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Land surface phenology (LSP) enables global-scale tracking of ecosystem processes, but its utility is limited in drylands due to low
vegetation cover and resulting low annual amplitudes of vegetation indices (VIs). Due to the importance of drylands for
biodiversity, food security, and the carbon cycle, it is necessary to understand the limitations in measuring dryland dynamics.
Here, using simulated data and multitemporal unmanned aerial vehicle (UAV) imagery of a desert shrubland, we explore the
feasibility of detecting LSP with respect to fractional vegetation cover, plant functional types, VI uncertainty, and two different
detection algorithms. Using simulated data, we found that plants with distinct VI signals, such as deciduous shrubs, can
require up to 60% fractional cover to consistently detect LSP. Evergreen plants, with lower seasonal VI amplitude, require
considerably higher cover and can have undetectable phenology even with 100% vegetation cover. Our evaluation of two
algorithms showed that neither performed the best in all cases. Even with adequate cover, biases in phenological metrics can
still exceed 20 days and can never be 100% accurate due to VI uncertainty from shadows, sensor view angle, and atmospheric
interference. We showed how high-resolution UAV imagery enables LSP studies in drylands and highlighted important scale
effects driven by within-canopy VI variation. With high-resolution imagery, the open canopies of drylands are beneficial as
they allow for straightforward identification of individual plants, enabling the tracking of phenology at the individual level.
Drylands thus have the potential to become an exemplary environment for future LSP research.

1. Introduction

Land surface phenology (LSP) enables ecosystem scale track-
ing of the drivers and consequences of a changing climate.
Satellite sensor-derived vegetation indices (VIs) track the
progression of green vegetation throughout the year, and
from this time series, the seasonal transitions between the
dormant and growing seasons are derived [1–8]. Numerous
studies measure the short- and long-term LSP trends, link-
ing them to drivers such as weather and climate, land cover
change, and disturbances [9]. Yet the use of LSP is limited
outside regions with adequate vegetation cover and plants
with distinct seasonal change. Temperate deciduous forests
have the most distinct LSP signal, while in other vegetation

types LSP is difficult to discern due to combinations of low
signal-to-noise ratio between growing and dormant season
VI, high snow cover, and low vegetation cover [10, 11].

In dryland ecosystems, low vegetation cover is the pri-
mary limitation in detecting land surface phenology [12].
High soil fractional cover can cause the growing season VI
to be indistinguishable from the dormant season VI, making
phenology extraction impossible. Additionally, some areas
with adequate vegetation cover are dominated by evergreen
vegetation, thus can have a growing season VI too low to
reliably detect seasonal transitions [13]. Even in areas with
high vegetation cover and plants with distinct signals, phe-
nology may be impossible to detect some years due to little
to no plant productivity from inadequate precipitation. These
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limitations cause drylands to be excluded in many large-scale
LSP analyses [14–18], while other analysis include them
without any regard for their detectability and resulting bias
[19, 20]. Most studies focusing on drylands evaluate aggre-
gate or peak annual VI as opposed to distinct seasonal tran-
sitions [13, 21] and even then can occasionally have
inconclusive results [22, 23].

Drylands cover 41% of the Earth’s surface [24], and reli-
able measurement of LSP in drylands is needed in under-
standing these ecosystems and the large-scale roles they
play in global processes. Drylands account for much of the
long-term trends in increased carbon uptake globally [25],
and leaf phenology drives much of the interannual variation
in water and carbon uptake in dryland systems [26, 27]. One
quarter of terrestrial vertebrates use drylands to some degree
[28], and changing plant phenology can have cascading
effects on primary consumers and higher trophic interac-
tions [29]. Additionally, dryland rangelands support 35-
84% of livestock globally; thus, they are a vital source of eco-
system services [30].

Here, we explore key attributes of VI time series and how
they affect reliable detection of LSP in dryland ecosystems.
We use a spectral mixing model to simulate LSP with vary-
ing ranges of plant fractional cover, seasonal VI amplitude,
and VI uncertainty to determine the feasibility of detecting
LSP in different scenarios and with different detection algo-
rithms. We then use high spatial resolution, multitemporal
unmanned aerial vehicle (UAV) imagery to verify some of
these relationships. Finally, we discuss the feasibility of
detecting dryland LSP currently and in the future.

2. Methods

2.1. Model Simulation. First, we describe a conceptual model
of an annual dryland VI time series and how it translates
into phenology. Using spectral mixing and assuming a linear
aggregation, the VI at a pixel scale for a single date can be
decomposed into the following parts:

VIPixel = Coverveg × VIveg + 1 − Coverveg
� �

× VIsoil + ε ð1Þ

where Coverveg is the fractional vegetation cover within
the pixel, VIveg and VIsoil are the average VI values of the
endmembers of all plants and soil, respectively, and ε is the
error term from uncertainty in sensor view angle, shadows,
and atmospheric interference [31, 32]. Extraction of pheno-
logical metrics relies on VIpixel being distinctly higher in the
growing season than the dormant season.

Here, we explore how variation in the three components
in Equation (1) (i.e., ranges of plant fractional cover, sea-
sonal VI amplitude, and VI uncertainty) affects the ability
to detect a distinct phenological signal in sparsely vegetated
areas. We start with an idealized annual VI curve derived
from a double sigmoid model to represent the VI of single
plant canopy (Figure 1 [33]). The curve’s amplitude (i.e.,
the difference between dormant and peak VI values) reflects
a combination of plant functional type and leaf area index
(LAI). The seasonal amplitude of non-evergreen plants is

driven by LAI up to an LAI of approximately 2, while ever-
green plants have little to no seasonal amplitude [34, 35].
Higher LAI will generally lead to higher amplitudes, with
this effect being more prominent in deciduous plants than
evergreen plants [36, 37]. The leaves of senesced grasses have
distinctly lower VI than green leaves; thus, they are expected
to behave similarly to deciduous plants [38].

Using the curve values at 8-day intervals for a full calendar
year, we apply Equation (1) with fractional vegetation values
of 60% and 30% and then include Gaussian noise with a mean
of 0 and standard deviation (SD) of 0.02 to represent ε, result-
ing in an 8-day VI time series for a full calendar year
(Figures 1(b) and 1(c) points). A cubic smoothing spline is
then fit to the 8-day VIpixel values and phenology metrics
extracted using a threshold of 10% of the relative maximum
value. Figure 1 shows how the phenological metrics change
solely due to differences in fractional vegetation cover, even
though the underlying plant phenology, VIveg, is the same.
In this example, there is still adequate amplitude to detect
transitions, but at a low enough fractional vegetation cover
the VIpixel amplitude will be too low to detect transition dates.

For the simulation analysis, we repeated this process
while varying the three different factors from Equation
(1): (1) the fractional vegetation cover (Coverveg), using
values from 0 to 100%, (2) the amplitude of VIveg from
dormant to peak, adjusted using a parameter in the double
sigmoid model, and (3) the size of the error term ε using
values of 0.01 and 0.04 for the standard deviation of the
Gaussian noise. For each combination, we repeated the
process 100 times. A low growing season VI relative to
the dormant season is one of the main challenges in dry-
land LSP [37]. Phenological extraction methods account
for this in several ways. A common approach is discarding
pixels which do not exceed a threshold of 0.1 VI units between
the dormant season and the peak growth (i.e., a minimum V
Ipixel amplitude of 0.1 [6, 11, 14, 18]), while others have used
statistical power methods of the time series to filter out pixels
with a low signal-to-noise ratio [39]. Here, we evaluate the
detectability of LSP in two ways: (1) the frequency at which
VIpixel meets or exceeds an amplitude of 0.1 VI units and (2)
mean absolute error (MAE) in the estimated phenological
metrics start of season (SOS), end of season (SOS), and peak
of season (POS).

2.2. UAV Study Area, Acquisition, and Processing. We veri-
fied the effect of fractional vegetation cover on LSP detection
by evaluating LSP of a deciduous shrubland and weekly in
situ observations of canopy greenness. We acquired UAV
imagery for a long-term study site (NORT) on the Jornada
Experimental Range (JER) for eight dates in 2019. The JER
is located in the Chihuahuan Desert near Las Cruces, New
Mexico, U.S., and is a low-diversity, mixed perennial grass-
land and evergreen/deciduous shrubland that receives on
average 254mm rain annually with 50% falling between July
and October [40]. The site is ideal for testing patterns of LSP
detectability and accuracy since it has low to moderate frac-
tional vegetation cover consisting primarily of a single plant
species.
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The NORT site consists of mostly sandy soil and has
approximately 30% cover of honey mesquite (Prosopis
glandulosa) with occasional four-wing saltbush (Atriplex
canescens) shrubs growing in some mesquite patches
and snakeweed (Gutierrezia sarothrae) in the interpatch
areas. In addition to UAV imagery, we also collected
weekly in situ observations of mesquite canopy greenness
following USA-National Phenology Network intensity
protocols [41]. Each week during 2019, for five focal
mesquite shrubs, we estimated the percentage of green
leaves within each individual shrub canopy in seven bins
(0%, 1-4%, 5-24%, 25-49%, 50-74%, 74-94%, and 95-
100%).

To collect aerial imagery, we deployed a 3DR SOLO
UAV equipped with a Micasense RedEdge camera
(https://micasense.com/) and Downwelling Light Sensor
(DLS) at an altitude of approximately 28 meters above
ground level resulting in a ground sampling distance
(GSD) of 1.8 cm. The total image extent was 2.1 ha. Aerial
surveys were conducted on eight days in 2019 (April 2,

April 25, July 5, August 14, September 26, October 16,
November 13, and December 20) to characterize mesquite
phenology. Flights were planned using Mission Planner
software, conducted at midday (between 10 a.m. and 12
p.m.); given an east-west corridor pattern, forward lap of
85% and side lap of 75% ensured sufficient pixel overlap
between adjacent images for proper alignment and
mosaicking. Images of a 6″ × 6″ Micasense Calibrated
Reflectance Panel were taken before each flight for radio-
metric calibration. We use fixed ground control points
within the image footprint as the basis for the geometric
correction; ground control points were previously surveyed
using a Trimble Geo 7X handheld Global Positioning Sys-
tem. Orthomosaics of drone imagery were created using
Pix4D software (version 4.2.27, https://www.pix4d.com/)
using the following steps:

(1) Initial processing: Keypoints Image Scale, full;
Matching Image pairs, Aerial Grid or Corridor;
Matching Strategy, Use Geometrically Verified

0.2

0.3

0.4

0.5

0.6

1 100 200 300

SOS EOS

0.1
(b) Pixel with 60% fractional vegetation cover

(c) Pixel with 30% fractional vegetation cover

(a) Plant canopy VI curve

0.2

0.3

0.4

0.5

0.6

SOS EOS

Scaled pixel VI
Cubic spline

1 100 200 300

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: Conceptual diagram of simulating aVI curve with different levels of fractional vegetation cover. (a) An idealized VI curve represented by a
plant canopy (i.e., 100% fractional vegetation cover). The same curve scaled to pixels simulating 60% (b) and 30% (c) plant cover (green lines), and
assumes VIsoil remains a constant 0.2. The points represent the scaled curve plus VI uncertainty, with the black line representing cubic spline fit from
the points. Phenological metrics (start of season (SOS) and end of season (EOS)) can then be extracted from the cubic spline curve. The process is
repeated with different amplitudes (i.e., the curve height in (a)), plant cover values, and uncertainty size.

3Journal of Remote Sensing

https://micasense.com/
https://www.pix4d.com/


Matching; Targeted Number of Keypoints, Auto-
matic; Calibration, Alternative; Rematch, Automatic

(2) Point Cloud and Mesh: N/A

(3) DSM, Orthomosaic and Index: Resolution, Auto-
matic; DSM Filters, Use Noise Filtering, Use Surface
Smoothing (Sharp); Orthomosaic, GeoTIFF; Radio-
metric Processing and Calibration, Camera and Sun
Irradiance; Resolution, Automatic; Downsampling
Method, Gaussian Average; Reflectance Map,
GeoTIFF, Merge Tiles

After initial alignment, GCPs in aerial imagery were man-
ually selected and geolocation tags reregistered with previously
surveyed, subcentimeter geolocation information acquired
with the Trimble GPS. The project is then reoptimized with
the new geolocation information for more accurate results
with RMSE errors ranging from 0.10 to 0.02 meters.

To compute the reflectance value of each pixel, radio-
metric processing and calibration correction type was set
for camera and sun irradiance in orthomosaic and radiomet-
ric correction Step 3 above. This function in Pix4D calibrates
images using irradiance and sun angle measurements
obtained from the DLS and the calibration reflectance panel
[42]. Reflectance values were used to calculate the normal-
ized difference vegetation index (NDVI) images for the
study site for each image date.

Using this time series of NDVI rasters, we developed a sam-
pling routine to test the detectability of phenology with respect
to fractional vegetation cover similar to the simulation study.
We randomly placed 12,000 simulated pixels across the site
with sizes of 2, 4, 8, or 16 meters. We then extracted the average
NDVI within each one for each image date. This random place-
ment allowed us to produce 12,000 annual NDVI time series
representing a range of fractional cover for honey mesquite
across several pixel resolutions. The average shrub diameter is
approximately 8m, so multiple pixel sizes allow us to test both
L- andH-resolution LSP detection [43]. The 16mpixel size rep-
resents the L-resolution case in which image elements (i.e.,
honey mesquite shrubs) are smaller than cell resolution size
and cannot reliably be detected individually, whereas the 2m,
4m, or 8m pixel sizes represent the H-resolution model where
honey mesquite elements are larger than cell resolution size and
can be reliably resolved in the image. As in the simulation study,
each annual time series was fit with a cubic smoothing spline
and we then calculated whether the smoothed time series
exceeded a 0.1 NDVI threshold and extracted phenology met-
rics using a 10% of relative max threshold method and the
change rate method as described below.

To determine the fractional vegetation cover within each
simulated pixel, we developed a map of shrub canopy cover
for the site using hand annotation of an RGB image, result-
ing in a raster at the same extent and resolution of the NDVI
imagery where each pixel is classified as either mesquite can-
opy or soil (Figure S1). Fractional vegetation cover was then
calculated as the proportion of mesquite pixels within each
simulated 2-16m pixel. To calculate the MAE of the UAV
imagery-derived phenology estimates, we used the weekly
in situ observations of mesquite canopy greenness at the

site as described above. We fit a single cubic smoothing
spline using observations from all five individuals with the
midpoint of each percent canopy cover bin. From the
spline, we calculated the DOY for SOS and EOS using the
two methods described below.

2.3. Detection Methods and Analysis. Many remote sensing
algorithms have been developed in recent decades for esti-
mating transition dates from VI time series and can be cat-
egorized in four broad categories: threshold, curvature and
inflection, trend, and priori curve-based approach [8, 44].
Here, we use two approaches to evaluate LSP dynamics in
drylands: a threshold and inflection (max rate of change)
model. The threshold approach uses either fixed or dynamic
thresholds of VI values to identify transition dates, is an estab-
lished and simple methodology, and has been used to produce
phenology data products from the Advanced Very High-
Resolution Radiometer (AVHRR), Moderate Resolution
Imaging Spectroradiometer (MODIS), and the Harmonized
Landsat and Sentinel-2 (HLS) data [3, 6, 7]. The inflection
approach (referred to here as the change rate method) detects
the inflection points that show the quickest changes in the VI
time series; thus, it does not depend on a priori thresholds.
Curvature and inflection approaches can capture transition
dates with relatively small changes in the VI time series, and
the curvature method has been used to produce Collection 5
MODIS phenology and VIIRS phenology [1, 45]. Both of these
approaches are commonly used in LSP studies [14, 18, 19].

For the threshold method, SOS (EOS) was estimated as
the DOY when the smoothed VI curve exceeded (fell below)
a 10% threshold of the relative maximum VI value [46]. For
the change rate method, SOS (EOS) was estimated as the
DOY when the smoothed VI curve had the highest (lowest)
rate of change using the numerically calculated first deriva-
tive [47]. The POS estimate was the DOY of the maximum
smoothed VI value; thus, it was independent of the SOS/EOS
method. For the MAE of the simulation study, the true met-
rics are derived using the respective method of the original
VIveg annual curve. Since we are using a simulated VI, it
can be interpreted as either the enhanced vegetation index
(EVI) or NDVI. All code for this analysis is available in the
Zenodo data repository (10.5281/zenodo.4777207).

3. Results

3.1. Model Simulation. When the fractional vegetation cover
is 10% or less, the VIpixel curve rarely exceeds the 0.1 thresh-
old between the dormant and peak growing seasons
(Figure 2). Even an extremely “bright” plant with VIveg
amplitude of 0.8 will meet the 0.1 threshold less than half
the time. At 60% fractional vegetation cover, plants with V
Iveg amplitude of 0.2 or higher consistently exceed the
needed threshold. Plants with VIveg amplitude of 0.1, which
might be seen in some evergreen species, never consistently
exceed the 0.1 VIpixel threshold even with nearly 100% frac-
tional cover.

Increasing the uncertainty dampened the effect of
increasing fractional vegetation cover. When the uncertainty
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SD was 0.04 and combined with low fractional vegetation
cover, a larger proportion of simulation runs exceeded the
VIpixel 0.1 threshold, with the reverse happening at higher
fractional vegetation cover (Figure 2). At low and high frac-
tional vegetation cover, VI uncertainty had little to no effect
on whether the 0.1 threshold was exceeded. Thus, VI uncer-
tainty propagates into uncertainty in detecting dryland LSP,
with this effect being the highest at intermediate levels of
fractional vegetation cover. For example, a pixel with low
vegetation cover may, in some years, have seemingly detect-
able LSP due solely to chance instead of significantly higher
productivity.

Even with a phenological pattern that is consistently
detectable, the combined effects of soil background, VI
uncertainty, and methodology still cause some level of bias
in the estimated phenological metrics. For example, given a
plant with VIveg amplitude of 0.2 and 60% fractional cover,
all phenological metrics had mean average error (MAE) of
at least 10 (and up to 50) days in our simulations using a
10% of maximum threshold (Figure 3). The MAE of esti-
mates improved with increasing vegetation cover, with
increasing VIveg amplitude, and from using the change rate
instead of threshold method for SOS and EOS estimation.
The highest errors were seen with low VIveg amplitude and
high (0.04) VI uncertainty. POS estimates were more accu-
rate than SOS or EOS in most instances when using a
threshold method, especially when the VIveg amplitude was
low (0.4 or 0.1). The change rate method outperformed the
threshold method in all instances except one, when estimat-
ing EOS with a VIveg amplitude of 0.1. The change rate
method was particularly accurate in estimating SOS of this
simulated data, especially when fractional vegetation cover

was low. Increasing the VI uncertainty from 0.01 to 0.04
increased the MAE of estimates in all cases regardless of
fractional cover, VIveg amplitude, or methodology.

3.2. UAV Imagery. Annual mesquite NDVI exceeded a 0.1
minimum amplitude consistently when fractional vegetation
cover was between 20% and 60%, depending on the simu-
lated pixel size (Figure 4). Larger pixel sizes require less frac-
tional cover to consistently exceed the 0.1 amplitude. This
discrepancy with pixel size is similar to what is seen with
increasing VI uncertainty in the simulation analysis, but
here reflects the high variation in NDVI within the mesquite
canopy. For example, given a single mesquite shrub 8m in
diameter, 2m pixels randomly located within the canopy
can have a wide range of NDVI values for a single acquisi-
tion date, resulting in varying amplitude given the same frac-
tional cover (Figures S2 and S3). Larger pixel sizes essentially
have larger samples to better estimate the mean NDVI of
canopies. This leads to a scale dependence for LSP
detectability at these extremely fine-scale spatial
resolutions. At the 16m pixel size, the NDVI variation is
reduced enough to result in a relationship between
fractional vegetation cover and LSP detectability which
most reflects our simulated results.

As in the simulation study, errors of LSP-derived transi-
tion dates decreased with increasing vegetation cover for all
metrics (Figure 5). Because of the scale effect from canopy
variation in NDVI, smaller pixel sizes had large variation
in error rates for any given fractional cover. Using pixel sizes
of 8 or 16m, MAE stabilized at approximately 20% mesquite
cover for SOS and EOS using the threshold method. The
change rate method produced slightly more accurate esti-
mates when mesquite fractional cover was less than 20%,
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but equivalent or less accurate estimates at high mesquite
cover. MAE for POS, which was independent of the thresh-
old or change rate methods, was never below 40 days and
commonly greater than 60 regardless of pixel size. This sug-
gests a dissimilarity between POS from UAV imagery versus
in situ observations.

4. Discussion

With simulated VI curves, we showed the limitations in
detectability of dryland LSP with respect to fractional vegeta-
tion cover, VI amplitude, and VI uncertainty. The required
fractional vegetation cover to detect phenology depends on
the underlying plant traits, with evergreen plants needing
higher cover than non-evergreen plants. For example, our
UAV analysis showed that with 8m or 16m pixels 20-30%
deciduous shrub cover is needed to consistently detect LSP,
while Peng et al. [48] found that approximately 50% cover
is needed for consistent detection in evergreen dominated
shrublands. Even when the seasonal amplitude of a pixel
exceeds a minimum amplitude threshold, phenological met-
rics of sparsely vegetated drylands can still have considerable

error due to other factors. Our UAV imagery analysis val-
idated these results and also highlighted how within-
canopy VI variation affects LSP detection in high-
resolution imagery. The algorithm used for transition date
estimation affected results as well, with the change rate
method outperforming the threshold method with simu-
lated data, and the threshold method having better or
equivalent results than the change rate method with
UAV imagery time series.

The three primary factors affecting LSP detection and
accuracy vary across ecosystems, sensors, and with plant
community composition. They also interact such that the
detectability is not uniform across vegetation types with sim-
ilar characteristics. For example, 40% fractional cover may
be adequate to detect LSP in a deciduous shrubland, but
likely not in an evergreen shrubland. Neither may have
detectable LSP with some satellite sensors due to higher VI
uncertainty. The methodology and algorithms used can also
affect results, and some methods may be more suitable
depending on the underlying time series characteristics.
Here, we explore these factors in detail, how they vary, and
how they interact.
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4.1. On Fractional Vegetation Cover. Low fractional vegeta-
tion cover is a primary limitation in detecting LSP in dry-
lands [37]. There is high spatial and temporal variability in
vegetation cover throughout arid regions. To highlight
where vegetation cover is the limiting factor in LSP detec-
tion, we calculated the average and standard deviation of
total fractional vegetation cover in drylands in the western
United States across 20 years (Figures 6 and 7). There is a
general gradient of increasing fractional cover moving from
south to north in deserts of the USA. The Sonoran and
Mojave desert ecoregions have the lowest fractional cover,
with median values of approximately 20%. In the northern
regions, there are large areas exceeding 60% fractional cover.
Whether this translates to detectable phenology depends on
the plant composition and resulting VIveg amplitudes. Even
at 100% fractional cover, there may be no LSP signal due
to, for example, low VIveg amplitude in evergreen plants
(Figure 2). These dynamics can result in confounding trends
where there may be higher LSP detectability in areas with
lower fractional vegetation cover.

Year to year variation in vegetation cover is the highest
in the Chihuahuan Desert ecoregion and portions of the
Sonoran and Mojave deserts (Figure 7). Here, there is high
variability in the germination of annual plants as well as
greenup of perennial grasses, both of which are driven by
precipitation [49, 50]. Confounding this further is different
timings of greenup among plant functional groups in
response to precipitation, resulting in two distinct growing
seasons [51–53]. The dynamics of this bimodel seasonality
was not explored here, but can be accounted for with the
correct methods [6, 19].

In the northern ecoregions, there are large areas of high
variability which can be attributed to agriculture [54]. Out-
side agricultural areas, variation in annual cover in the
northern ecoregions is likely driven by disturbance and sub-

sequent changes in plant composition. Large swaths of the
Snake River Plain and Central and Northern Basin and
Range have high variability due to high severity fires and
subsequent annual grass dominance [55, 56]. Here, the
detectability of LSP may increase when annual grasses
replace evergreen shrubs, since the latter have a lower sea-
sonal amplitude [48].

Changing plant composition can lead to variability in
cover and subsequent LSP detectability [57]. From the
trends seen across desert ecoregions, changing composition
must be considered on two time scales. The first is long-
term changes due to disturbance and succession, as seen in
northern ecoregions. The second is within-year variation
where the apparent fractional cover and greenness as seen
by satellite sensors is a function of which plants have
responded to abiotic drivers [58].

4.2. On Seasonal Amplitude Expectations. The seasonal
amplitude of plants, the difference in VI between dormancy
and peak, drives LSP dynamics. A larger amplitude means
that less fractional cover is needed to accurately detect phe-
nological transitions. At the scale of an individual plant, sea-
sonal VI amplitude is driven by functional type and leaf area
index (LAI).

Canopies of non-evergreen plants, such as grasses, forbs,
and deciduous shrubs, can have high seasonal amplitudes,
since in the dormant season these canopies consist primarily
of background soil, litter, and/or senesced vegetation. A
higher canopy LAI can increase the seasonal amplitude fur-
ther, up to an approximate LAI of 2, beyond which VI’s tend
to saturate [37]. This has implications for long-term trends
in LSP related to plant growth. Once a plant matures to
the canopy LAI saturation point, only further horizontal
growth can increase pixel level VI since vertical growth does
not decrease overall soil cover [34, 35].

Evergreen plants will have relatively low seasonal ampli-
tude and thus require significant fractional cover to detect
phenology. Assuming LAI remains relatively constant
throughout the year, then variation in the VI of evergreen
plants depends solely on the structure and turnover of
leaves, resulting in little to no seasonal amplitude. Indeed,
studies of several evergreen shrubs found them to have sea-
sonal amplitudes of less than 0.1 NDVI units [34, 59]. Thus,
even when fractional cover approaches 100%, pixels with
predominantly evergreen vegetation cannot have detectable
phenology. Furthermore, pixels with high amounts of ever-
green vegetation may occasionally have LSP detections solely
by chance (i.e., false positives) due to the inherent uncer-
tainty in satellite imagery. Our simulation results show that
the resulting phenological metrics in these scenarios, where
VIpixel amplitude rarely exceeds a minimum threshold, can
have errors of several weeks or more.

4.3. On VI Uncertainty. VI uncertainty from shadows, view
angle, and atmospheric interference can increase the false-
positive and false-negative rates in LSP detections and
increase errors in resulting transition dates [12]. False nega-
tives can occur when a VI time series does not meet the min-
imum threshold when it otherwise would with zero
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uncertainty. False positives can occur when a VI time series
erroneously exceeds a minimum threshold when it normally
would not have with zero uncertainty. Our simulations show
that increasing VI uncertainty increases false positives at low
fractional cover and increases false negatives at higher cover
(Figure 2). Higher uncertainty also increases error in transi-
tion date estimates [60]. Our simulation results showed that
increasing VI uncertainty increased the mean absolute error
in all scenarios and metrics (Figure 3).

At intermediate levels of fractional vegetation cover, VI
uncertainty determines LSP detectability, whereas very high
or very low fractional vegetation cover leads to a signal-to-
noise ratio which makes VI uncertainty negligible. The
upper threshold of fractional vegetation cover at which VI
uncertainty becomes negligible for LSP detection depends
on the seasonal VI amplitude of vegetation. Vegetation with
high seasonal amplitude, such as deciduous plants with high
LAI, has a lower threshold of fractional vegetation cover,

above which VI uncertainty is negligible for LSP detection.
LSP detection of vegetation with low seasonal amplitude,
such as evergreen plants, is affected by VI uncertainty even
at 100% fractional cover (Figure 2). Indeed, the combination
of high VI uncertainty and evergreen-dominated landscapes
can lead to improbable winter peaks in greenness [61].

In our simulation analysis, we characterized VI uncer-
tainty as zero-centered Gaussian noise with a constant stan-
dard deviation of either 0.01 or 0.04. In reality, the standard
deviation of VI uncertainty can range from less than 0.01 to
over 0.1 depending on the specific index used, its magnitude,
and the sensor [62–64]. VI uncertainty can also vary
between the dormant and growing season due to changing
VI magnitude. Uncertainty decreases with increasing VI
magnitude for NDVI and most other indices, while EVI
uncertainty increases with higher EVI magnitude [62]. Dif-
ferences in design, degradation, orbital drift, and spatial
and spectral resolution lead to different VI uncertainties

Change Rate Method10% Threshold Method

0

20

40

60

80

100

0

20

40

60

80

100

M
ea

n 
ab

so
lu

te
 er

ro
r o

f e
sti

m
at

es

0% 20% 40% 60% 80% 100%0% 20% 40% 60% 80% 100%

0

20

40

60

80

100

Mesquite fractional cover

Pixel size (m)
16
8
4
2

SO
S

PO
S

EO
S

Figure 5: The mean absolute error (MAE) of phenological estimates from 12,000 simulated pixels, with sizes from 2 to 16m, in an annual
UAV imagery time series. Phenological metrics are the day of year for start of season (SOS), end of season (EOS), and peak of season (POS).
True metrics were obtained from weekly in situ observations throughout the year.

8 Journal of Remote Sensing



across sensors [62, 65]. Coarser spatial resolution decreases
uncertainty [66], though this does not imply upscaling will
produce more precise phenological estimates [8, 67, 68].
Data products which are corrected to surface reflectance
have significantly lower uncertainty than top of atmosphere
reflectance, though the uncertainty is still high enough to
produce the patterns seen here [63].

4.4. On Methodology. The algorithms used for LSP detection
in drylands need further study, ideally to identify the under-
lying mechanism which makes one method more suitable
than others. Using simulated, and thus idealized, data we
found the change rate method generally outperformed the
threshold method except for EOS estimates of low VIveg
amplitudes. This was likely the result of the gradual green-
down in underlying double sigmoid used to generate the
simulated data, where after adding VI uncertainty the stee-
pest part of which was highly variable in the resulting cubic
spline smoother. With UAV imagery, the threshold method
produced lower MAE than the change rate method in most
instances. This could be due to the low temporal density of
only eight UAV flight dates throughout the year. With lim-
ited sample size, the date of maximum change in the

smoothed VI curve can be more variable than the date when
a relative threshold is reached. Thus, any evaluation of algo-
rithms for dryland LSP detection must also consider the
temporal scale of the sensor in addition to the vegetation
and VI attributes. The most suitable algorithm for UAV
imagery in a particular ecosystem will not necessarily be
the most suitable for satellite-based imagery in the same
ecosystem.

Other algorithmic improvements may also aid dryland
LSP studies. For example, methods which reduce VI uncer-
tainty can be beneficial, since here we have shown this can
decrease false-positive and false-negative detections and also
increase the accuracy of the resulting transition date esti-
mates. Propagation of VI uncertainty cannot improve LSP
metrics directly, but can provide better context for transition
date estimates through confidence intervals, which are rarely
used in LSP trend studies [69]. VI uncertainty propagation is
difficult to implement though [64] and would likely best be
done as additions to level 2 or higher data products.

4.5. On Mixed Pixels. The single vegetation type used in our
simulation and UAV imagery analysis is likely rare in most
drylands [70]. Mixed vegetation pixels complicate LSP in
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several ways beyond what we evaluated here. For example,
Chen et al. [57] found that, in a pixel with two vegetation
types, the estimated greenup date can vary solely due to
changing species composition and not changing plant phe-
nology. Dryland plant dynamics complicate LSP detection
further since different functional types respond differently
to precipitation pulses [58]. For example, grasses may
greenup sporadically or even not at all, due to the amount
and timing of precipitation. Conversely, surrounding shrubs,
which access deeper water pools, can leaf out consistently
every year [71–73]. Combined with low fractional cover, this
makes sparse vegetation drylands one of the hardest ecosys-
tems for detecting LSP.

4.6. On Low Amplitude Errors. Here, we have highlighted a
little studied aspect of LSP research. As VIpixel amplitude
decreases, either from lower fractional vegetation cover or
lower VIveg amplitude, potential error in transition date esti-
mates increases. This is associated with the inherent param-
eter uncertainty in smoothing algorithms, leading to a
statistical limitation in estimating transition dates. We illus-

trated this effect in Figure 8, where three VI curves have the
same VI uncertainty (SD = 0:01) but different VIpixel ampli-
tudes. As amplitude decreases, the potential range of onset
dates increases. This happens with both a threshold and
change rate method, though the change rate method is less
sensitive. As seen in both the simulation and UAV imagery
analysis, this leads to higher error potential at lower VIpixel
amplitudes. Confidence intervals, and errors of resulting
transition date estimates, can be decreased with different
temporal composite methods and/or with smaller temporal
resolutions [74]. A best practice would also be to incorporate
transition date confidence intervals into LSP studies for
more appropriate statistical tests.

4.7. Moving Forward. Due to low seasonal amplitude, the
timing of seasonal transitions cannot be accurately estimated
in many dryland areas with the current suite of satellite sen-
sors and methodologies, though there is opportunity in
some instances. Opportunities exist in areas with high spa-
tial variation in vegetation type and cover, where small
patches of vegetation meet or exceed the needed require-
ments of amplitude and cover. In these areas, finer
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resolution sensors (e.g., Landsat and Sentinel-2) can poten-
tially detect LSP where coarser resolution sensors (e.g.,
MODIS, VIIRS, and AVHRR) cannot [48]. Another oppor-
tunity is infrequent “super blooms” which occur in several
desert regions worldwide and have distinct VI signals [75].
High fractional cover of flowers requires special consider-
ation since they have lower VI values than green leaves,
but still significantly higher than bare soil [76]. This is also
an opportunity to upscale vegetation indices developed for
flowers in agricultural areas [77, 78].

In areas where VIveg amplitude is extremely low, the tim-
ing of POS is likely the most suitable metric. Here, we found
estimates of POS showed less bias than those for the SOS or
EOS, especially when VIveg amplitude was low. Other studies
have shown the timing and amplitude of POS to be reliable
in studying evergreen phenology [13, 79] and annual vegeta-
tion biomass [80], though caution must still be observed
here since low VIveg amplitude can lead to improbable win-
ter peaks [61].

With high-resolution satellite or UAV sensors, sparse
vegetation can be advantageous in tracking phenology.
Areas of open canopy, which are common in drylands, are
the easiest environments for automatic identification of indi-
vidual plants in high-resolution imagery [81]. By combining
high-resolution imagery with frequent overflights, the phe-
nology of individual plants can then be tracked. As opposed
to landscape level variation in phenology of moderate reso-
lution sensors, high-resolution sensors could thus be used
to study phenology within and among species or across dif-
ferent microhabitats in drylands (e.g., [50]). The within-
canopy variation in VI, usually negligible at coarse resolu-
tions, can affect LSP detectability, though results from our

UAV imagery analysis suggest that aggregating over all
pixels within a plant canopy is likely adequate.

Similarly, UAV imagery can also be used to track phe-
nology at the individual plant level. We found a potential
shortcoming in using UAV imagery for LSP analysis, where
the POS had large errors relative to SOS and EOS estimates.
This could be due to the true date of POS being between our
flight dates. Another possible cause is variation in timing of
leaf maturity and senescence within the plant canopy, caus-
ing differences due to the oblique angle or categorical ocular
estimates of in situ observations compared to UAV imagery.
Understory species within the mesquite canopy may drive
an earlier peak when measured by UAV imagery. Thus,
when using UAV imagery to estimate phenology, one should
maximize the number of sample dates, especially since POS
can only be estimated retrospectively. As high-resolution
imagery becomes more accessible and commonly used, the
relationship between fine scale canopy attributes and how
they relate to in situ observations should be explored more
[82, 83].

Other data products which are not proxies of green-
ness show promise in detecting dryland dynamics, since
greenness is not always correlated with physiological activ-
ity [84]. Solar-Induced Chlorophyll Fluorescence (SIF) is
theoretically not affected by high soil cover since soil is
non-fluorescing [85, 86]. In practice, SIF-derived LSP tran-
sition dates, when compared with in situ observations,
have higher errors in areas with low vegetation cover,
likely due to the low seasonal amplitude of the resulting
annual time series [87]. Vegetation optical depth, derived
from passive microwave sensors, is more sensitive to
woody and herbaceous foliage than NDVI and can poten-
tially help discriminate between them [23, 88]. Weather
and climate data such as air and soil temperature and pre-
cipitation would likely be beneficial in constraining transi-
tion dates to biologically realistic ranges [61, 89, 90].
Integrating data from multiple sensor types, thereby
retaining the relative advantages of each, shows promise
in improving the detectability and accuracy of dryland
LSP [23, 88, 91, 92].

The definition of LSP detectability, here whether VIpixel
amplitude exceeds 0.1 VI units, can potentially be
improved. The 0.1 threshold is used in numerous studies,
yet its origin and suitability is unclear. Here, we showed
that it indeed excludes instances where errors can be
extremely high, yet does not fully minimize errors in all
scenarios. A better methodology or framework for LSP
detection could help in dryland LSP studies. For example,
instead of whether a pixel amplitude exceeds an arbitrary
threshold, detectability might be better defined as whether
sensors could discern if plants actually exited dormancy. A
false-negative detection would then occur if plants within
a pixel were deemed to have remained in dormancy, and
no transition dates were estimated, when in fact there
was plant growth and/or productivity. Theoretically, this
would make detectability invariant to fractional vegetation
cover. Reframing the detectability of LSP like this, or in
other substantial ways, can lead to more innovative
research for studying dryland LSP.
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5. Conclusion

Drylands constitute approximately 41% of the Earth’s sur-
face and account for a large amount of ecosystem services
and biodiversity [28, 30]. Thus, it is important to understand
the drivers and limitations of reliable LSP detection in dry-
lands. As in other studies, we found that the interaction of
fractional vegetation cover and seasonal VI amplitude of
plant canopies is the primary driver of dryland LSP detect-
ability and accuracy [37, 48]. High vegetation cover leads
to higher detectability, except when plants have low VI
amplitudes, for example, in evergreen vegetation. VI uncer-
tainty associated with shadows, atmospheric interference,
and view angle is largely negligible in determining if a VI sig-
nal will exceed a minimum amplitude when fractional vege-
tation cover is either very high or very low. At intermediate
levels of fractional vegetation cover, VI uncertainty can
increase the false positives and negatives of the true VI signal
exceeding a minimum amplitude. Regardless of whether a
VI signal exceeds a minimum threshold, reducing VI uncer-
tainty can reduce the errors of resulting LSP metrics in all
cases. Of the two algorithms used here for LSP estimates,
neither performed the best in all scenarios. Studies evaluat-
ing the numerous LSP methodologies with a focus on dry-
lands would be highly beneficial, especially if they could
identify underlying factors which determine which method
performs best in a particular plant community.

High-resolution sensors with submeter resolution are a
promising path forward for measuring LSP in drylands.
These sensors overcome the problem imposed by low vege-
tation cover, allowing for LSP detection of individual plants.
Frequent visits are still needed to adequately capture all sea-
sonal dynamics, which may be problematic when using
labor-intensive UAVs. High-resolution satellite-based sen-
sors will be highly suitable for LSP studies in drylands due
to frequent visits and low cloud cover in dryland environ-
ments. Since high-resolution imagery also allows for the
identification of individual plants, it will be possible to mea-
sure LSP at the individual level. Drylands thus have the
potential to become an exemplary environment for future
LSP research.
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