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Chern invariants of topological continua: A self-consistent nonlocal hydrodynamic model
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Topological systems are characterized by integer Chern invariants. In a continuous photonic system charac-
terized by a local Drude model, the material response is ill-behaved at large wavenumbers, leading to noninteger

Chern invariants and ambiguity in the existence of topological edge modes. This problem has been solved
previously by introducing an ad hoc material model including a spatial cutoff material response, which leads to a
finite Brillouin zone and integer invariants. In this work, we calculate Chern numbers in magnetized continuous
plasma systems by considering the effect of nonlocality using a hydrodynamic (HD) Drude model. Then we

argue that this model presents several advantages compared with the previous models, e.g., introducing physical
response at large wavenumbers and integer Chern invariants with sum to zero without the need for an interpolated
material response. Therefore the HD model forms a complete and self-consistent model, which resolves the

Chern number issues in topological photonic continua.
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I. INTRODUCTION

Topological insulators, including artificial periodic struc-
tures and continuous materials [1-12] and recently topologi-
cal polaritonics systems [13—15], have been broadly studied
in the past two decades. Magnetized plasma systems are
classified as Chern-type insulators with broken time-reversal
symmetry. They are characterized by a topological index
known as the Chern number [16,17]. This number cannot
change except when the underlying momentum space topol-
ogy of the bulk bands is changed. For instance, this occurs
when a band gap opens or closes. One of the most impor-
tant features of topological materials is that they support
unidirectional surface plasmon polaritons (SPPs) with unique
properties. In topological photonic insulators with broken
time-reversal symmetry (nonreciprocal), the relevant topolog-
ical invariant is the gap Chern number, i.e., the sum of the
Chern numbers of all bulk modes below the band gap. The
edge states connect different energy levels of the bulk modes.
If the edge state has a nonreciprocal response within the band
gap of the nontrivial bulk modes, it is a wave protected from
back-scattering and diffraction. In other words, it is unaffected
by smooth deformations in the surface that preserve topology
(note that surface geometry may include sharp features). The
bulk-edge correspondence principle links the Chern invariants
of two topological insulators having a common band gap with
the number of unidirectional SPP modes that exist at the
interface of the two materials [18-20]. While this principle
works well for topological photonic insulators based on peri-
odic structures, subtle issues arise in the case of topological
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photonic continua due the absence of intrinsic periodicity.
Reference [21] studied two general classes of the bulk-edge
correspondence principle violations for continuous topolog-
ical photonic materials: (i) Inconsistency between the gap
chern number and the number of edge states and (ii) incom-
plete gap coverage by the edge state line. As further discussed
in Ref. [21], these violations are associated with the asymp-
totic behavior of the surface modes for large wavenumbers. In
addition, it has been shown that although the above-mentioned
violations can be restored by adding hydrodynamic (HD) non-
locality, the correspondence principle is physically violated
for practical purposes, even with zero intrinsic bulk losses, due
to Landau damping or nonlocality-induced radiation leakage.
The present work focuses on the bulk modes in continuous
photonic media and the issues of noninteger Chern numbers
and their nonzero sum. In Ref. [16] it has been shown that
the former can be resolved by adding a spatial cutoff (SC)
wavenumber and the latter can be addressed by interpolating
the interfaced material models. However, in this work, by
comparing different nonlocal models, their effects on Chern
number, bulk bands, and their pros and cons, we show that the
HD nonlocal model can resolve the two issues associated with
Chern numbers all at once.

In Refs. [22,23] a method for Chern number calculation in
periodic photonic crystals was introduced by Raghu and Hal-
dane. Then Silveirinha developed this method for anisotropic
continua [16]. He found that the Chern numbers in contin-
uous materials are integer invariants subject to considering
spatially dispersive material models. He has introduced an ad
hoc nonlocal material model having a large SC wavenumber.
Through the paper, this model is called the SC model. By this
assumption, the Hamiltonian becomes well behaved at large
momentum, unlike in the local material model. As a result, in-
teger Chern invariants of {+1, —2} are obtained, respectively,
for high- and low-frequency bands of the TM bulk modes,
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which do not add up to zero as required. To solve this problem,
it was suggested to apply an interpolate material model which
represents a continuous transition from an isotropic plasma
to a gyrotropic plasma medium. Hereupon a new frequency
band appears at very low frequencies, whose Chern number is
+1. Therefore the appearance of this new low-frequency band
resolved the issue of nonzero summation of Chern numbers,
but at the expense of a complicated permittivity interpolation
of interfaced materials. Although this is a clever way to fix
the deficiencies of the model, this ad hoc SC model does not
provide a self-contained description of plasmonic materials.
In this regard, we propose to solve the noninteger Chern in-
variants of the plasma continua via solving the HD equation in
the magnetized plasma for continuous photonic topological
platforms. We evaluate the effect of nonlocality due to the
pressure (a manifestation of nonlocality) on topology of the
bulk modes and the associated Chern numbers in magnetized
plasma systems. For the HD model, we calculate the band
Chern numbers and obtain integer invariants of 1, which
guarantee topological behavior by considering a realistic non-
local material model.

Nonlocality plays an important role in the unidirectional
nature of the SPPs in topological systems. In Ref. [24], it has
been argued that by modeling a gyrotropic plasma using the
HD Drude model, a truly unidirectional SPP will not exist at
the interface of the dielectric and magnetized plasma media
below the plasma frequency due to the effect of nonlocality
(i.e., there will always be a backward mode, although perhaps
only existing at a large wavenumber, which may be relatively
unimportant from a practical standpoint). It has been demon-
strated that the surface waves have nonreciprocal bidirectional
propagation behavior, which is in contradiction with purely
unidirectional propagation behavior predicted by applying a
simple Drude model. But in Refs. [25,26], it has been clarified
that the nonlocality does not affect a class of unidirectional
SPPs that exist at the interface of opaque and magnetized
plasma media above the plasma frequency. Recently, the uni-
directional properties of this class of the surface waves have
been experimentally verified in plasma systems [27,28]. Fol-
lowing these studies, we obtain integer Chern invariants to
formally validate the existence of topological unidirectional
SPPs by considering realistic conditions using the nonlocal
HD model.

In the following, we first derive a dielectric tensor to char-
acterize a gyrotropic medium using the HD model. Then, we
evaluate the bulk mode properties in a magnetized nonlo-
cal plasma region. Finally, we calculate Chern numbers for
the HD model and compare the results with local and SC
models.

II. DIELECTRIC TENSOR OF THE HD MODEL

Consider a plasma medium consisting of n, free electrons
per volume with the effective mass of m*, electron charge
e, and mobility w. A static magnetic-field bias B = Bob, is
applied in the plasma region, where By is the magnetic-field
intensity and b is a unit vector along the magnetic-field vec-
tor. In the HD model, the equation of motion of the particles

is [29]

dv
dt

+yv+(v-V)v = %(E(r, H+vxB)— ,BZM.
ey

The forces acting on the free electrons are e¢E arising from
the electric field of the wave and e(v x B) arising from
the motion of the electrons with the average velocity of
v through the static magnetic-field B (here we ignore the
small self-consistent time-varying magnetic field). The last
term represents pressure, where B is a nonlocal parameter
proportional to the Fermi velocity v in the semiconductor;
B> = vi(3/5w + 1/3iy)/(w + iy) [30]. In the local model,
the induced charge distribution is assumed to be confined to
the boundary of the plasma region by a Dirac delta func-
tion. However, in the HD model, the induced charge density
spreads into the bulk plasma region with charge distribution
depth of § = B/w, which is a function of the nonlocal param-
eter B [31].

By linearizing the equation of motion and considering the
continuity equation d;,n = —V.(nv) and J. = —n.ev, the in-
duced current equation is given by [29]

B*V(V - J.) + o(w+iy)).

= io(w; 2608 B(r, @)~ Je x Be), ©)
where w. = —eBy/m*, a)[’; = wp/\/exe (@) = neet/mgg)
and y = —e/um* are the cyclotron, reduced plasma, and

collision frequencies, respectively; e is the high-frequency
dielectric constant; and gy is the free-space permittivity.
By the spatial Fourier transform and considering J.(k, ) =
6 (k, w) - E(k, w), the conductivity tensor is governed by

5 (k,w) = iwegeaX I — i¥b, x )71, (3)

where X = 03’ /(0(w+iy) — B2k?) and Y =
ww,/(w(w+iy) — B*k?). By taking into consideration that
the inverse of a tensor in the form of C= AI4+¢x1I
is C7!'=adj(C)/|C], where |C|=A(>4+c?) and
ad j(C) = A(A\I — ¢ x I) + ce, where cc stands for complex
conjugate of the first bracket term, we obtain the dielectric
tensor as

Fk,w) = oo <i+iL5(k,w)>
weéo

= St,nl(i - i\)cf)c) + igg,nl (f)c X i) + Sa,nlf)cf)ca (4)

where the permittivity elements are defined as

@y
Sa,nl(kv ®) = ool = X) = 600 — 5)
Q
(k.0) = e (1- ) D)
ek, w) = e[ l—-—— ) = gpo——2L——
ol @ = 1-v? © Q2 (ww.)
L -YX —www) ;
8g,nl( ) Cl)) = €x 1 — Y2 - QI% _ (wwc)z ’ ( )

with Q; = w(w+iy) — B?k%. By assuming e, = 1 and y =
0 and defining a nonlocal factor as x = 1/(1 — k*/k2,), where
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FIG. 1. Dispersion bands and associated Chern numbers of (a) nontrivial bulk modes and (b) trivial modes using the LD and nonlocal HD
Drude models; k, = w,/cy, where ¢ is the speed of light in free space. The magnetized plasma region is modeled by (4) using the parameters
ne = 3.6 x 102'(m™3), e, = 15.68, m* = 0.0175my, By = 0.6T, 11 = 0o, corresponding to w} =27 (1.03THz), w./w, = 0.23 and y =0,
related to the InSb crystal at low temperature [32] and the nonlocality parameter of 8 = 0.77 x 10° m/s.

km = /B, the permittivity elements are simplified as

2 2

C()p (,()p
8a,n1(k, a)) = 1 - X_z, gt,l’ll(kﬂ a)) = l_X 2 2
w w® —

29
X e

—1 Xza)ca)lz,

ggni(k, w) = ?a)z——xzwf 8)
In the limit of 8 — 0, then ¥ — 1 and local Drude (LD)
permittivity model is recovered.

II1I. BULK MODES IN THE HD MATERIAL MODEL

A plane wave in a gyrotropic medium satisfies the
Maxwell’s equations

k x E=owuoH, k x H= —wsz(k,w)-E. (9

For spatially dispersive materials, the response of a parti-
cle at position r depends on what happened to the particle
at position r. In this condition, the displacement vector is
given as D(r,w) = ¢ [ &(r, F,0) - E(¥,®)d’F. In a nonlocal
homogeneous medium, g(r, ¥,w) = &(r — r,w). Then, using
the convolution theorem in space domain and spatial Fourier
transform, we have D(k,w) = gog(k,w) - E(k,w). The wave
equation (kéE(k, ) — k*T + KKk) - E = 0 is obtained by com-
bining the Ampere and Faraday equations and using the vector
identity k x (k x A) = kk - A — k?I - A. Then, the nonzero
solutions of E exist only if |k§§(k, ) — k*I 4+ kk| = 0. Since
we are looking for the bulk modes propagating in a plane per-
pendicular to the static magnetic vector, we set k, = 0 in the
above determinant, assuming that the in-plane magnetic bias
is along the z direction, B = Byz. For this particular case, the
determinant is simplified to two equations, ky; = kJeer and
kg = k3€an, Where eer = (¢7,, — €3 ,)/& and the permit-
tivity elements are defined in Eq. (8). In the LD model, these
modes are corresponding to the nontrivial TM and trivial TE
modes.

Figure 1 shows the dispersion diagram of the trivial and
nontrivial bulk modes for nonlocal HD and LD models. It
displays where the nonlocality has a significant effect on

the dispersion properties. As shown in Fig. 1(a), the high-
frequency bands of both models are completely matched. The
left inset plot shows that the low-frequency bands are also
matched for relatively small wavenumbers. The difference
appears at very large wavenumbers according to the log scale
inset plot on the right side. Figure 1(b) demonstrates that
the trivial modes of both models are identical for the entire
momentum domain.

In the local case, the low-frequency band is asymptotic to
a constant value. This behavior proposes a thermodynamic
paradox because it suggests infinite energy in a limited fre-
quency range, meaning that at k — oo the plasmonic material
is still polarized which is not a physically correct behavior.
This problem can be solved by including nonlocality in the
material model. As seen, the flat parts of the low-frequency
band wing up when nonlocality is included in the material
model via the HD model. It also can be understood by look-
ing at Eq. (8), where for k — oo, all permittivity elements
converge to the high-frequency dielectric constant.

Topological surface wave (plasmonic or polaritonic)
emerges in two different scenarios: Asymmetry in cutoff, or
asymmetry in flat asymptote [26]. If the emergence is due to
flat asymptote, including nonlocality largely affects at large
momentum values. However, considering spatial dispersive
models for topological plasmonic or polaritonic structures
with periodicity is not crucial due to the finite Brillouin zone.

By adding a realistic level of loss to the HD model, the
band dispersion is rather modified, but there are still distin-
guishable bands in the Voigt configuration. Dissipation might
lead to topological phase transition, but the presence of damp-
ing does not mimic SC in the material response. The role
of SC is setting a bound such that as k — oo, permittivity
becomes 1 (lossless vacuum); however, the effect of loss
at large wavenumber is different. Also, in Ref. [33], it has
been derived that in the topological Weyl systems, topological
phase transition to a trivial state occurs when unrealistic large
dissipation is considered (the Weyl exceptional rings with
opposite charges overlap and neutralize each other). How-
ever, a moderate or low level of dissipation does not redefine
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topology. In general, dissipation does not lead to topological
behaviors alone because it breaks time-reversal symmetry but
not reciprocity.

IV. CHERN NUMBERS

To calculate Chern numbers associated with the
frequency bands of the HD model, we follow the
method presented in Ref. [16]. For a spatially dispersive
material, consider an eigenfunction f,=(E H)T
with eigenvalues w,. The envelope of the TM mode
(Ho=H,=E.=0) and TE mode (E,=E,=H,=0)
are M = (=871 (k x2)/wngo 131 -2)7  and
TE = (I3x1-2 K xZ/pow,)”, respectively. The Berry
phase is the phase difference between the eigenfunctions
at k and k + dk. It is written in terms of the envelope of
electromagnetic field as

(@M fo
A= RIAGLLCL (10)
nk : § 3wn (wnM)fnk

where M is the material matrix (M, = &&, My =
olsxs, Mip = M, = 0). This Berry phase relation was
first derived for periodic photonic crystal structures [22,23].
However, it can be used for spatially dispersive continuous
materials as proved in Ref. [16]. Using the Berry phase vec-
tor, the Berry curvature is determined by [y = 9dA./dk, —
0A,/0k,. The Chern numbers are calculated by the surface
integration of the Berry curvature over the entire momentum
space of the wave vector. In analogy to electromagnetic, Berry
phase, Berry curvature, and Chern number act like magnetic
potential vector, magnetic field, and magnetic flux, respec-
tively. In topological materials, the Chern numbers are integer
invariants and sum to zero. To obtain integer Chern invariants
for continua media, the momentum space must be a close
surface with no boundaries. To realize this condition, the
ky — ky plane, which is the momentum space of the continuous
materials, is mapped into the Riemann sphere, as suggested
in Ref. [16]. In the HD model, as shown in Fig. 1(a), the
eigenfunctions are well behaved at large momentum such that
the north pole is mapped to the momentum at k — oo and
the Riemann surface becomes a closed surface. Using Stock’s
theorem and the fact that the wave functions are not defined
at the origin and infinity, the surface integral in the Chern
number relation is written as two line integrals around the
boundary of the surface near the south and north poles. Then,

1 1
C=— An.k~dl—2—

Auk-dl. (1)
2 k=00 ' T Jik=0+

Since the system is ¢ independent due to the symmetry about
the z axis, we have A, x -dl = A, kdp. Thus the Chern
number attributed to the nth eigenmode is calculated by C,, =
kli)lgo (Ap,p=0k) — klir{)l+ (Ap,p=0k). Next, we simplify the Berry

phase relation (10) for the nonlocal HD model as

Re{z(w 5 (e + log ) B + 2040811

20,0B) + 110/2)
(12)

2(a) 50)2 ((|af|2 + |ag| )ﬂt -

™
Angﬂ =0

where
ks
o = — 8t,nl( C;) (13)
eml(k, w) — eg,nl(k, w)
ks
ap = —iy ) (14)
g2k, w) — &2 (k, @)
2 2
X 2w.w
By = eo(@” +28° ) ———L— (15)
a)(a)2 — Xza)%)
2 a)Z 2
ﬂ,=eo(1+2<ﬁ> S —@), (16)
w/) 0 — W
where
2 4 — ﬂ L2 2_X3w2 C2 waZX
O = L ’; . L (17)
(@? — x?0?)

The details of the computation are in the Appendix. In the
limit of & — 0, the nonlocal factor is x — 1. Zeros of the
HD dispersion equation of k%,, = seffkg are the poles of
a; and oy, i.e., at which oy — o0 and o, — oo. Then,
since o /oy = —igg/&; = Fi, we have ]}LH(l)An,¢=ok ==+1. As

shown in Fig. 1(a), both frequency bands of the HD model
go to infinity (w, — 00) when k — oo. In this limit, &, =
0, & =1 and subsequently o; = 1, g = B, = 0. Therefore

lim A, ¢—ok = 0. Finally, the high- and low-frequency

k— 00, w,— 00
bands of the nonlocal HD model are, respectively, assigned by
the Chern numbers of

C = lim (A, g—ok) — lim (A, 4—0k) =0 — (—1) =1 (18)
k—o00 k—0t

= lim (4, p-0k) — lim (4,5-00) =01 =—1. (19)

The Chern numbers are integer invariants and the sum of
them is zero. By reversing the magnetic bias, the sign of
the Chern numbers becomes opposite. For trivial modes, the
Chern number is equal to zero. The dispersion bands of the
nonlocal HD model are tagged by the relevant Chern numbers
in Fig. 1. In the following, we compare the results of the HD
model with the LD and SC model.

For the LD model case, the Chern number related to the
low-frequency band is C, = —1 — sgn(w.)/y/1 + (w,/w.)?
as determined in Refs. [16,34]. It is not an integer index
because this band is not well behaved at large momentum and

itconverges to wo = /@2 + w? atthe k — oo limit. To solve

this issue, in Ref. [16] it was suggested to consider a nonlocal
material model as g,(w, k) = ER(a))+K)‘(NR(a)), in which a
nonlocal factor k¥ = 1/(1 + k*/k2,,,) with a SC wavenumber
(kmax) 1s manually added to the material response. The disper-
sion bands and associated Chern numbers of this SC model
are shown in Fig. 2(a). At large momentum k — oo, the
nonlocal factor goes to zero (kx — 0) and the low-frequency

|lwe|. As

a consequence, an integer Chern index of —2 is determined
for this band. The high-frequency band is still assigned by an
integer value of 1, similar to the LD model. Since the sum of
Chern numbers is not zero, it has been suggested to consider
an interpolated material response as €, ; (w) = €x+T[&,(w) —
€ool + (1 — T)[Eprude — €c0] [16]. The interpolated material

band steadily converges to wy, = hn}) J? + Kkw?d =
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FIG. 2. Dispersion bands and associated Chern numbers of (a) SC model with nonlocal factor of x = 1/(1 + k?/k2_,), (b) MSC model

max

with nonlocal factor x = 1/(1 — k?/k2,,), where kia, = 200k,,. (c) a dispersion plot including dispersion diagram of four material models;

max

SC, MSC, HD and LD models. The magnetized plasma region is characterized by n, = 3.6 x 10*'(m™3), g5, = 15.68, m* = 0.0175m,,
By =0.6T, u = oo, B = 0.77 x 10°m/s, given w, =27 (1.03THz), w./w, = 0.23 and y = 0.

model represents a continuous transition between an isotropic
plasma (r — 0%) with the plasma frequency of w,, and a
gyrotropic plasma (r — 17) with the plasma frequency of w,,.
By this assumption, a new frequency band with Chern number
of +1 appears in the very low-frequency range as shown by
a black dashed line in Fig. 2(a), so that the sum of Chern
numbers becomes zero. In summary, for the SC cutoff model
one solves the problem of noninteger Chern numbers but must
introduce an interpolated response to obtain Chern numbers
that sum to zero (also introducing a new mode that may not
be physically relevant).

In this work, we take into account the effect of nonlo-
cality using the HD model to obtain integer Chern numbers
for the plasma continua. Comparing with the SC model, we
obtain the Chern index of —1 for the low-frequency band of
the HD model. That is because the general behavior of the
low-frequency band of the HD model is different than the cor-
responding band in the SC model. Therefore the sum of Chern
numbers becomes zero without the need for considering the
interpolated material response (t = 1).

Although not the focus of this work, regarding the SC
mode, we also found that a slight modification in the nonlocal

factor can also avoid the need for an interpolated response.
If the nonlocal factor in the SC model is modified to k¥ =
1/(1 — k*/K2,,), the low-frequency band of the SC model
resembles the corresponding band in the HD model (a more
physically realistic nonlocal model) as shown in Fig. 2(b)
for the limit |k| < k., assuming kmax is a large number
(we call this model the modified spatial cutoff model, MSC).
Consequently, the associated Chern value changes from —2 to
—1. Therefore the sum of Chern numbers becomes zero with-
out considering the interpolated material response (t = 1). In
addition, by this sign change, the bands Chern numbers are
equal to those in the HD model.

Figure 2(c) shows the band diagram and associated Chern
index of all four models discussed above: LD, SC, MSC,and
HD models. There is a summary of the above discussion
in Table I, including a comparison of the different material

models and Chern numbers.

V. CONCLUSION

In this work, we considered the HD Drude model and
evaluated the effect of nonlocality on bulk dispersion bands

TABLE I. Comparison of material dielectric tensor and Chern numbers of the LD, SC, MSC, and HD models.

Material model Local Drude [16] Spatial cutoff [16] MSC Hydrodynamic
Dielectric tensor g =61 —22) +igg,(2 x I) + e,22
2 2
k, 1-% 11—k 1-x%
Permittivity salk, @) mi ‘ w22 g )
elements gk, ) 1- % 1— szaj)wz 1—x ﬁ
wL-wz ¢ o) (uz, ¢ —1 xzwu)z(z)z ¢
Sg(k’ (1)) W,’;Z) ke w(wg-fla)z) o mzf)(2ui2
Nonlocality factor - |+k21/kr2nax K= m X =10 s (o = %)
Chern numbers C,=+1 C,=+1 C=+1 C=+1
G =—1-sgn(w)/{/1+ (w,/w,)? C,=-2 C=-1 C=-1
Feut Noninteger Chern number, Integer Chern number, Integer Chern number, I Chern number,
eatures G ¢z C el C, el Cel
Nonzero sum, ), C; # 0 Nonzero sum, ) ,C; #0 Zerosum, ) ,C;=0  Zerosum, ) ,C; =0
Number of bands:n;=2 n;=2 n;=2 n;=2

Note: For SC model by considering the interpolated material response, the number of bands increases to n; = 3 with Chern numbers
{+1, =2, +1} and zero sum Zi C; = 0, but this method has difficulties of interpolating the interfaced materials.
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and associated Chern numbers. We determined integer Chern
invariants which validate the topological behavior of plasma
continua by considering the effect of pressure in the material
model. We compared the results with the SC model and LD
model. We discussed that the HD model resolved the nonin-
teger Chern invariants in the LD model, also the nonphysical
response at large wavenumbers, and the need to interpolate the
interfaced materials permittivity functions in the SC model. It
provides a physically well-grounded theory.
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APPENDIX

To simplify the Berry phase relation (10) for the HD Drude
model, we calculate each term individually. Then we have

a o O

g =|—a, o O], (A1)
0 0 «a
where
& &g
a = 2 5 Qg = —1 2 Z’O[a:_ (Az)
& —¢ & — & &4

By expanding ' - k x 2/weg, the TM eigenmode envelope

is

where
F ot —1 thk L %) 2 .
= = - — x | — — — X
11 kJ11 . X y K x 273
[of%) (%) .
—1 w,d (%)
B =9 =— || - kk, — k%> — X
21 = S v |:< Kby — ——k; oz,)x
Wg(s 2 th(S N
+ —Qg — Tky — Tkxky Y|, (A7)
where we used the partial derivative terms
0y ¢ doy, oy g 8)( ok k,
—0 — S— A8
Ok Oy ok ok, %% (A%)
0 d dx ok k,
Olz,g: Qg 0X =, _)’ (A9)
ok, ox Ak 8k Tk
where k = [k2 + k)z,. Then,
0 ij 0 X
(oM (k, ) = <(ﬂ Daxs - 03 ) (A10)
dw 03,3 molsxs
where B =P =8.,Bn=—Pu=PB, and B, ,=

9 . . .
%(weost,g.). Usmg aZ‘ =, and a; = —ay, in relation (10)
the denominator is written as

= for - (wM ) fnk
M= 1 00 0 D (A3 200
k2
where = —— [(l* + lag)B — 201008l + p0/2, (All)
—1 -1 2(weo)
fu= w_so(atky — ok, fu= a)_( aghy — arks). (A4) and the numerator is simplified as
In the nonlocal case, o; and «, are k dependent, then using
ok = %f( + %ff we have N=ify - (wM)akfnk =NX+N,§, (Al12)
Wfu=F1 B 0 0 0 0), (A5)  where
|
i «f @0 %) «f @O (71
N, = TP |:ﬂ,(a, — agky) (Tkxky - Tgki - ag) + Bylarky — otgky) (—Tgkxky - ka - at>
@, w0 (%) @,
—By(—agky, — ath)*< X kyky — Tkz - ag) + Bi(—agk, — ak,)* (_Tgkxky - Ttk)% - Ol,)] (A13)
and
@, (%) () (o)
Ny 2(a)€ )z |:'3f (ot, agkX)* <0{, + kt y Tgkxky) + ﬂg(“rky - agkx)* <_O‘g - Tgkyz - Tthk))
;6 (%) (2% ;8
—Bo(—aghk, — ark,)* (at + T’kf, - Tgkxky) + B (—agky — k) ( oy — —k2 k’ kxky>]. (Al14)
So the Berry phase is written as
Az _ ReNEHNF} (A15)
nk D
Then, using ¢ = — sin(@)X + cos(¢)§, we have
A,{(éw — A,{;fw . (;;: Re{_Nx sin (<P)+Ny 005(90)} . (A16)

D
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Atp =0,k, =0and k =k,. So

R ) =
ATM (g = 0) = —e{N‘(g 0} (A17)
Finally,
Re{ 5K (o 2 + lotg|) By + 20010t}
AT (g = O)k = { e {(l 8 + 20bi}) (A18)

s (o + lag B — 2, B) + 120/2)

This relation can be used for any nonlocal model by defining relevant o , and §; , quantities.
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