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ABSTRACT

In this paper, we propose BioHD, a novel genomic sequence search-

ing platform based on Hyper-Dimensional Computing (HDC) for

hardware-friendly computation. BioHD transforms inherent se-

quential processes of genome matching to highly-parallelizable

computation tasks. We exploit HDC memorization to encode and

represent the genome sequences using high-dimensional vectors.

Then, it combines the genome sequences to generate an HDC refer-

ence library. During the sequence searching, BioHD performs exact

or approximate similarity check of an encoded query with the HDC

reference library. Our framework simplifies the required sequence

matching operations while introducing a statistical model to control

the alignment quality. To get actual advantage from BioHD inher-

ent robustness and parallelism, we design a processing in-memory

(PIM) architecture with massive parallelism and compatible with

the existing crossbar memory. Our PIM architecture supports all

essential BioHD operations natively in memory with minimal mod-

ification on the array. We evaluate BioHD accuracy and efficiency

on a wide range of genomics data, including COVID-19 databases.

Our results indicate that PIM provides 102.8× and 116.1× (9.3× and

13.2×) speedup and energy efficiency compared to the state-of-the-

art pattern matching algorithm running on GeForce RTX 3060 Ti

GPU (state-of-the-art PIM accelerator).
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1 INTRODUCTION

In December 2019, a series of pneumonia cases of unknown cause

were documented. Deep sequencing of lower respiratory tract sam-

ples indicated a novel coronavirus [1–3] and the corresponding

disease “COVID-19”. Within the last few months, the global number
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of cases and deaths exceeded 413 million and 5.8 million, respec-

tively [4]. The number of available COVID-19 genome assemblies is

growing rapidly which in turn creates a need for scalable methods

to enable real-time analysis and dissemination [5–7].

Unfortunately, the optimal solution for the sequence alignment

or sequence matching scales poorly with the number of sequences.

An underlying reason is that data movement costs between the pro-

cessor and memory still hinder the higher efficiency of application

performance, although new processor technology has evolved to

serve computationally complex tasks more efficiently. Processing

in-memory (PIM) is a promising solution to accelerate applications

with a large amount of parallelism [8–19]. Several recent works

have explored the advantage of PIM-based architectures to acceler-

ate machine learning algorithms [20, 21]. However, there are several

main challenges in using existing PIM architectures to accelerate

the sequence matching: (i) the existing PIM architectures are mostly

a dot product engine and accelerate vector-matrix multiplication.

In contrast, sequence matching involves pairwise distance compu-

tation and similarity search, which cannot be supported entirely

by existing PIM architectures [22, 23]. (ii) Most PIM architectures

are analog-based [14, 20, 21]; thus, they perform computation after

mapping data points into analog space. The data converter be-

tween analog and digital space takes the majority of chip area and

energy [21]. (iii) The existing PIM architectures require separate

storage and computing memory units, resulting in a large amount

of internal data movements. This not only reduces the computation

efficiency but also affects the design scalability. (iv) The emerging

devices, i.e., Non-Volatile Memories (NVMs), have various relia-

bility issues such as endurance, durability, and variability [24–26].

This, coupled with the high computation precision required for

sequence matching algorithms, limits the applicability of the PIM

accelerators.

In this paper, we present a novel strategy that effectively adopts

the PIM architecture for the sequence matching problem. At heart,

an sequence matching solution requires to perform multiple search

as a fundamental procedure, i.e., checking the existence of a gene

series in a database [27–34]. In this sense, the problem is equiva-

lent to memorization in that we should memorize and recall ge-

nomic/proteomic sequences. We accelerate the sequence searching

in hardware by redesigning the sequence searching based on a new

computing paradigm, Hyper-Dimensional Computing (HDC) [35–

38]. HDC is a human memory-inspired method to implement effi-

cient memorization using high-dimensional vectors, called hyper-

vectors. The HDC provides several features that make it well-suited

to address the alignment problem: (i) it transforms inherent sequen-

tial processes of the sequence searching to highly-parallelizable
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computation tasks, where the operations can be natively supported

by PIM, (ii) BioHD is memory-centric and highly-parallel, making

PIM architecture an ideal platform for hardware acceleration, (iii) it

provides strong robustness to noise – a key strength for emerging

technologies.

We propose BioHD, a Hyper-Dimensional genome analysis plat-

form. Instead of working with original sequences, BioHD maps

the genome sequences into high-dimensional space and performs

sequence matching with simple and parallel similarity searches.

The main contributions of the paper are summarized as follows:

• To the best of our knowledge, BioHD is the first end-to-end

PIM platform for sequence searching based on Hyper-

Dimensional computing. At algorithm-level, BioHD revisits

the sequence searching with brain-like memorization that HDC

natively supports.BioHD creates a library for reference sequences

by memorizing the patterns in high-dimension.

• BioHD simplifies the alignment by recalling the exact or

approximate existence of a query sequence with the ref-

erence library. Instead of working on the original data, BioHD

maps all data points into high-dimensional space, enabling the

main sequence searching operations to process in a hardware-

friendly way. BioHD encoding preserves the similarity of se-

quences and simplifies the similarity metric to Hamming distance.

We also proposed a statistical model that provides a theoretical

control of the quality of the alignment.

• Wepropose a novel PIMarchitecture that accelerates BioHD

on the existing crossbar memory with essential alignment

operations implemented in memory blocks. This includes

supporting search-based distance computing as well as row-

parallel arithmetic in memory. The enhanced crossbar array can

be used in the pipeline to accelerateBioHD in a massively parallel

way.

We evaluate BioHD efficiency on a wide range of practical prob-

lems, including the COVID-19 database. Our solution provides, on

average, 124.1× and 102.8× and 116.1× (9.3× and 13.2×) speedup

and energy efficiency improvement compared to the state-of-the-

art alignment algorithm running on GeForce RTX 3060 Ti GPU

(state-of-the-art PIM accelerator [39]).

2 BACKGROUND
Genome Sequence search: The process of predicting the pos-

sible DNA/RNA sequence that a specific protein has originated

from is called back-translation. Aligning the back-translated RNA

sequence against the database locates the most similar sequences

used to predict the functionality of the unknown protein sequence.

Proteins are made up of one or more chains of 20 common amino

acids. An unknown protein can be characterized when its sequence

shares significant similarity with a protein with known character-

istics [28–31, 40–43]. Figure 1a describes the overview of BioHD

computational task flow. From a computational standpoint, a pro-

tein sequence can be considered a string over a set that includes

different amino acid letters, e.g., S = 〈Met, Phe, · · · 〉. The protein
sequence is originally translated from an mRNA, which can be

considered a string over the four alphabets, {A,C,G,U}. Each non-

overlapping three-letter window of the mRNA, known as a Codon,

encodes a specific letter in the amino acid alphabet according to the

1 Sequencing Backck-k-translation2 3 Alignment Application4

AUG 
UU(U/C)

UU(A/G) 
UGA

1 2 3
AUGUU(U/C)…A

AUGCUCUCUUGAA
CGUGACUGACCGG
UGACGUACCGAC…

) )
UGCUCUCUUGA

Reference

( / )
Matching Matching 
Alignment Cancer Cancer 

Therapeutics
Disease Disease

Diagnosis
Drug Drug 

Engineering

Protein Amino Acid
AUG

mRNA Protein Alignment Application

C
COVIDD-D-19

4

Th
ird

 L
et

te
r

Second LetterSecond Letter

Fi
rs

t L
et

te
r

Fi
rs

t L
et

te
r

Th
ird

 L
et

te
r

(b) Codon Table

Met, 
Phe, 

Leu, 
Stop

Figure 1: (a) Protein back-translation and alignment flow, (b)

RNA translation to amino acids (Codon table).

Codon table (Figure 1b). The protein sequence is the result of replac-

ing each codon of the mRNA sequence from start to end with its

corresponding amino acid. The task of “back-translation” uses the

Codon table to generate an mRNA sequence representing the most

likely non-degenerate coding sequence. Since the back-translation

in most cases does not yield a unique result, a consensus sequence

derived from all possible Codons is needed. The sequence searching

finds the regions with high similarity to the query sequence. The re-

gions with high similarity, called hits, are used in many applications

to predict the functionality of the unknown query.

Hyper-dimensional computing (HDC):HDC effectively mim-

ics several important functionalities of the human memory and

allows energy-efficient computation based on its massively parallel

computation flow [35, 37, 44–46]. HDC is motivated by an observa-

tion that the human brain operates on a robust high-dimensional

representation of data due to the large size of brain circuits [47–49].

HDC mimics the properties based on the idea that we can represent

the information with a hypervector and the correlation with the hy-

perspace’s distance. The dimensionality should be large enough to

ensure two 𝐷-components vectors that are randomly chosen from

{−1, 1} or {0,1}, are near-orthogonal, referring that the similarity in

the vector space is almost zero. As a result, HDC applications use

hypervectors that have thousands dimensionality, e.g., 𝐷 = 10, 000.

Let us assume �A and �B are two random generated hypervec-

tors in high-dimensional space. HDC encoding works based on a

well-defined set of operations: (i) Bundling (+) is an addition or

majority operation of multiple hypervectors into a single reference

hypervector (�R = �A + �B). The result of the bundling preserves

similarity to its component hypervectors i.e., 𝛿 ( �R, �A) >> 0, where

𝛿 is a cosine similarity. The bundling operation is well suited for

representing sets. (ii) Binding (*) associates multiple orthogonal

hypervectors (e.g., �A, �B) into a single hypervector (�R = �A ∗ �B).

Binding is done by the component-wise multiplication (XOR in the

binary representation) between two hypervectors. Binding is used

for variable-value association and, more generally, for the mapping.

(iii) Permutation (𝜌) defines as a single rotational shift. The permu-

tation operation generates a hypervector, which is unrelated to the

657



BioHD: An Efficient Genome Sequence Search Platform Using HyperDimensional Memorization ISCA ’22, June 18–22, 2022, New York, NY, USA

UCUGUAGGGCGG
AGAAAAGAUCCA
UGACCUAGACCU

Reference 
Genome

Mapping to Mapping to 
HD Space

Alignment

HD Library (R)

Initial 
Encoding

Similarity SimilaritySim
Search

Query (Q)

AAlignmentAli
UCUAG/UAU/C/A

mRNA Sequence

Original Space Alignment in HD Space

Initial 
Encoding

1 2 3

Stores 
Thousands 
Sequences

Hamming
Cosine
Hamming
Metrics:

Row-Parallel Arithmetic
Row-Parallel Binding

Hypervector 
Refinement

Encoding

Similaritytyyyyyytyyyyyyt
A

Reference Distance
Result 

Dist>Tm?

Hamming Computing
Cosine Computing
Comparison

Share Peripherals
Bit-serial Data Transfer 

via neighbor blocks

Distance 
Block

Comparison
Block

(b) BioHD Processing In-Memory Architecture 

HD Library (R)

Encoding Blocks

A
B
C

AA PIM Query Encoding 
B
C
B PIM Distance Computing
CCC PIM Comparison

(a) BioHD Alignment Algorithm

Reference Distance
Result 

B C

Figure 2: Overview of (a) BioHD alignment in high-dimensional space, (b) the proposed PIM accelerator.

given hypervector (𝛿 ( �A, 𝜌 �A) � 0). It is commonly used for storing

a sequence of tokens in a single hypervector.

3 BIOHD: GENOME SEQUENCE SEARCH
Figure 2 shows an overview of BioHD sequence search in the high-

dimensional space. The first step of BioHD is to map the genome

sequence into a high-dimensional space. BioHD assigns a hyper-

vector corresponding to each base alphabet in Σ = {𝐴,𝐶,𝐺,𝑇 } for
DNA and Σ = {𝐴,𝐶,𝐺,𝑈 } for RNA. The encoding module depends

on the data type and the genomics task. In terms of protein data,

BioHD assigns a hypervector representing each RNA bases and then

combines them to create a hypervector representing each amino

acid (as explained in Section 2, and Figure 1). The amino acids’

hypervectors are combined by mapping each protein sequence into

a high-dimensional space (explained in Section 3.1). BioHD aggre-

gates all encoded protein sequences to generate a reference genome,

called HDC Library. An HDC library consists of several reference

hypervectors, where each hypervector memorizes thousands of

genome sequences in high-dimensional space. Similar to the hu-

man memorization that requires practice, BioHD iteratively checks

the correctness of memorized information in each library hyper-

vector to find the most refined hypervectors. During the sequence

searching, BioHD uses the same encoding to map a query sequence

into a hypervector. We perform a similarity computation between

a query and each reference hypervector. By searching for an ex-

act or approximate match, BioHD identifies a query’s closeness

with thousands of memorized patterns stored in each HDC library

hypervector.

We design a novel processing in-memory (PIM) architecture that

accelerates BioHD with minor modification on existing crossbar

memory (Section 4). Our approach is general and can work with any

bipolar non-volatile memory (NVM) devices. Each memory block

in PIM architecture supports the essential alignment operations, in-

cluding row-parallel distance computing and vector-based binding

operation (Section 5). These PIM functionalities are implemented

over digital data stored in memory using search-based and row-

parallel arithmetic computation. For scalability, BioHD architecture

enables row-parallel bit-serial data transfer between neighbor mem-

ory blocks. Figure 2b shows an example of PIM functionality. In

the first step, BioHD encodes the coming genome sequence using

the encoding block. Next, BioHD checks the similarity of the en-

coded query with all reference hypervectors stored in memory in a

massively parallel way. In each block, we support the similarity mea-

surement using row-parallel Hamming distance and dot-product

distancemetrics. Finally, the search result will be written to the com-

parison block, and this block will identify reference hypervectors

that have been closely matched.

3.1 BioHD Genome Sequence Encoding
The entire BioHD computation happens after mapping genomics

data (DNA, RNA, or protein) into high-dimensional space. To en-

code a sequence to a hypervector, BioHD assigns a hypervector cor-

responding to each base alphabet in Σ = {A,C,G, T} for DNA and

Σ = {A,C,G,U} for RNA.We call hypervectors as base hypervectors,

and denote them with Σ𝐻𝑉 = { �A, �C, �G, �T} and Σ𝐻𝑉 = { �A, �C, �G, �U}.
These bases are randomly generated, thus they are nearly orthogo-

nal. To be more precise, their dot products, an indicator of similar-

ity, follow a certain distribution: �A · �C ∼ 2𝐵𝑖𝑛(𝐷, 0.5) − 𝐷 , where
𝐵𝑖𝑛(𝐷, 0.5) denotes the binomial distribution with parameter𝑛 = 𝐷 ,
the HDC dimension, and 𝑝 = 0.5. (Figure 3•1 ).

Protein Encoding: BioHD encodes each protein sequence into

high-dimensional space by (i) encoding the mRNA sequences into

high-dimensional space, (ii) combining multiple mRNA hypervec-

tors to generate a hypervector for each amino acid (Figure 1b), and

(iii) combining the amino acids sequences to create a hypervector

for each protein sequence.

(i) mRNA Encoding: BioHD encodes each DNA or mRNA sequence

by binding its corresponding base hypervectors. Let us consider a

short query string, ‘ACGU’. BioHD encodes the sequence by binding

the base hypervectors into high-dimensional space (Figure 3•2 ).
�H = �A ∗ 𝜌1 ( �C) ∗ 𝜌2 ( �G) ∗ 𝜌3 ( �U), where 𝜌𝑛 represents 𝑛-bit(s) rota-
tional shift. The independence among the base hypervectors and

their permuted forms ensures that the generated hypervectors for

different RNA sequences are nearly orthogonal. Given �H1 and �H2

generated from different sequences, �H1 · �H2 ∼ 2𝐵𝑖𝑛(𝐷, 0.5) − 𝐷 .
(ii) Amino Acid Encoding: As the Codon table shows, each amino

acid may correspond to multiple mRNA sequences. This makes

the alignment problem more complicated as we need to consider

all possibilities that a protein sequence may be back-translated to.

The amino acid hypervector needs to memorize the information

of multiple mRNA hypervectors. We explain amino acid encoding

in an example. Based on Codon table, Phe amino acid corresponds

to UUU and UUC sequences. Our encoding represents this amino

acid as:

�H𝑃ℎ𝑒 = ( �U ∗ 𝜌1 �U ∗ 𝜌2 �U)⌢ ( �U ∗ 𝜌1 �U ∗ 𝜌2 �C)

where the term ‘⌢’ indicates the probabilistic merging. This ap-

proach randomly samples half of the dimensions from the first and

second hypervectors and generates a new hypervector with half
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similarity to each generated bases. This encoding preserves the

similarity while representing each amino acid as a single binary hy-

pervector (Figure 3•2 ). This compact representation significantly

reduces the noise and the complexity of the BioHD alignment.

(iii) Protein Encoding: Protein is a sequence of amino acids. BioHD

exploits the generated amino acid hypervectors to encode different

protein sequences. For the sequence searching, the encoding remem-

bers each amino acid and its corresponding position in a sequence.

For example, protein sequence of S = 〈Met, Phe, Ser, Gly, Stop〉 can
be decoded as:

�S = �H𝑀𝑒𝑡 ∗ 𝜌 �H𝑃ℎ𝑒 ∗ 𝜌
2 �H𝑆𝑒𝑟 ∗ 𝜌

3 �H𝐺𝑙𝑦 ∗ 𝜌
4 �H𝑆𝑡𝑜𝑝

(iv) Insertion/Deletion: BioHD encoding can also count for a possi-

ble insertion and deletion in a sequence. For the sequence searching,

our encoding module needs to keep the similarity of the sequences

in the high-dimensional space. Instead of encoding the entire se-

quence at once, BioHD split the sequence into small partitions.

Then, BioHD exploits the binding to map the small partition into

high-dimensional space. BioHD splits sequence into small non-

overlapped partitions with the length of 𝑛. For a query sequence

with length of 𝑞, BioHD splits sequence to 𝑞/𝑛 number of partitions.

Each chunk encodes into high-dimensional space using the same

encoding method used for exact pattern matching. For example, for

𝑖𝑡ℎ partition, the encoding performs as: 𝑆𝑖 = 𝐻1 ∗𝜌𝐻2 ∗· · ·∗𝜌
𝑛−1𝐻𝑛 .

Since the partitions have small sizes, they have a high possibility

that all genome digits to be the same in each partition (4𝑛 distinct

patterns for partitions with the size of𝑛). Partitions are bundled into
substrings of the length equal to the query. Thus, each substring

has 𝑞/𝑛 partitions. BioHD aggregates the information of different

partitions by preserving their position using a set of position hyper-

vectors: �𝑄 = �P1 ∗ �S1 + �P2 ∗ 𝑆2 + · · · + �P 𝑞
𝑛
∗ �S 𝑞

𝑛
, where �Ps are a set of

correlated hypervectors, where �P1 and �P𝑛/𝑞 are nearly orthogonal

while �P𝑘 and �P𝑘+1 have high similarity.

3.2 Reference Generation
The query sequence is typically short, while the reference pro-

tein is a long-length sequence. The reference can be encoded by

mapping each protein sequence (Figure 3•4 ). This encoding is re-

peated over the reference genome using a sliding window scheme.

A window moves through a protein sequence, and BioHD encodes

a protein sequence in each window. Next, BioHD accumulates mul-

tiple sequence hypervectors into a single reference hypervector:
�R =

∑𝑃
𝑗=1

�S𝑗 . We check the existence of a query, �𝑄 , in the reference

hypervector by performing the following similarity measurement:

𝛿 ( �R, �Q) = 𝛿 (�S𝑘 , �𝑄)︸���︷︷���︸
Signal

+

𝑃∑
𝑖=1,𝑖≠𝑘

𝛿 (�S𝑖 , �𝑄)

︸������������︷︷������������︸
Noise

(1)

If �S𝑘 = �𝑄 for some 𝑘 , the output of the function will be 1, For

reference patterns that do not match with the query, the similarity is

nearly zero, 𝛿 (�S𝑖 , �𝑄) � 0. The level of noise is increasing the number

of non-matched sequences. This limits the number of sequence

hypervectors that can be stored in each reference hypervector.

BioHD needs to ensure that the level of noise is small enough that

makes the signal identification non-distinguishable. To address

the issue, BioHD exploits multiple hypervectors representing the

reference sequence. Each hypervector stores the information of a

pre-defined number of patterns (evaluated in Section 6.2).

3.3 Protein Pattern Matching

BioHD performs the sequence searching by checking the similarity

of an encoded protein sequence with the HDC library. Depending

on the encoding,BioHD searches for an exact or approximate match

of a query with each reference hypervector. The search checks if �𝑄

exists in �R using a 𝑇 -membership function:{
1 �S · �𝑄 ≥ 𝑇𝑚 × 𝐷

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

where an output of 1 indicates membership, and 0 otherwise. We

exploit different 𝑇𝑚 for an exact or approximate match. In case of

the exact matching, the theoretical recall rate (correctly identify

match) can be evaluated precisely:

𝑃𝑟 (𝑀𝑆,𝑇 (𝑄) = 1|𝑄 ∈ 𝑆) ≥

(𝑃−1)𝐷∑
𝑖=𝑎

1

2(𝑃−1)𝐷

(
(𝑃 − 1)𝐷

𝑖

)
(3)

where 𝑎 = (𝑃 +𝑇𝑚−2𝑘) ×𝐷/2. The last step achieves equality when
the query appears exactly once in the reference. This indicates that

we can improve the matching accuracy by (i) using a larger thresh-

old value𝑇𝑚 , (ii) increasing dimensionality 𝐷 , or (iii) retraining the
model (increasing 𝑘). Note that increasing the 𝑇𝑚 results in larger

true negative cases. Also, the increase in dimensionality comes at

the cost of lower computation efficiency (evaluated in Section 6.2).

Adaptive Library Refinement: Similar to the human brain, it

is difficult for BioHD to remember the information of all accu-

mulated data into each reference hypervector using single-pass

memorization. The pattern of the most common sequence domi-

nates the reference hypervector and results in vanishing the pattern

of the less frequent sequences. To better memorize the information,

BioHD looks at the same object multiple times to boost the accu-

racy by discarding the mispredicted queries from the corresponding

model hypervector and adding them to the right one. If a query

(�S) corresponding to 𝑅𝑐 reference mispredicts with 𝑅𝑖 reference
hypervector, we update the library:

�R𝑐 = �R𝑐 + (1 − �R𝑐 · �S/𝐷) × �S & �R𝑖 = �R𝑖 − (1 − �R𝑖 · S/𝐷) × �S

where the term 1− �R · �S/𝐷 ensures that both reference hypervectors

update depending on how far a query is mispredicted.
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4 HARDWARE ACCELERATION

BioHD can be accelerated on existing parallel architectures. For ex-

ample, BioHD provides high computation efficiency when running

on GPU platforms (explained in Section 6.4). However, in existing

platforms, data movement between memory and computing units

(moving the reference library to a processing core) takes most of the

alignment performance and energy. We propose a novel processing

in-memory (PIM) architecture to accelerate BioHD computation.

Besides data movement, BioHD has several features that make it

well-suited for PIM: (i) the operations of the proposed algorithms

can be natively supported in the memory, e.g., Hamming distance

computing, (ii) BioHD is memory-centric and highly parallel at

heart, and (iii) it provides strong robustness to noise. In this section,

we explain how PIM can support all required BioHD operations by

making minor modifications to existing crossbar memory.

Figure 4 shows the summary of the supported operations: (i)

search-based Hamming computing to measure the distance be-

tween a query and reference hypervectors, (ii) row-parallel arith-

metic operations to support high-precision dot-product distance

computation as well as to check the existence of a query in a ref-

erence hypervectors, and (iii) a row-parallel binding operation to

perform encoding operation.

4.1 Search-based Distance Computing

Exact Search: Content addressable memories (CAMs) support

exact search operation [50]. As Figure 4 shows, in conventional

CAM, each cell represents using two memory elements, where the

elements take complementary values. For example, in a crossbar

memory, a CAM cell represents using two NVM devices (0T-2R).

The memory elements stores complementary values. A CAM array

consists of a match-line (ML) shared among all cells in a row and a

bitline that controls all cells in a column. Before search operation,

all MLs are pre-charged to high voltage. During the search, the

bitlines load the search query among all CAM rows in parallel.

If the value of the CAM cells matches the search query, they do

not discharge the ML. Otherwise, mismatch cells add discharging

currents. CAMs assign a sense amplifier to the tail of each ML to

detect a row with all cells matched.

Hamming Distance Computing: Several recent works modified

the CAM sense amplifier to detect the search for the nearest Ham-

ming distance search [37, 51, 52]. Sense amplifiers in different CAM

rows are competing to find an ML that has the minimum discharg-

ing current. Although the nearest search is important functionality,

in many real-world problems, we must measure the actual distance

of the query with CAM rows. Similarly, BioHD also requires com-

puting the distance of an encoded query with the HDC library.

In CAM, the ML discharging current is related to the number of

mismatched cells. The more mismatches, the higher current passes

through the ML. However, this current does not linearly scale with

the number of mismatches (Figure 4a). This non-linear behavior

makes Hamming computing challenges.

To address this issue, we propose a technique that enables ML

discharging current to better scale with the number of mismatches.

We observe that the droppingML voltage is the main reason that the

ML current does not scale with the number of mismatches. Ideally,

each CAM cell needs to have a discharging current equivalent to:
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𝐼𝑚𝑖𝑠𝑠 = 𝑉𝑀𝐿/𝑅𝑂𝑁 , where 𝑉𝑀𝐿 is the ML voltage and 𝑅𝑂𝑁 is the

resistance value of CAM cell during mismatch. Due to the delay

of the sense amplifier in sampling the ML current and quick drop

in ML voltage, the ML 𝐼𝑚𝑖𝑠𝑠 does not have a linear value over

all mismatches. We exploit a voltage stabilizer that connects the

ML to a constant supply voltage to ensure 𝑉𝑀𝐿 voltage does not

drop lower than 𝑉𝑑𝑑 . Figure 4a shows the enhanced CAM array.

This ensures that every mismatch will have the same impact on

the ML discharging current. Figure 4a also shows that the ML

current that was initially saturating scales linearly up when using

the voltage stabilizer. BioHD exploits a low-precision analog-to-

digital converter (ADC) for Hamming computing. When searching

over a very large CAM, the ML discharging current can still be close,

and thus the sense amplifier may not detect their difference. To

address this challenge, we perform sequential Hamming computing

over small windows sizes.

4.2 Row-Parallel PIM-based Arithmetic
BioHD supports arithmetic operations directly on digital data

stored in memory without reading them out of sense amplifiers [22,

53–58]. Our design exploits the NVM switching characteristic to

implement NOR gates in digital memory [22, 54]. BioHD selects

three or more columns of the memory as input NOR operands by

connecting them to ground voltage (shown in Figure 4b). This NOR
computation performs in row-parallel on all the activated memory

rows by the row-driver. Since NOR is a universal logic gate, it can
be used to implement other logic operations like addition [59] and

multiplication [22].

4.3 Row-parallel Binding

BioHD encoding requires to support the binding operation. The

binding over multiple binary vectors is an XOR operation. In fact,

the binding computes if there are even or odd numbers of 1-bits

among the selected inputs. The XOR operation can be computed in

a digital way by performing a series of row-parallel NOR operations.

However, this requires several sequential cycles. To support fast

encoding, BioHD exploits the same ADC block used for Hamming

distance computing to perform binding in an analog way. During

computing mode, each memory cell adds a current to an ML. The

cells storing ‘1’ bit are adding 𝐼𝑜𝑛 current, while cells are storing ‘0’

bit add a small 𝐼𝑜 𝑓 𝑓 current to the bitline, where 𝐼𝑜𝑛 >> 𝐼𝑜 𝑓 𝑓 . This
current is accumulated in an analog way using the ADC block.

660



ISCA ’22, June 18–22, 2022, New York, NY, USA Zhuowen Zou, et al.

ACC

ρ1 H P
h

e

Address Decoder

ρ0 Hprotein

Leu, Ser, Phe, …, Gly 00000-00001 00001-00111 11111-11111

S+
H

S
H

A
DC

Phe

ρ1 Hprotein ρm Hprotein

0000Phe
Leu

Gly

0000000000000000
00001

11000

Leu
Ser

000000000000111
00010

Sequence Decoder 00000

00001

Protein 
codebook

Sequence Decoder Encoding

Q
ue

ry
 S

eq
ue

nc
e

h1
h2
h3

hD

H
Ph

e
H

Le
u

H
G

ly

ρ1 H L
eu

ρ1 H G
ly

ρm
H L

eu

ρm
H G

ly

ρm
H P

h
e

h1 h2 hD

Address Decoder

R
eg

is
te

r

S+
H

R
i

t

S+
H

A
DC

2

dd D
h3

A B C

A
B

C

A
B

+ +

Inputs
Outpu

t

CC

BBBBB+ +
+

Ro
w

 D
riv

er

Ro
w

 D
riv

er

R1

HDC Library

R2
R3

Search 
Windows

Bit Serial 
Data Transfer

Dot-Product Computing 

Search Block Accumulation Block

uu

Se
ns

e 
Am

p

Hamming Computing Block 

Se
ns

e 
Am

p

Ro
w

 D
riv

er

Codebook 1 Codebook 2 Codebook m

C
od

eb
oo

k

h1 h22 h3

+- +-+-
hD

+-

HDC Library

O
ut

pu
t

+1
0

Pe
rm

ut
e 

+-

DriverDriverDriver

Encoding
Block 

Search
Block 

Encoding
Block 

Search
Block 

Search
Block 

I/O Buffer & Column Driver

Encoding
Block 

Search
Block 

Search
Block 

Search
Block 

SA SA SA

G
lo

ba
l R

ow
 D

riv
er A

DC
 

Ti
le

 C
on

tr
ol

le
r

Driver Driver

Driver Driver Driver

Driver Driver Driver

A

B

C D

Ro
w

 D
riv

er

E F
Pe

rm
u

G

S+
H

S+
H

S+
H

S+
H

S+
H

S+
H

S+
H

S+
H

S+
H

D
riv

er
D

riv
er

D
riv

er

D
riv

er
D

riv
er

D
riv

er

D
riv

er
D

riv
er

D
riv

er
BioHD Piepline 

BioHD Architecture 

CompareEncoding Distance 
ComputingTrans

ACC

ACC

Dist

EST?Dist

Dist

Dist

Trans

Trans

EST? Trans

Trans

ACC

Dist

EST?

Trans

Distance 
Computing

PIM 
Accumulation

Early Search 
Termination

Internal Data 
Transfer

Figure 5: Overview of PIM-based BioHD architecture along with encoding and distance computing blocks.

5 BIOHD PIM ARCHITECTURE

Figure 5•𝐴 shows an overview of the PIM architecture consisting of

128 tiles. Each tile consists of 128 crossbar memory blocks. Due to

the existing challenges of crossbar memory [60, 61], each memory

block is assumed to have a size of 1𝑘 × 1𝑘 . BioHD consists of two

types of memory blocks: encoding and distance computing. Both

blocks are the same conventional crossbar array; they are organized

in each tile to enable fast and parallel sequence searching. Both

memory blocks support parallel computation. Thus, we translate all

BioHD computation to vector-based operations. Our computation

is performed in a row-parallel way by activating multiple memory

columns and computing the result on the sense amplifier located

next to each memory row. As Figure 5•𝐵 shows, the block sense

amplifiers are low-precision ADCs that are shared among several

memory blocks. Unlike the existing analog-based PIM, crossbar

memory takes the majority of our architecture, and ADCs only take

a tiny area. Each memory block also supports row-parallel bit-serial

data transfer, where a single bit can be written to the next memory

block over all selected rows. The memory controller is responsible

for assigning the task to each memory block in a pipeline manner

to provide high parallelism. Here, we describe the encoding and

distance computing blocks and how they work in a pipeline.

5.1 Encoding Acceleration

PIM-based implementation of BioHD encoding requires (i) reading

the pre-stored acid hypervectors from memory blocks, (ii) copying

it to a new block, and performing permutation depending on the

acid position in a sequence, and (iii) finally binding all permuted

hypervectors. These steps are computationally costly and incur

a lot of internal data movement and write operations, which are

significantly slower in PIM architecture.

Codebooks: Figure 5•𝐶 shows the first step of the encoding that

assigns a codebook to each amino acid. Since there are 20 acids in the

Codon table (Figure 1b), these objects can be addressed using 5-bit

codebooks. In hardware, the codebooks are assigned using a lookup

table (CAM)with the exact search functionality.We also store𝑚-bits

value along with each codebook specifying the amino acid position.

The value of 𝑚 depends on the length of the protein sequence.

For example, for a sequence with 256 proteins, we require 8-bits

for addressing each protein. For example, codebook 00100 00010

indicates that 5𝑡ℎ protein in the sequence is Leu which corresponds

to 2𝑛𝑑 acid in the Codon table.

Encoding Memorization: Instead of naive encoding implementa-

tion, we exploit computational reuse to avoid redundant encoding

computation. Let us assume a memory block with 1𝐾 × 1𝑘 size.

Our approach pre-stores all amino acid hypervectors in the first

32-columns of the memory block. If BioHD dimensionality is larger

than 1k, we exploit multiple neighbor (vertical) blocks to store the

entire hypervector. For example, for hypervectors with 𝐷 = 4𝑘 ,
four vertical blocks store BioHD dimensionality. Next, we permute

all protein hypervectors (𝜌 : single permutation) and store them

on the second 32-columns of memory. Similarly, we perform more

permutations on the acid hypervectors and store them on the next

set of columns. For a block with 1k-columns, each block stores

32 permutations of the acid hypervectors. As Figure 5•𝐷 shows,

each 32-columns stores all possible hypervectors that a protein in

a specific position can take. These hypervectors can be directly ad-

dressed using our codebooks. For example, codebook 00110 00111

addresses to 130𝑡ℎ column of memory storing 𝜌5𝐻𝑆𝑒𝑟 . This address

directly indicates that the 5𝑡ℎ amino acid in the sequence is 7𝑡ℎ

acid in the Codon table.

Hypervector Binding: By accessing 𝑛 codebooks in parallel, we

can activate 𝑛 columns of the memory block at the same time. Note

that in every 32-columns chunk, only a single memory column will

be activated, depending on the acid codebook. These pre-stored

and permuted hypervectors eliminate the costly and sequential

memory read/write and rotational shift. Finally, the encoding block

binds all selected memory columns using the ADC block shown in

Figure 5•𝐷 . Depending on the protein length (which often does not

fit in a single memory block), our PIM computes the final binding

result during multiple sequential cycles. As Figure 5•𝐵 shows, each

memory block is enhanced with a permutation block. After reading

𝑛 elements in a sequence, BioHD shifts the binded result depending
on the position of the windows in the sequence. To support a protein

sequence with a length of 𝑞, we compute the final binding result
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in 𝑞/𝑛 iterations. The first window does not get any permutation

on the binding results, while 𝑖𝑡ℎ windows is permuted by 𝑖 × 𝑛
positions.

5.2 Distance Computing

Distance computing is the most frequent BioHD operation. The

goal of BioHD is to compute the distance of a query with large-scale

reference hypervectors stored in memory.

Similarity Metric & Precision: The capability of memory to

support search operations depends on the distance metric. The

distance metric by itself depends on the representation of the values

in the HDC library. For a library with binary representation, BioHD

uses Hamming distance as a similarity metric. Although BioHD

supports Hamming computing in a fast and efficient way, each

binary reference hypervector can only store limited information.

This means that the HDC library will consist of several binary

reference hypervectors. On the other hand, BioHD can represent

the library hypervector with higher precision (e.g.,32-bit values).

This increases the hypervector capacity to store more information

in each library hypervector. However, in this representation, we

require to use costly cosine distance as a similarity metric. Here,

we propose a hardware solution to support both Hamming distance

and dot product distance computing in a parallel way. For binary

Hamming distance, we exploit CAM blocks to support ultra-fast

search operation using shared and low-precision ADC blocks, while

the dot product operation happens entirely in digital space without

any ADC blocks.

Hamming computing: Figure 5•𝐸 shows a row-parallel Ham-

ming computing between a query and all reference hypervectors

stored in the memory. BioHD performs sequential Hamming com-

puting on a small search window. In this work, we use 32-bits

windows to ensure 5-bit ADC precision. To limit the cost of ADC

blocks, we share ADCs among multiple distance computing blocks.

We use sample & hold (S+H) circuit to record the ML discharging

current of each block and use time multiplexing to share ADC

among 128 memory blocks. The result of distance computing will

be written in the next memory block, called comparison memory, in

a bit-serial row-parallel way. Since the write speed is slower than

the search, we use registers to save the ADC values and write them

sequentially in the next memory block. The comparison memory

will accumulate the partial distance values using digital-based PIM

operations explained in Section 4.2. Since the search is performed

over 𝐷 dimensional vectors, we require 𝐷/32 vector-based addi-

tion to compute the final distance result. Note that the addition is

performed in the pipeline with the search operation (explained in

section 5.5).

Dot Product Distance Computing: Using a high-precision HDC

library, we can compute the dot product similarity of a query with

multiple reference patterns stored in memory. Dot product oper-

ation is an expensive operation, especially due to the complexity

of the multiplication operation. However, BioHD encoding gener-

ates a query that is always a binary hypervector. This simplifies

the dot product operation to accumulate multiple vectors in mem-

ory. Figure 5•𝐹 shows row-parallel dot product operation between

a query and stored reference hypervectors. As discussed in Sec-

tion 4.2, BioHD arithmetic operations can add or subtract digital

data located in different memory columns. BioHD uses query data

as a decider to add or subtract different dimensions of the refer-

ence hypervectors. Each reference dimension (memory column)

corresponding to a positive query value (+1) will be added, while

dimensions corresponding to zero query value will be subtracted

from the final dot product result. Our PIM solution enables addi-

tion/subtraction independent of the number of memory rows. Since

the search happens on long-size vectors, the vector accumulation

may not fit in a single memory block. Therefore, we exploit multiple

memory blocks to compute the dot product operation partially. The

partial results can be aggregated using bit-serial row-parallel data

transfer between neighbor blocks. Note that, unlike Hamming com-

puting, dot product similarity does not require costly ADC blocks

for distance computing. This increases BioHD area efficiency.

5.3 Thresholding

After distance computing, BioHD needs to select a reference hy-

pervector with close distance with the query data. The closeness

defines compared to a fixed pre-defined threshold (𝑇𝑚). Depending

on the exact or approximate match, we may use different threshold

values. Like distance computing, this operation requires massive

parallelism as we need the same comparison over all reference

hypervectors. Using Hamming or dot product distance metric, the

result of distance computing will be stored in the comparison block.

The comparison block is exactly one of the distance computing

blocks. The only difference is that this block pre-stores the copy

of the 𝑇𝑚 threshold in every row (single column) of the block. To

check for a match, we subtract𝑇𝑚 column from all distance vectors

stored in the same memory block. Any subtracted value with a

positive sign bit indicates a match.

5.4 Early Search Termination

During alignment, a query sequence will most likely match with

one or a few sequences in the HDC library. In fact, this is unlikely to

find several references with high score matching. Conventionally,

we need to compute the distance when the sequential distance com-

putation covers the entire 𝐷 dimensions of hypervectors. In order

to eliminate the significant distance computing cost, we propose

the idea of Early Search Termination (EST). In this approach, the

comparison block identifies the reference whose distance to query

has already passed an acceptable threshold (1 −𝑇𝑚). Next, BioHD

sends a signal to the row driver of distance computing and stops

the search operation on the selected rows. This selective activation

lowers BioHD computation cost (Section 6.4).

5.5 BioHD Pipeline

BioHD architecture works in a pipeline (shown in Figure 5•𝐺 ). At

first, the encoding block maps data into high-dimensional space.

Instead of assigning large PIM resources to generate all 𝐷 dimen-

sions of a query hypervector, BioHD only generates 𝑑 dimensions

that can be used by the distance computing block (𝑑 < 𝐷). Next,
BioHD computes the distance of the query hypervector with all

pre-stored reference hypervectors (over windows of 𝑑 dimensions).

During search, BioHD pipeline ensures maximum utilization of

the memory blocks. As soon as a search is finished, the search for

the second window starts in the same memory block. All partial

distances are transferred to the comparison block. The comparison

block accumulates the partial distance and checks if it is pass a
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Table 1: BioHD PIM Parameters.

Component Param Spec Area Power

Crossbar array size 1Mb (1𝑘 × 1𝑘) 3136𝜇𝑚2 6.14mW

Sense Amp number 1k 49.2𝜇𝑚2 0.09mW

Memory Block number 1 3185.2𝜇𝑚2 6.23mW

Hamming Computing (HAM)

Tile Memory number 128 blocks 0.40𝑚𝑚2 0.78W

ADC
resolution 5-bits, 1.75GS/s

0.16𝑚𝑚2 0.14W
number 128

S+H number 128 × 1k 857.6𝜇𝑚2 14.97mW

Interconnect size 1k/row 0.01𝑚𝑚2 31.04mW

Controller number 1 146.5𝜇𝑚2 118.9mW

HAM-tile size 128Gb 0.52𝑚𝑚2 1.07W

Dot Product Computing (DOT)

Tile Memory number 128 blocks 0.40𝑚𝑚2 0.78mW

Interconnect size 1k/row 0.01𝑚𝑚2 31.04mW

Controller number 1 146.5𝜇𝑚2 118.9mW

DOT-tile size 128Gb 0.41𝑚𝑚2 0.93W

HAM Chip
number 128 Tiles

73.52mm2 137.81W
size 2GB

DOT Chip
number 128 Tiles

53.04mm2 119.79W
size 2GB

desired threshold (EST check). This sequential process continues

until covering all 𝐷 dimensions.

5.6 Other Genomics Data

BioHD is a general alignment platform that can be used to acceler-

ate other genomic data rather than protein. For DNA and RNA data,

BioHD exploits the same framework to support high-dimensional

alignment. The only difference is that for DNA and RNA align-

ment, we do not require an intermediate step to generate amino

acid hypervectors. Similar to protein, the encoding depends on the

desired alignment task. For an exact match, BioHD binds the entire

DNA sequence into a single hypervector. To count for mismatches,

BioHD encoding is performed over smaller windows sizes.

We exploit the same hardware architecture to accelerate BioHD

computation. For encoding, PIM pre-stores the hypervector corre-

sponding to each DNA or RNA in the encoding block. Each chunk

stores all possible characters that each DNA or RNA digits can take.

This limits the size of each chunk to four hypervectors ({ �A, �C, �G, �T}
for DNA data). The chunks are repeated by pre-storing different

permutations of the hypervectors. For example of DNA data, the

𝑖𝑡ℎ chunk stores {𝜌𝑖 �A, 𝜌𝑖 �C, 𝜌𝑖 �G, 𝜌𝑖 �T} hypervectors. Since the size
of the query and chunk hypervectors are often limited to 200 dig-

its [62, 63], a single memory block (>800 bitlines) can store all

permuted base hypervectors. It eliminates the necessity of using

permutation block and data aggregation to compute the encoding

results. Regardless of data type or query length, BioHD maps both

query and reference library to hypervectors. Thus, it can exploit

the same hardware for distance computing.

Table 2: Evaluated Genome Sequence Datasets

Details Data Type Size Q.Length

E.Coli Escherichia coli [70] DNA 4.6MB 200

Human Human chromosome 14 [70] DNA 107MB 200

COVID-19 SRR11092057, SRR11513776 [69] DNA 4.9GB 200

NBCI-Gene NCBI Gene data [71] Protein 20 GB 150

1KGene 1000Genomes data [72] Protein 15GB 180

RefSeq Reference Sequence [73] protein 40GB 140

6 EVALUATION

6.1 Experimental Setup

The proposed BioHD framework has been implemented with two

co-designed modules: software framework and hardware accelera-

tor. Our software framework supports HDC library generation, up-

dates the model, and tests BioHD quality of the alignment. Thanks

to BioHD vector-based operations, we fully integrated BioHD with

TensorFlow [64], and designed a cycle-accurate simulator to em-

ulate BioHD functionality during different alignment tasks. For

the hardware design, we use HSPICE for circuit-level simulations

to measure the energy consumption and performance of all the

BioHD operations in 28nm technology. We used System Verilog

and Synopsys Design Compiler [65] to implement and synthesize

the BioHD controller. For parasitics, we used the same simulation

setup considered by work in [59]. The interconnects are modeled

in both circuit and architecture levels. The robustness of all cir-

cuits have been verified by considering 10% process variations on

the size and threshold voltage of transistors. Our PIM works with

any bipolar resistive technologies, which are the most commonly

NVMS. To have the highest similarity to commercially available 3D

Xpoint, we adopt the memristor device with a VTEAM model [66].

The memristor’s model parameters are chosen to produce a switch-

ing delay of 1ns, a voltage pulse of 1V and 2V for RESET and SET

operations to fit practical devices [54, 55].

Table 1 shows the detailed configurations of BioHD consisting

of 128 tiles. Each tile has 128 crossbar blocks. BioHD has two con-

figurations: Hamming computing that uses shared ADC blocks for

distance computing, and Dot Product computing (DOT), where the

distance is computed using row-parallel PIM arithmetic. In DOT-

tile, the crossbar memory takes the majority of the area and power

consumption, while in HAM-tile, ADCs are taking 28% and 15% of

total area and power consumption. Each HAM-tile (DOT-tile) takes

0.57𝑚𝑚2 (0.41𝑚𝑚2) area and consumes 1.07W (0.93W) power. The

total HAM-chip (DOT-chip) area and average power consumption

are 73.52𝑚𝑚2 and 137.81W (53.04𝑚𝑚2 and 119.79W), respectively.

All our evaluations are performed when BioHD provides the same

area in both configurations. Note that our HAM chip can be config-

ured to perform both Hamming distance and dot product similarity,

while DOT Chip is an optimized version that just supports dot

product similarity.

We compare BioHD efficiency with two state-of-the-art align-

ment tools running on GPU: (i) NVBIO [67]: GPU-accelerated C++

framework for high-throughput sequence analysis, and (ii) GPU-

BLAST [68]: a GPU-accelerated nucleotide alignment tool based

on NCBI-BLAST. We test BioHD efficiency on popular genomic

data. Table 2 summarizes the evaluated sequence datasets. This in-

cludes DNA datasets such as E.coli (MG1655) and recent COVID-19

reference genome [69], to large-scaled protein databases.
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6.2 Quality of BioHD Sequence Searching

In BioHD, each reference hypervector has a limited capacity to

store information of other encoded sequences. This capacity de-

pends on the dimensionality and the precision of the hypervector

elements. Figure 6a shows the theoretical capacity of a reference

hypervector with 32-bit and 1-bit precision to memorize the in-

formation of 𝑃 bundled patterns (Equation 3). The results indicate

that BioHD memorizes more patterns using higher dimensionality

and precision. Figure 6b compares the experimental and theoretical

capacity of a reference hypervector (32-bit precision) after the HDC

library refinement, explained in Section 3.3. BioHD experimental

capacity is saturating by increasing the number of bundled patterns

due to the non-orthogonality of the hypervectors and the weakness

of the refinement method. A 32-bit precision (binary) follows the

theoretical capacity using 𝐷 = 40𝑘 (𝐷 = 10𝑘) dimensionality. Fur-

ther increasing dimensionality will have less impact on increasing

the hypervector capacity.

Figure 6c shows the distribution of the signal and noise when

we bundle a different number of patterns into a single reference

hypervector. Our evaluation shows that increasing the number

of patterns increases the amount of noise. By selecting a suitable

threshold value, we can identify the signal from noise. The thresh-

old value decides for an exact or approximate match. Figure 6d is

a Receiver Operating Characteristic (ROC) curve that shows the

impact of the threshold value, storing a different number of patterns

(𝑃 ). The ROC curve shows the quality of the alignment based on

false positive and true positive using different threshold values. As

the graphs show, storing a large number of hypervectors into a ref-

erence (𝑃 = 109, which is more than experimental capacity) results

in a BioHD quality loss (true positive less than 100%). This happens

as the Gaussian noise (in Figure 6c) overlaps with the main signal.

Regardless of the number of patterns, a large threshold increases

the false positive rate, while a smaller threshold increases the rate

of a true positive. Depending on the number of vectors stored in

each reference, we select a point in the top-left region of the curve

that provides maximum accuracy. In the rest of the section, we limit

the capacity of each reference hypervector to its experimental level

to ensure 100% true positive rates.

6.3 BioHD on PIM Architecture

Unlike the traditional alignment algorithms, BioHD has a memory-

centric architecture. This makes our proposed PIM architecture

a promising solution for computing local data stored in storage-

class memory. Figure 7b compares BioHD efficiency running on

our PIM architecture. All results are normalized to GPU running

BioHD-DOT. Regardless of configuration, our PIM solution pro-

vides significantly higher efficiency compared to GPU architecture

by: (i) addressing the data movement issue by enabling in-place

computation, (ii) enabling massive parallelism to accelerate BioHD

computation, and (iii) accelerating the essential BioHD operations

including distance computing and thresholding. For example, PIM-

HAM (PIM-DOT) provides, on average, 103.0× (60.5×) faster and

89.3× (61.7×) higher energy efficiency compared to BioHD-DOT

running on GPU.

BioHD Configurations: To show the impact of each optimiza-

tion, we report PIM efficiency on different configurations: (i) Naive
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Encoding that implements an optimized version of the encoding

without exploiting the computational reuse (Section 5.1). (ii) Naive

Thresholding that implements the thresholding by performing the

tree-based comparison, rather than using the proposed thresholding

(Section 5.3). (iii) PIM-DOT and PIM-HAM that use the dot prod-

uct and Hamming computing circuit for distance measurement,

(ii) PIM-DOT-EST and PIM-HAM-EST that enhance the distance

measurement with Early Search Termination (Section 5.4).

Dot Product vs. Hamming Distance As explained in Section 4,

BioHD has an option of using binary or full precision HDC library.

Although the binary library can exploit low-cost Hamming distance,

it requires a large number of reference hypervectors. The library is

more compact but requires a more costly distance metric in high

precision. Figure 7a-b compares the average BioHD efficiency using

Hamming and dot product distance metrics. On GPU (Figure 7a),

GPU-DOT achieves significantly higher efficiency than GPU-HAM

as the performance is bounded by the number of resources. In

contrast, our PIM architecture (Figure 7b) provides massive paral-

lelism by computing over the local data. Our evaluation shows that

PIM-HAM provides 1.7× faster and 1.4× higher energy efficiency

compared to PIM-DOT.

Early Search Termination: Figure 7b compares BioHD efficiency

using early search termination (EST). In this configuration, BioHD

stops costly distance computing on the majority of the memory

rows during the alignment process. The number of terminated

rows depends on the threshold margin (𝑇𝑚). Using 𝑇𝑚 = 0.9 for

DNA matching, the EST technique reduces the number of required

comparisons by 63% on average. Our evaluation shows that the

EST does not affect BioHD performance while improving energy

efficiency by 1.3× and 1.4× in PIM-HAM and PIM-DOT, respectively.

In summary, PIM-HAM is 102.8× faster and 116.1× higher energy

efficient than GPU running the baselineBioHD. Althoughwe do not

explore, however, EST can further enhance BioHD performance

using sparsity-aware framework. Memory blocks that are early

terminated can start querying the next data in the pipeline. This
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Figure 7: BioHD efficiency on GPU and PIM in different configurations. Results are normalized to GeForce RTX 3060 Ti GPU.
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approach increases the BioHD resource-utilization and provides

speedup.

BioHD Encoding & Thresholding: Figure 7b shows the impact of

optimized encoding and thresholding on PIM efficiency. Our eval-

uation shows that our encoding provides 1.4× speedup compared

to the Naive-Encoding implementation. The proposed encoding

has a minor impact on energy efficiency as the encoding takes a

small portion of total energy. In BioHD, thresholding performs over

large-scaled reference data. Our parallel thresholding results in 1.9×

speedup and 1.1× energy efficiency than the naive approach.

6.4 BioHD on GPU & PIM
Figure 7a compares BioHD computation efficiency with the state-

of-the-art alignment algorithms running on GeForce RTX 3060 Ti

GPU. All results are normalized to the energy and execution of GPU

running NVBIO running nvBowtie [74]. The G-BLAST provides

higher performance and efficiency compared to NVBIO by perform-

ing a heuristic alignment since G-BLAST has (1) higher potential for

GPU acceleration compared to bowtie, and (2) it enables heuristic

and approximation, which can cause quality loss. All our BioHD

evaluations are performed in a setting that guarantees 100% quality

of the alignment (100% true positive rate). In BioHD, the library

generation has a one-time cost, and generation overhead will be

amortized over several alignment queries.

Our evaluation shows that BioHD provides higher efficiency

compared to the baseline running on the GPU platform. This ef-

ficiency comes from the following reasons: (i) BioHD memoriza-

tion reduces the number of required computations to perform an

alignment task. In BioHD, each reference hypervector represents

thousands of sequences. Therefore, a single similarity compari-

son between a query and a reference hypervector is equivalent

to thousands of pattern matching in the original space. (ii) Align-

ment problem is not computationally expensive, while it requires

bringing a large amount of data to on-chip memory and processor

to perform alignment comparison. BioHD reduces this data move-

ment by creating a compressed reference library that can be directly

used for massively parallel computation. Our evaluation shows that

BioHD using Hamming (HAM) and dot product (DOT) distance

provide, on average, 1.6× and 2.3× faster and 3.7× and 4.9× higher

energy efficiency compared to NVBIO. Note that BioHD provides

higher efficiency for protein alignment rather than DNA. In protein

alignment, BioHD represents each acid with a single hypervector,

reducing the required operations.

6.5 BioHD-PIM vs State-of-the-art PIM

Figure 8 compares BioHD efficiency with other PIM accelerators.

All PIMs have the same area as BioHD in the 1-chip configuration.

The efficiency values are reported compared to GPU. We compute

the efficiency of PIM accelerator using our cycle-accuracy simula-

tor. The results are validated with the performance and efficiency

reported on each original paper. PipeLayer [13] and FloatPIM [22]

are neural network accelerators, but their operations can be used to

accelerate the sequence searching algorithm. Our evaluation shows

that BioHD provides significant efficiency improvement compared

to PIM architectures. This efficiency comes from: (i) BioHD capa-

bility in revisiting alignment using HDC with hardware-friendly

operations, (ii) BioHD PIM architecture supporting highly parallel

essential operations, and (iii) data flow in BioHD that eliminates in-

ternal data movement. In contrast, PipeLayer and FloatPIM require

a large amount of internal data movement and costly operations

with lower parallelism. PIM-Aligner [75] and RAPID [39] are also

recent PIM accelerators for alignment based on magnetic and re-

sistive devices. Both accelerators have limited programmability

and lack of their architectural support results in a large amount of

internal data movement.

Figure 8 also compares BioHD efficiency with DRAM-based

accelerators: Ambit [76], ComputeDRAM [77], and Newton [78].

DRAM-based PIMs are suitable to accelerate existing alignment

algorithms that rely on extensively parallel bitwise and arithmetic

computation. In contrast, these accelerators do not support associa-

tive search, which is the key functionality of BioHD computation.

This makes DRAM-based solution ineffective for BioHD accelera-

tion. In addition, DRAM-based PIM operations are often destructive,

thus can result in losing the information of input operands. Our

evaluation shows that, in the same area, BioHD provides 7.3× and

12.0× (14.8× and 15.3×) faster and higher energy efficiency com-

pared to Newtown (ComputeDRAM). This efficiency mainly comes

from BioHD algorithm-hardware co-design, which makes matching

nearly ideal for search-based operation.

6.6 BioHD Scalability & Robustness

Technology Scaling: Figure 9 compares BioHD area and com-

putation efficiency in different technology nodes. The results are
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computed based on the detailed area-efficiency analysis of each

technology. Our evaluation shows that although BioHD-HAM has

higher efficiency in 45nm and 28nm technology node, BioHD-DOT

is expected to provide higher efficiency in 16nm technology and

beyond. This is because the ADCs take larger chip areas, as mixed-

signal circuits do not scale as fast as digital technology. This results

in low performance/area efficiency of BioHD-HAM in scaled tech-

nology. We also expect NVM scaling to further improve BioHD-

DOT efficiency as it relies on minimal analog circuits. As NVMs

are moving towards multi-bit technologies [79, 80], BioHD-DOT is

expected to provide higher density and efficiency.

Robustness: Figure 10a compares BioHD robustness to noise in

the memory devices. The results are reported for the Bowtie2 Align-

ment, and BioHD using DOT and HAM distance similarity. As we

expected, regardless of the distance metric, BioHD provides signifi-

cantly higher robustness to memory noise than Bowtie2 alignment.

On the other hand, BioHD-HAM has higher robustness to noise

compared to BioHD-DOT. In binary representation, an error only

flips a reference dimension from 0 to 1 or 1 to 0. This results in mi-

nor changes in the entire hypervector pattern. In contrast, an error

in BioHD-DOT can happen in the most significant bits, which can

significantly impact the absolute value and robustness. Our results

indicate that 9% failure in memory cells results in 1.9% and 7.5%

loss on BioHD-HAM and BioHD-DOT quality of the alignment.

Figure 10b explores the impact of limited NVM endurance on

BioHD quality of the alignment. We assume an endurance model

with 107 and 104 [24]. Our evaluation shows that after a few years of

using our PIM-based platform, similar to the human brain, BioHD

starts forgetting information stored in reference hypervector. As

Figure 10b shows, the aging is faster for technologies with lower

endurance. To address this issue, we perform wear-leveling to dis-

tribute writes on different memory blocks uniformly. The overhead

of wear-leveling is minor as BioHD has a predictable write pattern

andwear-leveling only happens in long-time periods.Wear-leveling

aims to move the computation such that (1) each block does not

use the same memory columns as reserved columns for PIM opera-

tion. (2) it distributes the tasks among the different memory blocks.

BioHD uses two counters for each memory block to implement
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wear-leveling. The counters keep track of the number of writes and

the memory columns used for intermediate PIM computation. Our

technique shifts the computation across the columns and blocks.

Wear-leveling reduces the average writes in each memory cell by

18×. It creates 0.4% area overheadwhile having no impact onBioHD

performance. Our evaluation shows that BioHD-DOT has higher

sensitivity to the endurance. This is because BioHD-DOT distance

computation requires PIM arithmetic operation that involves sev-

eral device switching. In contrast, BioHD-HAM computes distance

using a sense amplifier with minimal write operation in memory.

6.7 BioHD & Reference Genome

Figure 11 shows BioHD PIM efficiency over several synthetic ref-

erence DNA when the data size increases from 1GB to 16GB. The

results are normalized to PIM performance using 1GB reference

size. Our evaluation shows that PIM performance improves linearly

with the reference size. For reference genome larger than PIM ca-

pacity, BioHD needs to pay an extra data movement cost to write

reference genome on PIM. The performance saturation and energy

efficiency degradation in Figure 11 are the result of this sequential

data transfer. For example, PIM with 32GB (2GB) reference size

provides 2.5× (1.8×) speedup compared to PIM with 1GB reference

size. Figure 11 also shows BioHD performance scalability with the

number of chips. At the algorithm level, BioHD has very low data

dependency. The distance computing and thresholding, two ma-

jor BioHD operations, can perform independently for reference

sequences. This results in a linear performance improvement of

PIM with the number of chips.

6.8 BioHD Efficiency Breakdown

Figure 12 shows the breakdown of BioHD performance on GPU

and the proposed PIM platforms. In GPU, data movement takes the

majority of BioHD execution time (83%). In contrast, PIM-based

solutions significantly reduce the amount of data movement. In

PIM-HAM and PIM-DOT, the distance computing takes the biggest

portion of execution time. After that, the thresholding step is a

dominant factor. PIM-DOT requires more internal data movement

for aggregating of partial dot products during the distance compu-

tation. PIM-HAM has more compact data aggregation using ADC

blocks.
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7 RELATED WORK

Hyperdimensional Computing: The field of hyperdimensional

computing is introduced by P. Kanerva, a computational neurosci-

entist [35]. Since then, prior research have applied the idea into

diverse cognitive tasks [44, 45, 81–88]. Although the mainstream

of the research is on learning tasks, HDC is the model of human

memory with significant promises for memorization. For example,

work in [44] showed the HDC application to enable memorization

in robotics. Work in [38, 89] exploit HDC for DNA pattern match-

ing on CMOS technology. However, this approach only supports

exact matching with limited applications to DNA data. In contrast,

BioHD is a general framework for genome sequence search, highly

advanced with the PIM architecture.

Processing in-memory: The capability of non-volatile memo-

ries (NVMs) to act as both storage and processing units has en-

couraged research in Processing In-Memory (PIM) [17, 20, 22].

NVM-based PIMs have been used to accelerate a wide range of

big data applications such as supervised learning [13, 15–17, 20,

21, 90], graph processing[8, 9, 91]. There are also multiple PIM

accelerator for alignments, e.g., PIM-Aligner [75] and RAPID [39],

Genasm [34], EXMA [92], Darwin-WGA [33], FastHASH[32], and

GateKeeper[93]. However, these architectures incur large amounts

of internal data movement as genomic algorithms are not mem-

ory friendly. In addition, all existing PIM-based accelerators are

significantly sensitive to even small amounts of noise in hardware

(e.g., 1%). However, in practice, memory devices have various re-

liability issues such as endurance, durability, and variability. Our

solution is the first approach that introduces the idea of holographic

high-dimensional representation for computation, thus enabling

highly robust and efficient computation. Moreover, BioHD simpli-

fies genome matching to hardware-friendly operations which are

ideal for PIM technology.

8 CONCLUSION

We propose a novel Hyperdimensional sequence search platform

for hardware-friendly computation. BioHD revisits the alignment

problem with human memorization, where the reference genomes

can be stored and recalled exactly or approximately during align-

ment. We also design a processing in-memory architecture with

massive parallelism and compatible with the existing crossbar mem-

ory. Our results indicate that BioHD provides 102.8× speedup and

116.1× energy efficiency compared to GPU-based alignments.
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