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Figure 1: Five different neural materials applied to curved bounding geometries. The materials are treated as silhouette
bidirectional texture functions (SBTFs), are learned from synthetic microstructure data, and represented using a collection of
feature textures and small fully connected neural networks. The key to our SBTF representation, compared to traditional BTFs,
is considering surface curvature, and handling rays that hit the bounding geometry but miss the material microstructure. Our
method accurately handles silhouette effects and matches ground truth (GT), unlike NeuMIP [Kuznetsov et al. 2021], which
fundamentally cannot consider silhouette effects and simply renders the base mesh; see insets. Note that no displacement

mapping nor ray marching is ever needed.

ABSTRACT

Neural material reflectance representations address some limita-
tions of traditional analytic BRDFs with parameter textures; they
can theoretically represent any material data, whether a complex
synthetic microgeometry with displacements, shadows and inter-
reflections, or real measured reflectance. However, they still ap-
proximate the material on an infinite plane, which prevents them
from correctly handling silhouette and parallax effects for viewing
directions close to grazing. The goal of this paper is to design a
neural material representation capable of correctly handling such
silhouette effects. We extend the neural network query to take
surface curvature information as input, while the query output is
extended to return a transparency value in addition to reflectance.
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We train the new neural representation on synthetic data that con-
tains queries spanning a variety of surface curvatures. We show
an ability to accurately represent complex silhouette behavior that
would traditionally require more expensive and less flexible tech-
niques, such as on-the-fly geometry displacement or ray marching.
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1 INTRODUCTION

Computer graphics has been delivering a steadily increasing level
of realism over the past decades, much of which owes to physically
realistic materials. The typical material representation in computer
graphics is a physically-based analytic microfacet BRDF, with spa-
tially varying parameters controlled by texture maps and normal
maps. This representation has been successful in practice, but has
several limitations. The microfacet assumption does not always ap-
ply , and normal mapping cannot handle significant displacements,
occlusions or inter-reflections, while displacement mapping adds
significant cost. Traditional mipmapping hierarchies are limited in
accurately representing multi-resolution appearance.

Neural material reflectance representations are a recent effort
to remove these limitations by using a neural architecture instead
of an analytic BRDF with traditional parameter textures [Rainer
et al. 2019], [Rainer et al. 2020], [Kuznetsov et al. 2021], [Fan et al.
2021]. Neural approaches can theoretically represent any material
data, whether a complex synthetic microgeometry with displace-
ments, shadows and inter-reflections, or a real measured reflectance
function. However, they still have the limitation of assuming the
input material is defined on an infinite plane, which prevents them
from correctly handling silhouette and parallax effects for viewing
directions close to grazing.

Our goal is to represent materials with correct appearance when
applied to arbitrary surface geometries. If a material microstructure
is applied to a curved surface, different query rays with grazing
directions may hit or miss the microstructure, leading to a com-
plex silhouette boundary that is very important for the illusion of
material complexity. This effect has been, until now, only possible
with expensive techniques: actual geometric displacement mapping
[Thonat et al. 2021], or mapping volumes around the surfaces that
need to be rendered with ray-marching [Baatz et al. 2021].

The goal of this paper is to design a neural material representa-
tion capable of correctly handling grazing and silhouette effects. To
achieve this, we add an explicit concept of surface curvature and
transparency to the neural model. We extend the neural network
query in NeuMIP [Kuznetsov et al. 2021] to take surface curva-
ture information as input, and its output is extended to return a
transparency value in addition to reflectance. These changes to the
architecture are not by themselves sufficient; we also need to change
the training strategy. Unlike previous work, which is trained on
synthetic mesostructures applied to infinite planes, we need to train
the new neural representation on a dataset that contains queries
spanning a variety of surface curvatures. The key contributions of
this paper are as follows:

e We introduce the first spatially-varying material represen-
tation handling silhouette effects using a single query, i.e.
without any on-the-fly geometry displacement or ray march-
ing, based on the concept of Silhouette BTF (Sec. 4.1).

e Building upon the NeuMIP architecture, we achieve this
by explicitly considering curvature as part of the material
query (Sec. 4.2), and by considering transparency as part of
the query output (Sec. 4.3).

e Training on datasets designed to learn the correct behav-
ior across surfaces with varying curvatures (Sec. 4.4) and
integration into a practical renderer (Sec. 4.5).

A. Kuznetsov, X. Wang, K. Mullia, F. Luan, Z. Xu, M. Ha3an, and R. Ramamoorthi

We show an ability to accurately represent material complexity
that would traditionally require more expensive and less flexible
techniques. For example, Fig. 1 shows our silhouette accuracy com-
pared to NeuMIP, which fundamentally cannot render silhouette
effects and simply renders the base mesh. Our model can be inte-
grated in practical offline and interactive rendering applications.
Our code is available at https://cseweb.ucsd.edu/~viscomp/projects/
CurvedNeuralMaterials/.

2 RELATED WORK

Displacement mapping and its variations. Displacement mapping
is a powerful technique to add material complexity to surface ge-
ometries, producing realistic parallax, silhouette and shadowing
effects. These benefits however come at a high computational cost.
In typical GPU rasterization pipelines, and in the classical Reyes
pipeline, displacement is implemented by generating geometry
that can be immediately drawn into the framebuffer and does not
need to be stored. In modern ray-tracing based renderers, such
an approach is not feasible and the standard solution has been to
implement displacement through tessellation of the base geometry;
as expected, this is expensive both in terms of storage and com-
putation. Several approximations to displacement mapping have
been introduced. Parallax mapping [Kaneko et al. 2001; Oliveira and
Policarpo 2005; Wang et al. 2005a] is a classic technique for improv-
ing bump and normal mapping by adding an approximate parallax
effect, by estimating a texture space offset based on the height map
and normal map. Our neural offset module is inspired by this tech-
nique. [Oliveira et al. 2000; Policarpo et al. 2005] introduced the
idea of relief mapping, which use a root finding algorithm to find
the ray intersection with the displaced surface. See [Szirmay-Kalos
and Umenbhoffer 2008] for an overview of GPU-based displacement
mapping and approximation techniques.

Wang et al. [2003] proposed view-dependent displacement map-
ping (VDM), a method which precomputes the view-dependent
distance to surface displacements. It uses curvature along the ray at
the intersection point to approximate the local surface shape. It uses
tabulation together with SVD compression to store the displace-
ment values across positions, directions, and curvatures. Although
VDM can render silhouettes, it is a purely geometric solution that is
specialized to heightfields, and does not precompute reflectance ef-
fects like inter-reflections. Our method makes no such assumptions
and can work without heightfields and ground truth displacements.
(See Figure 2 in the supplemental materials.)

Wang et al. [2004] introduced generalized displacement maps
(GDM), a 5D function which predicts the distance to an intersection
given a 3D location and a viewing direction. Wang et al. [2005b]
introduced a 4D mesostructure distance function (MDF) given a
reference plane. Silhouette effects are rendered using depth peel-
ing, which is not easily applicable in a path-tracing framework.
These methods are related to our approach; however they are fun-
damentally geometric and heightfield-based, and do not consider
the reflectance effects emerging from the detailed material geome-
try.

Shell mapping [Porumbescu et al. 2005] is a general way to
treat any ray-traceable microgeometry (with its own acceleration
structure, if required) as a material that can be mapped onto any
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mesh. It builds a thin volumetric layer of tetrahedral elements
around the base mesh, and applies an affine warp within each
element. This method can be used for displacement mapping, or
mapping any other ray-traceable primitives onto meshes. Recently,
Thonat et al. [2021] introduced a tessellation-free displacement
mapping technique that works with ray-tracing and is similar to
shell mapping but achieves higher performance and robustness
specifically for displacement. However, only storage is saved, not
computation; the entire complex displaced geometry is still being
explicitly intersected by rays.

Our method instead encodes displacement effects into a neu-
ral representation that can be evaluated using a single query per
shading point. While displacement is a common and important
effect, our method is not limited to displacement, and could handle
microstructures not expressible as heightfields.

BTFs. Bidirectional texture functions (BTFs) have been intro-
duced by Dana et al. [1999]. A BTF is a 6D function describing
arbitrary reflective surface appearance; a BTF outputs a reflectance
value given a spatial location, incoming and outgoing direction.
Storing a discretized 6D function is very expensive; therefore, sev-
eral compression methods for BTFs have been explored [Filip and
Haindl 2008].

Neural reflectance. Rainer et al. [2019] introduce a neural archi-
tecture based on an autoencoder framework to compress BTF slices
per texel (also termed apparent BRDFs or ABRDFs); the decoder
takes incoming/outgoing directions as input in addition to the la-
tent vector, and the autoencoder is trained per BTF. Later, they
extended the work by unifying different materials into a shared la-
tent space, so only a single autoencoder needs to be trained [Rainer
et al. 2020]. [Kuznetsov et al. 2019] used Generative Adversarial
Networks (GANs) to generate reflectance functions perceptually
similar to synthetic or measured input data, and rendered them
using partial evaluation of the generator network.

NeuMIP [Kuznetsov et al. 2021] is a recent method that we
build upon. It uses a set of learned power-of-2 feature textures
to represent the material at different levels, combined with a fixed
per-material MLP (multi-layer perceptron, i.e. a fully connected
neural network). This method can theoretically fit any material
data, whether a complex synthetic microgeometry, or a measured
BTF. However, it still has the limitation of only considering the
input material on an infinite plane, which prevents it from correctly
handling silhouette and parallax effects for viewing directions close
to grazing.

We build on the neural architecture of NeuMIP with several
modifications designed to remove its limitations regarding silhou-
ette effects. However, for simplicity, we decided not to focus on
the multi-resolution component of NeuMIP. More precisely, this
means that we use 2D feature textures with bilinear interpolation,
and do not consider pyramids of feature textures with trilinear
interpolation; we consider it orthogonal and believe it would be
straightforward to combine with our method.

Thin volumetric shells. Previous research explored representing
materials as thin volumetric layers, wrapped around a base surface
mesh. Dufort et al. [2005] approximate material mesostructure using
a thin shell of semi-transparent 3D texture and use ray-marching to
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compute the color. Volumetric fabric models based on data scanned
using micro-CT imaging were introduced by Zhao et al. [2014];
the volumetric grid was wrapped onto a curved surface using shell
mapping. Recently, Baatz et al. [2021] introduced a neural material
approach using volumetric layers. The material is represented as
a volumetric medium with a density and a reflectance function
defined at every point, encoded in a single fully-connected neural
network for the entire material. This approach is capable of high
quality, including correct silhouette and parallax effects. However,
they do still require ray marching with multiple queries of a neural
architecture (larger than ours) needed per ray. On the other hand,
our method is less expensive per shading operation, as it only
requires a single SBTF query per surface intersection point, and
can use a smaller neural network combined with feature textures.

3 BACKGROUND

In this section, we will first present a short overview of bidirectional
texture functions (BTFs) (Sec. 3.1). Next, we will summarize the
concept of local surface curvature. (Sec. 3.2).

3.1 Overview of BTFs

Bidirectional texture functions (BTFs) [Dana et al. 1999] are a gen-
eral representation of surface reflectance. They take as input the
camera direction w,, light direction w;, and texture coordinates
u, and output a reflectance value (color). More precisely, the BTF
value p(u, @i, wo) can be seen as the exitant radiance from point
u in direction we, when the material is lit by distant directional
light coming from direction w;, with unit irradiance onto the ma-
terial plane. If a material is simply a homogeneous BRDF, its BTF
equals the BRDF; thus a BTF is a generalization of a BRDF. It in-
corporates all effects from the material microstructure, including
parallax, shadowing, and multiple scattering, and is generally non-
reciprocal.

BTFs have traditionally been used to capture physical material
samples by taking photographs under many viewing and light
directions, but have also been used with synthetic data (like in our
paper). Many methods have been used to compress BTFs, including
several neural approaches. However, none of the previous BTF
compression and representation methods have the ability to handle
grazing/silhouette effects; the goal of our method is to accurately
capture these effects.

3.2 Local surface curvature

The curvature of a 2D surface at point p, in a direction x that lies
within the tangent plane (i.e. is orthogonal to the surface normal
n), is defined as the reciprocal of the radius of the osculating circle,
which is the circle that locally aligns with the surface at p within
the plane given by direction x and the surface normal n. Positive
and negative curvatures represent convex and concave surfaces,
respectively. The curvature at p can be fully represented by two
principal directions x1, x and the associated principal curvatures
along those directions ki, k2. Namely, the curvature k(x) for any
direction x in the tangent plane can be computed as

k(%) = k1(x1 - %)% + ka2 (x2 - %) (1)
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The principal directions are orthogonal (i.e. X1 - x2 = 0), unless
ki = ko, in which case we can still choose them as orthogonal. The
principal curvatures are the bounds of the range of curvatures over
all other tangent directions x [cur 2022].

4 NEURAL SILHOUETTE BTF

In this section, we first define our new Silhouette BTF (SBTF) in
Sec. 4.1, and discuss the curvature input to the SBTF (Sec. 4.2). We
will then introduce our network architecture (Sec. 4.3), designed
to accurately fit our SBTFs. Finally, we will discuss how to fit our
model to data (Sec. 4.4) and use it during rendering (Sec. 4.5).

4.1 Silhouette BTF

In this subsection, we define our Silhouette BTF (SBTF). There
are two key differences from a traditional BTF: one extra input
(the curvature value along the projected ray direction as described
above), and one extra output, an opacity value for the incoming
ray.

In our model, we apply the material to a bounding geometry,
that is, we assume that the represented material is fully contained
under the bounding surface; see Figure 3. Therefore, rays that miss
the bounding geometry will also miss the material. However, rays
that hit the bounding geometry may or may not hit the material:
sometimes a grazing ray passes through the geometry unaffected
by the material, causing a complex silhouette effect.

For this reason, our SBTF will also output an opacity value
a € [0,1]. If @ = 1, then the ray hit the material and should

reflect, while if @ = 0, the material is missed, and the ray continues.

Values between 0 and 1 can occur and should be treated carefully,
as discussed in more detail in Sec. 4.5.

We also provide the local curvature k along the projected ray
direction to the SBTF. The precise way to compute this curvature
value is detailed in the next subsection.

Thus the SBTF S(u, w;, wo, k) can be written as two components,
reflectance and transparency:

S(uswi!wo’ k) = (p(u’wiawo’k))a(lL w0> k)) (2)

where the reflectance value p is interpreted as the outgoing radiance
in direction w,, when lit by unit directional light from direction
;. In a slight difference compared to the BRDF/BTF definition,
we are incorporating the cosine term in the SBTF. Furthermore,

principal dir.

principal dir. 4

AO

o

v

(a) Our tangent curvature (b) Filter along the line
Figure 2: (a) Our SBTF query takes as input the curvature
along the projected viewing ray direction. (b) We filter the
curvature by taking the minimum curvature along a surface
curve in the ray direction past the shading point.
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Figure 3: Illustration of our Silhouette BTF queries. The mate-
rial is defined under the bounding geometry. If a ray hits the
bounding geometry, it may or may not also hit the underly-
ing material, as specified by the returned transparency value.
If the material is hit, the SBTF query returns the reflectance
value given the light direction.

the SBTF can be non-zero for light directions w; that are facing
away from the bounding geometry intersection point’s normal,
even for opaque surfaces. This cannot happen on an infinite plane,
which always blocks light directions below the horizon, and is a
consequence of considering curved surfaces in our SBTF. In other
words, the reflected radiance L at point u in direction w, can be
written as a spherical integral of incoming radiance weighted by
the SBTF:

L(u — wo) = a(u, wo, k)/ p(, Wi, wo, k)L(u — w;) dw;i. (3)
S2

Our remaining tasks are: defining a neural model to fit SBTFs,
generating samples of the SBTF from a given material and learning
the model weights to fit them, and finally rendering using the
learned model. We will cover them in the following subsections.

4.2 Curvature along the ray

To compute a curvature value along the viewing ray, our approach
is to first precompute principal directions and curvatures for every
vertex, using the IGL library [Jacobson et al. 2018]. For a given
vertex p and a camera ray direction w,, we can project it into
the corresponding tangent x(w,). We then compute the curvature
value k(x(wo)) using Eq. (1); see also Fig. 2 (a).

k = k(x(wo)) = k(normalize(wo, — n(wo - n))). (4)

We provide k to the SBTF evaluation as an additional input. For
a general point p on any triangle (not necessarily a vertex), we
interpolate the computation from the triangle’s vertices.

Furthermore, instead of only using the value of curvature at the
shading point, we filter the value by taking the minimum curvature
along a short curve on the bounding geometry past the shading
point, in the plane defined by the incoming ray and normal; see
Fig. 2 (b). This is because we are interested in the curvature of the
entire silhouette region, instead of just the shading point.

4.3 Network architecture

Our model learns the SBTF S(u, w;, wo, k) by fitting it to a dataset
of input-output queries. Our architecture consists of three modules
(see Figure 4):

o Alpha(u, w, k): opacity prediction module,
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Figure 4: Our network architecture, described in Sec. 4.3. It
consists of 3 parts: opacity predicting module, neural offset
module and reflectance prediction module. The compact de-
sign of the networks results in fast evaluation.

e Offset(u, wo, k): neural offset module, and
e Color(u, we, wj, k): reflectance prediction module.

Each module consists of a neural feature texture and a small fully
connected network (multi-layer perceptron, MLP). Each feature tex-
ture is a 2-dimensional grid of feature vectors that can be bilinearly
interpolated. For all MLPs we use the ReLU activation function,
except for the last layer. In each module, we use 3 hidden layers
with 24 channels each; these are fairly small neural networks, and
much of their representative power comes from the information
learned in the corresponding feature textures.

To evaluate S(u, w;, wo, k), we first evaluate the opacity predic-
tion module (shown in blue in Fig. 4):

a = Alpha(u, wo, k). (5)

If & is 0, the ray misses the material and continues to the next surface.
If a is greater than 0, we must evaluate the next two modules, Offset
and Color, to compute reflectance.

We optionally use a variation of the Alpha network that predicts
an intermediate value termed silhouette cosine instead of the final
opacity value. For heightfields and many other materials, the opacity
as a function of incoming ray cosine (i.e. the dot product of ray
direction and bounding surface normal) is a step function: opaque,
then transparent. We simply predict the cosine value where the
transition occurs; then « is zero if the camera ray cosine is lower
than the predicted value and 1 if equal or greater. We find that this
modification is easier to learn; see also Fig. 9).

The neural offset module Offset is similar to one from [Kuznetsov
et al. 2021]. The one difference is that in our version, the new UV
position does not have to be on a straight line given by the ray
direction. Therefore, instead of predicting a single value and then

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

(a) Cylinder example (b) UV rotations and translations

Figure 5: Example of a cylinder in training set. We apply
random translation and rotation to the UV mapping. We
sample from a smaller region to avoid intersecting near the

boundary.

Figure 6: Importance of curvature correction when scaling an
object. Top: NeuMIP, which does not support curvature. Mid-
dle: our method without curvature correction; the grooves
are too shallow. Bottom: our method. The groove sizes match
the scale of the object correctly.

(b) No UV correction (a) NeuMIP

(¢) Ours

calculating the UV offset, we predict the offset directly as a 2D
vector (green network in Fig. 4):
Upew = U + Offset(u, wo) (6)

Finally, we use the new UV location upeyw predicted by Offset to
query the final feature texture and evaluate the last module, Color,
which predicts the reflectance RGB value. Our full SBTF evaluation
can thus be written as (orange network in Fig. 4):

S(u, @i, wo, k) = (Color (Upew, wi, o, k), Alpha(U, o, k), (7)
where upeyw is given by eq. (6) and k by eq. (4).

4.4 Dataset and training

Given the importance of curvature for the SBTF evaluation, we
need to train the neural model on queries of the material applied
to surfaces of different curvature. One option would be to use a
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database of general shapes; however, this has some disadvantages,
such as various discontinuities and distortions in the UV mapping,
which are hard to avoid on general shapes. Instead, because we only
depend on the scalar curvature values along the viewing ray, we
show that it is sufficient to train on cylindrical patches, which have
zero curvature along the cylinder axis and trivially controllable
curvature in the perpendicular direction.

We generate a dataset of cylindrical patches of different radius,
and apply the material microstructure to them. We apply different
rotations and translations to the UV mapping of the patch; see Fig. 5.
The generated material is completely below the cylindrical surface,
which acts as a bounding geometry. Our synthetic materials come
from Adobe Substance Source [Adobe 2021], though nothing in our
method is specific to Substance.

We sample viewing rays incident upon the patch from different
directions perpendicular to the cylinder axis. The curvature along
the rays is simply the reciprocal of the cylinder radius. Since we
have applied random UV rotations and translations, this covers all
combinations of texture coordinate and camera direction in the
local coordinate frame for the whole neural material.

For the light direction, we randomly sample a ray in a sphere,
not just the hemisphere above the horizon. This is because the light
can come from below the horizon due to the curvature of the patch.
For a single material, our training dataset consists of 2400 different
cylindrical surface patches with 65,536 queries for each.

For the silhouette cosine version of the Alpha network, we also
need to calculate the ground truth silhouette cosine for a given
viewing ray. To do that, we use binary search to find the angle at
which the incoming ray exactly grazes the material boundary.

To regularize the training process, we apply a Gaussian blur to
all neural textures in the initial stages; as the training continues,
we continually decrease the standard deviation of the blur, similar
to [Kuznetsov et al. 2021]. Instead of using just the L1 or L2 or loss,
we combine them, with L1 having one tenth of the weight of L2. We
also apply an L1 loss on the neural offset vector predicted by the
Offset network (comparing the predicted and ground truth offset
vectors in texture space).

We used ground truth UV displacement and cosine term infor-
mation in most of our results. However, it is possible to train our
models without this information. Figure 2 in the supplemental ma-
terials demonstrates that our method can learn the appearance
in a semi-unsupervised manner, only relying on color and alpha
losses. We also applied our method to real-world data (see Figure
11). Since it is hard to obtain a dataset of real materials applied to
cylinders (or other objects of known curvature), we instead extract
a heightfield from the real data; using that, we can re-render the
real-world materials applied to different cylinders.

4.5 Rendering

Our architecture can be used to evaluate an SBTF query for any
single shading point; we do not batch queries at render time. There-
fore, it can be easily integrated with Monte Carlo renderers. We
currently use a C++ implementation of network inference on the
CPU in the Mitsuba renderer [Jakob 2010], implemented as a stan-
dard BSDF material plugin. The same approach could be used to
extend a GPU-based renderer using CUDA.
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(a) Mean curvature 7 (b) Ours (c) Mean (d) Ours

Figure 7: Effects of different curvature calculation methods.
(a,c) Using the standard mean curvature as input would result
in inflated silhouette boundaries. (b,d) By using curvature
along the tangent direction of camera rays, we yield more
faithful silhouettes of neural materials.

To ensure a perfect match between PyTorch model definitions
and the C++ implementation, we developed special code, which
traces all the operations done by PyTorch and then generates a
C++ function and a model file automatically. This completely elimi-
nates errors of porting models and enables fast iterations over the
architecture of the model, with immediate results in the renderer.

The design of our three neural modules is amenable to efficient
rendering. We can terminate early if « = 0, i.e. only the blue network
in Fig. 4 will be evaluated. Also, because the first two modules do
not depend on the light direction, their evaluation can be reused for
multiple light direction queries, like in the common case of multiple
importance sampling (MIS).

For SBTF sampling, we currently use a simple Lambertian (co-
sine) pdf, like [Kuznetsov et al. 2021]. However, other importance
sampling approaches have been proposed for neural materials, and
these could be used with our method, such as the Gaussian proxy
approach used by [Fan et al. 2021].

We assume the texture coordinate units match world units, i.e. a
distance of 1 unit in texture space is approximately 1 world unit. Our
materials are precomputed at a specific scale; sometimes we want
the material to be applicable to geometries of a different scale. In
addition to scaling texture coordinates, we need to correspondingly
scale the curvature values; recall that the reciprocal curvature is
the radius of the osculating circle, and therefore has world units.
See Fig. 6 for an illustration of the importance of this correction.

Given we have a more complex architecture, our network eval-
uation times are about 30% higher than for NeuMIP (non-multi-
resolution version), although we believe significant further opti-
mizations are possible. We believe this is a very reasonable trade-off
for capturing high-quality silhouette detail.

5 RESULTS

In this section, we showcase the ability of our neural method to
render intricate geometric details on silhouettes that can otherwise
be obtained only from a highly tessellated and displaced mesh.

Teaser. In Fig. 1, we render a scene consisting of five bunnies
with different neural materials under area light illumination with
our method. The bunny geometry presents highly curved surfaces
which breaks NeuMIP on silhouette regions noticeably, leading
to visibly smooth, unrealistic boundaries. On the other hand, our
method is capable of learning the microstructure details of neural
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Figure 8: Qualitative results. We show a comparison of our method with NeuMIP and ground truth (GT) for four materials. The
neural materials are applied to a simple torus mesh, while the ground truth is computed by fine tessellation and displacement.
Our method is able to render silhouettes that retain fine detail from geometric displacement, while NeuMIP fails to produce
any details resulting in smooth edges and a flatter look. See additional results in the supplemental materials.

materials during training, and produces renderings that match the
ground truth more faithfully.

Curvature calculation. Curvature is not a single number per shad-
ing point, but is defined as two principal curvatures with corre-
sponding principal directions. Instead of feeding this information to
the network, we would like a single number to describe curvature.
A standard way is to use mean curvature, but as Fig. 7 shows, it
results in inaccurate appearance. This is because it collapses the
local surface shape to a single number. Instead, in our method we
calculate the curvature along the camera ray as a single number,
which captures the curvature parameter better.

Silhouette cosine vs. direct alpha prediction. Instead of predicting
the alpha value directly, we predict the silhouette cosine and then
compare to cosine of the camera angle. As seen in Fig. 9, without
this technique, the opacity is harder to learn, and the silhouette
regions may contain artifacts such as holes and jagged edges. How-
ever, some materials (like with transparency) require direct alpha
prediction as silhouette cosine is binary (see Figure 10).

Qualitative results. We compare our approach against the Neu-
MIP baseline and ground truth in Fig. 8. A set of neural materials
are applied to a simple and smooth torus mesh, while the ground
truth material is applied on a torus mesh that is subdivided and
displaced. Unlike NeuMIP that produces smooth silhouettes with-
out any details from displacements at grazing angles, our method
successfully renders fine-level geometric displacements that more
closely match the ground truth. In the video, we also show that our

¥,
L/
A

(a) Direct alpha prediction (b) Our method

Figure 9: Silhouette cosine vs. direct alpha prediction. Instead
of predicting alpha value directly, we predict the silhouette
cosine and then compare to the cosine of the camera angle.
Without this technique, the silhouette regions may contain
artifacts such as holes and jagged edges.

Table 1: Intersection over Union (IoU) of silhouettes.

‘Cave Foam Leather Opyster Shell Stonel Stone2 Terracotta Wall Wooll Wool2

NeuMIP | 0.756 0.772  0.722 0.391 0.502  0.642 0.635 0.553
Ours | 0.940 0.953  0.939 0.803 0.843  0.897 0.916 0.873

0.750  0.798 0.602
0.934 0.918 0.888

method is temporally coherent for changes of lighting and view-
point. For additional materials and geometries, please refer to the
supplemental document.

Quantitative silhouette error. In order to evaluate and compare
our method with NeuMIP, we compute the silhouette errors in
Table 1. The error is defined as the intersection over union (IoU) of
the ground truth region with non-zero opacity and a given method.
Here, value of 1 would mean the two silhouettes are exactly the
same, and the value of 0 would mean that two silhouettes do not
overlap at all. Our IoU values are substantially better than NeuMIP.
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(a) Basket

(b) Perforated Leather

Figure 10: Our model supports non-heightfield and see-through materials. The basket weave material on the left is made of red
wicker, which runs horizontally, and grey wicker, which runs vertically. As such, there is no heightfield, because the threads
superimpose on top of each other. Nevertheless, our method is able to represent the material accurately. The perforated leather
on the right also breaks the heightfield assumption. Both basket and perforated leather materials are see-through, which is
easily supported by our method; for these materials, we predict alpha directly, instead of using silhouette cosine.

Figure 11: Our method can be applied to real (measured) BTFs.

Here we used Carpet 7 from the UBO [2014] dataset.

Limitations. There can be a slight blurriness compared to ground
truth, as is common for any neural technique. Note that our method
must learn a higher-dimensional space to match across all curvature
k values, while considering 2D offsets. For thin objects, we see some
“inflation” of the silhouette from the bounding geometry, though

our silhouettes still match more closely than previous methods.

Similar to many material models, our method requires a good UV
mapping, free of major distortion.

6 CONCLUSION AND FUTURE WORK

We have presented a neural architecture capable of correctly han-
dling grazing and silhouette effects for materials. To achieve this,
we add an explicit concept of surface curvature and transparency
to the neural model. Our solution uses the new concept of a Sil-
houette BTF (SBTF), which explicitly considers curvature as part
of the material query, and returns a transparency value as part of
the query output, in addition to reflectance. This allows query rays
with grazing directions in a curved region to hit or miss the mate-
rial microstructure, leading to a complex silhouette boundary that
is very important for the illusion of material complexity. Building
upon the NeuMIP architecture, we demonstrated complex materials
including accurate silhouette effects that were not possible with any
previous neural or BTF-based materials, and would traditionally
require expensive techniques such as displacement mapping, shell
mapping or volumetric ray marching.

Several exciting future work avenues could be explored. One
of them would be the capture of real world objects, estimating a
combination of a coarse mesh and an SBTF. We could also explore
effects such as light transmission, hair/fur, or subsurface scattering
in the SBTF.
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Supplemental Materials

NeuMIP

Fig. 1. Additional qualitative results. We show a comparison of our method with NeuMIP and ground truth (GT) for four
materials. The neural materials are applied to a simple torus mesh, while the ground truth is computed by fine tessellation
and displacement. Our method is able to render silhouettes that retain fine detail from geometric displacement (as shown in
the ground truth), while NeuMIP fails to produce any details resulting in smooth edges and a flatter look.

Fig. 2. Our method can work without UV loss. Here, we learned terracotta material in a semi-supervised way, relying only
on color and alpha for the loss. We used direct alpha predicting architecture as the ground truth cosine term might not be

available.
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Fig. 3. Our method works well on different geometries. Here are examples of our materials on a cow, a monkey, and an
armadillo.
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Fig. 4. Our method supports a wide variety of materials.



	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Overview of BTFs
	3.2 Local surface curvature

	4 Neural Silhouette BTF
	4.1 Silhouette BTF
	4.2 Curvature along the ray
	4.3 Network architecture
	4.4 Dataset and training
	4.5 Rendering

	5 Results
	6 Conclusion and Future Work
	Acknowledgments
	References

