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ABSTRACT

Analyzing classroom video data provides valuable insights about
the interactions between students and teachers, albeit often through
time-consuming qualitative coding or the use of bespoke sensors
to record individual movement information. We explore measuring
classroom posture and movement in secondary classroom video
data through computer vision methods (especially OpenPose), and
introduce a simple but effective approach to automatically track
movement via post-processing of OpenPose output data. Analysis
of 67 videos of mathematics classes from middle school and high
school levels highlighted the challenges associated with analyzing
movement in typical classroom videos: occlusion from low camera
angles, difficulty detecting lower body movement due to sitting, and
the close proximity of students to one another and their teachers.
Despite these challenges, our approach tracked person IDs across
classroom videos for 93.0% of detected individuals. The tracking
results were manually verified through randomly sampling 240 in-
stances, which revealed notable OpenPose tracking inconsistencies.
Finally, we discuss the implications for supporting more scalability
of video data classroom movement analysis, and future potential
explorations.
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1 INTRODUCTION

Video recordings of traditional classrooms capture detailed interac-
tions of students and the instructor. The value of video recordings as
data has been established in educational research, where they have
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long been used for qualitative research to analyze pedagogy and
to obtain rich classroom insights through teacher reflection [28],
classroom comparison [22], and stimulated recall [24]. Furthermore,
qualitative coding of video data has been used to identify patterns
in classroom dialogue [15]. Gestures are also readily recognizable
in video; thus, teacher and student gestures have been a central in-
terest of embodied cognition research, which has examined roles of
gestures in mathematics education such as communicating abstract
representations [3] and scaffolding [2] concepts. When combined
with machine learning methods, qualitative video coding (and other
types of manual coding) can serve as ground-truth labels to help au-
tomatically detect attentional states [6], analyze patterns in student
group collaboration [16], and other constructs (e.g., [9, 33, 34]).

Although recorded classroom videos are a valuable source of
information-rich data for education researchers and teachers, they
can be difficult to translate into insights because of their hetero-
geneity. Videos can capture a variety of learning environments,
and researchers may collect video data to answer various project-
specific research questions about diverse modalities. Using existing
analysis methods designed for an entirely different set of research
questions can lead to issues. These incompatibility issues have led
to researchers needing to develop project-specific video coding
schemes, which are a set of definitions that the researcher deter-
mines to be representative of particular behaviors, such as whether
students are on task or verbally interacting with their peers [30].
Developing video coding schemes can be a time-consuming pro-
cess that relies on researchers’ domain expertise and idiosyncratic
observations from the video. Once created, video coding schemes
are usually most applicable to the researchers’ own dataset. Man-
ual coding of video data introduces further complexities as project
members need to be trained on the coding process and the coders
need to obtain a reasonable level of inter-coder reliability.

More recently, as a result of the progress made with applying
machine learning approaches to educational data, there is a body
of work in developing automated methods for analyzing video data
[8, 12, 13, 19, 29]. These methods have provided alternate means of
obtaining person movement, position, and posture information that
enable larger-scale qualitative and quantitative analyses. Constructs
like movement alone may be too low-level for automatically coding
variables of interest like student engagement or affect, however.
Consequently, researchers have used multimodal approaches to
study movement in learning to account for the unpredictability of
movement, such as developing affect detectors using facial expres-
sions as the primary channel and body movements as the secondary
channel [7], and physiological sensors (camera, pressure mouse,
pressure-sensitive chair, and conductance bracelet) along with stu-
dents’ self-reports [4]. Movement and related variables that can be
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extracted from videos serve to complement these detailed data for
quantitative analyses (e.g., machine learning), and may serve quali-
tative research by guiding researchers toward interesting points in
videos for in-depth analysis.

1.1 Novelty and Contribution

Little is currently known about the specific challenges that arise
when applying automatic video analysis methods for secondary
analysis of classroom data. Classroom video data exist widely for
a few reasons: they may originally be collected for different pur-
poses and research questions [27], they may be publicly available
on YouTube, or teachers may record and store their classroom ses-
sions for their own instructional development and reflection [31].
Modern computer vision tools such as OpenPose [10], Deepcut [25],
RMPE [14], and VIBE (Video Inference for human Body pose and
shape Estimation) [17] are easily applied to videos to explore new
research questions. In particular, the scalability of video data analy-
sis may potentially be increased via investigating the application
of computer vision tools on existing data. However, whether or not
such tools are already well suited to the kinds of video that arise
from typical middle school and high school classroom recordings
is another matter.

In this paper, we examine one such computer vision method,
OpenPose, to analyze classroom videos that were not originally
recorded for such analysis. We examine the extent to which Open-
Pose can be useful for detecting the position, posture, and move-
ment of students and teachers in the context of middle school and
high school classrooms, and propose a simple yet effective approach
for extending OpenPose’s capabilities via post-processing of output
data to address challenges encountered during secondary analyses
of classroom video data. We aim to explore the particular charac-
teristics of classrooms videos when analyzing movement data.

We first discuss methods that researchers have previously used to
track and study movement in learning, and describe the secondary
video data used for our analysis. Then, we describe the OpenPose
configurations we used and introduce our post-processing meth-
ods to track individuals throughout the videos. We then discuss
the results, our manual verification process to better support the
validity the results, and the implications of this type of analysis
for potentially increasing the scalability of analyzing existing class-
room videos.

We organize our analysis in this paper around the following two
research questions:

RQ1: What challenges arise when automatically measuring
movement in classroom video data via OpenPose?

RQ2: How well can the issues be resolved via post-processing
OpenPose output?

2 RELATED WORK

There is a growing body of work using diverse methodological
approaches to examine movement data in learning. Research in
the area has been partly motivated by the idea of spatial pedagogy
as coined by Lim et al. [18], who describe spatial pedagogy as the
teacher’s physical positioning and movement through the learning
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environment with respect to the students and learning materials,
and these spatial factors’ meaning in relation to creating effective
pedagogy.

In order to track and analyze positioning and movements of
individuals in classrooms, some researchers have utilized low-cost
wearable badge sensors to track individuals’ patterns of movement,
which have been represented and analyzed as visual heatmaps in
higher education contexts in design courses [20] and lab sections
[21]. Researchers have also developed systems using a variety of
different custom sensors and features [26]. Perhaps the most devel-
oped work published on multimodal approaches for automatically
analyzing classroom interactions is EduSense [1]. EduSense is a
system for instructor-facing dashboards in higher education in-
structional feedback. It integrates various visual and audio features,
such as detecting sitting and standing, hand-raising, and speech
data patterns. EduSense researchers utilized a single wide-lens cam-
era mounted onto electric boxes near the ceiling to give a bird’s-eye
view that is able to capture a comprehensive perspective of class-
room activity. They then processed video data through EduSense,
which consists of applying custom-tuned OpenPose processing to
reduce false-positive body detection.

Video recording is often less invasive than other sensors (e.g.,
sensors worn on the body), which may improve the ecological valid-
ity of the work as it may be less likely to impact subjects’ behaviors.
While there is work which has analyzed existing classroom video
data (collected through videos publicly available on YouTube) to
automatically analyze types of movements in video such as eye
gaze following [5], there is no such work on automatically track-
ing persons across time in existing videos from real-world middle
school and high school classroom contexts. Thus, it may be valu-
able to develop these methods for positioning and movement on
existing video in order to help improve the empirical understanding
of spatial pedagogy.

3 DATA

In line with our research motivation, the data used for analysis
were not originally collected for the purposes of this research. The
video data were collected in 2014 and 2015 for a different research
project which closely examined the processes teachers engage in
when teaching using point-of-view cameras; specifically, the project
aims were to better understand mathematics teachers’ responsive
teaching practices. To that end, cameras were positioned in various
middle school and high school mathematics classrooms located in
the United States to capture the interactions between students and
instructors.

We utilized our tracking approach with diverse video data to
evaluate its generalizability. Our study analyzed a sample of 67
classroom videos of around 90 minutes in length in class periods
of one hour long—videos started earlier and later than classes in
order to capture footage of the full class period. The collection
of videos represent videos from 6 different teachers, across two
years mathematics classes with different students. The videos were
recorded with either a Sony HDR-MV1 camera or a Zoom Q4 Handy
Video Recorder in 1080p (1920x1080 pixels) resolution at 30 frames
per second. The Sony and Zoom cameras had 120-degree and 130-
degree fields of view, respectively. The cameras used to record the
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Figure 1: An example video frame from a classroom video

videos in this paper had been positioned in locations of classrooms
that were able to capture interactions from the entire class, such
as stage left or stage right. Figures 1 and 2 show the wide variety
of videos, with each video having differences in camera placement,
captured perspective, and classroom lighting.

4 METHODS

We randomly sampled one-minute video clips for analysis from
each of the 67 videos in the collection and extracted keypoints from
each clip using OpenPose. Then, we performed post-processing
on the resulting data in order to implement inter-frame tracking
of individuals. Finally, we performed manual verification of our
tracking method to assess its accuracy. In this section, we describe
these processes in more detail.

4.1 Video Sampling and OpenPose Processing

We sought to explore the generalizability of our tracking method.
We thus focused on analyzing short clips from many classroom
videos to capture data diversity, rather than focusing in depth on
specific videos. Based on our preliminary observations from the
videos, the 30 to 60 minute time span represented portions of the
video when the classroom was fully settled, and the most repre-
sentative of typical classroom activity for the respective classes.
This time span included instances of students moving around, en-
gaging with the course material and instructor, and interacting
with each other in the classroom. Thus, we randomly sampled one-
minute video clips from the 67 videos starting from from the 30th
to the 59th minute of class. The resulting 67 one-minute videos
were subsequently processed via OpenPose in order to extract body
keypoints (x and y coordinates of various points on each visible
body).

Like other pose estimation tools such as Deepcut [25], and RMPE
[14], OpenPose is a computer vision tool for identifying individuals
in video data by jointly detecting human body, hand, facial, and
foot keypoints on a single image [10]. For our analysis, we used the
25-keypoint body and foot keypoint configuration. We expected
that the addition of the other facial features and hands keypoints
provided by other configurations would not substantially improve
our planned tracking implementation of persons in post-processing,
while complicating output interpretation and greatly increasing
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Figure 2: Example video frames showing the variety of
video data

the processing time. OpenPose output consists of JavaScript Object
Notation (JSON) files, each of which holds an array of objects repre-
senting identified persons with body part locations as coordinates
and detection confidence. Since OpenPose processes videos per
frame, the total number of output files per video was ~ RECORDED
FRAMES-PER-SECOND X SECONDS OF VIDEO.

4.2 Post-processing OpenPose Output Data

OpenPose does not have native support for inter-frame person
tracking. Each frame of video is newly analyzed and persons in
the current frame are detected without information about the pre-
viously processed frames. This makes it difficult to use OpenPose
for analyses like examining teacher interaction patterns or peer
movement interactions over a class period, since the analyses re-
quire tracking individual people over time. Here, we outline an
approach to track students and teachers between frames through
post-processing. We applied our approach to the output data of
each one minute video (at 30 frames per second), or around 1,800
frames per video.

First, we concatenated the JSON output files containing the key-
point coordinates and confidence values of each detected person
per frame, forming a single output file per video for easier access to
values during calculation. We considered low-confidence keypoint
detections (< 0.3) as non-detections and filtered them out prior to
calculations, based on empirical observations that the coordinates of
these low-confidence keypoints varied widely. Then, for each frame
in each video output, we calculated individual Euclidean distances
from the 25 keypoints of each person in the current frame to the
coordinates of all corresponding keypoints in the previous frames.
The calculations continued with progressively earlier frames in the
video until finding a distance of less than 10 pixels or until reaching
5 frames previous. We recorded the two smallest non-zero distance
values along with the keypoint index of the smallest distance. This
allowed us to determine if the best match across frames is close (i.e.,
closest distance is small) and unambiguous (i.e., second-smallest
distance is large).

We then assigned person IDs based on these inter-frame matches
by iterating through frames in reverse order and linking IDs based
on close matches. If a detected person had no clear matches, we
assigned a new person ID. Alternatively, if a person had multiple
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matches in the same frame, the ambiguity was resolved via voting
for the most keypoints matched. Furthermore, our tracking also
accounted for instances when OpenPose briefly failed to detect a
person or where one person was detected as more than one, which is
described in section 5.1 in further detail. In cases when one person’s
keypoints were fragmented into two or more sets of keypoints and
incorrectly detected by OpenPose to belong to different people,
we automatically merged them into one person with one person
ID if the keypoints were complementary and there was evidence
from adjacent frames that they corresponded to a single person.
On the other hand, in instances when OpenPose had inconsistent
person detection between frames, we estimated missing keypoints
by interpolating the missing information from earlier and later
frames.

4.3 Manual Verification of Inter-frame
Tracking

We performed a manual verification step in order to support the
validity of our tracking approach. Each of the 240 randomly selected
samples represented the 25 keypoints’ coordinates (x, y) of one
person in one frame of one video. These data were then compared
to the keypoint data of the person which was determined by our
tracking approach to belong to the same person (same person ID).
The two corresponding video frames of comparison were opened in
a photo editing tool which displayed photo pixel coordinate values.
The identity of the person was checked by carefully examining
keypoint coordinates via the photo editing tool. We then recorded
whether the person ID belonged to the same person in both frames.

We conducted a binomial distribution power analysis to deter-
mine how many samples (i.e., pairs of consecutive frames) were
needed to detect an error rate of 20% or higher with 80% power,
using the pwr package in R [11, 32]. Power analysis showed that
197 samples would be needed. We selected slightly more samples to
account for incomplete or empty data points and to allow for even
sampling across the 6 teachers; specifically, we randomly selected
40 per teacher for a total of 240 samples.

5 FINDINGS

In this section, we describe our observations from examining Open-
Pose output data in this classroom context and findings from our
post-processing tracking method. While OpenPose output revealed
consistency issues with keypoint and person detection, inter-frame
tracking was highly accurate for the individuals detected. Further-
more, we describe the instances when tracking was unsuccessful
during the manual verification process.

5.1 Inconsistencies in Person Detection

An exploration of OpenPose’s detection process revealed consis-
tency issues with person detection. During observations of Open-
Pose’s detection process (viewing detected keypoints in the video
while the software was extracting keypoints), we observed numer-
ous instances of intermittent detection failures. Identified keypoints,
and sometimes entire individuals, would alternate unpredictably
between being detected and not being detected. This resulted in
inconsistent numbers of persons detected across the video as shown
in the density plot of the numbers of detected individuals in Figure 3.
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Figure 3: Density plot of the frequency of persons
detected by OpenPose across all 67 videos. The true
number of individuals in each video ranged from
16 to 31 (avg. 22.4)

Across all videos, the average percentage of individuals detected by
OpenPose out of the manually-counted true number of classroom
individuals was 77.2%.

Intermittent detection manifested in two ways. OpenPose some-
times split one individual’s keypoints into multiple different individ-
uals, increasing the apparent number of individuals detected. The
split-up keypoints coordinates were so close to the keypoints of mul-
tiple individuals that all keypoints could be interpreted as correctly
detected, which complicated tracking. Alternatively, OpenPose can
merge multiple individuals’ keypoints into one single detected in-
dividual, leading to a smaller number of detected individuals.

5.2 Tracking Performance

Our tracking approach was largely successful. There were an av-
erage of 30,868 instances of OpenPose person detections per one-
minute video clip. Persons were tracked across 93.0% of these detec-
tions. We calculated this success rate as the percentage of detections
for which person IDs could be matched (versus creating a new ID).

5.3 Observations from Manual Verification of
Tracking Approach

Out of 240 manually checked samples, there were 15 samples when
our tracking method did not identify the same person ID. These
instances of unsuccessful tracking manifested due to either Open-
Pose’s person detection inconsistencies as outlined in section 5.1
above, or our tracking method was unable to accommodate differ-
ent keypoints being detected in cases when few keypoints were
detected in both frames. Out of the 15 instances of tracking failure,
13 instances were due to OpenPose detection inconsistencies, and
2 were due to our tracking method failing to track persons with a
small number of keypoints. Figure 4 shows an example of when
OpenPose detected a person in one frame (Frame A) but did not in
the next frame (Frame B), despite very little movement differences
between the two frames. On the other hand, Figure 5 shows the
tracking method failing due to a small number of detected key-
points in both frames: 8 keypoints in Frame A, and 10 keypoints
in Frame B. The small number of total keypoints for the person,
combined with different keypoints identified in the two frames, led
to the inability of our tracking approach to track effectively.
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Frame A

Frame B

Figure 4: An example of when the tracking method failed to recognize the individual as the
same person due to inconsistency in person detection. Relevant person is circled in yellow in

Frame A.

Frame A

Frame B

Figure 5: An example of when the tracking method failed to recognize the individual as the
same person due to a small number of detected keypoints which varied between frames. Rele-

vant person is circled in yellow in Frame A.

6 DISCUSSION

Compared to collecting original video data for movement analysis,
we had no control over optimizing the data collection process for
our analysis. Occlusions may have been a major contributor to our
tracking performance not reaching greater tracking accuracy. In
ideal scenarios, cameras near the ceiling avoid issues with occlusion
[1]; however, in secondary data analyses like ours, comparatively
low angles are common since this typically makes camera setup
more straightforward. This created many instances of occlusion,
as students positioned very close together appear even closer in
the 2D plane. Furthermore, the lower half of students’ bodies were
often obscured since students were seated at or around desks, so
OpenPose was not able to consistently detect many lower-body
keypoints. Thus, the keypoints that were more rarely detected were
those located in the lower half of the body. As shown in the box
plots in Figure 6, some keypoints (1, 2, 5, 0) were detected with
reasonable consistency, while some keypoints (13, 10, 11, 14, and 19
through 24) were rarely detected across the 67 videos—the bottom
10 least often detected keypoints were found in the legs.

Further analysis into keypoint differences revealed movement
magnitude difference patterns based on location. The five most
frequently detected keypoints (1, 2, 5, 0, 8) were found in the torso,
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lower, or head and neck, and had average inter-frame distances (in
pixels) of 1.67, 2.03, 2.07, 1.93, and 3.54, respectively. The five least
frequently detected keypoints (22, 19, 20, 23, 21) were all found
in the legs, and had average inter-frame distances (in pixels) of
9.80, 10.01, 9.66, 9.72, and 9.57, respectively. Despite these larger
distances for some keypoints, the tracking performance was still
quite good across the videos since the difference between closest
and second-closest distance typically provided strong evidence of
matches even when keypoint detection was imprecise. Our manual
verification process revealed that our approach successfully tracked
225 out of 240 instances, with 15 instances of tracking failures.
A majority of these instances (13) were due to persons having
variable detection between the two consecutive frames. This shows
that there is room for improving our tracking approach through
accounting for instances when keypoint information is more sparse.

7 FUTURE WORK

Future work could improve the process by integrating the key-
point detection frequency analysis which showed detection rate
variations based on keypoint locations on the body. The keypoints
could be assigned different weights denoting their importance in
the tracking process, in which more commonly detected keypoints
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Figure 6: Box plots of keypoint detection frequencies of all
67 videos

(e.g., in the upper body) might receive higher importance weights.
This will help to reduce noise from less commonly detected key-
points (e.g., in the lower body) with large inter-frame distances,
which could contribute to fewer tracking failures. Furthermore, we
can perhaps account for the inconsistent contrast across videos
caused by uneven classroom lighting or camera hardware limita-
tions. Recent work has shown that image pre-processing operations
such as increasing the contrast and sharpness of the target could
increase OpenPose’s detection accuracy by up to 38.37% [23]. Our
tracking approach could also be applied to videos of a wider range
of classroom environments, as the collection of videos analyzed in
this study had some similarities in classroom layout. There are op-
portunities for further improving the robustness of our inter-frame
tracking approach, such as scanning over longer periods of time to
re-identify persons when tracking fails, using motion to anticipate
where persons are likely to be in subsequent frames, and other
approaches. Such improvements will allow for the investigation of
trends in movement over entire class periods, and further develop
spatial pedagogy research. Finally, while many current pose esti-
mation software packages like OpenPose support person detection
but not person recognition, there are still concerns in maintaining
the privacy of individuals’ data. Future work should consider ways
to depersonalize such potentially sensitive data through blurring
of faces after pose estimation but before data analysis, or separat-
ing available student characteristic data (names, grades, etc.) from
video data.

8 CONCLUSION

In this paper, we described a method for automatically measuring
the positions and movements of teachers and students in class-
room videos. We were motivated by the potential scalability of
these methods when compared to more manual qualitative meth-
ods, and its less intrusive nature compared to using custom sensor
systems. Tracking persons in classroom settings highlighted sev-
eral challenges, like large amounts of occlusion and intermittent
detection failures, along with less-than-ideal video angles, all of
which are expected in real-world classroom settings. Much work
remains to be done to fully address these challenges. However, our
post-processing solution for overcoming these challenges while
tracking students and the instructor shows promise, which was
validated through a manual verification process. Our code, includ-
ing ongoing improvements, is documented and publicly available
(https://github.com/tca2/videodata-processing).
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