREWORK
Future work could improve the process by integrating the key-

point detection frequency analysis which showed detection rate

variations based on keypoint locations on the body. The keypoints

could be assigned different weights denoting their importance in

the tracking process, in which more commonly detected keypoints
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Figure 6: Box plots of keypoint detection frequencies of all
67 videos

(e.g., in the upper body) might receive higher importance weights.

This will help to reduce noise from less commonly detected key-

points (e.g., in the lower body) with large inter-frame distances,

which could contribute to fewer tracking failures. Furthermore, we

can perhaps account for the inconsistent contrast across videos

caused by uneven classroom lighting or camera hardware limita-

tions. Recent work has shown that image pre-processing operations

such as increasing the contrast and sharpness of the target could

increase OpenPose’s detection accuracy by up to 38.37% [23]. Our

tracking approach could also be applied to videos of a wider range

of classroom environments, as the collection of videos analyzed in

this study had some similarities in classroom layout. There are op-

portunities for further improving the robustness of our inter-frame

tracking approach, such as scanning over longer periods of time to

re-identify persons when tracking fails, using motion to anticipate

where persons are likely to be in subsequent frames, and other

approaches. Such improvements will allow for the investigation of

trends in movement over entire class periods, and further develop

spatial pedagogy research. Finally, while many current pose esti-

mation software packages like OpenPose support person detection

but not person recognition, there are still concerns in maintaining

the privacy of individuals’ data. Future work should consider ways

to depersonalize such potentially sensitive data through blurring

of faces after pose estimation but before data analysis, or separat-

ing available student characteristic data (names, grades, etc.) from

video data.

8 CONCLUSION
In this paper, we described a method for automatically measuring

the positions and movements of teachers and students in class-

room videos. We were motivated by the potential scalability of

these methods when compared to more manual qualitative meth-

ods, and its less intrusive nature compared to using custom sensor

systems. Tracking persons in classroom settings highlighted sev-

eral challenges, like large amounts of occlusion and intermittent

detection failures, along with less-than-ideal video angles, all of

which are expected in real-world classroom settings. Much work

remains to be done to fully address these challenges. However, our

post-processing solution for overcoming these challenges while

tracking students and the instructor shows promise, which was

validated through a manual verification process. Our code, includ-

ing ongoing improvements, is documented and publicly available

(https://github.com/tca2/videodata-processing).
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