
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Private Hypothesis Selection
Mark Bun, Gautam Kamath, Thomas Steinke, and Zhiwei Steven Wu

Abstract—We provide a differentially private algorithm
for hypothesis selection. Given samples from an unknown
probability distribution P and a set of m probability
distributions H, the goal is to output, in a ε-differentially
private manner, a distribution from H whose total variation
distance to P is comparable to that of the best such
distribution (which we denote by α). The sample complexity
of our basic algorithm is O

(
logm
α2 + logm

αε

)
, representing a

minimal cost for privacy when compared to the non-private
algorithm. We also can handle infinite hypothesis classes
H by relaxing to (ε, δ)-differential privacy.

We apply our hypothesis selection algorithm to give
learning algorithms for a number of natural distribution
classes, including Gaussians, product distributions, sums of
independent random variables, piecewise polynomials, and
mixture classes. Our hypothesis selection procedure allows
us to generically convert a cover for a class to a learning
algorithm, complementing known learning lower bounds
which are in terms of the size of the packing number of
the class. As the covering and packing numbers are often
closely related, for constant α, our algorithms achieve the
optimal sample complexity for many classes of interest.
Finally, we describe an application to private distribution-
free PAC learning.

Index Terms—differential privacy, hypothesis selection,
density estimation

I. INTRODUCTION

WE consider the problem of hypothesis selection:
given samples from an unknown probability dis-

tribution, select a distribution from some fixed set of
candidates which is “close” to the unknown distribution
in some appropriate distance measure. Such situations
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can arise naturally in a number of settings. For instance,
we may have a number of different methods which
work under various circumstances, which are not known
in advance. One option is to run all the methods to
generate a set of hypotheses, and pick the best from
this set afterwards. Relatedly, an algorithm may branch
its behavior based on a number of “guesses,” which will
similarly result in a set of candidates, corresponding to
the output at the end of each branch. Finally, if we
know that the underlying distribution belongs to some
(parametric) class, it is possible to essentially enumerate
the class (also known as a cover) to create a collection
of hypotheses. Observe that this last example is quite
general, and this approach can give generic learning
algorithms for many settings of interest.

This problem of hypothesis selection has been exten-
sively studied (see, e.g., [1], [2], [3], [4]), resulting in al-
gorithms with a sample complexity which is logarithmic
in the number of hypotheses. Such a mild dependence
is critical, as it facilitates sample-efficient algorithms
even when the number of candidates may be large.
These initial works have triggered a great deal of study
into hypothesis selection with additional considerations,
including computational efficiency, understanding the
optimal approximation factor, adversarial robustness, and
weakening access to the hypotheses (e.g., [5], [6], [7],
[8], [9], [10], [11], [12]).

However, in modern settings of data analysis, data
may contain sensitive information about individuals.
Some examples of such data include medical records,
GPS location data, or private message transcripts. As
such, we would like to perform statistical inference in
these settings without revealing significant information
about any particular individual’s data. To this end, there
have been many proposed notions of data privacy, but
perhaps the gold standard is that of differential pri-
vacy [13]. Informally, differential privacy requires that, if
a single datapoint in the dataset is changed, then the dis-
tribution over outputs produced by the algorithm should
be similar (see Definition II.4). Differential privacy has
seen widespread adoption, including deployment by Ap-
ple [14], Google [15], and the US Census Bureau [16].

This naturally raises the question of whether one
can perform hypothesis selection under the constraint
of differential privacy, while maintaining a logarithmic
dependence on the size of the cover. Such a tool would
allow us to generically obtain private learning results for
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a wide variety of settings.

A. Results

Our main results answer this in the affirmative: we
provide differentially private algorithms for selecting a
good hypothesis from a set of distributions. The output
distribution is competitive with the best distribution, and
the sample complexity is bounded by the logarithm of
the size of the set. The following is a basic version of
our main result.

Theorem I.1. Let H = {H1, . . . ,Hm} be a set of
probability distributions. Let D = {X1, . . . , Xn} be a
set of samples drawn independently from an unknown
probability distribution P . There exists an ε-differentially
private algorithm (with respect to the dataset D) which
has following guarantees. Suppose there exists a dis-
tribution H∗ ∈ H such that dTV(P,H∗) ≤ α. If
n = Ω

(
logm
α2 + logm

αε

)
, then the algorithm will output

a distribution Ĥ ∈ H such that dTV(P, Ĥ) ≤ (3 + ζ)α
with probability at least 9/10, for any constant ζ > 0.
The running time of the algorithm is O(nm2).

The sample complexity of this problem without pri-
vacy constraints is O

(
logm
α2

)
, and thus the additional

cost for ε-differential privacy is an additive O
(

logm
αε

)
.

We consider this cost to be minimal; in particular, the
dependence on m is unchanged. Note that the running
time of our algorithm is O(nm2) – we conjecture it may
be possible to reduce this to Õ(nm) as has been done in
the non-private setting [7], [8], [9], [11], though we have
not attempted to perform this optimization. Regardless,
our main focus is on the sample complexity rather
than the running time, since any method for generic
hypothesis selection requires Ω(m) time, thus precluding
efficient algorithms when m is large. Note that the
approximation factor of (3 + ζ)α is effectively tight.
That is, even in the infinite sample limit and without
the constraint of privacy, information theoretically, one
can not achieve a better approximation than 3α [4], [5].1

Theorem I.1 requires prior knowledge of the value of
α, though we can use this to obtain an algorithm with
similar guarantees which does not (Theorem III.5).

It is possible to improve the guarantees of this al-
gorithm in two ways (Theorem IV.1). First, if the dis-
tributions are nicely structured, the former term in the
sample complexity can be reduced from O(logm/α2) to
O(d/α2), where d is a VC-dimension-based measure of
the complexity of the collection of distributions. Second,
if there are few hypotheses which are close to the true
distribution, then we can pay only logarithmically in this

1Note that this can be brought down to 2α if one instead outputs a
mixture of Hi ∈ H [12].

number, as opposed to the total number of hypotheses.
These modifications allow us to handle instances where
m may be very large (or even infinite), albeit at the
cost of weakening to approximate differential privacy to
perform the second refinement. A technical discussion
of our methods is in Section I-B, our basic approach is
covered in Section III, and the version with all the bells
and whistles appears in Section IV.

From Theorem I.1, we immediately obtain Corol-
lary I.2 which applies when H itself may not be finite,
but admits a finite cover with respect to total variation
distance.

Corollary I.2. Suppose there exists an α-cover Cα of a
set of distributionsH, and that we are given a set of sam-
ples X1, . . . , Xn ∼ P , where dTV(P,H) ≤ α. For any
constant ζ > 0, there exists an ε-differentially private al-
gorithm (with respect to the input {X1, . . . , Xn}) which
outputs a distribution H∗ ∈ Cα such that dTV(P,H∗) ≤
(6 + 2ζ)α with probability ≥ 9/10, as long as

n = Ω

(
log |Cα|
α2

+
log |Cα|
αε

)
.

Informally, this says that if a hypothesis class has an
α-cover Cα, then there is a private learning algorithm for
the class which requires O(log |Cα|) samples. Note that
our algorithm works even if the unknown distribution
is only close to the hypothesis class. This is useful
when we may have model misspecification, or when
we require adversarial robustness. (We also give an
extension of this algorithm which gives guarantees in
the semi-agnostic learning model; see Section III-D for
details.) The requirements for this theorem to apply
are minimal, and thus it generically provides learning
algorithms for a wide variety of hypothesis classes. That
said, in non-private settings, the sample complexity given
by this method is rather lossy: as an extreme example,
there is no finite-size cover of univariate Gaussian dis-
tributions with unbounded parameters, so this approach
does not give a finite-sample algorithm. That said, it is
well-known that O(1/α2) samples suffice to estimate a
Gaussian in total variation distance. In the private setting,
our theorem incurs a cost which is somewhat necessary:
in particular, it is folklore that any pure ε-differentially
private learning algorithm must pay a cost which is
logarithmic in the packing number of the class (for
completeness, see Lemma V.1). Due to the relationship
between packing and covering numbers (Lemma V.2),
this implies that up to a constant factor relaxation in the
learning accuracy, our results are tight (Theorem V.3).
Further discussion appears in Sections V.

Given Corollary I.2, in Section VI, we derive new
learning results for a number of classes. Our main appli-
cations are for d-dimensional Gaussian and product dis-
tributions. Informally, we obtain Õ(d) sample algorithms
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for learning a product distribution and a Gaussian with
known covariance (Corollaries VI.3 and VI.10), and an
Õ(d2) algorithm for learning a Gaussian with unknown
covariance (Corollary VI.11). These improve on recent
results by Kamath, Li, Singhal, and Ullman [17] in two
different ways. First, as mentioned before, our results are
semi-agnostic, so we can handle when the distribution is
only close to a product or Gaussian distribution. Second,
our results hold for pure (ε, 0)-differential privacy, which
is a stronger notion than ε2-zCDP as considered in [17].
In this weaker model, they also obtained Õ(d) and
Õ(d2) sample algorithms, but the natural modifications
to achieve ε-DP incur extra poly(d) factors.2 [17] also
showed Ω̃(d) lower bounds for Gaussian and product
distribution estimation in the even weaker model of
(ε, δ)-differential privacy. Thus, our results show that
the dimension dependence for these problems is un-
changed for essentially any notion of differential privacy.
In particular, our results show a previously-unknown
separation between mean estimation of product distri-
butions and non-product distributions under pure (ε, 0)-
differential privacy; see Remark VI.4.

We also apply Theorem IV.1 to obtain algorithms
for learning Gaussians under (ε, δ)-differential privacy,
with no bounds on the mean and variance parame-
ters. More specifically, we provide algorithms for learn-
ing multivariate Gaussians with unknown mean and
known covariance (Corollary VI.13), and univariate
Gaussians with both unknown mean and variance (Corol-
lary VI.15). For the former problem, we manage to
avoid dependences which arise due to the application
of advanced composition (similar to Remark VI.4).

To demonstrate the flexibility of our approach, we also
give private learning algorithms for sums of independent
random variables (Corollaries VI.20 and VI.22) and
piecewise polynomials (Corollary VI.29). To the best of
our knowledge, the former class of distributions has not
been considered in the private setting, and we rely on
covering theorems from the non-private literature. Private
learning algorithms for the latter class, piecewise poly-
nomials, have been studied by Diakonikolas, Hardt, and
Schmidt [18]. They provide sample and time efficient
algorithms for histogram distributions (i.e., piecewise
constant distributions), and claim similar results for
general piecewise polynomials. Their method depends
heavily on rather sophisticated algorithms for the non-
private version of this problem [19]. In constrast, we can
obtain comparable sample complexity bounds from just
the existence of a cover and elementary VC dimension
arguments, which we derive in a fairly self-contained

2Roughly, this is due to the fact that the Laplace and Gaussian
mechanism are based on `1 and `2 sensitivity, respectively, and that
there is a

√
d-factor relationship between these two norms, in the worst

case.

manner.
We additionally give algorithms for learning mixtures

of any coverable class (Corollary VI.32). In particular,
this immediately implies algorithms for learning mix-
tures of Gaussians, product distributions, and all other
classes mentioned above.

To conclude our applications, we discuss a connection
to PAC learning (Corollary VI.34). It is known that the
sample complexity of differentially private distribution-
free PAC learning can be higher than that of non-
private learning. However, this gap does not exist for
distribution-specific learning, where the learning algo-
rithm knows the distribution of (unlabeled) examples,
as both sample complexities are characterized by VC
dimension. Private hypothesis selection allows us to
address an intermediate situation where the distribution
of unlabeled examples is not known exactly, but is known
to come (approximately) from a class of distributions.
When this class has a small cover, we are able to recover
sample complexity guarantees for private PAC learning
which are comparable to the non-private case.

B. Techniques

Non-privately, most algorithms for hypothesis selec-
tion involve a tournament-style approach. We conduct a
number of pairwise comparisons between distributions,
which may either have a winner and a loser, or may
be declared a draw. Intuitively, a distribution will be
declared the winner of a comparison if it is much closer
than the alternative to the unknown distribution, and a tie
will be declared if the two distributions are comparably
close. The algorithm will output any distribution which
never loses a comparison. A single comparison between
a pair of hypotheses requires O(1/α2) samples, and a
Chernoff plus union bound argument over the O(m2)
possible comparisons increases the sample complexity to
O(logm/α2). In fact, we can use uniform convergence
arguments to reduce this sample complexity to O(d/α2),
where d is the VC dimension of the 2

(
m
2

)
sets (the

“Scheffé” sets) defined by the subsets of the domain
where the PDF of one distribution dominates another.
Crucially, we must reuse the same set of samples for all
comparisons to avoid paying polynomially in the number
of hypotheses.

A private algorithm for this problem requires addi-
tional care. Since a single comparison is based on the
number of samples which fall into a particular subset
of the domain, the sensitivity of the underlying statistic
is low, and thus privacy may seem easily achievable
at first glance. However, the challenge comes from the
fact that the same samples are reused for all pair-
wise comparisons, thus greatly increasing the sensitivity:
changing a single datapoint could flip the result of every
comparison! In order to avoid this pitfall, we instead
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carefully construct a score function for each hypothesis,
namely, the minimum number of points that must be
changed to cause the distribution to lose any comparison.
For this to be a useful score function, we must show
that the best hypothesis will win all of its comparisons
by a large margin. We can then use the Exponential
Mechanism [20] to select a distribution with high score.

Further improvements can be made if we are guaran-
teed that the number of “good” hypotheses (i.e., those
that have total variation distance from the true distribu-
tion bounded by (3 + ζ)α) is at most some parameter k,
and if we are willing to relax to approximate differential
privacy. The parameter k here is related to the doubling
dimension of the hypothesis class with respect to total
variation distance. If we randomly assign the hypotheses
to Ω(k2) buckets, with high probability, no bucket will
contain more than one good hypothesis. We can identify
a bucket containing a good hypothesis using a similar
method based on the exponential mechanism as de-
scribed above. Moreover, since we are likely to only have
one “good” hypothesis in the chosen bucket, this implies
a significant gap between the best and second-best scores
in that bucket. This allows us to use stability-based
techniques [21], [22], and in particular the GAP-MAX
algorithm of Bun, Dwork, Rothblum, and Steinke [23],
to identify an accurate distribution.

C. Related Work
Our main result builds on a long line of work on

non-private hypothesis selection. One starting point for
the particular style of approach we consider here is [1],
which was expanded on in [2], [3], [4]. Since then, there
has been study into hypothesis selection under additional
considerations, including computational efficiency, un-
derstanding the optimal approximation factor, adversarial
robustness, and weakening access to the hypotheses [5],
[6], [7], [8], [9], [10], [11], [12]. Our private algorithm
examines the same type of problem, with the additional
constraint of differential privacy.

Perhaps the most closely related work is that of
Canonne, Kamath, McMillan, Smith, and Ullman [24],
which focuses on the case of private simple hypothesis
testing. This is a more restricted setting than we consider
in this paper, as it focuses on the case where we are
trying to decide between m = 2 hypotheses, and we
are guaranteed that the unknown distribution is one of
these two hypotheses. However, in this setting, they are
able to get an instance-by-instance characterization of the
sample complexity, depending on both the total variation
and Hellinger distance between the two distributions.

There has recently been a great deal of interest in
differentially private distribution learning. In the central
model, most relevant are [18], which gives algorithms
for learning structured univariate distributions, and [25],

[17], which focus on learning Gaussians and binary
product distributions. [26] also studies private statisti-
cal parameter estimation. Privately learning mixtures of
Gaussians was considered in [27], [28]. The latter paper
(which is concurrent with the present work) gives a
computationally efficient algorithm for the problem, but
with a worse sample complexity, and incomparable accu-
racy guarantees (they require a separation condition, and
perform clustering and parameter estimation, while we
do proper learning). [29] give an algorithm for learning
distributions in Kolmogorov distance. Upper and lower
bounds for learning the mean of a product distribution
over the hypercube in `∞-distance include [30], [31],
[13], [32]. [33] focuses on estimating properties of a dis-
tribution, rather than the distribution itself. [34] gives an
algorithm which allows one to estimate asymptotically
normal statistics with optimal convergence rates, but no
finite sample complexity guarantees. There has also been
a great deal of work on distribution learning in the local
model of differential privacy [35], [36], [37], [38], [39],
[40], [41], [42]. For further coverage of differentially
private statistics, see [43].

Non-privately, there has been a significant amount
of work on learning specific classes of distributions.
The PAC-style formulation of the problem we consider
originated in [44]. While learning Gaussians and product
distributions can be considered folklore at this point,
some of the other classes we learn have enjoyed more
recent study. For instance, learning sums of independent
random variables was recently considered in [6] toward
the problem of learning Poisson Binomial Distributions
(PBDs). Since then, there has been additional work on
learning PBDs and various generalizations [45], [46],
[47], [48], [49], [50].

Piecewise polynomials are a highly-expressive class
of distributions, and they can be used to approximate
a number of other univariate distribution classes, in-
cluding distributions which are multi-modal, concave,
convex, log-concave, monotone hazard rate, Gaussian,
Poisson, Binomial, and more. Algorithms for learning
such classes are considered in a number of papers,
including [51], [52], [53], [54], [19].

There has also been a great deal of work on learning
mixtures of distribution classes, particularly mixtures of
Gaussians. There are many ways the objective of such a
problem can be defined, including clustering [55], [56],
[57], [58], [59], [60], [61], [62], [63], [64], [65], [66],
[67], parameter estimation [68], [69], [70], [71], [72],
[73], [74], [75], [76], [77], [78], proper learning [79],
[80], [7], [8], [10], [81], and improper learning [52]. Our
work falls into the line on proper learning: the algorithm
is given a set of samples from a mixture of Gaussians,
and must output a mixture of Gaussians which is close
in total variation distance.
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1) Subsequent Work: Since the initial appearance of
this work, there have been several relevant results in
the surrounding area. Most pertinent is the work of
Aden-Ali, Ashtiani, and Kamath [82], which improves
our main hypothesis selection result by improving the
constant approximation factor, making the algorithm
agnostic, and having a simpler analysis, albeit at the cost
of increasing the running time from quadratic to cubic in
the number of hypotheses. The authors also argues that,
given a small cover for each distribution in the space,
there exists a cover which is locally-small everywhere as
required by Theorem IV.1, thus allowing them to learn
unbounded Gaussians with arbitrary covariances.

Our results and techniques have seen use for other
problems as well. Kamath, Singhal, and Ullman [83] use
a similar approach based on pairwise comparisons in
order to perform mean estimation, rather than our work
which focuses on density estimation. Liu et al. [84] use
our main algorithm to estimate discrete distributions in
a type of federated learning setting.

Hypothesis selection has since been studied in other
privacy models. Informally speaking, our work shows
that the sample complexity of hypothesis selection under
central differential privacy is O(logm). Gopi et al. [85]
study the problem under the stronger notion of local
differential privacy [86], [87], [88], showing that the
sample complexity is Θ̃(m), an exponential increase in
cost. Under various notions of pan-privacy [89] and the
shuffled model [90], [91], which are intermediate to local
and central differential privacy, the sample complexity of
m-wise simple hypothesis testing (the easier version of
hypothesis selection, where the unknown distribution is
equal to one of the given distributions) was shown to be
Θ̃(
√
m) [92].

D. Organization

We begin in Section II with preliminaries. In Sec-
tion III, we give a basic algorithm for private hypothesis
selection, via the exponential mechanism. In Section IV,
we extend this approach in two ways: by using VC
dimension arguments to reduce the sample complexity
for sets of hypotheses with additional structure, and
combining this with a GAP-MAX algorithm to achieve
non-trivial guarantees for infinite hypothesis classes.
Section V shows that our approach leads to algorithms
which essentially match lower bounds for most distri-
bution classes (in the constant α regime). We consider
applications in Section VI: through a combination of
arguments about covers and VC dimension, we derive
algorithms for learning a number of classes of distribu-
tions, as well as describe an application to private PAC
learning. Finally, we conclude in Section VII with open
questions.

II. PRELIMINARIES

We start with some preliminaries and definitions.

Definition II.1. The total variation distance or statistical
distance between P and Q is defined as

dTV(P,Q) = max
S⊆Ω

P (S)−Q(S)

=
1

2

∫
x∈Ω

|P (x)−Q(x)|dx

=
1

2
‖P −Q‖1 ∈ [0, 1].

Moreover, if H is a set of distributions over a common
domain, we define dTV(P,H) = infH∈H dTV(P,H).

Throughout this paper, we consider packings and
coverings of sets of distributions with respect to total
variation distance.

Definition II.2. A γ-cover of a set of distributions H is
a set of distributions Cγ , such that for every H ∈ H,
there exists some P ∈ Cγ such that dTV(P,H) ≤ γ.

A γ-packing of a set of distributions H is a set
of distributions Pγ ⊆ H, such that for every pair of
distributions P,Q ∈ Pγ , we have that dTV(P,Q) > γ.

In this paper, we present semi-agnostic learning algo-
rithms.

Definition II.3. An algorithm is said to be an α-semi-
agnostic learner for a classH if it has the following guar-
antees. Suppose we are given X1, . . . , Xn ∼ P , where
dTV(P,H) ≤ OPT. The algorithm must output some
distribution Ĥ such that dTV(P,H) ≤ c ·OPT +O(α),
for some constant c ≥ 1. If c = 1, then the algorithm is
said to be agnostic.

Now we define differential privacy. We say that D
and D′ are neighboring datasets, denoted D ∼ D′, if
D and D′ differ by at most one observation. Informally,
differential privacy requires that the algorithm has close
output distributions when run on any pair of neighboring
datasets. More formally:

Definition II.4 ([13]). A randomized algorithm T :
X∗ → R is (ε, δ)-differentially private if for all n ≥ 1,
for all neighboring datasets D,D′ ∈ Xn, and for all
events S ⊆ R,

Pr [T (D) ∈ S] ≤ eε Pr[T (D′) ∈ S] + δ .

If δ = 0, we say that T is ε-differentially private.

We will also use the related notion of concentrated
differential privacy:

Definition II.5 ([93], [94]). A randomized algorithm
T : X∗ → R satisfies ρ-zero-concentrated differential
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privacy if for all n ≥ 1, for all neighboring datasets
D,D′ ∈ Xn, and for all α ∈ (1,∞),

Rα(M(D)||M(D′)) ≤ ρα,

where Rα(M(D)||M(D′)) is the α-Rényi divergence
between M(D) and M(D′).3

The exponential mechanism [20] is a powerful ε-
differentially private mechanism for selecting an ap-
proximately best outcome from a set of alternatives,
where the quality of an outcome is measured by a
score function relating each alternative to the underlying
dataset. Letting R be the set of possible outcomes, a
score function q : X∗ × R → R maps each pair
consisting of a dataset and an outcome to a real-valued
score. The exponential mechanismME instantiated with
a dataset D, a score function q, and a privacy parameter ε
selects an outcome r in R with probability proportional
to exp (εq(D, r)/(2∆(q))), where ∆(q) is the sensitivity
of the score function defined as

∆(q) = max
r∈R,D∼D′

|q(D, r)− q(D′, r)| .

Theorem II.6 ([20]). For any input dataset D, score
function q and privacy parameter ε > 0, the exponential
mechanism ME(D, q, ε) is ε-differentially private, and
with probability at least 1−β, selects an outcome r ∈ R
such that

q(D, r) ≥ max
r′∈R

q(D, r′)− 2∆(q) log(|R|/β)

ε
.

III. A FIRST METHOD FOR PRIVATE HYPOTHESIS
SELECTION

In this section, we present our first algorithm for
private hypothesis selection and obtain the following
result.

Theorem I.1. Let H = {H1, . . . ,Hm} be a set of
probability distributions. Let D = {X1, . . . , Xn} be a
set of samples drawn independently from an unknown
probability distribution P . There exists an ε-differentially
private algorithm (with respect to the dataset D) which
has following guarantees. Suppose there exists a dis-
tribution H∗ ∈ H such that dTV(P,H∗) ≤ α. If
n = Ω

(
logm
α2 + logm

αε

)
, then the algorithm will output

a distribution Ĥ ∈ H such that dTV(P, Ĥ) ≤ (3 + ζ)α
with probability at least 9/10, for any constant ζ > 0.
The running time of the algorithm is O(nm2).

Note that the sample complexity bound above scales
logarithmically with the size of the hypothesis class. In
Section IV, we will provide a stronger result (which
subsumes the present one as a special case) that can

3Given two probability distributions P,Q over Ω, Rα(P ||Q) =
1

α−1
log
(∑

x∈Ω P (x)αQ(x)1−α).

handle certain infinite hypothesis classes. For sake of
exposition, we begin in this section with the basic
algorithm.

A. Pairwise Comparisons

We first present a subroutine which compares two
hypothesis distributions. This subroutine is due to
Daskalakis, Diakonikolas, and Servedio [6], and is es-
sentially a modification of previous methods (e.g., [4])
to allow for draws. Let H and H ′ be two distributions
over domain X and consider the following set, which is
called the Scheffé set:

W1 = {x ∈ X | H(x) > H ′(x)}

Define p1 = H(W1), p2 = H ′(W1), and τ = P (W1) to
be the probability masses that H , H ′, and P place on
W1, respectively. It follows that p1 > p2 and p1 − p2 =
dTV(H,H ′).4

Algorithm 1: PAIRWISE CONTEST:
PC(H,H ′, D, ζ, α)

Input: Two hypotheses H and H ′, input dataset
D of size n drawn i.i.d. from target distribution
P , approximation parameter ζ > 0, and
accuracy parameter α ∈ (0, 1).

Initialize: Compute the fraction of points that
fall into W1: τ̂ = 1

n |{x ∈ D | x ∈ W1}|.
If p1 − p2 ≤ (2 + ζ)α, return “Draw”.
Else If τ̂ > p1 − (1 + ζ/2)α, return H as the

winner.
Else If τ̂ < p2 + (1 + ζ/2)α, return H ′ as the

winner.
Else return “Draw”.

Now consider the function Γζ(H,H
′, D) of this ordered

pair of hypotheses, which is defined to be n if p1−p2 ≤
(2+ζ)α, and n·max{0, τ̂−(p2+(1+ζ/2)α)} otherwise.
When the two hypotheses are sufficiently far apart (i.e.,
dTV(H,H ′) > (2 + ζ)α), Γζ(H,H

′, D) is essentially
the number of points one needs to change in D to make
H ′ the winner.

Lemma III.1. Let P,H,H ′ be distributions as above.
With probability at least 1− 2 exp(−nζ2α2/8) over the
random draws of D from Pn, τ̂ satisfies |τ̂−τ | < ζα/4,
and if dTV(P,H) ≤ α, then Γζ(H,H

′, D) > ζαn/4.

Proof. By applying Hoeffding’s inequality, we know that
with probability at least 1−2 exp(−nζ2α2/8), |τ− τ̂ | <

4For simplicity of our exposition, we will assume that we can
evaluate the two quantities p1 and p2 exactly. In general, we can
estimate these quantities to arbitrary accuracy, as long as, for each
hypothesis H , we can evaluate the density of each point under H and
also draw samples from H .
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ζα/4. We condition on this event for the remainder of
the proof. Consider the following two cases. In the first
case, suppose that p1−p2 ≤ (2+ζ)α. Then we know that
Γζ(H,H

′, D) = n > αn. In the second case, suppose
that p1−p2 > (2+ζ)α. Since dTV(P,H) ≤ α, we know
that |p1 − τ | ≤ α, and so |p1 − τ̂ | < (1 + ζ/4)α. Since
p1 > p2+(2+ζ)α, we also have τ̂ > p2+(1+3ζ/4)α. It
follows that Γζ(H,H

′, D) = n(τ̂−(p2+(1+ζ/2)α)) >
ζαn/4.

B. Naı̈ve Approach via Laplace Mechanism

We first sketch a naı̈ve approach for private hypothesis
selection, based on the primitive in Algorithm 1. This is a
privatization of a similar approach which appeared in [7],
though the idea behind the approach is older, e.g., [4]
– the [7] approach differs slightly since it employs a
comparison procedure which allows ties, as we do. Later,
Lemma III.6 describes the approach and privatization
of [4] in more detail, which are morally equivalent to
what we discuss here.

A non-private algorithm for selection from m hypothe-
ses would run Algorithm 1 on each pair of hypotheses,
either outputting a winner between the two distributions,
or declaring a tie in the case when the total variation
distance between the two distributions is small. The
algorithm would output any distribution which never
loses a comparison. Correctness of this algorithm relies
on the empirical masses in all O(m2) Scheffé sets
being estimated up to an additive O(α), which, by
Hoeffding’s inequality, happens with constant probability
when n ≥ O

(
logm
α2

)
. Crucially, we reuse the same set

of samples for all comparisons. With this in hand, it is
not hard to show that a distribution H which is α-close
to P will never lose a comparison, and any distribution
H ′ which is cα-far from P (for an appropriately chosen
constant c > 1) will lose its comparison with H , thus
ensuring that the winning distribution will be cα-close
to P .

Now, we consider how to privatize this algorithm.
Each of the O(m2) comparisons is based on the quantity
τ̂ = 1

n |{x ∈ D | x ∈ W}|, where W is the Scheffé
set between the two distributions H and H ′. To make
a single comparison ε-differentially private, we would
have to add Laplace noise of order O

(
1
εn

)
to this

quantity. However, since we reuse the same set of
samples for all comparisons, in order to make the result
of all O(m2) comparisons ε-differentially private, the
basic composition property of differential privacy would
prescribe adding Laplace noise of order O

(
m2

εn

)
to the

quantity used in each comparison. To bound the noise
error of all comparisons simultaneously by O(α), we
thus require n ≥ O

(
m2 logm

αε

)
, and the rest of the

analysis is then identical to before.

A formalization of this argument allows us to arrive
at the following theorem. The accuracy bound is of
the appropriate form, but the cost of privacy is an
exponential increase in the sample complexity.

Theorem III.2. Let H = {H1, . . . ,Hm} be a set of
probability distributions. Let D = {X1, . . . , Xn} be a
set of samples drawn independently from an unknown
probability distribution P . There exists an ε-differentially
private algorithm (with respect to the dataset D) which
has following guarantees. Suppose there exists a distri-
bution H∗ ∈ H such that dTV(P,H∗) ≤ α. If n =

Ω
(

logm
α2 + m2 logm

αε

)
, then the algorithm will output a

distribution Ĥ ∈ H such that dTV(P, Ĥ) ≤ O(α)
with probability at least 9/10. The running time of the
algorithm is O(nm2).

C. Selection via Exponential Mechanism

In light of the definition of the pairwise comparison
defined above, we consider the following score function
S : H×Xn, such that for any Hj ∈ H and dataset D,

S(Hj , D) = min
Hk∈H

Γζ(Hj , Hk, D). (1)

Roughly speaking, S(Hj , D) is the minimum number
of points required to change in D in order for Hj to
lose at least one pairwise contest against a different
hypothesis. When the hypothesis Hj is very close to
every other distribution, such that all pairwise contests
return “Draw,” then the score will be n.

Algorithm 2: PRIVATE HYPOTHESIS SELEC-
TION: PHS(H, D, ε)
Input: Dataset D, a collection of hypotheses
H = {H1, . . . ,Hm}, privacy parameter ε.

Output a random hypothesis Ĥ ∈ H such that for
each Hj

Pr[Ĥ = Hj ] ∝ exp

(
S(Hj , D)

2ε

)
where S(Hj , D) is defined in (1).

Lemma III.3 (Privacy). For any ε > 0 and collection
of hypotheses H, the algorithm PHS(H, ·, ε) satisfies ε-
differential privacy.

Proof. First, observe that for any pairs of hypotheses
Hj , Hk, Γζ(Hj , Hk, ·) has sensitivity 1. As a result,
the score function S is also 1-sensitive. Then the re-
sult directly follows from the privacy guarantee of the
exponential mechanism (Theorem II.6).

Lemma III.4 (Utility). Fix any α, β ∈ (0, 1), and
ζ > 0. Suppose that there exists H∗ ∈ H such
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that dTV(P,H∗) ≤ α. Then with probability 1 − β
over the sample D and the algorithm PHS, we have
that PHS(H, D) outputs an hypothesis Ĥ such that
dTV(P, Ĥ) ≤ (3 + ζ)α, as long as the sample size
satisfies

n ≥ 8 ln(4m/β)

ζ2α2
+

8 ln(2m/β)

ζαε
.

Proof. First, consider the m pairwise contests between
H∗ and every candidate in H. Let Wj = {x ∈ X |
H∗(x) > Hj(x)} be the collection of Scheffé sets.
For any event W ⊆ X , let P̂ (W ) denote the empirical
probability of event W on the dataset D. By Lemma III.1
and an application of the union bound, we know that
with probability at least 1 − 2m exp(−nζ2α2/8) over
the draws of D, |P (Wj) − P̂ (Wj)| ≤ ζα/4 and
Γζ(H

∗, Hj , D) > ζαn/4 for all Hj ∈ H. In particular,
the latter event implies that S(H∗, D) > ζαn/4.

Next, by the utility guarantee of the exponential mech-
anism (Theorem II.6), we know that with probability at
least 1− β/2, the output hypothesis satisfies

S(Ĥ,D) ≥ S(H∗, D)− 2 ln(2m/β)

ε

> ζαn/4− 2 ln(2m/β)

ε
.

Then as long as n ≥ 8 ln(4m/β)
ζ2α2 + 8 ln(2m/β)

ζαε , we
know that with probability at least 1 − β, S(Ĥ,D) >
0. Let us condition on this event, which implies
that Γζ(Ĥ,H

∗, D) > 0. We will now show that
dTV(Ĥ,H∗) ≤ (2 + ζ)α, which directly implies that
dTV(Ĥ, P ) ≤ (3 + ζ)α by the triangle inequality. Sup-
pose to the contrary that dTV(Ĥ,H∗) > (2 + ζ)α. Then
by the definition of Γζ , P̂ (Ŵ) > H∗(Ŵ) + (1 + ζ/2)α,
where Ŵ = {x ∈ X | Ĥ(x) > H∗(x)}. Since
|P (Ŵ)− P̂ (Ŵ)| ≤ ζα/4, we have P (Ŵ) > H∗(Ŵ) +
(1 + ζ/4)α, which is a contradiction to the assumption
that dTV(P,H∗) ≤ α.

D. Obtaining a Semi-Agnostic Algorithm

Theorem I.1 shows that given a hypothesis class H
and samples from an unknown distribution P , we can
privately find a distribution Ĥ ∈ H with dTV(P, Ĥ) ≤
(3 + ζ)α provided that we know dTV(P,H) ≤ α. But
what if we are not promised that P is itself close to H?
We would like to design a private hypothesis selection
algorithm for the more general semi-agnostic setting,
where for any value of OPT := dTV(P,H), we are
able to privately identify a distribution Ĥ ∈ H with
dTV(P, Ĥ) ≤ c · OPT +α for some universal constant
c. Our goal will be to do this with sample complexity
which is still logarithmic in |H|.

Our strategy for handling this more general setting
is by a reduction to that of Theorem I.1. We run that

algorithm T = O(log(1/α)) times, doubling the choice
of α in each run and producing a sequence of candidate
hypotheses H1, . . . ,HT . By the guarantees of Theo-
rem I.1, there is some candidate Ht with dTV(P,Ht) ≤
2(3 + ζ) OPT. The remaining task is to approximately
select the best candidate from H1, . . . ,HT . This is
done by implementing a private version of the Scheffé
tournament which is itself semi-agnostic, but has a very
poor (quadratic) dependence on the number of candidates
T .

We prove the following result, which gives a semi-
agnostic learner whose sample complexity is comparable
to that of Theorem I.1.

Theorem III.5. Let α, β, ε ∈ (0, 1), and ζ > 0 be
a constant. Let H be a set of m distributions and
let P be a distribution with dTV(P,H) = OPT.
There is an ε-differentially private algorithm which
takes as input n samples from P and with probability
at least 1 − β, outputs a distribution Ĥ ∈ H with
dTV(P, Ĥ) ≤ 18(3 + ζ) OPT +α, as long as n ≥
O
(

log(m/β)+log log(1/α)
α2 + logm+log2(1/α)·(log(1/β)+log log(1/α))

αε

)
.

The running time of the algorithm is
O(m2n log(1/α) + n log2(1/α)).

As discussed above, the algorithm relies on the fol-
lowing variant with a much worse dependence on m.

Lemma III.6. Let α, β, ε ∈ (0, 1). There is an ε-
differentially private algorithm which takes as input n
samples from P and with probability at least 1 − β,
outputs a distribution Ĥ ∈ H with dTV(P, Ĥ) ≤
9 OPT +α, as long as

n ≥ O
(

log(m/β)

α2
+
m2 log(m/β)

αε

)
.

The running time of the algorithm is O(m2n).

Proof sketch.. We use a different variation of the Scheffé
tournament which appears in [4]. Non-privately, the
algorithm works as follows. For every pair of hypotheses
H,H ′ ∈ H with Scheffé set WH,H′ = {x ∈ X |
H(x) > H ′(x)}, let H(WH,H′), H ′(WH,H′), and
P (WH,H′) denote the probability masses of H,H ′, P
onWH,H′ , respectively. Moreover, let P̂ (WH,H′) denote
the fraction of points in the input sample D which
lie in WH,H′ . We declare H to be the winner of the
pairwise contest between H and H ′ if |H(WH,H′) −
P̂ (WH,H′)| < |H ′(WH,H′) − P̂ (WH,H′)|. Otherwise,
we declare H ′ to be the winner. The algorithm outputs
the hypothesis Ĥ which wins the most pairwise contests
(breaking ties arbitrarily).

To make this algorithm ε-differentially private, we
replace P̂ (WH,H′) in each pairwise contest with
the (ε/

(
m
2

)
)-differentially private estimate cH,H′ =
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P̂ (WH,H′) + Lap(
(
m
2

)
/εn). By the composition guar-

antees of differential privacy, the algorithm as a whole
is ε-differentially private.

The analysis of Devroye and Lugosi [4, Theorem 6.2]
shows that the (private) Scheffé tournament outputs a
hypothesis Ĥ with

dTV(Ĥ, P ) ≤ 9 OPT +16 max
H,H′∈H

|P (WH,H′)− cH,H′ | .

Fix an arbitrary pair H,H ′. A Chernoff bound shows
that |P (WH,H′)− P̂ (WH,H′)| ≤ α/32 with probability
at least 1 − β/(2m2) as long as n ≥ O(ln(m/β)/α2).
Moreover, properties of the Laplace distribution guar-
antee |cH,H′ − P̂ (WH,H′)| ≤ α/32 with probability at
least 1−β/(2m2) as long as n ≥ O(m2 log(m/β)/αε).
The triangle inequality and a union bound over all pairs
H,H ′ complete the proof.

Proof of Theorem III.5. We now combine the private
hypothesis selection algorithm of Theorem I.1 with the
expensive semi-agnostic learner of Lemma III.6 to prove
Theorem III.5. Define sequences α1 = α/126, α2 =
2α/126, . . . , αT = 2T−1α/126 and ε1 = ε/4, ε2 =
ε/8, . . . , εT = 2−(T+1)ε for T = dlog2(1/α)e + 1. For
each t = 1, . . . , T , let Ht denote the outcome of a run
of Algorithm 2 using accuracy parameter αt and privacy
parameter εt. Finally, use the algorithm of Lemma III.6
to select a hypothesis from H0, . . . ,HT using accuracy
parameter α and privacy parameter ε/2.

Privacy of this algorithm follows immediately from
composition of differential privacy. We now analyze its
sample complexity guarantee. By Lemma III.4, we have
that all T runs of Algorithm 2 succeed simultaneously
with probability at least 1 − β/2 as long as
n ≥ O

(
log(m/β)+log log(1/α)

α2 + log(m/β)+log log(1/α)
αε

)
.

Condition on this event occurring. Recall that success of
run t of Algorithm 2 means that if OPT ∈ (αt−1, αt],
then dTV(P,Ht) ≤ (3 + ζ)αt ≤ 2(3 + ζ) OPT.
Meanwhile, if OPT ≤ α1 = α/126, then we
have dTV(P,H1) ≤ α/18. Hence, regardless of
the value of OPT, there exists a run t such that
dTV(P,Ht) ≤ 2(3 + ζ) OPT +α/18. The algorithm of
Lemma III.6 is now, with probability at least 1 − β/2,
able to select a hypothesis Ĥ with dTV(P, Ĥ) ≤
9dTV(P,Ht)+α/2 ≤ 18(3+ζ) OPT +α as long as n ≥
O
(

log(1/β)+log log(1/α)
α2 + log2(1/α)·(log(1/β)+log log(1/α))

αε

)
.

This gives the asserted sample complexity
guarantee.

IV. AN ADVANCED METHOD FOR PRIVATE
HYPOTHESIS SELECTION

In Section III, we provided a simple algorithm whose
sample complexity grows logarithmically in the size
of the hypothesis class. We now demonstate that this

dependence can be improved and, indeed, we can handle
infinite hypothesis classes given that their VC dimension
is finite and that the cover has small doubling dimension.

To obtain this improved dependence on the hypothesis
class size, we must make two improvements to the
analysis and algorithm. First, rather than applying a
union bound over all the pairwise contests to analyse
the tournament, we use a uniform convergence bound in
terms of the VC dimension of the Scheffé sets. Second,
rather than use the exponential mechanism to select a
hypothesis, we use a “GAP-MAX” algorithm [23]. This
takes advantage of the fact that, in many cases, even for
infinite hypothesis classes, only a handful of hypotheses
will have high scores. The GAP-MAX algorithm need
only pay for the hypotheses that are close to optimal.
To exploit this, we must move to a relaxation of pure
differential privacy which is not subject to strong packing
lower bounds (as we describe in Section V). Specifically,
we consider approximate differential privacy, although
results with an improved dependence are also possible
under various variants of concentrated differential pri-
vacy [93], [94], [95], [23].

Theorem IV.1. Let H be a set of probability dis-
tributions on X . Let d be the VC dimension of the
set of functions fH,H′ : X → {0, 1} defined by
fH,H′(x) = 1 ⇐⇒ H(x) > H ′(x) where
H,H ′ ∈ H. There exists a (ε, δ)-differentially private
algorithm which has following guarantee. Let D =
{X1, . . . , Xn} be a set of private samples drawn inde-
pendently from an unknown probability distribution P .
Let k = |{H ∈ H : dTV(H,P ) ≤ 7α}|. Suppose there
exists a distribution H∗ ∈ H such that dTV(P,H∗) ≤ α.
If n = Ω

(
d+log(1/β)

α2 + log(k/β)+min{log |H|,log(1/δ)}
αε

)
,

then the algorithm will output a distribution Ĥ ∈ H such
that dTV(P, Ĥ) ≤ 7α with probability at least 1− β.

Alternatively, we can demand that the algorithm
be 1

2ε
2-concentrated differentially private if n =

Ω

(
d+log(1/β)

α2 +
log(k/β)+

√
log |H|

αε

)
.

Comparing Theorem IV.1 to Theorem I.1, we see that
the first (non-private) log |H| term is replaced by the
VC dimension d and the second (private) log |H| term
is replaced by log k + log(1/δ). Here k is a measure of
the “local” size of the hypothesis class H; its definition
is similar to that of the doubling dimension of the
hypothesis class under total variation distance.

We note that the log(1/δ) term could be large, as the
privacy failure probability δ should be cryptographically
small. Thus our result includes statements for pure differ-
ential privacy (by using the other term in the minimum
with δ = 0) and also concentrated differential privacy.
Note that, since d and log k can be upper-bounded
by O(log |H|), this result supercedes the guarantees of
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Theorem I.1.

A. VC Dimension

We begin by reviewing the definition of Vapnik-
Chervonenkis (VC) dimension and its properties.

Definition IV.2 (VC dimension [96]). Let F be a set
of functions f : X → {0, 1}. The VC dimension of
F is defined to be the largest d such that there exist
x1, · · · , xd ∈ X and f1, · · · , f2d ∈ H such that for all
1 ≤ i < j ≤ 2d there exists 1 ≤ k ≤ d such that
fi(xk) 6= fj(xk).

For our setting, we must extend the definition of VC
dimension from function families to hypothesis classes.

Definition IV.3 (VC dimension of hypothesis class). Let
H be a set of probability distributions on a space X .
For H,H ′ ∈ H, define fH,H′ : X → {0, 1} by f(x) =
1 ⇐⇒ H(x) > H ′(x). Define F(H) = {fH,H′ :
H,H ′ ∈ H}. We define the VC dimension of H to be
the VC dimension of F(H).5

The key property of VC dimension is the following
uniform convergence bound, which we use in place of a
union bound.

Theorem IV.4 (Uniform Convergence [97]). Let F be
a set of functions f : X → {0, 1} with VC dimension d.
Let P be a distribution on X . Then

PrD←Pn

[
sup
f∈F
|f(D)− f(P )| ≤ α

]
≥ 1− β

whenever n = Ω
(
d+log(1/β)

α2

)
. Here f(D) :=

1
n

∑
x∈D f(x) and f(P ) := EX←P [f(X)].

It is immediate from Definition IV.2 that V C(F) ≤
blog2 |F|c. Thus Theorem IV.4 subsumes the union
bound used in the proof of Theorem I.1.

The relevant application of uniform convergence for
our algorithm is the following lemma (roughly the equiv-
alent of Lemma III.1), which says that good hypotheses
have high scores, and bad hypotheses have low scores.

Lemma IV.5. Let H be a collection of probability
distributions on X with VC dimension d.

Let S : H×Xn → R be a score function similar to (1),
namely S(H,D) = infH′∈Hmax{|{x ∈ D : H(x) >
H ′(x)}| − n · (PrX←H′ [H(X) > H ′(X)] + 3α),

5Here, for simplicity, we assume that each distribution H is given by
a density function H(·). More generally, we define the VC dimension
of H to be the smallest d such that there exists a function family F ⊆
{0, 1}X of VC dimension d with the property that, for all H,H′ ∈ H
we have dTV(H,H′) = supf∈F EX←H [f(X)]− EX←H′ [f(X)],
where the supremum is over f measurable with respect to both H and
H′. We ignore this technicality throughout.

n · I[dTV(H,H ′) ≤ 6α]}, where I denotes the indicator
function.

Let P be a distribution on X . Let α, β > 0 and n ≥
O( 1

α2 (d+log(1/β))). Suppose there exists H∗ ∈ H with
dTV(P,H∗) ≤ α. Then, with probability at least 1 − β
over D ← Pn, we have
• S(H∗, D) > αn and
• S(H,D) = 0 for all H ∈ H with dTV(H,P ) > 7α.

Proof. For H,H ′ ∈ H, define fH,H′ : X → {0, 1}
by fH,H′(x) = 1 ⇐⇒ H(x) > H ′(x). Note that
|{x ∈ D : H(x) > H ′(x)}| =

∑
x∈D fH,H′(x) and

d is the VC dimension of the function class {fH,H′ :

H,H ′ ∈ H}. By Theorem IV.4, if n = Ω
(
d+log(1/β)

α2

)
,

then PrD←Pn [∀H,H ′ ∈ H ||{x ∈ D : H(x) >
H ′(x)}|−n ·PrX←P [H(X) > H ′(X)] | ≤ αn] ≥ 1−β
We condition on this event happening.

In order to prove the first conclusion – namely,
S(H∗, D) > αn – it remains to show that, for all
H ′ ∈ H, we have either dTV(H∗, H ′) ≤ 6α or |{x ∈
D : H(x) > H ′(x)}|−n·(PrX←H′ [H

∗(X) > H ′(X)]+
3α) > αn. If dTV(H∗, H ′) ≤ 6α, we are done, so as-
sume dTV(H∗, H ′) > 6α. By the uniform convergence
event we have conditioned on,

|{x ∈ D : H(x) > H ′(x)}|
≥ n · (PrX←P [H(X) > H ′(X)]− α)

≥ n · (PrX←H∗ [H(X) > H ′(X)]− dTV(P,H∗)− α)

≥ n · (dTV(H∗, H ′) + PrX←H′ [H(X) > H ′(X)]− 2α)

> n · (6α+ PrX←H′ [H(X) > H ′(X)]− 2α),

from which the desired conclusion follows.
In order to prove the second conclusion – namely,

S(H,D) = 0 for all H ∈ H with dTV(H,P ) > 7α
– it suffices to show that one H ′ ∈ H yields a score
of zero for any H ∈ H with dTV(H,P ) > 7α. In
particular, we show that H ′ = H∗ yields a score of
zero for any such H . That is, if dTV(H,P ) > 7α, then
dTV(H,H∗) > 6α and |{x ∈ D : H(x) > H∗(x)}|−n·
(PrX←H∗ [H(X) > H∗(X)] + 3α) ≤ 0. By the triangle
inequality dTV(H,H∗) ≥ dTV(H,P ) − dTV(P,H∗) >
7α− α = 6α, as required. By the uniform convergence
event we have conditioned on,

|{x ∈ D : H(x) > H∗(x)}|
≤ n · (PrX←P [H(X) > H∗(X)] + α)

≤ n · (PrX←H∗ [H(X) > H∗(X)] + dTV(P,H∗) + α)

≤ n · (PrX←H∗ [H(X) > H∗(X)] + 2α),

which completes the proof.

B. GAP-MAX Algorithm

In place of the exponential mechanism for privately
selecting a hypothesis we use the following algorithm
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that works under a “gap” assumption. That is, we assume
that there is a 5αn gap between the highest score and the
(k + 1)-th highest score. Rather than paying in sample
complexity for the total number of hypotheses we pay
for the number of high-scoring hypotheses k.

This algorithm is based on the GAP-MAX algorithm
of Bun, Dwork, Rothblum, and Steinke [23]. However,
we combine their GAP-MAX algorithm with the expo-
nential mechanism to improve the dependence on the
parameter k.

Theorem IV.6. Let H and X be arbitrary sets. Let S :
H × Xn → R have sensitivity at most 1 in its second
argument – that is, for all H ∈ H and all D,D′ ∈ Xn
differing in a single example, |S(H,D)−S(H,D′)| ≤ 1.

For D ∈ Xn and α > 0, define K(D, 5α) :=
|{H ∈ H : S(H,D) ≥ supH′∈H S(H ′, D)− 5αn}|.

Given parameters ε, δ, β > 0 and n, k ≥ 1, there
exists a (ε, δ)-differentially private randomized algo-
rithm M : Xn → H such that, for all D ∈
Xn and all α > 0, K(D, 5α) ≤ k =⇒
Pr[S(M(D), D) ≥ supH′∈H S(H ′, D)− αn] ≥ 1 − β

provided n = Ω
(

min{log |H|,log(1/δ)}+log(k/β)
αε

)
.

Furthermore, given ε, β > 0 and n, k ≥ 1,
there exists a 1

2ε
2-concentrated differentially private

[94] algorithm M : Xn → H such that, for all
D ∈ Xn and all α > 0, K(D, 5α) ≤ k =⇒
Pr[S(M(D), D) ≥ supH′∈H S(H ′, D)− αn] ≥ 1 − β

provided n = Ω

(√
log |H|+log(k/β)

αε

)
.

Proof. We begin by describing the algorithm.

1) Let m =
⌈
k2

β

⌉
and let G : H → [m] be a uniformly

random function.6

2) Randomly select B ∈ [m] with Pr[B = b] ∝
exp

(
ε
4 sup {S(H,D) : H ∈ H, G(H) = b}

)
.

3) Define HB = {H ∈ H : G(H) = B}.
Let H1

B = argmaxH∈HB S(H,D) and H2
B =

argmaxH∈HB\{H1
B}
S(H,D), breaking ties arbi-

trarily. (That is, HB is the B-th “bin” and H1
B

and H2
B are the items in this bin with the largest

and second-largest scores respectively.) Define S′B :
HB ×Xn → R by

S′B(H,D) =
1

2
max{0, S(H,D)− S(H2

B , D)}.

(Note that S′B has sensitivity 1 and S′B(H,D) = 0
whenever H 6= H1

B .)
4) Let D be a distribution on R such that adding

a sample from D to a sensitivity-1 function pro-
vides (ε/4, δ/2)-differential privacy (or, respec-
tively, 1

6ε
2-concentrated differential privacy). For

6It suffices for G to be a drawn from a universal hash function
family.

example, D could be a Laplace distribution with
scale 4/ε truncated to the interval [−t, t] for t =
4(1 + log(1/δ))/ε (or unbounded if δ = 0). To
attain concentrated differential privacy, we can set
D = N

(
0, 3

ε2

)
, a centered Gaussian with variance

3/ε2.
5) Draw a sample ZH i.i.d. from D corresponding to

every H ∈ HB .
6) Return H∗ = argmaxH∈HB S

′
B(H,D) + ZH .

The selection of B is an instantiation of the exponential
mechanism [20] and is (ε/2, 0)-differentially private.
The selection of H∗ in the final step is a GAP-MAX
algorithm [23] and is (ε/2, δ)-differentially private. By
composition, the entire algorithm is (ε, δ)-differentially
private (or, respectively, 1

2ε
2-concentrated differentially

private).
For the utility analysis, in order for the algorithm to

output a good H∗, it suffices for the following three
events to occur.

• S(H1
B , D) ≥ supH′∈H S(H ′, D)− αn.

That is, restricting the search to HB , rather than all
of H, only reduces the score of the optimal choice
by αn. The exponential mechanism ensures that this
happens with probability at least 1 − β/4, as long
as n ≥ 4 log(2k/β)

εα .
• S(H2

B , D) < supH′∈H S(H ′, D)− 5αn.
That is, the second-highest score within HB is at
least 5αn less than the highest score overall. We
have assumed that there are at most k elements H ∈
H such that S(H,D) ≥ supH′∈H S(H ′, D)−5αn.
Call these “large elements.” Since G : H → [m]
is random and m ≥ k2/β, the probability that an
arbitrary but fixed pair of large elements collide –
that is, are in the same HB is 1/m ≤ β/k2. If
we union bound over the

(
k
2

)
< k2/2 pairs, we

see that the probability of any collisions is at most
β/2. Thus, the probability that more than one large
element satisfies G(H) = B is at most β/2. This
suffices for the event to occur.

• supH∈HB |ZH | ≤ αn.
If the noise distribution D is supported on
[−αn, αn], then this condition holds with prob-
ability 1. For the truncated Laplace distribution,
this is possible whenever n ≥ 1 + 4 log(1/δ)/αε.
Alternatively, we can use unbounded Laplace noise
and a union bound to show that this event oc-
curs with probability at least 1 − β/4 whenever
n ≥ 4 log(4|HB |/β)/εα. For Gaussian noise, n ≥
3
εα

√
log(4|HB |/β) suffices.

Assuming the first and second events occur, we have
S′B(H1

B , D) =
S(H1

B ,D)−S(H2
B ,D)

2 > 2αn. Given this,
the third event implies H∗ = H1

B . Finally, the first event
then implies S(H∗, D) ≥ supH′∈H S(H ′, D) − αn, as



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

required. A union bound over the three events completes
the proof.

Now we can combine the VC-based uniform conver-
gence bound with the GAP-MAX algorithm to prove our
result.

Proof of Theorem IV.1. By Lemma IV.5, with high
probability over the draw of the dataset D, our score
function satisfies supH∈H S(H,D) ≥ S(H∗, D) > αn
and S(H,D) = 0 whenever dTV(H,P ) > 7α. This
requires n = Ω(d/α2).

Note that the score function S has sensitivity-1, since
it is the supremum of counts. Conditioned on the uniform
convergence event, the maximum score is at least αn and
there are at most k elements of H with score greater
than 0. Thus we can apply the GAP-MAX algorithm
of Theorem IV.6. If n = Ω((min{log |H|, log(1/δ)} +
log(k))/αε), then with high probability, the algorithm
outputs Ĥ ∈ H with score at least 4

5αn, as required.

V. PACKINGS, LOWER BOUNDS, AND RELATIONS TO
COVERS

In this section, we show that the sample complexity
of our algorithms for private hypothesis selection with
pure differential privacy cannot be improved, at least for
constant values of the proximity parameter α. We first
apply a packing argument [98], [99] to show a lower
bound which is logarithmic in the packing number of
the class of distributions (Lemma V.1). We then state a
folklore relationship between the sizes of maximal pack-
ings and minimal covers (Lemma V.2), which shows that
instantiating our private hypothesis selection algorithm
with a minimal cover gives essentially optimal sample
complexity (Theorem V.3).

Lemma V.1. Suppose there exists an α-packing Pα of a
set of distributions H. Then any ε-differentially private
algorithm which takes as input samples X1, . . . , Xn ∼
P for some P ∈ H and produces a distribution Ĥ such
that dTV(P, Ĥ) ≤ α/2 with probability ≥ 9/10 requires

n = Ω

(
log |Pα|

ε

)
.

One might conjecture a stronger version of this
lemma exists, and that one could prove the lower bound
n = Ω

(
log |Pα|
αε

)
. However, such a statement cannot be

true in general. For example, consider an α-packing of
N(µ, 1) where µ ∈ [−R,R], which would have size
Ω(R/α). If such a lemma were true, it would imply
a lower bound of Ω̃

(
logR
αε

)
, which contradicts known

upper bounds. One way to prove a lower bound achiev-
ing such a dependence on α would be to have a single
“central” distribution which is close to all distributions
in the packing (see an argument of this sort in Theorem

5.13 of [100]). However, we do not explore this here, as
our goal is to match our upper bound which is stated in
terms of a generic cover.

Proof. Let M be a ε-differentially private algorithm with
the stated accuracy requirement, and denote by M(Pn)
the distribution on hypotheses obtained by running M
on n i.i.d. samples from a distribution P ∈ H. For
each P ∈ Pα, let BP denote the set of distribu-
tions which are at total variation distance at most α/2
from P . Then the accuracy requirement implies that
PrĤ←M(Pn)

[
Ĥ ∈ BP

]
≥ 9/10 for all P ∈ H. Let

P0 ∈ Pα be an arbitrary packing element. Note that, triv-
ially, samples from Pn and Pn0 have Hamming distance
at most n for any P . Recall the group privacy property of
differential privacy, which states that if M is ε-DP, then
Pr[M(X) ∈ S] ≤ exp (εd(X,X ′)) · Pr[M(X ′) ∈ S]
for any set S ⊆ Range(M), where d(X,X ′) is the
Hamming distance between the two datasets. Applying
this property with Pn and Pn0 , we have

PrĤ←M(Pn0 )

[
Ĥ ∈ BP

]
≥ e−εn · 9/10

for every P ∈ Pα. The fact that Pα is an α-packing
implies that the sets BP are all disjoint, and hence

1 ≥
∑
P∈Pα

PrĤ←M(Pn0 )

[
Ĥ ∈ BP

]
≥ |Pα| · e−εn · 9/10.

Rearranging gives us the stated lower bound on n.

The following lemma is a well-known folklore re-
lationship between packing and covering numbers. We
include a proof for completeness.

Lemma V.2. For a set of distributions H, let pα and cα
be the size of the largest α-packing and smallest α-cover
of H, respectively. Then

p2α ≤ cα ≤ pα.

Proof. We first prove the inequality on the left. Let Cα
be a cover of H of minimal size cα. If cα =∞, we are
done. Otherwise, let S ⊆ H be any set of distributions
of size at least cα+1. By the pigeonhole principle, there
exists P ∈ Cα and two distinct distributions Q,Q′ ∈ S
such that dTV(P,Q) ≤ α and dTV(P,Q′) ≤ α. Hence
dTV(Q,Q′) ≤ 2α by the triangle inequality, so S cannot
be (2α)-packing of H. This suffices to show that p2α ≤
cα.

Next, we prove the inequality on the right. Let Pα be
a maximal α-packing with size |Pα| = pα. If pα = ∞,
we are done. Otherwise, we claim that Pα is also an
α-cover of H, and hence cα ≤ |Pα| = pα. To see this,
suppose for the sake of contradiction that there were a
distribution P ∈ H with dTV(P,Pα) > α. Then we
could add P to Pα to produce a strictly larger packing,
contradicting the maximality of Pα.
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Theorem V.3. Let H be a set of distributions, and let n∗α
denote the minimum number of samples such that there
exists an ε-differentially private algorithm which takes as
input samples X1, . . . , Xn∗α ∼ P for an arbitrary P ∈ H
and outputs a distribution Ĥ such that dTV(P, Ĥ) ≤
α/2 with probability ≥ 9/10. Then there exists a cover of
H such that the instantiation of the algorithm underlying
Theorem I.1 with this cover takes as input n = Ω(n∗α ·
(ε/α2 + 1/α)) samples from an arbitrary P ∈ H and
outputs a Ĥ such that dTV(P, Ĥ) ≤ (6 + 2ζ)α with
probability ≥ 9/10 for any constant ζ > 0.

Proof. Let pα denote the size of the largest α-packing
of H. By Lemma V.1, we have n∗α = Ω(log pα/ε). On
the other hand, by Lemma V.2, we know that there exists
an α-cover Cα of H with |Cα| ≤ pα. Hence log |Cα| ≤
O(ε ·n∗α) and the asserted sample complexity guarantee
follows from Corollary I.2.

VI. APPLICATIONS OF HYPOTHESIS SELECTION

In this section, we give a number of applications
of Theorem I.1, primarily to obtain sample complexity
bounds for learning a number of distribution classes of
interest. Recall Corollary I.2, which is an immediate
corollary of Theorem I.1. This indicates that we can
privately semi-agnostically learn a class of distributions
with a number of samples proportional to the logarithm
of its covering number.

Corollary I.2. Suppose there exists an α-cover Cα of a
set of distributionsH, and that we are given a set of sam-
ples X1, . . . , Xn ∼ P , where dTV(P,H) ≤ α. For any
constant ζ > 0, there exists an ε-differentially private al-
gorithm (with respect to the input {X1, . . . , Xn}) which
outputs a distribution H∗ ∈ Cα such that dTV(P,H∗) ≤
(6 + 2ζ)α with probability ≥ 9/10, as long as

n = Ω

(
log |Cα|
α2

+
log |Cα|
αε

)
.

Note that the factor of (6+2ζ)α in the corollary state-
ment (versus (3 + ζ)α in the statement of Theorem I.1)
is due to the fact the algorithm is semi-agnostic, and the
closest element in the cover is 2α-close to P , rather than
just α-close.

We instantiate this result to give the sample complex-
ity results for semi-agnostically learning product dis-
tributions (Section VI-A), Gaussian distributions (Sec-
tion VI-B), sums of some independent random variable
classes (Section VI-C), piecewise polynomials (Sec-
tion VI-D), and mixtures (Section VI-E). Furthermore,
we mention an application to private PAC learning (Sec-
tion VI-F), when the distribution of unlabeled examples
is known to come from some hypothesis class.

A. Product Distributions

As a first application, we first give an ε-differentially
private algorithm for learning product distributions over
discrete alphabets.

Definition VI.1. A (k, d)-product distribution is a dis-
tribution over [k]d, such that its marginal distributions
are independent (i.e., the distribution is the product of
its marginals).

We start by constructing a cover for product distribu-
tions.

Lemma VI.2. There exists an α-cover of the set of
(k, d)-product distributions of size

O

(
kd

α

)d(k−1)

.

Proof. Consider some fixed product distribution P , with
marginal distributions (P1, . . . , Pd). We will construct
a cover that contains a distribution Q (with marginals
(Q1, . . . , Qd)) that is α-close in total variation distance.

First, by triangle inequality, we have that
dTV(P,Q) ≤

∑d
i=1 dTV(Pi, Qi), so it suffices to

approximate each marginal distribution to accuracy
α/d. Stated another way, we must generate an (α/d)-
cover of distributions over [k], and we can then take
its d-wise Cartesian product. Raising the size of this
underlying cover to the power d gives us the size of the
overall cover.

To (α/d)-cover a distribution over [k], we will addi-
tively grid the probability of each symbol at granularity
Θ
(
α
kd

)
, choosing the probability of the last symbol k

such that the sum is normalized. This will incur Θ
(
α
kd

)
error per symbol (besides for symbol k), and summing
over the k− 1 symbols accumulates error Θ

(
α
d

)
. It can

also be argued that the error on symbol k is O
(
α
d

)
–

with an appropriate choice of granularity, this gives us
an (α/d)-cover for distributions over [k]. The size of
this cover is O

(
kd
α

)k−1
, which allows us to conclude

the lemma statement.

With this cover in hand, applying Corollary I.2 allows
us to conclude the following sample complexity upper
bound.

Corollary VI.3. Suppose we are given a set of samples
X1, . . . , Xn ∼ P , where P is α-close to a (k, d)-product
distribution. Then for any constant ζ > 0, there exists an
ε-differentially private algorithm which outputs a (k, d)-
product distribution H∗ such that dTV(P,H∗) ≤ (6 +
2ζ)α with probability ≥ 9/10, so long as

n = Ω

(
kd log

(
kd

α

)(
1

α2
+

1

αε

))
.
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This gives the first Õ(d) sample algorithm for learning
a binary product distribution in total variation distance
under pure differential privacy, improving upon the work
of Kamath, Li, Singhal, and Ullman [17] by strengthen-
ing the privacy guarantee at a minimal cost in the sample
complexity. The natural way to adapt their result from
concentrated to pure differential privacy would require
Ω(d3/2) samples.

Remark VI.4. Properly learning a product distribution
over {0, 1}d to total variation distance ≤ 1

2 implies
learning its mean µ ∈ [0, 1]d up to `1 error ≤ 2

√
d;

see Lemma VI.5 below.
Thus Corollary VI.3 implies a ε-differentially pri-

vate algorithm which takes n = Õ(d/ε) samples from
a product distribution P on {0, 1}d and, with high
probability, outputs an estimate µ̂ of its mean µ with
‖µ̂− µ‖1 ≤ 2

√
d.

In contrast, for non-product distributions over the
hypercube, estimating the mean to the same accuracy
under ε-differential privacy requires n = Ω(d3/2/ε)
samples [98], [101]. Thus we have a polynomial sep-
aration between estimating product and non-product
distributions under pure differential privacy.

Lemma VI.5. If P and Q are product distributions on
Rd with dTV(P,Q) ≤ 1

2 and per-coordinate variance at
most σ2, then

‖EX←P [X]− EX←Q[X]‖1 ≤ 4
√
dσ2.

Proof. Let µ = EX←P [X] ∈ Rd and
µ′ = EX←Q[X] ∈ Rd. Let τ = ‖µ − µ′‖1.
Let ν = sign(µ − µ′) ∈ {−1,+1}d so that
〈ν, µ − µ′〉 = τ . We have 1

2 ≥ dTV(P,Q) ≥
PrX←P [〈ν,X〉 ≥ t] − PrX←Q[〈ν,X〉 ≥ t] =
PrX←P [〈ν,X − µ〉 ≥ t− 〈ν, µ〉] −
PrX←Q[〈ν,X − µ′〉 ≥ t− 〈ν, µ〉+ 〈ν, µ− µ′〉].
We set t = 〈ν, µ〉 − τ

2 , and this is
equal to PrX←P

[
〈ν,X − µ〉 ≥ − τ2

]
−

PrX←Q
[
〈ν,X − µ′〉 ≥ + τ

2

]
. Chebyshev’s inequality

implies that this is ≥ 1 − EX←P[〈ν,X−µ〉2]
(τ/2)2 −

EX←Q[〈ν,X−µ′〉2]
(τ/2)2 = 1− 4

τ2

∑d
i=1 EX←P

[
(Xi − µi)2

]
+

EX←Q
[
(Xi − µ′i)2

]
≥ 1 − 8dσ2

τ2 . Rearranging yields
τ ≤ 4

√
dσ2, as required.

B. Gaussian Distributions

We next give private algorithms for learning Gaussian
distributions.

Definition VI.6. A Gaussian distribution N (µ,Σ) in Rd
is a distribution with PDF

p(x) =
exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)√

(2π)d|Σ|
.

We describe covers for Gaussian distributions with
known and unknown covariance.

Lemma VI.7. There exists an α-cover of the set of
Gaussian distributions N (µ, I) in d dimensions with
‖µ‖2 ≤ R of size

O

(
dR

α

)d
.

Proof. It is well-known that estimating a Gaussian dis-
tribution with unknown mean in total variation dis-
tance corresponds to estimating µ in `2-distance (see,
e.g., [10]). By the triangle inequality, in order to α-cover
the space, it suffices to (α/d)-cover each standard basis
direction. Since we know the mean in each direction is
bounded by R, a simple additive grid in each direction
with granularity Θ

(
α
d

)
will suffice, resulting in a cover

for each direction of size O
(
dR
α

)
. Taking the Cartesian

product over d dimensions gives the desired result.

Lemma VI.8. There exists an α-cover of the set of
Gaussian distributions N (µ,Σ) in d-dimensions with
‖µ‖2 ≤ R and I � Σ � κI of size

O

(
dR

α

)d
·O
(
dκ

α

)d(d+1)/2

.

Proof. The former term is obtained similarly to the
expression in Lemma VI.7. Since I � Σ, we can still
bound the total variation contribution by the `2-distance
between the mean vectors. We thus turn our attention
to the latter term. To construct our cover, we must
argue about the total variation distance between N (0,Σ)
and N (0, Σ̂). If |Σ(i, j) − Σ̂(i, j)| ≤ γ, and I � Σ,
Proposition 32 of [102] implies:

dTV(N (0,Σ),N (0, Σ̂)) ≤ O(dγ).

We will thus perform a gridding, in order to approximate
each entry of Σ to an additive O(γ) = O(α/d). How-
ever, in order to ensure that the resulting matrix is PSD,
we grid over entries of Σ̂’s Cholesky decomposition,
rather than grid for Σ̂ itself. Since the largest element of
Σ is bounded by κ, the larest element of its Cholesky
decomposition must be bounded by

√
κ. An additive

grid over the range [0,
√
κ] with granularity O(γ/

√
κ)

suffices to get Σ̂ which bounds the entrywise distance
as O(γ). This requires O(dκ/α) candidates per entry,
and we take the Cartesian product over all d(d + 1)/2
entries of the Cholesky decomposition, giving the desired
result.

In addition, we can obtain bounds of the VC dimen-
sion of the Scheffé sets of Gaussian distributions.

Lemma VI.9. The set of Gaussian distributions with
fixed variance – i.e., all N (µ, I) with µ ∈ Rd – has VC
dimension d+1. Furthermore, the set of Gaussians with
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unknown variance – i.e., all N (µ,Σ) with µ ∈ Rd and
Σ ∈ Rd×d positive definite – has VC dimension O(d2).

Proof. For Gaussians with fixed variance, the Scheffé
sets correspond to linear threshold functions, which
have VC dimension d + 1. For Gaussians with un-
known variance, the Scheffé sets correspond to quadratic
threshold functions, which have VC dimension

(
d+2

2

)
=

O(d2) [103].

Combining the covers of Lemmas VI.7 and VI.8 and
the VC bound of Lemma VI.9 with Theorem IV.1 implies
the following corollaries for Gaussian estimation.

Corollary VI.10. Suppose we are given a set of samples
X1, . . . , Xn ∼ P , where P is α-close to a Gaussian dis-
tribution N (µ, I) in d-dimensions with ‖µ‖ ≤ R. Then
for any constant ζ > 0, there exists an ε-differentially
private algorithm which outputs a Gaussian distribution
H∗ such that dTV(P,H∗) ≤ (6 + 2ζ)α with probability
≥ 9/10, so long as

n = Ω

(
d

α2
+

d

αε
log

(
dR

α

))
.

Corollary VI.11. Suppose we are given a set of samples
X1, . . . , Xn ∼ P , where P is α-close to a Gaussian
distribution N (µ,Σ) in d-dimensions with ‖µ‖ ≤ R
and I � Σ � κI . Then for any constant ζ > 0, there
exists an ε-differentially private algorithm which outputs
a Gaussian distribution H∗ such that dTV(P,H∗) ≤
(6 + 2ζ)α with probability ≥ 9/10, so long as

n = Ω

(
d2

α2
+

1

αε

(
d log

(
dR

α

)
+ d2 log

(
dκ

α

)))
.

Similar to the product distribution case, these are the
first Õ(d) and Õ(d2) sample algorithms for learning
Gaussians total variation distance under pure differential
privacy, improving upon the concentrated differential
privacy results of Kamath, Li, Singhal, and Ullman [17].

1) Gaussians with Unbounded Mean: Extending
Corollary VI.10, we consider multivariate Gaussian hy-
potheses with known covariance and unknown mean,
without assuming bound on the mean (the parameter R
in the discussion above). To handle the unbounded mean
we must relax to approximate differential privacy.

In place of Lemma VI.7, we construct a locally small
cover:

Lemma VI.12. For any d ∈ N and α ∈ (0, 1/30], there
exists an α-cover Cα of the set of Gaussian distributions
N (µ, I) in d dimensions satisfying

∀µ ∈ Rd |{H ∈ Cα : dTV(H,N (µ, I)) ≤ 7α}| ≤ 215d.

Proof. For µ, µ′ ∈ Rd, we have

dTV(N (µ, I),N (µ′, I))

= 2Pr

[
N (0, 1) ∈

[
0,

1

2
‖µ− µ′‖2

]]
=

√
2

π

∫ 1
2‖µ−µ

′‖2

0

e−x
2/2dx

≤ ‖µ− µ
′‖2√

2π
.

Furthermore, for any c > 0, dTV(N (µ, I),N (µ′, I)) ≥
‖µ−µ′‖2√

2π
· e−c2/2 if 1

2‖µ− µ
′‖2 ≤ c

c·e−c
2/2

√
2π

if 1
2‖µ− µ

′‖2 ≥ c
.

Let Cα =

{
N

(
m · α

√
8π√
d
, I

)
: m ∈ Zd

}
.

Fix µ ∈ Rd. Let µ∗ = µ
√
d

α
√

8π
∈ Rd and let m ∈ Zd

be µ∗ rounded to the nearest integer coordinate-wise, so
that ‖m− µ∗‖∞ ≤ 1

2 . Then

dTV

(
N (µ, I),N

(
m · α

√
8π√
d
, I

))

= dTV

(
N

(
µ∗ · α

√
8π√
d
, I

)
,N

(
m · α

√
8π√
d
, I

))

≤ 1√
2π

α
√

8π√
d
‖µ∗ −m‖2

≤ α,

since ‖µ∗ −m‖2 ≤
√
d‖µ∗ −m‖∞ ≤

√
d

2 . This proves
that Cα is a α-cover of {N (µ, I) : µ ∈ Rd}.

It remains to show that the cover is “locally small”.
Let m′ ∈ Zd. Then

dTV

(
N (µ, I),N

(
m′ · α

√
8π√
d
, I

))

= dTV

(
N

(
µ∗ · α

√
8π√
d
, I

)
,N

(
m′ · α

√
8π√
d
, I

))

≥ c · e−c2/2√
2π

if
1

2
‖µ∗ −m′‖2

α
√

8π√
d
≥ c

> 7α if ‖µ∗ −m′‖2 ≥ 30

√
d√

2π
,

where the final inequality follows by setting c = 30α ≤
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1. Thus

|{H ∈ Cα : dTV(H,N (µ, I)) ≤ 7α}|

≤

∣∣∣∣∣
{
m′ ∈ Zd : ‖µ∗ −m′‖2 < 30

√
d√

2π

}∣∣∣∣∣
≤

∣∣∣∣∣
{
m′ ∈ Zd : ‖m−m′‖2 < 30

√
d√

2π
+ ‖µ∗ −m′‖2

}∣∣∣∣∣
≤
∣∣∣{m′ ∈ Zd : ‖m−m′‖2 < 13

√
d
}∣∣∣

≤
∣∣{w ∈ Zd : ‖w‖1 < 13d

}∣∣ .
Now we note that any w ∈ Zd with ‖w‖1 ≤ r
can be written as w = x − y where x, y ∈ Zd
with

∑d
i=1 xi + yi = r and, for all i ∈ [d], we

have xi ≥ 0 and yi ≥ 0. Instead of counting these
w vectors, we can count such (x, y) vector pairs.
We can interpret a pair of x, y vectors as a way of
putting r balls into 2d bins or r “stars” and 2d − 1
“bars”. We can thus count

∣∣{w ∈ Zd : ‖w‖1 < 13d
}∣∣ ≤∣∣{x, y ∈ Zd : ‖x‖1 + ‖y‖2 = 13d− 1, x ≥ 0, y ≥ 0
}∣∣ ≤(

15d−2
2d−1

)
≤ 215d.

Applying Theorem IV.1 with the cover of Lemma
VI.12 and the VC bound from Lemma VI.9 now yields
an algorithm.

Corollary VI.13. Suppose we are given a set of samples
X1, . . . , Xn ∼ P , where P is a spherical Gaussian
distribution N (µ, I) in d-dimensions. Then there ex-
ists a (ε, δ)-differentially private algorithm which out-
puts a spherical Gaussian distribution H∗ such that
dTV(P,H∗) ≤ 7α with probability ≥ 1 − 2−d, so long
as

n = Ω

(
d

α2
+
d+ log(1/δ)

αε

)
.

Karwa and Vadhan [25] give an algorithm for estimat-
ing a univariate Gaussian with unbounded mean. One
can consider applying their algorithm independently to
the d coordinates (which is done in [17]), giving a sam-
ple complexity bound of Õ

(
d
α2 + d

αε +
√
d log3/2(1/δ)

ε

)
,

which our bound dominates except for very small values
of α.

2) Univariate Gaussians with Unbounded Mean and
Variance: Our methods also allow us to derive learning
algorithms for univariate Gaussians with unknown mean
and variance.

Lemma VI.14. For all α less then some absolute
constant, there exists an α-cover Cα of the set of
univariate Gaussian distributions satisfying ∀µ, σ ∈
R

∣∣{H ∈ Cα : dTV(H,N (µ, σ2)) ≤ 7α
}∣∣ ≤ O(1).

Proof. For all µ, µ̃ ∈ R and all σ, σ̃ > 0, we have [104,
Thm 1.3] 1

200 min
{

1,max
{
|σ̃2−σ2|
σ̃2 , 40|µ̃−µ|

σ̃

}}
≤

dTV(N (µ, σ2),N (µ̃, σ̃2)) ≤ 3|σ̃2−σ2|
2σ̃2 + |µ̃−µ|

2σ̃ . Let β =
α and γ = log(1 + α/2). Define the set of distributions

Cα =
{
N
(
βeγnm, e2γn

)
: n,m ∈ Z

}
.

We first show that Cα is an α-cover: Let µ ∈ R and
σ > 0. Let n =

[
log σ
γ

]
and m =

[
µ

βeγn

]
, where [x]

denotes the nearest integer to x, satisfying |x− [x]| ≤ 1
2 .

Let σ̃ = eγn and µ̃ = βeγnm so that e−γ ≤ σ̃2

σ2 ≤ eγ

and |µ − µ̃| ≤ 1
2βe

γn = 1
2βσ̃. Thus N (µ̃, σ̃2) ∈ Cα

and dTV(N (µ, σ2),N (µ̃, σ̃2)) ≤ 3
2 (eγ − 1) + β

4 ≤ α,
as required.

It only remains to show that the cover size is locally
small. Let µ ∈ R and σ > 0.∣∣{H ∈ Cα : dTV(H,N (µ, σ2)) ≤ 7α

}∣∣
=
∣∣{n,m ∈ Z : dTV(N

(
βeγnm, e2γn

)
,N (µ, σ2)) ≤ 7α

}∣∣
≤
∣∣∣∣{n,m ∈ Z : max

{
|e2γn − σ2|

e2γn
,

40|βeγnm− µ|
eγn

}
≤ 1400α

}∣∣∣∣
=

∣∣∣∣∣
{
n,m ∈ Z :

− log(1+1400α)
2γ ≤ n− log σ

γ ≤ − log(1−1400α)
2γ

−35αβ ≤ m−
µ

βeγn ≤ 35αβ

}∣∣∣∣∣
≤
(
− log(1− 1400α)

2γ
− − log(1 + 1400α)

2γ
+ 1

)
· (35− (−35) + 1)

=
1

2 log(1 + α/2)
log

(
1 + 1400α

1− 1400α

)
· 71 + 71

= O(1).

Combining Lemma VI.14 with Lemma VI.9 and The-
orem IV.1 yields the following.

Corollary VI.15. Suppose we are given a set of samples
X1, . . . , Xn ∼ P , where P is a univariate Gaus-
sian distribution N (µ, σ2). Then there exists a (ε, δ)-
differentially private algorithm which outputs a univari-
ate Gaussian distribution H∗ such that dTV(P,H∗) ≤
7α with probability ≥ 9/10, so long as

n = Ω

(
1

α2
+

log(1/δ)

αε

)
.

This sample complexity is comparable to to that of
Karwa and Vadhan [25], who give an (ε, δ)-DP algorithm
with sample complexity Õ

(
1
α2 + 1

αε + log(1/δ)
ε

)
.

C. Sums of Independent Random Variables

In this section, we apply our results to distribution
classes which are defined as the sum of independent
(but not necessarily identical) distributions. These are
all generalizations of the classical Binomial distribution,
and they have enjoyed a great deal of study into the con-
struction of sparse covers. To the best of our knowledge,
we are the first to provide private learning algorithms for
these classes.
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We start with the Poisson Binomial distribution.

Definition VI.16. A k-Poisson Binomial Distribution (k-
PBD) is the sum of k independent Bernoulli random
variables.

We next consider sums of independent integer random
variables, which generalize PBDs (which correspond to
the case d = 2).

Definition VI.17. A (k, d)-Sum of Independent Integer
Random Variables ((k, d)-SIIRV) is the sum of k inde-
pendent random variables over {0, . . . , d− 1}.

Finally, we consider Poisson Multinomial distribu-
tions, which again generalize PBDs (which, again, cor-
respond to the case d = 2).

Definition VI.18. A (k, d)-Poisson Multinomial Distri-
bution ((k, d)-PMD) is the sum of k independent d-
dimensional categorical random variables, i.e., distribu-
tions over {e1, . . . , ed}, where ei is the ith basis vector.

We start with a covering result for SIIRVs (including
the special case of PBDs), which appears in [47]. Previ-
ous covers for PBDs and SIIRVs appear in [105], [106],
[107].

Lemma VI.19 ([47]). There exists an α-cover of the set
of (k, d)-SIIRVs of size

k · 2O(d log2(1/α)+d log2 d).

Using this cover, we can apply Corollary I.2 to attain
the following learning result for PBDs and SIIRVs.

Corollary VI.20. Suppose we are given a set of samples
X1, . . . , Xn ∼ P , where P is α-close to a (k, d)-
SIIRV. Then for any constant ζ > 0, there exists an
ε-differentially private algorithm which outputs a (k, d)-
SIIRV H∗ such that dTV(P,H∗) ≤ (6 + 2ζ)α with
probability ≥ 9/10, so long as

n = Ω

((
log k + d log2(1/α) + d log2 d

)( 1

α2
+

1

αε

))
.

Next, we move on to PMDs. The following cover
does not appear verbatim in any single location, but is a
combination of results from a few different sources. The
proofs for the best bounds on first term appears in [46],
the second in [45], and the third in [49]. Larger covers
previously appeared in [108], [109].

Lemma VI.21 ([45], [46], [49]). For any d > 2, there
exists an α-cover of the set of (k, d)-PMDs of size

kO(d)·min
{

2poly(d/α), (1/α)O(d log(d/α)/ log log(d/α))d−1
}
.

This implies the following learning result for PMDs.

Corollary VI.22. Suppose we are given a set of
samples X1, . . . , Xn ∼ P , where P is α-close to

a (k, d)-PMD, for any d > 2. Then there ex-
ists an ε-differentially private algorithm which out-
puts a (k, d)-PMD H∗ such that dTV(P,H∗) ≤
(6 + 2ζ)α with probability ≥ 9/10, so long as
n = Ω̃((d log k + min{poly( dα ), O( d log(d/α)

log log(d/α) )d−1 ·
log(1/α)})( 1

α2 + 1
αε )).

D. Piecewise Polynomials

In this section, we apply our results to semi-
agnostically learn piecewise polynomials. This class of
distributions is very expressive, allowing us to approxi-
mate a wide range of natural distribution classes.

Definition VI.23. A (t, d, k)-piecewise polynomial dis-
tribution is a distribution P over [k], such that there
exists a partition of [k] into t disjoint intervals I1, . . . , It
such that on each interval Ij ⊆ [k], the probability mass
function of P takes the form pj(x) =

∑d
i=0 c

(j)
i xi for

some coefficients c(j)i , for all x ∈ Ij .

We construct a cover for piecewise polynomials.

Lemma VI.24. There exists a universal constant c >
0 such that there is an α-cover of the set of (t, d, k)-
piecewise polynomials of size(

k

t− 1

)
·

(
tk · ecd1/2

α

)(d+1)t

.

Proof. We specify an element of the cover by
1) Selecting one of

(
k
t−1

)
partitions of [k] into t

intervals I1, . . . , It, and
2) For each interval Ij , selecting an element of an

(α/t)-cover Cj of the set of degree-d polynomials
over Ij which are uniformly bounded by 1.

The total size of the cover is
(
k
t−1

)∏t
j=1 |Cj |. The the-

orem follows from Proposition VI.25 below, which con-

structs an (α/t)-cover Cj of size at most
(
tk·ecd

1/2

α

)d+1

for every interval Ij .

Proposition VI.25. There exist constants b, c > 0 for
which the following holds. Let I ⊆ [k] be an interval
and let P be the set of polynomials p : I → R of degree
d such that |p(x)| ≤ 1 for all x ∈ I . There exists an
α-cover of P of size

min


(

2k

α

)|I|
,

(
ckd2 · ebd2/|I|

α

)d+1
 .

The proof of Proposition VI.25 relies on two major
results in approximation theory, which we now state.

Lemma VI.26 (Duffin and Schaeffer [110]). Let p :
[−1, 1] → R be a polynomial such that |p(x)| ≤ 1 for
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all x of the form x = cos(jπ/d) for j = 0, 1, . . . , d.
Then |p′(x)| ≤ d2 for all x ∈ [−1, 1].

Lemma VI.27 (Coppersmith and Rivlin [111]). There
exist constants a, b > 0 for which the following holds.
Let p : R→ R be a polynomial of degree d, and suppose
that |p(t)| ≤ 1 for all t = 0, 1, . . . ,m. Then |p(t)| ≤
a exp(bd2/m) for all t ∈ [0,m].

Proof of Proposition VI.25. We consider two cases, cor-
responding to the two terms in the minimum. First,
consider the function f : I → R where f(t) is obtained
by rounding p(t) to the nearest multiple of α/k. Then
f satisfies

∑
t∈I |f(t) − p(t)| ≤ α. There are at most

(2k/α)|I| functions f which can be constructed this way,
giving the first term in the maximum.

For the second term, we construct a cover for P
by approximately interpolating through d + 1 carefully
chosen points in the continuous interval corresponding
to I . By applying an affine shift, we may assume that
I = {0, 1, . . . ,m} for some integer m ≤ k − 1. Let
p ∈ P and for x ∈ [0,m] let p̂(x) be the value of p(x)
rounded to the nearest integer multiple of α/(2kd2).
Let q : [0,m] → R be the unique degree-d polynomial
obtained by interpolating through the points (xj , p̂(xj))
where xj = m(1 + cos(jπ/d))/2 for j = 0, 1, . . . , d.

We first argue that the polynomial q so defined satis-
fies

∑m
t=0 |p(t)− q(t)| ≤ α. Let r(x) = p(x)− q(x) for

x ∈ [0,m]. Then by construction, |r(xj)| ≤ α/(2kd2)
for all interpolation points xj . By the Duffin-Schaeffer
Inequality (Lemma VI.26), we therefore have |r′(x)| ≤
α
km for all x ∈ [0,m]. By the Fundamental Theorem
of Calculus, r(t) = r(0) +

∫ t
0
r′(t) dt satisfies |r(t)| ≤

(t+ 1) · α
km ≤ α/k, and hence

∑m
t=0 |r(t)| ≤ α.

We now argue that the set of polynomials q
that can be constructed in this fashion has size
(ckd2 exp(bd2/m)/α)d+1. By the Coppersmith-Rivlin
Inequality (Lemma VI.27), there are constants a, b > 0
such that |p(x)| ≤ a exp(bd2/m) for all x ∈ [0,m].
Therefore, for each p ∈ P and each interpolation point
xj , there are at most 4a · kd2 exp(bd2/m)/α possible
values that p̂(xj) can take. Hence, the polynomial q can
take one of at most (4a·kd2 exp(bd2/m)/α)d+1 possible
values, as we wanted to show.

Lemma VI.28. The VC dimension of (t, d, k)-piecewise
polynomial distributions is at most 2t(d+ 1).

Proof. Consider two piecewise polynomial distributions.
The difference between their probability mass functions
is a piecewise polynomial of degree ≤ d. The number
of intervals needed to represent this piecewise function
is ≤ 2t. It follows that this difference can change sign at
most 2td+ 2t− 1 times – each polynomial can change
sign at most d times and the sign can change at the
interval boundaries. Thus such a function cannot label

2td+ 2t+ 1 points with alternating signs, which implies
the VC bound.

As a corollary, we obtain the following learning algo-
rithm.

Corollary VI.29. Suppose we are given a set of sam-
ples X1, . . . , Xn ∼ P , where P is α-close to a
(t, d, k)-piecewise polynomial. Then there exists an ε-
differentially private algorithm which outputs a (t, d, k)-
piecewise polynomial H∗ such that dTV(P,H∗) ≤
(6 + 2ζ)α with probability ≥ 9/10, so long as n =

Ω
(

(d+1)t
α2 + (d+1)t

αε ·
(√
d+ 1 log k + log

(
t
α

)))
.

We compare with the work of Diakonikolas, Hardt,
and Schmidt [18]. They present an efficient algorithm for
(t, 1, k)-piecewise polynomials, with sample complexity
Õ
(
t
α2 + t log k

αε

)
, which our algorithm matches.7 They

also claim their results extend to (t, d, k)-piecewise poly-
nomials, though no theorem statement is provided. While
we have not investigated the details of this extension,
we believe the resulting sample complexity should be
qualitatively similar to ours, plausibly with the factor of
t(d+1)3/2 log k

αε replaced by t(d+1) log k
αε .

E. Mixtures

In this section, we show that our results immediately
extend to learning mixtures of classes of distributions.

Definition VI.30. Let H be some set of distributions. A
k-mixture ofH is a distribution with density

∑k
i=1 wiPi,

where each Pi ∈ H.

Our results follow roughly due to the fact that a cover
for k-mixtures of a class can be written as the Cartesian
product of k covers for the class. More precisely, we
state the following result which bounds the size of the
cover of the set of k-mixtures.

Lemma VI.31. Consider the class of k-mixtures of H,
where H is some set of distributions. There exists a 2α-
cover of this class of size |Cα|k

(
k

2α + 1
)k−1

, where Cα
is an α-cover of H.

Proof. Each element in the cover of the class of
mixtures will be obtained by taking k distributions
from Cα, in combination with k mixing weights,
which are selected from the set

{
0, 2α

k ,
4α
k , . . . , 1

}
,

such that the sum of the mixing weights is 1. The
size of this cover is |Cα|k ·

(
k

2α + 1
)k−1

. We rea-
son about the accuracy of the cover as follows. Fix
some mixture of k distributions as

∑k
i=1 w

(1)
i P

(1)
i ,

and we will reason about the closest element in

7As stated in [18], their algorithm guarantees approximate differen-
tial privacy, but swapping in an appropriate pure DP subroutine gives
this result.
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our cover,
∑k
i=1 w

(2)
i P

(2)
i . By triangle inequality, we

have that dTV

(∑k
i=1 w

(1)
i P

(1)
i ,

∑k
i=1 w

(2)
i P

(2)
i

)
≤∑k

i=1
1
2

∣∣∣w(1)
i − w

(2)
i

∣∣∣+w(1)
i dTV

(
P

(1)
i , P

(2)
i

)
. Since Cα

is an α-cover and
∑k
i=1 w

(1)
i = 1, the total variation

distance incurred by the second term will be at most
α. As for the mixing weights, note that for the first
k − 1 weights, the nearest weight is at distance at most
α
k , contributing a total of less than α

2 . The last mixing
weight can be rewritten in terms of the sum of the
errors of the other mixing weights, similarly contributing
another total of less than α

2 . This results in the total error
being at most 2α, as desired.

With this in hand, the following corollary is almost
immediate from Corollary I.2. The factor of (9+3ζ)α (as
opposed to (6+2ζ)α) is because the closest distribution
in the cover of mixture distributions is 3α-close to be P
(rather than 2α).

Corollary VI.32. Let X1, . . . , Xn ∼ P , where P is α-
close to a k-mixture of distributions from some setH. Let
Cα be an α-cover of the set H, and ζ > 0 be a constant.
There exists an ε-differentially private algorithm which
outputs a distribution which is (9+3ζ)α-close to P with
probability ≥ 9/10, as long as

n = Ω

(
(k log |Cα|+ k log(k/α))

(
1

α2
+

1

αε

))
.

For example, instantiating this for mixtures of Gaus-
sians (and disregarding terms which depend on R
and κ), we get an algorithm with sample complexity
Õ
(
kd2

α2 + kd2

αε

)
.

F. Supervised Learning

We describe an application of our results to the task of
binary classification, as modeled by differentially private
PAC learning [88]. Let F = {f : X → {0, 1}} be
a publicly known concept class of Boolean functions
over a domain X . Let P be an unknown probability
distribution over X , and let f be an unknown function
from F . Given a sequence {(xi, f(xi))}ni=1 of i.i.d.
samples from P together with their labels under f , the
goal of a PAC learner L is to identify a hypothesis
h : X → {0, 1} such that Prx∼P [h(x) 6= f(x)] ≤ α for
some error parameter α > 0. We say that L is (α, β)-
accurate if for every f ∈ F and every distribution P , it
is able to identify such a hypothesis h with probability
at least 1 − β over the choice of the sample and any
internal randomness of L.

One of the core results of statistical learning theory is
that the sample complexity of non-private PAC learning
is characterized, up to constant factors, by the VC
dimension of the concept class F . When one additionally

requires the learner L to be differentially private with
respect to its input sample, such a characterization is
unknown. However, it is known that the sample com-
plexity of private learning can be arbitrarily higher than
that of non-private learning. For example, when F =
{ft : t ∈ X} is the class of threshold functions defined
by ft(x) = 1 ⇐⇒ x ≤ t over a totally ordered domain
X , the sample complexity of PAC learning under the
most permissive notion of (ε, δ)-differential privacy is
Ω(log∗ |X|) [29], [112]. Meanwhile, the VC dimension
of this class, and hence the sample complexity of non-
private learning, is a constant independent of |X|.

While this separation shows that there can be a sample
cost of privacy for PAC learning, this cost can be
completely eliminated if the distribution P on examples
is known. This was observed by Beimel, Nissim, and
Stemmer [113], who showed that if a good approxima-
tion to P is known, e.g., from public unlabeled examples
or from differentially private processing of unlabeled
examples, then the number of labeled examples needed
for private PAC learning is only O(V C(F)).

Theorem VI.33. Let ε > 0, F = {f : X → {0, 1}},
and P be a publicly known distribution over X . For n =
O
(

1
α2ε (V C(F) log(1/α) + log(1/β))

)
, there exists an

ε-differentially private algorithm L : (X×{0, 1})n → F
such that for every f ∈ F , with probability at least
1− β over the choice of x1, . . . , xn ← P , we have that
L((x1, f(x1)), . . . , (xn, f(xn))) produces h ∈ F such
that Prx∼P [f(x) 6= h(x)] ≤ α.

Our results suggest a natural two-step algorithm for
private PAC learning when the distribution P itself is
not known, but is known to (approximately) come from
a set of distributions H: The algorithm first uses private
hypothesis selection to select Ĥ with dTV(P, Ĥ) ≤ α/2,
and then runs the algorithm of [113] using Ĥ in place
of P with error parameter α/2. Using the fact that
dTV(P, Ĥ) ≤ α/2 implies |Prx∼P [f(x) 6= h(x)] −
Prx∼Ĥ [f(x) 6= h(x)]| ≤ α/2, the following result holds
by combining Theorem VI.33 with Corollary I.2.

Corollary VI.34. Let H be a set of distributions over
X with an α-cover Cα. Let P be a distribution over X
with dTV(P,H) ≤ α/(4(3 + ζ)). Then for

n = O

(
log |Cα|
α2

+
log |Cα|
αε

+
V C(F) log(1/α)

α2ε

)
there exists an ε-differentially private algorithm L : (X×
{0, 1})n → F such that for every f ∈ F , with proba-
bility at least 3/4 over the choice of x1, . . . , xn ← P ,
we have that L((x1, f(x1)), . . . , (xn, f(xn))) produces
h ∈ F such that Prx∼P [f(x) 6= h(x)] ≤ α.

Theorem VI.33 can, of course, also be combined
with the more refined guarantees of Theorem IV.1.
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As an example application, combining Theorem VI.33
with Corollary VI.13 gives a (ε, δ)-differentially private
algorithm for learning one-dimension thresholds with
respect to univariate Gaussian distributions on the re-
als. In contrast, this task is impossible without making
distributional assumptions.

VII. CONCLUSIONS

In this paper, we presented differentially private meth-
ods for hypothesis selection. The sample complexity
can be bounded by the logarithm of the number of
hypotheses. This allows us to provide bounds on the sam-
ple complexity of (semi-agnostically) learning a class
which depend on the logarithm of the covering number,
complementing known lower bounds which depend on
the logarithm of the packing number. There are many
interesting questions left open by our work, a few of
which we outline below.

1) Our algorithms for learning classes of distributions
all use cover-based arguments, and thus are not
computationally efficient. For instance, we provide
the first Õ(d) sample complexity upper bound on
ε-differentially privately learning a product distri-
bution and Gaussian with known covariance. One
interesting question is whether there is an efficient
algorithm which achieves this sample complexity.

2) The running time of our method is quadratic in the
number of hypotheses – is it possible to reduce this
to a near-linear time complexity?

3) Our main theorem obtains an approximation factor
which is arbitrarily close to 3, which is optimal
for this problem, even without privacy. This factor
can be reduced to 2 if one is OK with outputting
a mixture of hypotheses from the set [12]. Is this
achievable with privacy constraints?
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