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ABSTRACT

Large datasets increasingly provide criti-
cal insights into crustal and surface pro-
cesses on Earth. These data come in the
form of published and contributed observa-
tions, which often include associated meta-
data. Even in the best-case scenario of a
carefully curated dataset, it may be non-
trivial to extract meaningful analyses from
such compilations, and choices made with
respect to filtering, resampling, and averag-
ing can affect the resulting trends and any
interpretation(s) thereof. As a result, a thor-
ough understanding of how to digest, pro-
cess, and analyze large data compilations is
required. Here, we present a generalizable

workflow developed using the Sedimentary
Geochemistry and Paleoenvironments Project
database. We demonstrate the effects of
filtering and weighted resampling on A1, O,
and U contents, two representative geo-
chemical components of interest in sedi-
mentary geochemistry (one major and one
trace element, respectively). Through our
analyses, we highlight several methodologi-
cal challenges in a “bigger data” approach
to Earth science. We suggest that, with slight
modifications to our workflow, researchers
can confidently use large collections of
observations to gain new insights into pro-
cesses that have shaped Earth’s crustal and
surface environments.
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INTRODUCTION

The study of Earth’s past relies on a record
that is spatially and temporally variable and,
by some metrics, woefully undersampled.
Through every geochemical analysis, fossil
identification, and measured stratigraphic
section, Earth scientists continuously add to
this historical record. Compilations of such
observations can illuminate global trends
through time, providing researchers with
crucial insights into our planet’s geological
and biological evolution. These compilations
can vary in size and scope, from hundreds of
manually curated entries in a spreadsheet to
millions of records stored in software data-
bases. The latter form is exemplified by
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databases such as The Paleobiology Database
(PBDB; Peters and McClennen, 2016),
Macrostrat (Peters et al., 2018), EarthChem
(Walker et al., 2005), Georoc (Sarbas, 2008),
and the Sedimentary Geochemistry and
Paleoenvironments Project (SGP, this study).

Of course, large amounts of data are not
new to the Earth sciences, and, with respect
to volume, many Earth history and geo-
chemistry compilations are small in compar-
ison to the datasets used in other subdisci-
plines, including seismology (e.g., Nolet,
2012), climate science (e.g., Faghmous and
Kumar, 2014), and hydrology (e.g., Chen and
Wang, 2018). As a result, many Earth history
compilations likely do not meet the criteria
to be called “big data,” which is a term that
describes very large amounts of information
that accumulate rapidly and which are
heterogeneous and unstructured in form
(Gandomi and Haider, 2015; or “if it fits in
memory, it is small data”). That said, the tens
of thousands to millions of entries present in
such datasets do represent a new frontier for
those interested in our planet’s past. For
many Earth historians, however, and espe-
cially for geochemists (where most of the
field’s efforts traditionally have focused on
analytical measurements rather than data
analysis; see Sperling et al., 2019), this fron-
tier requires new outlooks and toolkits.

When using compilations to extract
global trends through time, it is important to
recognize that large datasets can have sev-
eral inherent issues. Observations may be
unevenly distributed temporally and/or spa-
tially, with large stretches of time (e.g., parts
of the Archean Eon) or space (e.g., much of
Africa; Fig. S1') lacking data. There may also
be errors with entries—mislabeled values,
transposition issues, and missing metadata
can occur in even the most carefully curated
compilations. Even if data are pristine, they
may span decades of acquisition with evolv-
ing techniques, such that both analytical pre-
cision and measurement uncertainty are non-
uniform across the dataset (Fig. S2 [see
footnote 1]). Careful examination may dem-
onstrate that contemporaneous and co-located
observations do not agree. Additionally, data
often are not targeted, such that not every
entry may be necessary for (or even useful to)
answering a particular question.

Luckily, these (and other) issues can be
addressed through careful processing and
analysis, using well-established statistical
and computational techniques. Although
such techniques have complications of their
own (e.g., a high degree of comfort with
programming often is required to run code
efficiently), they do provide a way to extract
meaningful trends from large datasets. No
one lab can generate enough data to cover
Earth’s history densely enough (i.e., in time
and space), but by leveraging compilations
of accumulated knowledge, and using a
well-developed computational pipeline,
researchers can begin to ascertain a clearer
picture of Earth’s past.

A PROPOSED WORKFLOW

The process of transforming entries in a
dataset into meaningful trends requires a
series of steps, many with some degree of user
decision making. Our proposed workflow is
designed with the express intent of removing
unfit data while appropriately propagating
uncertainties. First, a compiled dataset is
made or sourced (Fig. S3, i. [see footnote 1]).
Next, a researcher chooses between in-data-
base analysis and extracting data into another
format, such as a text file (Fig. S3, ii.). This
choice does nothing to the underlying data—
its sole function is to recast information into a
digital format that the researcher is most com-
fortable with. Then, a decision must be made
about whether to remove entries that are not
pertinent to the question at hand (Fig. S3, iii.).
Using one or more metadata parameters (e.g.,
in the case of rocks, lithological descriptions),
researchers can turn large compilations into
targeted datasets, which then can be used to
answer specific questions without the influ-
ence of irrelevant data. Following this gross
filtering, researchers must decide between
removing outliers or keeping them in the data-
set (Fig. S3, iv.). Outliers have the potential to
drastically skew results in misleading ways.
Ascertaining which values are outliers is a
non-trivial task, and all choices about outlier
exclusion must be clearly described when pre-
senting results. Finally, samples are drawn
from the filtered dataset (i.e., “resampling”)
using a weighting scheme that seeks to
address the spatial and temporal heterogene-
ities—as well as analytical uncertainties—of

the data (Fig. S3, vi.). To calculate statistics
from the data, multiple iterations of resam-
pling are required.

CASE STUDY: THE SEDIMENTARY
GEOCHEMISTRY AND
PALEOENVIRONMENTS PROJECT

The SGP project seeks to compile sedimen-
tary geochemical data, made up of various
analytes (i.e., components that have been ana-
lyzed), from throughout geologic time. We
applied our workflow to the SGP database’ to
extract coherent temporal trends in AL O, and
U from siliciclastic mudstones. Al O, is rela-
tively immobile and thus useful for constrain-
ing both the provenance and chemical weath-
ering history of ancient sedimentary deposits
(Young and Nesbitt, 1998). Conversely, U is
highly sensitive to redox processes. In marine
mudstones, U serves as both a local proxy for
reducing conditions in the overlying water
column (i.e., authigenic U enrichments only
occur under low-oxygen or anoxic conditions
and/or very low sedimentation rates; see
Algeo and Li, 2020) and a global proxy for the
areal extent of reducing conditions (i.e., the
magnitude of authigenic enrichments scales
in part with the global redox landscape; see
Partin et al., 2013).

SGP data are stored in a PostgreSQL rela-
tional database that currently comprises a
total of 82,579 samples (Fig. 1). The SGP
database was created by merging sample
data and geological context information
from three separate sources, each with dif-
ferent foci and methods for obtaining the
“best guess” age of a sample (i.e., the inter-
preted age as well as potential maximum
and minimum ages). The first source is
direct entry by SGP team members, which
focuses primarily on Neoproterozoic—
Paleozoic shale samples and has global cov-
erage. Due to the direct involvement of
researchers intimately familiar with their
sample sets, these data have the most pre-
cise (Fig. 1A)—and likely also most accu-
rate—age constraints. Second, the SGP
database has incorporated sedimentary
geochemical data from the United States
Geological Survey (USGS) National Geo-
chemical Database (NGDB), comprising
samples from projects completed between
the 1960s and 1990s. These samples, which

'Supplemental Material: table of valid lithologies; map depicting sample locations; crossplot illustrating analytical uncertainty; flowchart of the proposed workflow;
histograms showing the effects of progressive filtering, the distribution of spatial and age scales, and proximity and probability values; and results of sensitivity tests.
Go to https://doi.org/10.1130/GSAT.S.14179976 to access the supplemental material; contact editing@geosociety.org with any questions.

2All code used in this study is located at https://github.com/akshaymehra/dataCompilationWorkflow.
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Figure 1. Visualizations of data in the Sedimentary Geochemistry and Paleoenvironments Project

(SGP) database. (A) Relative age uncertainty (i.e.,

the reported age o divided by the reported inter-

preted age) versus Sample ID. The large gap in Sample ID values resulted from the deletion of entries
during the initial database compilation and has no impact on analyses. (B) Box plot showing the distri-
butions of relative ages with respect to the sources of data. CMIBS —Critical Metals in Black Shales;

NGDB —National Geochemical Database.

cover all lithologies and are almost entirely
from Phanerozoic sedimentary deposits of
the United States, are associated with the
continuous-time age model from Macrostrat
(Peters et al., 2018). Finally, the SGP data-
base includes data from the USGS Global
Geochemical Database for Critical Metals
in Black Shales project (CMIBS; Granitto et
al., 2017), culled to remove ore-deposit
related samples. The CMIBS samples pre-
dominantly are shales, have global cover-
age, and span the entirety of Earth’s sedi-
mentary record. When possible, the CMIBS
data are associated with Macrostrat contin-
uous-time age models; otherwise, the data
are assigned age information by SGP team
members (albeit without detailed knowl-
edge of regional geology or geologic units).

Cleaning and Filtering

We exported SGP data into a comma-sepa-
rated values (.csv) text file, using a custom
structured query language (SQL) query. In the
case of geochemical analytes, this query
included unit conversions from both weight
percent (Wt%) and parts per billion (ppb) to
parts per million (ppm). After export, we
parsed the .csv file and screened the data
through a series of steps. First, if multiple val-
ues were reported for an analyte in a sample,
we calculated and stored the mean (or
weighted mean, if there were enough values)
and standard deviation of the analyte. Then,
we redefined empty values—which are the
result of abundance being above or below
detection—as “not a number” (NaN, a special
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value defined by Institute of Electrical and
Electronics Engineers [IEEE] floating-point
number standard that always returns false
on comparison; see IEEE, 2019). Next, we
converted major elements (e.g., those that
together comprise >95% of Earth’s crust or
individually >1 wt% of a sample) into their
corresponding oxides; if an oxide field did not
already exist, or if there was no measurement
for a given oxide, the converted value was
inserted into the data structure. Then, we
assigned both age and measurement uncer-
tainties to the parsed data. In the case of the
parsed SGP data, 5,935 samples (i.e., 7.1% of
the original dataset) lacked an interpreted age
and so no uncertainty could be assigned. For
the remainder, we calculated an initial abso-
lute age uncertainty by either using the
reported maximum and minimum ages:

|agemaximum - agem[n[mum
o= 2 >

or, if there were no maximum and minimum
age values available, by defaulting to a two-
sigma value of 6% of the interpreted age:
o= 0'03 * ageimerpreted °

The choice of a 6% default value was based on
a conservative estimate of the precision of
common in situ dating techniques (see, for
example, Schoene, 2014). Additionally, we
enforced a minimum o of 25 million years:

0=max(0,25).

Effectively, each datum can be thought of
as a Gaussian distribution along the time axis
with a o of at least 25 million years (the
minimum value of which may be thought of
as a kernel bandwidth, rather than an analyti-
cal uncertainty). The selection of this o value
should correspond to an estimate of the pro-
cesses that are being investigated (e.g., tec-
tonic changes in provenance). We did not
impose a minimum relative age uncertainty.

With respect to measurement uncertainties,
we assigned an absolute uncertainty to every
analyte that lacked one by multiplying the
reported analyte value by a relative error. In
future database projects, there is considerable
scope to go beyond this coarse uncertainty
quantification strategy. For example, given
the detailed metadata associated with each
sample in the SGP database, it would be
straightforward to develop correction factors
or uncertainty estimates for different geo-
chemical methodologies (e.g., inductively
coupled plasma—mass spectrometry [[CP-MS]
versus inductively coupled plasma—optical
emission spectrometry [ICP-OES], benchtop
versus handheld X-ray fluorescence spec-
trometry [XRF], etc.). Correcting data for
biases introduced during measurement is
common in large Earth science datasets (Chan
et al., 2019). However, such corrections previ-
ously have not been attempted in sedimentary
geochemistry datasets.

Next, we processed the data through a
simple lithology filter because, in the general
case of rock-based datasets, only lithologies
relevant to the question(s) at hand provide
meaningful information. The choice of valid
lithologies (or, for that matter, any other fil-
terable metadata) are dependent on the
researchers’ question(s). As highlighted in
the Discussion section, lithology filtering
has significant implications for redox-sensi-
tive and/or mobile/immobile elements. In
this case study, our aim was to only sample
data generated from siliciclastic mudstones.
To decide which values to screen by, we
manually examined a list made up of all
unique lithologies in the dataset. We excluded
samples that did not match our list of chosen
lithologies (removing ~63.5% of the data;
Table S1; Fig. S4 [see footnote 1]). Our strat-
egy ensured that we only included mud-
stones sensu lato (see Potter et al., 2005, for a
general description) where the lithology was
coded. Alternative methods—such as choos-
ing samples based on an Al cutoff value (e.g.,
Reinhard et al., 2017)—Ilikely would result in
a set comprising both mudstone and non-
mudstone coded lithologies. In the future,



improved machine learning algorithms,
designed to classify unknown samples based
on their elemental composition, may provide
a more sophisticated means by which to gen-
erate the largest possible dataset of lithology-
appropriate samples.

We then completed a preliminary screen-
ing of the lithology filtered samples by
checking if extant analyte values were out-
side of physically possible bounds (e.g., indi-
vidual oxides with wt% less than O or greater
than 100), and, if so, setting them to NaN.
Next, to reduce the number of mudstone
samples with detrital or authigenic carbonate
and phosphatic mineral phases, we excluded
samples with greater than 10 wt% Ca and/or
more than 1 wt% P,O, (removing ~66.9% of
the remaining data; Fig. S4 [see footnote 1]).
Additionally, in order to ensure that our
mudstone samples were not subject to sec-
ondary enrichment processes, such as ore
mineralization, we queried the USGS NGDB
to extract the recorded characteristics of
every sample with an associated USGS
NGDB identifier. We examined these char-
acteristics for the presence of selected strings
(i.e., “mineralized,” “mineralization pres-
ent,” “unknown mineralization,” and “radio-
active”) and excluded any sample exhibiting
one or more strings. Finally, as there were
still several apparent outliers in the dataset,
we manually examined the log histograms of
each element and oxide of interest. On each
histogram, we demarcated the 0.5th and
99.5th percentile bounds of the data, then
visually studied those histograms to exclude
“outlier populations,” or samples located
both well outside those percentile bounds
and not part of a continuum of values (remov-
ing ~5.7% of the remaining data; Fig. S4).
Following these filtering steps, we saved the
data in a .csv text file.

Data Resampling

We implemented resampling based on
inverse distance weighting (after Keller
and Schoene, 2012), in which samples
closer together—that is, with respect to a
metric such as age or spatial distance—are
considered to be more alike than samples
that are further apart. The inverse weight-
ing of an individual point, x, is based on
the basic form:

¥(x)=—

- d(x,x,)’ ’

where d is a distance function, x, is a second
sample, and p, which is greater than 0, is a

power parameter. In the case of the SGP
data, we used two distance functions, spa-
tial (s) and temporal (7):

arcdistance(x,x[ )

S =
scale

spatial

. |age(x - X, )|
"~ scale

age

s

where arcdistance refers to the distance
between two points on a sphere, scalexpm]
refers to a preselected arc distance value (in
degrees; Fig. S5, inset [see footnote 1]), and
scale”ge is a preselected age value (in million
years, Ma). In this case study, we chose a
scalewtm] of 0.5 degrees and a scaleage of
10 Ma (see below for a discussion about
parameter values).

For n samples, the proximity value w
assigned to each sample x is:

- |1 1 .
) ) )

Essentially, the proximity value is a sum-
mation of the reciprocals of the distance
measures made for each pair of the sample
and a single other datum from the dataset.
Accordingly, samples that are closer to
other data in both time and space will have
larger w values than those that are farther
away. Note that the additive term of 1 in the
denominator establishes a maximum value
of 1 for each reciprocal distance measure.

We normalized the generated proximity
values (Fig. S6 [see footnote 1]) to produce
a probability value P. This normalization
was done such that the median proximity
value corresponded to a P of ~0.20 (i.e., a
1 in 5 chance of being chosen):

1

(w(x)*median(o'jo)]+l |

This normalization results in an “inverse
proximity weighting,” such that samples
that are closer to other data (which have
large w values) end up with a smaller P
value than those that are far away from
other samples. Next, we assigned both ana-
lytical and temporal uncertainties to each
analyte to be resampled. Then, we culled
the dataset into an m by n matrix, where
each row corresponded to a sample and
each column to an analyte. We resampled
this culled dataset 10,000 times using a

P(x)=

three-step process: (1) we drew samples,
using calculated P values, with replacement
(i.e., each draw considered all available
samples, regardless of whether a sample
had already been drawn); (2) we multiplied
the assigned uncertainties discussed above
by a random draw from a normal distribu-
tion (u = 0; o = 1) to produce an error value;
and (3) we added these newly calculated
errors to the drawn temporal and analytical
values. Finally, we binned and plotted the
resampled data.

Naturally, the reader may ask how we
chose the values for scale”ge and scalemmpnml
and what, if any, impact those choices had
on the final results? Nominally, the values
of scaleage and scaletempml are controlled by
the size and age, respectively, of the fea-
tures that are being sampled. So, in the case
of sedimentary rocks, those values should
reflect the length scale and duration of a
typical sedimentary basin, such that many
samples from the same “spatiotemporal”
basin have lower P values than few samples
from distinct basins. Of course, it is debat-
able what “typical” means in the context
of sedimentary basins, as both size and
age can vary over orders of magnitude
(Woodcock, 2004). Given this uncertainty,
we subjected the SGP data to a series of
sensitivity tests, where we varied both
scale , and scale, . using logarithmi-
cally spaced values of each (Fig. S5 [see
footnote 1]). While the uncertainty associ-
ated with results varied based on the choice
of the two parameters, the overall mean val-
ues were not appreciably different (Fig. S7
[see footnote 1]).

RESULTS

To study the impact of our methodology,
we present results for two geochemical
components, U and Al,O, (Fig. 2). Contents-
wise, the U and Al,O, data in the SGP data-
base contain extreme outliers. Many of
these outliers were removed using the
lithology and Ca or P,O, screening (Figs.
2A and 2C); the final outlier filtering strat-
egy discussed above handled any remaining
values of concern. In the case of U, our
multi-step filtering reduced the range of
concentrations by three orders of magni-
tude, from 0-500,000 ppm to 0—500 ppm.

DISCUSSION

The illustrative examples we have pre-
sented have implications for understanding
Earth’s history. Al,O, contents of ancient
mudstones appear relatively stable over the
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Figure 2. Filtering and resampling of Al,O, and U.

(A) and (C). Al,O, and U data through time, respec-

tively. Each datum is color coded by the filtering step at which it was separated from the dataset. In
blue is the final filtered data, which was used to generate the resampled trends in (B) and (D). (B) and
(D). Plots depicting Al,O, and U filtered data, along with a histogram of resampled data density and the
resulting resampled mean and 20 error. Note the log-scale y axis in (C).

past ca. 1500 Ma (the time interval for
which appreciable data exist in our dataset),
suggesting little first-order change in A1,O,
delivery to sedimentary basins over time.
The U contents of mudstones shows a sub-
stantial increase between the Proterozoic
and Phanerozoic. Although we have not
accounted for the redox state of the overly-
ing water column, these results broadly
recapitulate the trends seen in a previous
much smaller (and non-weighted) dataset
(Partin et al., 2013) and generally may indi-
cate oxygenation of the oceans within
the Phanerozoic.
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Moving forward, there is no reason to
believe that the compilation and collection of
published data, whether in a semi-automated
(e.g., SGP) or automated (e.g., GeoDeepDive;
Peters et al., 2014) manner, will slow and/or
stop (Bai et al., 2017). Those interested in
Earth’s history—as collected in large compi-
lations—should understand how to extract
meaningful trends from these ever-evolving
datasets. By presenting a workflow that is
purposefully general and must be adapted
before use, we hope to elucidate the various
aspects that must be considered when pro-
cessing large volumes of data.

Foremost to any interpretation of a quanti-
tative dataset is an assessment of uncertainty.
In truth, a datum representing a physical
quantity is not a single scalar point, but rather,
an entire distribution. In many cases, such as
in our workflow, this distribution is implicitly
assumed to be Gaussian, an assumption that
may or may not be accurate (Rock et al.,
1987)—although a simplified distribution
certainly is better than none. The quantifica-
tion of uncertainty in Earth sciences espe-
cially is critical when averaging and binning
by a selected independent variable, since
neglecting the uncertainty of the independent
variable will lead to interpretational failures
that may not be mitigated by adding more
data. As time perhaps is the most common
independent variable (and one with a unique
relationship to the assessment of causality),
incorporating its uncertainty especially is
critical for the purposes of Earth history stud-
ies (Ogg et al., 2016). An age without an
uncertainty is not a meaningful datum.
Indeed, such a value is even worse than
an absence of data, for it is actively mis-
leading. Consequently, assessment of age
uncertainty is one of the most important, yet
underappreciated, components of building
accurate temporal trends from large datasets.

Of course, age is not the only uncertain
aspect of samples in compiled datasets, and
researchers should seek to account for as
many inherent uncertainties as possible. Here,
we propagate uncertainty by using a resam-
pling methodology that incorporates informa-
tion about space, time, and measurement
error. Our chosen methodology—which is by
no means the only option available to research-
ers studying large datasets—has the benefit of
preventing one location or time range from
dominating the resulting trend. For example,
although the Archean records of AL,O, and U
especially are sparse (Fig. 2), resampling pre-
vents the appearance of artificial “steps”
when transitioning from times with little data
to instances of (relatively) robust sampling
(e.g., see the resampled record of Al O,
between 4000 and 3000 Ma). Therefore,
researchers should examine their selected
methodologies to ensure that: (1) uncertainties
are accounted for, and (2) that spatiotemporal
heterogeneities are addressed appropriately.

Even with careful uncertainty propagation,
datasets must also be filtered to keep outliers
from affecting the results. It is important to
note that the act of filtering does not mean
that the filtered data are necessarily “bad,”
just that they do not meaningfully contribute
to the question at hand. For example, while



our lithology and outlier filtering methods
removed most U data because they were
inappropriate for reconstructing trends in
mudstone geochemistry through time, that
same data would be especially useful for other
questions, such as determining the variability
of heat production within shales. This sort of
filtering is a fixture of scientific research—
e.g., geochemists will consider whether sam-
ples are diagenetically altered when measur-
ing them for isotopic data—and, likewise,
should be viewed as a necessary step in the
analysis of large datasets.

As our workflow demonstrates, filtering
often requires multiple steps, some automatic
(e.g., cutoffs that exclude vast amounts of data
in one fell swoop or algorithms to determine
the “outlierness” of data; see Ptacek et al.,
2020) and others manual (e.g., examining
source literature to determine whether an
anomalous value is, in fact, meaningful).
Each procedure, along with any assumptions
and/or justifications, must be documented
clearly (and code included and/or stored in a
publicly accessible repository) by researchers
so that others may reproduce their results and/
or build upon their conclusions with increas-
ingly larger datasets.

Along with documentation of data process-
ing, filtering, and sampling, it is important for
researchers also to leverage sensitivity analy-
ses to understand how parameter choices may
impact resulting trends. Here, through the
analysis of various spatial and temporal
parameter values, we demonstrate that, while
the spread of data varies based on the pre-
scribed values of scalewlml and scalemmml,
the averaged resampled trend does not (Fig.
S7 [see footnote 1]). At the same time, we see
that trends are directly influenced by the use
(or lack thereof) of Ca and P,O; and outlier
filtering. For example, the record of U in mud-
stones becomes overprinted by anomalously
large values when carbonate samples are not
excluded (Fig. S7B).

CONCLUSIONS

Large datasets can provide increasingly
valuable insights into the ancient Earth sys-
tem. However, to extract meaningful trends,
these datasets must be cultivated, curated,
and processed with an emphasis on data
quality, uncertainty propagation, and trans-
parency. Charles Darwin once noted that the
“natural geological record [is] a history of
the world imperfectly kept” (Darwin, 1859,
p- 310), a reality that is the result of both geo-
logical and sociological causes. But while the
data are biased, they also are tractable. As

we have demonstrated here, the challenges
of dealing with this imperfect record—and,
by extension, the large datasets that docu-
ment it—certainly are surmountable.
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