
Scalable Edge-Based Hyperdimensional Learning System with
Brain-Like Neural Adaptation

Zhuowen Zou𝜓 , Yeseong Kim†, Farhad Imani‡, Haleh Alimohamadi𝜓
Rosario Cammarota††, and Mohsen Imani§★

𝜓Uiversity of California San Diego, La Jolla, CA 92093, USA
†Daegu Gyeongbuk Institute of Science and Technology, South Korea

‡University of Connecticut, Storrs, CT 06269, USA
††Intel Labs, San Diego, CA 92131

§University of California Irvine, Irvine, CA 92697
★Corresponding Author: m.imani@uci.edu

ABSTRACT
In the Internet of Things (IoT) domain, many applications are run-
ning machine learning algorithms to assimilate the data collected in
the swarm of devices. Sending all data to the powerful computing
environment, e.g., cloud, poses significant efficiency and scalability
issues. A promising way is to distribute the learning tasks onto
the IoT hierarchy, often referred to edge computing; however, the
existing sophisticated algorithms such as deep learning are often
overcomplex to run on less-powerful and unreliable embedded IoT
devices. Hyperdimensional Computing (HDC) is a brain-inspired
learning approach for efficient and robust learning on today’s em-
bedded devices. Encoding, or transforming the input data into high-
dimensional representation, is the key first step of HDC before
performing a learning task. All existing HDC approaches use a
static encoder; thus, they still require very high dimensionality,
resulting in significant efficiency loss for the edge devices with
limited resources. In this paper, we have developed NeuralHD, a
new HDC approach with a dynamic encoder for adaptive learning.
Inspired by human neural regeneration study in neuroscience, Neu-
ralHD identifies insignificant dimensions and regenerates those
dimensions to enhance the learning capability and robustness. We
also present a scalable learning framework to distribute NeuralHD
computation over edge devices in IoT systems. Our solution enables
edge devices capable of real-time learning from both labeled and
unlabeled data. Our evaluation on a wide range of practical classifi-
cation tasks shows that NeuralHD provides 5.7× and 6.1× (12.3×
and 14.1×) faster and more energy-efficient training compared to
the HD-based algorithms (DNNs) running on the same platform.
NeuralHD also provides 4.2× and 11.6× higher robustness to noise
in the unreliable network and hardware of IoT environments as
compared to DNNs.

SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3480958

ACM Reference Format:
Zhuowen Zou, Yeseong Kim, Farhad Imani, Haleh Alimohamadi, Rosario
Cammarota, and Mohsen Imani. 2021. Scalable Edge-Based Hyperdimen-
sional Learning System with Brain-Like Neural Adaptation. In The Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’21), November 14–19, 2021, St. Louis, MO, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3458817.3480958

1 INTRODUCTION
With the emergence of the Internet of Things (IoT), many appli-
cations run machine learning algorithms to perform learning and
cognitive tasks. Today’s systems typically rely on sending all the
data to the cloud to complete learning and training, which leads
to a significant communication cost [1]. This communication cost
can be eliminated by scaling the learning tasks in a distributed
fashion where different devices collect data. Edge computing tries
to realize such a distributed computing paradigm by bringing the
computation closer to the location where the data are generated [2].
A mainstream of the research is federated learning [2–5] that trains
a central model over multiple devices. However, these techniques
use complex algorithms, e.g., Deep Neural Network (DNNs), which
require billions of parameters and many hours to train in powerful
and reliable computing environment [6, 7]. Considering memory
and resource limitations of embedded devices on edge, which also
have potential issues of network noises and hardware failure due
to the unstable nature of IoT systems, current computing environ-
ments are still far from real-time learning.

In contrast, the human brain can do much of this learning effort-
lessly and efficiently without much concern of noisy and broken
neuron cells [8, 9]. To more closely model the human brain, ear-
lier researchers proposed HyperDimensional Computing (HDC) as
an alternative computing method, which mimics important brain
functionalities towards high-efficiency and noise-tolerant computa-
tion [9–11]. HDC is motivated by the observation that the human
brain operates on high-dimensional representations of data. In HDC,
objects and data are thereby encoded with high-dimensional vec-
tors, called hypervectors, which have 10,000 or more elements [10].
HDC can then perform various learning tasks with computation in
the high dimensional space. HDC is well suited to address learn-
ing on edge systems as: (i) HDC models are computationally effi-
cient to train, highly parallel at heart, and amenable to hardware
level optimization [12, 13], (ii) HDC model offers an intuitive and

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3458817.3480958
https://doi.org/10.1145/3458817.3480958
https://creativecommons.org/licenses/by/4.0/


human-interpretable model [14–16], (iii) it offers a complete com-
putational paradigm that can be applied to cognitive as well as
learning problems [8, 14, 17–22], and (iv) it provides strong robust-
ness to noise [12, 23, 24] – a key strength for IoT systems, and (v)
HDC can naturally enable secure learning [25, 26]. These features
make HDC a promising solution for today’s embedded devices with
limited storage, battery, and resources, as well as future computing
systems in deep nano-scaled technology, which devices will have
high noise and variability.

Encoding, or transforming the input data into high dimensional
representation, is the key first step to map data into the high dimen-
sional space [22, 25, 27–29]. Mathematically, HDC requires huge
dimensionality to provide acceptable accuracy on complex learning
tasks. However, increasing dimensionality of the state-of-the-art
HDC solutions results in efficiency loss and scalability issues: (i)
In high-dimension, HDC involves a large amount of computation,
resulting in a significant drop in learning efficiency. (ii) In a dis-
tributed system, dimensionality increases data size and communica-
tion costs, which are the dominant portion of system efficiency [25].
We observe that the root cause of why HDC requires high dimen-
sionality is that the existing encoding modules often fail to find a
good representation of the data. During learning, all dimensions
of encoded data do not have the same impact on learning. Many
dimensions are insignificant and can be dropped or replaced with
no impact on the learning quality. Unfortunately, the existing HDC
algorithms are using a static encoder with no capability of detecting
the importance of dimensions [14, 17, 25, 27]. One of the primary
reasons that HDC algorithms still require massive dimensionality
is to capture all possible relations between the input features.

In this paper, we proposed NeuralHD, a novel dynamic and adap-
tive Hyperdimensional learning system. Our design is inspired by
several research works in neuroscience [30–34], which present the
neurons in the human brains are dynamically changing as shown
by every day that thousands of neurons (brain cells) die and replace
by new ones to give a more useful functionality to the brain [35, 36].
During learning, NeuralHD identifies insignificant dimensions and
regenerates those dimensions to enhance learning capability, hence
reducing the required dimensionality and improving its learning
efficiency significantly. In contrast to the existing methods that use
the static encoder to map each input feature into the hyperspace,
the proposed solution dynamically regenerates dimensions, deliv-
ering high efficiency and robust learning against hardware failure
and noise, as its primary advantages for IoT-edge platforms. The
main contributions of the paper are listed below:

• To the best of our knowledge, NeuralHD is the first HDC al-
gorithmwith dynamic and regenerative encodingmodule.
NeuralHD identifies insignificant dimensions in an unsupervised
way and regenerates them to enable dimensions to have a more
positive impact on the learning process. NeuralHD ensures the
learning task to perform in a very high effective dimensionality
while keeping the physical dimensionality significantly smaller.
• NeuralHD introduces two learning approaches to support
dimension regeneration: (i) Reset learning that trains a new
model after every regeneration phase, (ii) Continuous learning
that exploits prior knowledge during the model training. Al-
though reset learning is designed for high accuracy, continuous
learning, inspired by human neural adaptation [30, 32], provides

Cerebellum 
Cortex

Hyperdimensio
nal

Neural 
Regeneration

Hypervector

Hyperdimensional 
Computing 

Neuron

0
1

Injury Regeneration

(a) (b) (c)

Figure 1:Hyperdimensional computing:model of brain cere-
bellum cortex

fast and affordable learning, which is desirable for embedded
devices on edge.
• We present a scalable learning framework to distribute
NeuralHD computation over edge devices. We propose a
single-pass training approach that makes edge devices capable of
real-time learning from labeled and unlabeled data. Our solution
significantly reduces the amount of data communication between
edge clouds, resulting in high system efficiency.
• Weshow thehigh robustness ofNeuralHD tonoise inhard-
ware and networked edge environment. Since NeuralHD en-
coding spreads the data over a very large hypervector, a substan-
tial number of bits can be corrupted while preserving sufficient
information, resulting in high noise robustness.
We evaluate NeuralHD on a wide range of practical classification

tasks. Our evaluation shows that NeuralHD achieves much better
accuracy than the existing HDC algorithm and comparable accuracy
to sophisticated learning algorithms such as SVM and DNN. In
terms of efficiency, NeuralHD significantly reduces the hypervector
dimensionality, resulting in high learning efficiency. For example,
NeuralHD provides, on average, 5.7× and 6.1× (12.3× and 14.1×)
faster and more energy-efficient training as compared to the state-
of-the-art HDC algorithms (DNNs). NeuralHD also provides 4.2×
and 11.6× higher robustness to noise in the network and hardware
than DNNs 1.

2 HYPERDIMENSIONAL COMPUTING
The cerebellum cortex is an area in the brain that plays a signif-
icant role in cognitive functions (shown in Figure 1a). This area
of the brain stores information as a pattern of neural activity in
a Purkinje cell layer (Figure 1a). HyperDimensional Computing
(HDC) emerged from theoretical neuroscience as a short-term hu-
man memory model [9, 10, 37, 38]. HDC is motivated by the under-
standing that the cerebellum cortex operates on high-dimensional
representations of data that originated from the large size of brain
circuits (Figure 1b). It thereby models the human memory using
points of a high-dimensional space, that is, with hypervectors. As
Figure 1b shows, each dimension of hypervector models a neuron
functionality at an abstract level. In high-dimensional space, there
exist a huge number of nearly orthogonal hypervectors [10, 39].
This enables us to combine such hypervectors using well-defined
operations while keeping the information of the two with high
probability.

2.1 Encoding
Figure 2 shows an overview of the HDC classification task. Regard-
less of the learning task, the first step of HDC is to encode input

1https://gitlab.com/biaslab/neuralhd

2

https://gitlab.com/biaslab/neuralhd


C1D C12

C2D C22

CkD Ck2

C11

C21

Ck1

hD h2 h1

Encoded Data

CosineSimilarity

m
a
x

δ1

δ2

δk

Label

Original 
Train Data

Si
n

gl
e

-P
as

s 
T

ra
in

in
g

Inference 
Data

En
co

d
in

g

Retraining

HDC 
Train 
Data

Figure 2: Overview of HDC Classification.

data into high-dimensional space, called hypervectors. A hypervec-
tor stores all the information across all its components so that no
component is more responsible for storing any piece of information
than another. HDC uses different encoding methods depending
on the data type. Let us assume {®𝐿𝐴, ®𝐿𝐵, ®𝐿𝐶 , ®𝐿𝐷 } as randomly
generated hypervectors (®𝐿𝑖 ∈ {−1, +1}𝐷 ). These hypervectors are
nearly orthogonal, meaning that: 𝛿 ( ®𝐿𝐴, ®𝐿𝐵) ≈ 0, where 𝛿 denotes
the cosine similarity. The HDC encoding is based on the following
set of primitives:
Bundling (+): is defined as an element-wise addition of multi-
ple hypervectors: 𝐻 = ®𝐿𝐴 + ®𝐿𝐵 + ®𝐿𝐶 . The result of bundling
is another hypervector with the same dimensionality as inputs.
In high-dimensional space, bundling is like a memory operation
where the bundled hypervector remembers the input operands’
information. For example, we can check the existence of ®𝐿𝐴 and ®𝐿𝑅
on bundled ®𝐻 using: 𝛿 ( ®𝐻, ®𝐿𝐴) >> 0 and 𝛿 ( ®𝐻, ®𝐿𝐷 ) ≈ 0.
Binding (∗) : associates the information of multiple objects into a
single hypervector. A binding defines as a bitwise XOR operation in
binary, andmultiplication operation in the bipolar domain ( ®𝐻 = ®𝐿𝐴∗
®𝐿𝐵 ). The binded hypervector is a new object in high-dimensional
space which is orthogonal to all input hypervectors (𝛿 ( ®𝐻, ®𝐿𝐴) ≃ 0
and 𝛿 ( ®𝐻, ®𝐿𝐵) ≃ 0).
permutation (𝜌): is defined as a rotational shift operation. A single
permutation of a random hypervector generates a new hypervec-
tor with nearly orthogonal representation: 𝛿 ( ®𝐿𝐴, 𝜌 ®𝐿𝐴) ≈ 0. The
permutation is suitable for preserving a sequence.

2.2 HDC Learning
Training: after generating each encoding hypervector ®𝐻 𝑙 of inputs
belonging to class/label 𝑙 , the class hypervector ®𝐶𝑙 can be obtained
by bundling (adding) all ®𝐻 𝑙 s. Assuming there are 𝐽 inputs having
label 𝑙 : ®𝐶𝑙 =

∑𝐽
𝑗
®𝐻 𝑙
𝑗

Retraining can boost the accuracy of the HDC model by dis-
carding the mispredicted queries from corresponding mispredicted
classes, and adding them to the right class. Retraining examines if
the model correctly returns the label 𝑙 for an encoded query ®𝐻 . If
the model mispredicts it as label 𝑙 ′, the model updates ®𝐶𝑙 and ®𝐶𝑙 ′
as follows:

®𝐶𝑙 = ®𝐶𝑙 + ®𝐻 & ®𝐶𝑙 ′ = ®𝐶𝑙 ′ − ®𝐻 (1)

Inference of HDC has a two-step procedure. The first step en-
codes the input (similar to encoding during training) to produce a
query hypervector ®𝐻 . Thereafter, the similarity (𝛿) of ®𝐻 and all class
hypervectors are obtained to find out the class with the highest sim-
ilarity. Depending on the precision of the hypervectors, NeuralHD
can use different metrics for similarity search. In binary represen-
tation, Hamming distance is a proper similarity metric, while for

hypervectors with high precision, the cosine distance is used as a
similarity metric.

2.3 Challenges
Several research works in neuroscience have shown that neurons
in the brains are dynamically changing. Every day 85,000 neurons
(brain cells) die; that’s 31 million in a year [40, 41]. Simultane-
ously, a similar number of neurons are generating to give more
useful functionality to the brain. The generated neurons try to learn
new information and help the entire brain system for innovation
and adaptive learning. Figure 1c shows brain neural regeneration
Hyperdimensional computing, as a brain-inspired computing ap-
proach, needs to support a similar behavior. The goal of HDC is to
exploit the high-dimensionality of randomly generated base hyper-
vector to represent the information as a pattern of neural activity.
Each dimension of the encoded hypervector, in the abstract level,
represents a neuron in the brain. Unfortunately, all existing HDC
algorithms are using a static encoder. These approaches generate
base hypervectors with fixed values and use those bases for the
rest of the learning task. All dimensions equally contribute to the
learning task. However, in practice, data points and environments
are dynamically changing. Thus, they require many dimensions to
capture the relation between the input features. However, a large
dimensionality has a direct impact on HDC inefficiency. Our goal
is to design a dynamic HDC encoder that identifies insignificant
dimensions and replace them with new dimensions with a more
positive impact on the accuracy.

3 PROPOSED NEURALHD
3.1 NeuralHD Overview
In this paper, we proposed NeuralHD, a novel HDC approach with
a dynamic encoder for adaptive learning. In HDC, all dimensions do
not have a similar impact on the learning task; There are some di-
mensions/neurons with no or minimal impact on learning. The goal
of our proposed NeuralHD is to identify such insignificant dimen-
sions and drop them from the computation. To enhance accuracy,
NeuralHD extends the model by regenerating those dimensions
on the encoding module. This regeneration gives a new chance to
dimensions to have a higher contribution to the learning task.

Figure 3 shows an overview of NeuralHD learning framework.
NeuralHD first maps data into high-dimensional space using one
of the existing encoding methods (•𝐴 ). The encoding depends on
the data type and is performed using defined HDC mathematics
over a set of randomly generated base vectors (e.g., for text classifi-
cation as the definition of A to Z alphabets as random hypervectors
in 𝐷 = 10𝑘 dimensions). We explain the details of this static en-
coder later in Section 3.3. NeuralHD performs training over the
encoded data (•𝐵 ). The trained model is normalized to simplify the
similarity metric used in the inference/retraining to dot product
operation (•𝐶 ) (explained in Section 3.2). Next, we compute the
variance over different class dimensions in order to find dimensions
with the lowest impact on classification accuracy (•𝐷 ). NeuralHD
drops insignificant dimensions from our model and base hypervec-
tors in the encoder module (•𝐸 )). Finally, NeuralHD regenerates
the base hypervectors on the selected dimensions (•𝐹 ). NeuralHD
encodes the data points into high-dimensional space using new up-
date base vectors. To continue the learning, NeuralHD introduced

3



C1D C12

C2D C22

C11

C21

N
or

m
al

iz
ed

Training Model
N1D N12

N2D N22

NkD Nk2

N11

N21

Nk1CkD Ck2 Ck1

Base vectors

Var1Var2VarD

Minimum Variance
Regeneration 

Rate

Regeneration Drop Dimension

Encoding 
Train+ 
Retrain

R

Normalized Model

D

Edge Computing

Cloud

Regenerative 
Encoding

Adaptive 
Learning

Lowers Dim
Dynamic                                                                              
aRepresentation

EF

B C

A G

Figure 3: overview of NeuralHD using regenerative encoder
and adaptive learning.

two iterative learning to repeat training, dimension reduction, and
dimension regenerating (explained in Section 3.4). The iterative
learning and regeneration continue until NeuralHD finds a model
that most dimensions are highly contributing to the classification
(explained in Section 3.6). We also exploit NeuralHD compressed
and efficient model to enable online learning on edge computing
systems (•𝐺 ).

3.2 Drop Insignificant Dimensions
During training, HDC creates a single hypervector representing
each class. The inference task happens by checking the similarity
of a query hypervector (an encoded inference data) with all class
hypervectors. Query data is assigned to a class with the highest
similarity. The goal of HDC is to train class hypervectors, where
their patterns represent information. A weak classifier cannot find
distinct patterns for different classes; thus, many classes will get
similar patterns. This makes the classification task hard as the query
may have a close similarity value to multiple classes.

Figure 2 shows how HDC computes the similarity of a query,
®𝐻 = {ℎ1, ℎ2, · · · , ℎ𝐷 }, with multiple class hypervectors. During
learning, HDC computes the cosine similarity as:

𝛿 ( ®𝐻, ®𝐶𝑙 ) =
®𝐻 · ®𝐶𝑙

∥ ®𝐻 ∥ · ∥ ®𝐶𝑙 ∥
=
®𝐻
∥ ®𝐻 ∥

·
®𝐶𝑙
∥ ®𝐶𝑙 ∥

� ®𝐻 · ®𝑁𝑙 (2)

where ∥ ®𝐻 ∥ is a repeating factor when comparing a query with all
classes, so can be discarded. The ∥ ®𝐶𝑙 ∥ factor is also constant for
a classes, so only needs to be calculated once. This simplified the
cosine similarity to dot product operation.

The same product operation happens between a query and all
other classes. As Figure 2 shows, in each dimension, the same query
data is multiplied to all class elements on that dimension. Our goal
is to find dimensions that do not have a significant impact on the
classification task. To this end, as Figure 3D shows, we compute
the variance over each dimension of the classes. Dimensions with
low variance have similar values over all classes, meaning that they
store common information. During the search, these dimensions
are adding similar weights to cosine over all classes. We call these
dimensions insignificant as they do not help to differentiate the
class patterns.

40%
50%
60%
70%
80%
90%

100%

0 4 8 12 16 20 24 28 32 36 40

Ac
cu

ra
cy

 (%
)

Dropped Dimensions (%)

Low Varience High Varience Random

Figure 4: Dropping dimensions and NeuralHD accuracy.

NeuralHD drops dimensions with low variance (Figure 3E). Fig-
ure 4 shows the impact of dimension reduction onNeuralHD classifi-
cation accuracy. In our evaluation, we drop hypervector dimensions
in three configurations: (i) dimensions with the lowest variance, (ii)
random dimensions, and (iii) dimensions with the highest variance.
Our evaluation shows that dropping low variance dimensions has
almost no impact on the accuracy while dropping higher variance
dimensions results in a significant accuracy drop. Similarly, droop-
ing random dimensions are providing a medium impact on the
accuracy drop. This indicates that the low variance dimensions are
insignificant and have minimal impact on accuracy.

3.3 NeuralHD Dimension Regeneration
NeuralHD drops insignificant dimensions and regenerates them
during the training phase. Figure 3F shows how this regeneration
happens over a dropped dimension. During the training phase, Neu-
ralHD creates an initial HDC model, a hypervector representing
each class. For each dimension of class hypervector, NeuralHD
computes the variance over the normalized model (shown in Fig-
ure 3D). Then, NeuralHD selects 𝑅% of dimensions with minimum
variance as a candidate to drop, where 𝑅 is a regeneration rate.
Instead of leaving the drooped dimensions blank, NeuralHD re-
generates those dimensions. The main goal of regeneration is to
create new dimensions that can potentially have a higher impact
on the classification, meaning that they can provide a higher vari-
ance. Note that NeuralHD regeneration is a general approach and
applicable to all existing HDC algorithms. In this paper, we look at
its impact on the classification task. In the following, we explain
the encoding methodology for popular data types and NeuralHD
modifications during the regeneration phase.

Feature Data: We exploit an encoder method, inspired by the
Radial Basis Function (RBF) kernel trick [42, 43], for mapping data
points into HDC space. This encoder considers the non-linear rela-
tion between the features during the encoding. Figure 5a shows our
encoding procedure. Let us consider an encoding function that maps
a feature vector ®𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛}, with 𝑛 features (𝑓𝑖 ∈ R) to a
hypervector ®𝐻 = {ℎ1, ℎ2, . . . , ℎ𝐷 } with 𝐷 dimensions (ℎ𝑖 ∈ {0, 1}).
We generate each dimension of encoded data by calculating a dot
product of feature vector with a randomly generated vector as
ℎ𝑖 = 𝑐𝑜𝑠 ( ®𝐵𝑖 · ®𝐹 +𝑏) × 𝑠𝑖𝑛( ®𝐵𝑖 · ®𝐹 ), where 𝐵𝑖 is a randomly generated
vector from a Gaussian distribution (mean 𝜇 = 0 and standard devi-
ation 𝜎 = 1) with the same dimensionality of the feature vector and
𝑏 is a random value sampled uniformly from [0, 2𝜋]. The random
vectors { ®𝐵1, ®𝐵2, · · · , ®𝐵𝐷 } can be generated once offline and then
can be used for the rest of the classification task ( ®𝐵𝑖 ∈ R𝑚). After
this step, each element, ℎ𝑖 , represents an element of ®𝐻 hypervector.

4



D 3

LA

LB

LC

LZ 2 1 D 3

Lmax

Lmin 2 1

(b) Text-like Data (c) Time-Series Data

Vmax

Vmin

ρρLA * ρLB * LCEncoding  ABC : ρρLx-2 * ρLmin * Lx-1Encoding trigram:

Lx-1

Lx-2

t1 t2 t3

Encoded 
Data

n 1

B1

B2

B3

BD

fn f1

× × 

Distribution

cosine

cosine

cosine

cosine

h1

h2

h3

hD

Original Data

(a) Feature Vector

Base Hypervector Base Hypervector

Figure 5: NeuralHD encoding and dimension regeneration over different data types.

Regeneration: As Figure 5a shows, each base vector in the encoding
module corresponds to generating a single dimension of hypervec-
tor. For instance, the 𝑖𝑡ℎ dimension of encoded data is generated by
performing dot product operation between the feature vector and
𝐵𝑖 . NeuralHD regenerates a selected dimension on the encoding
module by updating the corresponding base vector with another
randomly generated vector with a Gaussian distribution. The same
base update happens on all dimensions that are selected to drop
from the class hypervectors.

Text-like Data: The encoding of the text data starts by assign-
ing a random binary hypervector to each character in the alphabet.
For example, for encoding the English text, we generate a random
hypervector representing digits A to Z (as shown in Figure 5b). We
encode text data in a 𝑛-gram windows, where 𝑛 is usually a number
between 3 to 5 [27]. Considering a trigram “A-B-C” example, we use
the following embedding to map a sequence to high-dimensional
space: 𝜌𝜌 ®𝐿𝐴 ∗ 𝜌 ®𝐿𝐵 ∗ ®𝐿𝐶 . The encoding module binds the hyper-
vectors corresponding to alphabets while exploits permutation to
remember their sequence.
Regeneration: Due to the rotational shift that happens by the per-
mutation, the location of dimensions in the base hypervectors do
not linearly match with the class dimensions on the trained model.
Assuming an 𝑛-gram windows, a change on the 𝑖𝑡ℎ dimension of
base hypervectors can result in changes on 𝑖𝑡ℎ to 𝑖 +𝑛𝑡ℎ dimensions
of the class hypervectors. Instead of looking for a single dimension
of the model with low variance, NeuralHD finds the 𝑛 neighbor
dimensions that have the lowest average variance. NeuralHD re-
generation updates the 𝑖𝑡ℎ dimension on the base hypervectors, if
class dimensions in 𝑖𝑡ℎ to (𝑖 +𝑛)𝑡ℎ have minimum average variance.
This update happens by generating random uniform bits on the 𝑖𝑡ℎ
dimension of all base hypervectors.

Time-Series Data: HDC uses a very similar encoding as text
data to map time-series into high-dimensional space. We sample
time-series in an𝑛-gramwindow. In each sample window, the signal
values (in the y-axis) stores the information, and the time (x-axis)
represents the sequence. We assign a random vector to 𝑉𝑚𝑖𝑛 (®𝐿𝑚𝑖𝑛

representing minimum signal value) and 𝑉𝑚𝑎𝑥 (®𝐿𝑚𝑎𝑥 representing
maximum signal value). Since these vectors are randomly gener-
ated, they are nearly orthogonal. For signal values between 𝑉𝑚𝑖𝑛

and 𝑉𝑚𝑎𝑥 , we perform vector quantization to generate vectors that
have a spectrum of similarity to ®𝐿𝑚𝑖𝑛 and ®𝐿𝑚𝑎𝑥 similarity. Finally,
the encoding can perform by binding the level hypervectors corre-
sponding to sampled signal while using permutation to store the

Regeneration

Encoding 
Trained Model

Minimum VarianceDrop Dimension

Normalized Model

N
or

m
al

iz
ed

Train+ 
Retrain

Regeneration

Encoding 
Trained Model

Minimum VarianceDrop Dimension

Normalized Model

N
or

m
al

iz
ed

Retrain

(a) 
Reset 

Learning

(b) 
Continuous 

Learning

Figure 6: NeuralHD reset and continuous learning.

timing information. For example shown in Figure 5c, the trigram
Windows can be encoded as 𝜌𝜌 ®𝐿𝑥−2 ∗ 𝜌 ®𝐿𝑚𝑖𝑛 ∗ ®𝐿𝑥−1.
Regeneration: Similar to text-data, NeuralHD selects insignificant
dimensions by computing the average variance over 𝑛 neighbor
dimensions of class hypervectors . Assuming 𝑖𝑡ℎ to 𝑖 + 𝑛𝑡ℎ class
dimensions have the minimum average variance, NeuralHD drops
and regenerates the 𝑖𝑡ℎ dimension on the ®𝐿𝑚𝑖𝑛 and ®𝐿𝑚𝑎𝑥 . The inter-
mediate levels (®𝐿𝑥−1, and ®𝐿𝑥−2 shown in Figure 5C) are computed
by performing vector quantization between ®𝐿𝑚𝑖𝑛 and ®𝐿𝑚𝑎𝑥 .

3.4 NeuralHD Retraining
The regeneration updates the encoding module. However, Neu-
ralHD current model has been trained based on the old bases in
the encoding module. To adapt model to count for regeneration,
NeuralHD proposes two re-training approaches: Reset Learning
and Continues Learning. Reset learning starts training a new model
based on the regenerated bases, while Continues learning exploits
the prior knowledge to continue the learning procedure.

3.4.1 Reset Learning. Figure 6a shows an overview of reset learn-
ing. NeuralHD starts training a model from scratch using new
regenerated bases. This approach does not exploit the information
learned by the model in the previous iteration. The training hap-
pens by exploiting the new encoded data points and training a
hypervector representing each class. Thanks to newly updated base
hypervectors, NeuralHD is expected to get a larger variance on the
regenerated dimensions. This indicates that more dimensions are
becoming significant and will have a higher impact on the classi-
fication. Due to the randomness of the regeneration, it is possible
that the newly updated dimension still provides low variance. Neu-
ralHD iterative training gives the same change to updated as well
as all other dimensions to drop again during the next regeneration
iterations. This ensures that NeuralHD can find suitable dimensions

5



during the iterative process. Although this approach improves clas-
sification accuracy, it is a slow learning process. Since NeuralHD
starts each learning iteration from a scratch model (losses the past
information), it requires several iterations to converge.

3.4.2 Continuous Learning. Figure 6a shows an overview of con-
tinuous learning. NeuralHD continues learning from the previously
learned model. Instead of start training from scratch, NeuralHD
only ignores the class values on the dropped dimensions while other
dimensions continue learning at the top of their existing values. In
each iteration, NeuralHD checks the similarity of each training data
point with the current model. If the training data point correctly
classified with the current model, it does not update the model.
However, in the case of miss-classification, NeuralHD updates the
model by adding the query with correct and subtracting it from
the wrong class. This process continues over the entire dataset (or
a batch of data) to generate a new model. At the end of the itera-
tion, the new model can be used for the inference task or another
iteration of retraining.

3.5 Similarity To Brain Regeneration
NeuralHD continuous training has a similar behavior as human
neural adaptation, where insignificant neurons die, and newborn
neurons perform the same functionality. Like the human brain
that evolves more quickly at the young ages (learning phase), Neu-
ralHD has more rapid regeneration during the first regeneration
iterations. Figure 7a visually shows the index of the regenerated
dimensions during different iterations (white dots show the re-
generated dimensions). In the initial regeneration iterations, our
approach effectively identifies various dimensions for regenera-
tion. Going further through the regeneration, NeuralHD effectively
drops insignificant dimensions such that the remaining dimensions
are getting a higher variance. Figure 7b shows the average variance
of the class hypervector over different dimensions. The results in-
dicate that NeuralHD regeneration drops insignificant dimensions
and helps to find dimensions that can significantly impact classifi-
cation. The increase in the variance depends on the regeneration
rate, where higher rates result in a higher variance.

As Figure 7a shows, the new regenerated dimensions in the last
iterations (> 30) will find less chance to compete with already well-
developed dimensions in terms of variance. Therefore, NeuralHD
may repeatedly select the recently regenerated dimensions as the
best candidate to drop. Biologically, this is a very similar behavior
that neuroscientists observed as the functionality of the human
brain [44]. During childhood, the brain regenerates more neurons,
while this process slows down by getting aged when the brain gets
more complex [41, 45].

3.6 NeuralHD Learning Convergence
As we explained, NeuralHD is an iterative learning approach that
regenerates dimensions through iterations. However, the conver-
gence of NeuralHD highly depends on the frequency of the model
update and the regeneration rate. Frequently updating the encoding
bases can result in model divergence.

Lazy Regeneration: The newly updated dimensions still have
very low variance, as these dimensions only retrained for a single
iteration. In contrast, other dimensions have been retrained for

0

20

40

60

800 20010050 150
Dimensions (D)

R
eg

en
er

at
io

n 
Ite

ra
tio

ns

Ef
fe

ct
iv

e 
R

eg
en

er
at

io
n

D
ro

p 
Si

m
ila

r 
D

im
en

si
on

s

(a) (b) 

40

20

0

10

30

123 6 9
Variance (×10-3)

Figure 7: (a) Visualizing the index of regenerated dimensions
during different iterations, (b) Average dimensions variance.

multiple iterations. During the next regeneration phases, the re-
cently updated dimensions have a higher chance of being selected
to drop from the model again. To address this issue, we perform
less frequent regeneration, called lazy regeneration, rather than up-
dating the encoder in every iteration. This technique ensures that:
(i) NeuralHD accuracy does not diverge due to aggressive model
update, and (ii) regenerated dimensions have enough chance to
increase their variance during the iterative learning process.

Weighting Dimensions: Another important issue with model
regeneration is the small class values on newly generated dimen-
sions. NeuralHD training and retraining process increases the val-
ues of the class elements. However, the newly updated dimensions
usually have small values. During the cosine similarly, the impact of
each dimension is determined by its value in each dimension. This
means that newly updated dimensions do not have a major impact
on the cosine values. To give a similar chance to new dimensions to
contribute to the similarity distance, we normalize the class hyper-
vectors over each dimension (Figure 3C). This normalization puts
all dimension values in a similar range as newly generate dimen-
sions. Therefore, all dimensions will have the same chance during
the similarity measurement. Note that this normalization happens
after every𝑚 iterations when regeneration happens. During the
inference, NeuralHD performs the exact similarity search as the
baseline to find a class with the highest similarity.

4 NEURALHD EDGE LEARNING
In IoT systems, devices are connected as a network. A centralized
could often receive data frommultiple end-node devices, called edge
devices. Several research works focused on using neural networks
for efficient distributed learning, e.g., federated learning [2–4, 46].
However, these approaches have the following challenges: (1) Edge
devices are often lightweight embedded devices with limited battery,
memory, and computing resources. Thus, they cannot provide real-
time DNN training, which requires a large memory footprint and
computing resources to perform gradient computation. (ii) They
suffer from a lack of robustness in both hardware and network
noise.

In contrast, NeuralHD provides several features that make it
suitable for learning in edge learning: (i) fast and real-time learning
from the stream of data, and (ii) robustness to noise and failure
on the end-node devices and the network. We exploit NeuralHD
for both centralized and federated learning. In centralized learn-
ing, each edge device encodes data into high-dimensional space.

6



Inference

Adjustment

Varience

Partial 
Data 

Model 1
Model 2

Model n

A
gg

rig
at

io
nNode 1

M
od

el
 1

Cloud
C

en
tra

l 
M

od
el

Central 
Model

Central 
Model

En
co

de
Tr

ai
ni

ng

Node n

M
od

el
 1

En
co

de
Tr

ai
ni

ng

Node Model 

Central 
Model

A
gg

rig
at

io
n

(a) (b)

(c)

α >th

Online Learning

Training
Encoding

Retraining

Varience
Central 
Model

Re-
generation

Node Models

Partial 
Data 

Figure 8: NeuralHD federated learning. (a) Overview, (b)
Node computation, (c) Cloud computation.

All devices send their encoded hypervector to a cloud, and cloud
performs learning tasks (learning explained in Section 2.2). The
trained model will be shared with all edge devices. Although this
approach provides high classification accuracy, it requires a large
amount of communication cost, which dominates the total system
efficiency. In Section 6.2 and Section 6.4, we evaluate NeuralHD
accuracy and efficiency in this configuration.

4.1 NeuralHD Federated Learning
Figure 8a shows an overview of NeuralHD framework supporting
federated learning. In federated learning, the encoding and training
tasks perform locality on edge devices. Cloud creates an aggregated
model by combining models received by all nodes. Then, it shares
the aggregated model with all nodes. Each node made necessary
changes to personalize the model based on its local data. The up-
dated models of all edge devices will be aggregated on the cloud
again. This iterative learning continues until generating a central
model with the best representation of data received by all nodes. In
the following, we explain the details of this iterative process.

Edge Learning: Figure 8b shows the functionality of each edge
device during federated learning. Each edge device encodes data
points into high-dimensional space and trains a local model. Neu-
ralHD supports both iterative learning (explained in Section 2.2)
or fast single-pass training (explained in Section 4.2). In the first
iteration, the learning happens without regenerating the encoding
module. NeuralHD also supports online learning from both labeled
or unlabeled data. More details are explained in Section 4.2.

Cloud Aggregation: Figure 8c shows the functionality of the
cloud during federated learning. Cloud receives partially trained
models from all edge devices and aggregates them to create a central
model. Assume a system with𝑚 edges, where { ®𝐶1

𝑖
, ®𝐶2

𝑖
, · · · , ®𝐶𝑚

𝑖
}

are the 𝑖𝑡ℎ class hypervectors corresponding to different nodes.
NeuralHD aggregates models by adding different patterns corre-
sponding to each node. For example, the 𝑖𝑡ℎ class of the central
model can be created using: ®𝐶𝐴

𝑖
= ®𝐶1

𝑖
+ ®𝐶2

𝑖
+ · · · + ®𝐶𝑚

𝑖
. However,

the central model is often saturated by the pattern of dominant
nodes, and it does not well represent the entire data. NeuralHD
addresses this issue by retraining the aggregated model over the
class hypervectors received by all nodes. We consider each class
hypervector as labeled encoded data. We check the similarity of
each class hypervector with the aggregated model. For example, we

check the similarity of the 𝑖𝑡ℎ class hypervector of the node 1 with
the aggregated model (𝛿 ( ®𝐶𝐴

𝑖
, ®𝐶1

𝑖
), 𝑖 ∈ 1...𝑘). For every incorrect

prediction, NeuralHD updates the corresponding class hypervector
in the central model as follows: ®𝐶𝐴

𝑖
← ®𝐶𝐴

𝑖
+ (1 − 𝛿 ( ®𝐶𝐴

𝑖
, ®𝐶1

𝑖
)) × ®𝐶1

𝑖
,

where ‘1 − 𝛿 ( ®𝐶𝐴
𝑖
, ®𝐶1

𝑖
)’ term ensures that models do not saturate the

class if their pattern already exists in the aggregated model. Cloud
continues this retraining in multiple iterations until generating a
good representative model.

Cloud Dimension Selection: Cloud performs dimension re-
duction over the aggregated model, while the regeneration happens
locally on each node. Cloud computes the variance on different di-
mensions of the aggregated model. Then, it sends the central model
along with the index of dropped dimensions (variance vector) to
all nodes (Figure 8b,c).

Edge Personalized Training: As Figure 8b shows, NeuralHD
regenerates the base vectors on insignificant dimensions chosen by
the cloud. All nodes update the central model locally based on their
data points. This is equivalent to personalizing the model in each
node. NeuralHD supports model adjustment in both iterative or
streaming ways. In the iterative procedure, each node iterates over
the same training data point and updates the model (Section 2.2).
NeuralHD is also capable of single-pass training to update themodel
based on the stream of data received by each node. We explain the
details of NeuralHD single-pass training in Section 4.2.

Inference and Continuous Learning: The new model in each
node can be used for the inference. To further improve the classifi-
cation accuracy, NeuralHD can continue collaborative learning by
aggregating all nodes’ models in the cloud. The rest of the learning
task repeats as the steps explained above. While NeuralHD tries
to generate a new aggregated model, edge devices can perform
inference based on their most updated model.

4.2 Online Learning on the Edge
One of the main features of HDC is its capability to support single-
pass training. NeuralHD exploits this feature to enable online learn-
ing. NeuralHD learns a model by one-time passing through each
data point, with no iterations. This enables efficient learning with-
out storing train data. The single-pass training is suitable for many
real-world IoT systems where the learning is happening on small
embedded devices with limited memory and resources.

Besides supervised learning, NeuralHD also supports online
learning from semi-supervised data, where only a small portion
of training data is labeled. NeuralHD first creates a model using
labeled data. Then, it exploits unlabeled data to improves the quality
of the model. NeuralHD checks the similarity of each unlabeled data
with the already trained model (Figure 8b). Thanks to NeuralHD
transparent model, the similarity search gives us confidence about
the classification result. The confident level (𝛼) determines how
much the model ensures that a data is corresponded to a particulate
class. Assume 𝛿𝑖 is a cosine similarity of an encoded data with 𝑖𝑡ℎ

class (𝛿𝑖 = 𝛿 ( ®𝐻, ®𝐶𝑖 )), we compute the confidence of class 𝑖𝑡ℎ as:
𝛼𝑖 =

𝛿𝑚𝑎𝑥≠𝑖−𝛿𝑖
𝛿𝑚𝑎𝑥≠𝑖

, where 𝛿𝑚𝑎𝑥≠𝑖 is the class with the maximum simi-
larity to query except with 𝑖𝑡ℎ class. If the confident level is higher
than a threshold (e.g., 𝛼 > 90%), NeuralHD updates the model by
embedding encoded data to the corresponding class hypervector
as: ®𝐶𝑚𝑎𝑥 = ®𝐶𝑚𝑎𝑥 + 𝛼 × ®𝐻 , where ®𝐻 is the query data and ®𝐶𝑚𝑎𝑥

7



is a class which has the maximum similarity with a query. This
approach enables model updates using unlabeled data.

NeuralHD supports regeneration during single-pass training.
The dimension reduction used for regeneration is unsupervised,
where we can identify insignificant dimensions regardless of the
labeled data. During training, NeuralHD computes the variance and
drops dimensions for the next set of training data points. It then
regenerates the base vectors in the encoding to replace insignificant
dimensions. NeuralHD uses a very low regeneration rate to ensure
model convergence. This is because, during the single-pass training,
the model does not have a high chance of retraining.

5 HARDWARE ACCELERATION
NeuralHD can be accelerated in different platforms. Since there is
no dependency between dimensions during the hypervector op-
erations, FPGA is suitable hardware to parallelize the HDC in a
power-efficient way. All base hypervectors are stored in Block RAM
(BRAM) during encoding, which is on-chip FPGA memory. Our
approach pre-fetches the weight vectors from the BRAM blocks
during the encoding and stores them in the local distributed mem-
ory that can be accessed faster than BRAM. For feature vector
encoding, FPGA reads the first𝑚 features of original data points
(𝑚 ≤ 𝑛). Next, it accesses the weight vector and then multiplies 𝑛
continuous dimensions of the feature vector with the corresponding
weight vector. These multiplications are processed using Digital
Signal Processor (DSP) blocks, and they are parallelized for different
weight vectors. For other encoders, the computation is all binary
and perform efficiently using the lookup table (LUT) logics. Finally,
the encoded hypervector can be binarized by considering the sign
of the encoded data as a binary output.

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup
We use in-house simulator on distributed network topologies with
diverse network mediums. The simulation framework evaluates
NeuralHD in a hardware-in-the-loop fashion. During the simula-
tion, the simulator invokes the NeuralHD learning procedures on
platforms that represent different nodes in the IoT hierarchy. HDC-
based learning methods are added as the plugin module while
testing data is streamed as inputs of sensing nodes. This allows
us to analyze how well HDC can work with missing (lost packets
in transmission) or incorrect (bit errors) data. We implement Neu-
ralHD training and testing on three embedded platforms: Cortex
A53 CPU, Kintex-7 FPGA, and Jetson Xavier GPU. For FPGA, we
design the NeuralHD functionality using Verilog and synthesize
it using Xilinx Vivado Design Suite [47]. The synthesis code has
been implemented on the Kintex-7 FPGA KC705 Evaluation Kit. We
ensure our efficiency is higher than the automated FPGA implemen-
tation at [48]. For CPU, the NeuralHD code has been written in C++
and optimized for performance. The code has been implemented on
Raspberry Pi (RPi) 3B+ using ARM Cortex A53 CPU. For the central
node, we developed a CUDA-based implementation of the proposed
technique on a server system, which uses Intel Core i7-8700K CPU
and NVIDIAGPUGTX 1080 Ti. The simulator collects the execution
time and measures power for each connected platform while run-
ning the learning procedures. The power consumption is collected
by Hioki 3337 power meter.

Table 1: Datasets (𝑛: feature size, 𝐾 : number of classes)

𝑛 𝐾
# End
Nodes

Train
Size

Test
Size Description

MNIST 784 10 NA 60,000 10,000 Handwritten Recognition[49, 50]
ISOLET 617 26 NA 6,238 1,559 Voice Recognition [51]
UCIHAR 561 12 NA 6,213 1,554 Activity Recognition(Mobile)[52]
FACE 608 2 NA 522,441 2,494 Face Recognition[53]

PECAN 312 3 312 22,290 5,574 Urban Electricity Prediction [54]
PAMAP2 75 5 3 611,142 101,582 Activity Recognition(IMU) [55]
APRI 36 2 3 67,017 1,241 Performance Identification[56]
PDP 60 2 5 17,385 7,334 Power Demand Prediction [57]

Table 2: Optimized DNN typologies for maximum accuracy.

Dataset Network Topology Dataset Network Topology

MNIST 784, 512, 512, 10 PECAN 312, 512, 512, 256, 3
ISOLET 617, 256, 512, 512, 26 PAMAP2 75, 256, 256, 128, 128, 5
UCIHAR 561, 1024, 512, 512, 12 APRI 36, 256, 128, 2
FACE 607, 1024, 1024, 128, 2 PDP 60, 256, 256, 128, 64, 2

Table 1 summarizes the evaluated datasets. The tested bench-
marks range from relatively small datasets collected in a small IoT
network to large data, which includes hundreds of thousands of
images of facial and non-facial data. For distributed learning, we
use four datasets: (i) PECAN presents a dense urban area where a
neighborhood may have hundreds of housing units [54]. It has 52
houses observed over the period 2014-01-1 to 2016-12-31. In each
house, a set of appliances instrumented with sensors records aver-
age energy consumption. The goal is to predict the level of power
consumption in the urban area. The prediction results can be used
for energy management in smart cities. (ii) PAMAP2 (Physical ac-
tivity monitoring) is a dataset for human activity recognition that is
widely used to understand user contexts [55]. The data are collected
by four sensors (three accelerometers and one heartbeat sensor),
producing 75 features in total. (iii) APRI (Application performance
identification) is collected on a small server cluster which consists
of three machines [56]. The server cluster runs Apache Spark ap-
plications while collecting performance monitoring counter (PMC)
events on each server. The goal is to identify two workload groups
depending on their computation intensity. (iv) PDP (Power demand
prediction) is collected on another high-performance computing
cluster consisting of six servers [57]. The goal is to identify either
the high or low power state using PMC measurements of the other
five servers in the cluster.

6.2 NeuralHD Accuracy
NeuralHD vs. state-of-the-art: Figure 9a compares the Neu-
ralHD accuracy with the state-of-the-art classification algorithms,
including Deep Neural Network (DNN), Support Vector Machine
(SVM), and AdaBoost. The DNN models are trained with Tensor-
flow [58]. For each dataset, we exploit Optuna [59], the state-of-
the-art hyperparameter optimization framework that finds the best
DNN parameters. Table 2 lists the DNN topologies that ensure
maximum classification accuracy. We exploited the Scikit-learn li-
brary [60] to evaluate other algorithms, where we used the common
practice of the grid search to identify the best hyper-parameters
for each model. Our evaluation shows that NeuralHD provides
comparable accuracy to the sophisticated non-HDC algorithms.
As compared to the existing HDC algorithms [25, 61], NeuralHD
achieves, on average, 9.7% higher classification accuracy, since our

8



80

90

100

Ac
cu

ra
cy

 (%
)

DNN SVM AdaBoost Linear-HD HD-Static(D) HD-Static(D*) NeuralHD(D)

80
85
90
95

100

Ac
cu

ra
cy

 (%
)

Central-Iterative Federate-Iterative
Central-OnePass Federate-OnePass

(a) Single-Node Learning (b) Distributed Learning
Figure 9: Classification accuracy comparison: (a) learning in a single node, (b) distributed learning

encoding method non-linearly maps data to the high-dimensional
space whereas the existing HDC algorithms use a linear encoding.

NeuralHD vs. Baseline:We compare NeuralHD accuracy with
the state-of-the-art HDC using linear-encoder (Linear-HD). We use
NeuralHD with static encoder as a baseline that does not have the
capability of regeneration (Static-HD). For the Static-HD, results are
reported in two dimensionalities: (i) the same physical dimension-
ality (𝐷 = 500) as NeuralHD, (ii) the same dimensionality as Neu-
ralHD effective dimension (𝐷∗). We define effective dimensionality
as the addition of the physical dimensions (𝐷) with the regenerated
dimensions through retraining iterations: 𝐷∗ = 𝐷 + 𝑅/𝐹 × 𝐼𝑡𝑒𝑟 ,
where 𝑅, 𝐹 , and 𝐼𝑡𝑒𝑟 are regeneration rate, regeneration frequency,
and the number of iterations. Our evaluation in Figure 9a shows
that NeuralHD provides 4.8% higher average accuracy compared to
Static-HD that uses the same number of physical dimensions. Neu-
ralHD accuracy is comparable to Static-HD using 𝐷∗ dimensions.
This indicates NeuralHD capability in providing high classification
accuracy while keeping the physical dimensionality low.

Centralized vs. federated learning: For datasets with mul-
tiple users, Figure 9b compares NeuralHD accuracy in four con-
figurations: federated and centralized learning using iterative and
single-pass training. NeuralHD in centralized-iterative learning pro-
vides maximum accuracy, as the cloud has access to all train data
and can improve accuracy through an iterative learning process. In
federated-iterative learning, NeuralHD provides very comparable
accuracy to the centralized system as each edge device shares its
already retrained model with the cloud. Our evaluation shows that
federated-iterative learning provides, on average, only 1.1% lower
accuracy than NeuralHD in centralized-iterative learning. During
single-pass training, both centralized and federated learning pro-
vide comparable accuracy results, which are slightly lower than
NeuralHD using iterative approaches. This is because, even in cen-
tralized learning, the cloud does not have a chance for iteratively
looking at training data. The lack of retraining in single-pass re-
duces NeuralHD accuracy by 9.4% as compared to iterative learning.

6.3 NeuralHD vs DNN
Table 3 also compares the training/inference efficiency of NeuralHD
with DNNwhen both algorithms run on two popular embedded plat-
forms: Kintex-7 FPGA and Jetson Xavier. For DNN, we used network
condifurations listed in Table 2. For FPGA, we used DNNWeaver
V2.0 [62] for efficient implementation of the DNN inference, and
FPDeep [63] for DNN training on a single FPGA device. We also
used TensorFlow for GPU implementation. Both DNN implemen-
tations are optimized to maximize performance by utilizing FPGA

Table 3: NeuralHD efficiency vs. DNN running on FPGA and
Xavier platforms. Absolute DNN execution time.

Platform MNIST ISOLET UCIHAR FACE

T
ra
in
in
g

Speedup FPGA 26.8× 16.6× 19.1× 31.7×
Xavier 5.2× 3.3 × 3.6× 5.7×

Energy Improv. FPGA 48.5× 30.4× 41.2× 61.3×
Xavier 56.3× 34.0× 42.8× 72.9×

In
fe
re
nc

e

Speedup FPGA 12.6× 7.9× 10.8× 17.3×
Xavier 2.3× 1.4× 2.0× 3.1×

Energy Improv. FPGA 5.4× 3.7× 4.9× 6.3×
Xavier 6.1× 4.5× 5.6× 7.3×

and GPU resources. All results listed in Table 3 are relative to DNN
performance and energy efficiency.

FPGA Platform: During training, NeuralHD achieves, on av-
erage, 22.5× faster and 43.6× more energy-efficient computation
compared to FPGA-based DNN implementation, respectively. The
high efficiency of NeuralHD in training comes from: (i) NeuralHD
capability in creating an initial model that significantly lowers the
number of required retraining iterations. (ii) It eliminates the costly
gradient descent for the model update. This results in a higher
NeuralHD efficiency, even in terms of a single training iteration. In
inference, NeuralHD provides 11.7× faster and 5.1× higher energy
efficiency compared to FPGA-based DNN implementation. This
higher inference efficiency comes from NeuralHD ability to reduce
the number of required resources (multiply-add), on average, by
38.1× compared to the equivalent DNN. NeuralHD model compres-
sion further reduces memory footprints and provides an average
41.2× smaller model size than the DNN.

Jetson Xavier: Xavier is an ML-optimized embedded GPU ar-
chitecture with 512-cores to accelerate tensor computing. As results
in Table 3 reports, Xavier outperforms the FPGA implementation of
DNN in terms of performance, while FPGA can still provide slightly
higher energy efficiency. Our evaluation indicates that NeuralHD
provides 4.2× and 49.7× (2.2× and 5.8×) faster and higher energy
efficiency compared to Xavier GPU during training (inference).

NeuralHDvs. DNN in different configurations: Table 4 com-
pares NeuralHD and DNN training efficiency using DNN with num-
ber of hidden layers and layers sizes. The results are reported when
we use the same network configuration for all datasets (except the
first and last layers that depend on input size and number of classes).
The quality loss in Table is defined as subtraction of DNN from
NeuralHD classification accuracy. The reported execution time is
also normalized to NeuralHD execution time. Our result indicates
that NeuralHD provides the same average accuracy to DNN with

9



Table 4: Comparison of different size DNN vs. NeuralHD.
# Hidden Layers 1 2 3 4
DNN Layer Size 256 512 256 512 256 512 256 512

Quality Loss 6.4% 5.8% 3.7% 1.9% 0.6% 0% 0% 0%
Normalized Execution (Xavier) 0.53 0.62 1.1 2.3 4.7 5.9 8.3 9.12

0

4

8

12

0

4

8

12
0

3

6

9

0

3

6

9

(a) Training (b) Inference

Sp
ee

du
p 

(D
N

N
=1

)
En

er
gy

 E
ffi

ci
en

cy
 

Im
pr

ov
. (

D
N

N
=1

)

DNN NeuralHD (D)HD-Static (D) HD-Static (D*)
18
12
6
0

18
12
6
0

15
10
5
0

15
10
5
0

Figure 10: NeuralHD training and inference efficiency as
compared to Static-HD.

about three hidden layers (with 512 size). In this configuration, DNN
computation is 5.9× slower than NeuralHD in the Xavier platform.

6.4 NeuralHD CPU Efficiency
We compare NeuralHD efficiency with DNN on two embedded
platforms: Raspberry Pi (RPi) 3B+ using ARM CPU. Figure 10a
compares NeuralHD and the Static-HD efficiency during training
and inference phases. The results are normalized to the energy
and execution time of DNN running on the same ARM CPU. We
use batch size equal to one for DNN, HDC, and NeuralHD. Our
evaluations show that NeuralHD provides higher efficiency than
DNN in both training and inference phases. These improvements
are greater in the training phase, where NeuralHD not only reduces
the number of training iterations but also reduces the computa-
tion complexity of a single training iteration by eliminating costly
gradient computation.

In HDC-based algorithms, i.e., NeuralHD and Static-HD, the
number of retraining iterations depends on the hypervector di-
mensionality, where a large dimensionality reduces the number
of training iterations. In Static-HD, using 𝐷 dimensions results
in large retraining iterations, where Static-HD using 𝐷∗ dimen-
sions (𝐷∗ > 𝐷) can be trained with very few iterations. Although
the number of NeuralHD physical dimensionality is 𝐷 , its higher
effective dimensionality significantly reduces the number of itera-
tions compared to the Static-HD using 𝐷 dimensions. On the other
hand, the efficiency of each training iteration depends on physical
dimensionality. Static-HD with using 𝐷 dimensional vectors has
the highest training efficiency. Although NeuralHD has 𝐷 physical
dimensions, the overhead of dimension regeneration increases its
single-iteration cost. The Static-HD with effective dimensionality
(𝐷∗) has the lowest single-iteration efficiency, as the training needs
to happen over long hypervectors (𝐷∗ > 𝐷). We compute total
training efficiency by considering the efficiency-per-iteration along
with the number of iterations. Our evaluation shows that NeuralHD
provides comparable training efficiency to the Static-HD with 𝐷
dimensions, while it is 3.6× and 4.2× (12.3× and 14.1×) faster and
more energy-efficient than Static-HD with 𝐷∗ dimensions (DNN).

Figure 10b also compares NeuralHD and the baseline HDC ef-
ficiency during the inference phase. The inference efficiency only

depends on the physical dimensionality of the hypervectors. Neu-
ralHD and the Static-HD using 𝐷 physical dimensions provide the
same inference efficiency. Our results also indicate that NeuralHD
is 6.5× faster and 10.5× more energy-efficient than DNN, while
providing comparable classification accuracy.

Centralized vs. Federated Learning: We compare the train-
ing efficiency of NeuralHD using centralized and federated learning.
The results are reported in the following configurations: (i) cen-
tralized learning where edge devices are CPU (C-CPU) or FPGA
(C-FPGA), and (ii) federated learning where edge devices are CPU
(F-CPU) or FPGA (F-FPGA). In all configurations, the cloud is a
central GPU. We experiment in all configurations when devices
are supporting iterative and single-pass training. Figure 11 shows
the breakdown of NeuralHD computation and communication cost
during the training phase. For each application, the results are
normalized to C-CPU performing the iterative training. Our eval-
uation shows that NeuralHD in centralized learning relies on a
large amount of data movement between end node devices and
the cloud. In this configuration, the communication takes a large
portion of the training cost, depending on the dimensionality of
the encoded data points. Using FPGA as end-node devices has a
minor impact on improving NeuralHD computational efficiency, as
edge devices only perform encoding locality. In this configuration,
the major portion of training still performs on the cloud. Since the
encoded data in both C-FPGA and C-CPU have the same size, the
communication cost remains the same in both configurations.

Federated learning significantly reduces data communication by
pushing a significant portion of the training task on edge devices.
Our evaluation shows that NeuralHD federated learning (F-CPU)
provides, on average, 1.6× faster and 1.7× higher energy efficiency
than centralized learning (C-CPU). Using FPGA as edge devices
result in significant improvement in total efficiency. This is because,
in federated learning, edge computation is a large portion of total
energy (as shown in Figure 11). For example, our experiments indi-
cate that F-FPGA provides, on average, 1.3× faster and 1.5× energy
efficiency as compared to F-CPU.

Figure 11 compares NeuralHD efficiency when cloud and edge
devices are supporting single-pass training. During single-pass,
NeuralHD significantly improves computation efficiency by elimi-
nating costly iterative training. In centralized learning, this reduc-
tion in the computation cost has a minor impact on total NeuralHD
efficiency, as communication dominates the total system cost. In
contrast, in federated learning, edge computation takes the majority
of the training cost regardless of using CPU or FPGA. Therefore,
single-pass training further reduces the computing cost and makes
NeuralHD closer to the real-time response. Our evaluation shows
that F-FPGA in single-pass learning provides 2.6× and 3.1× (5.4×
and 5.8×) faster and higher energy efficiency as compared to F-
FPGA (C-FPGA) iterative training.

6.5 Regeneration Rate and Frequency
Figure 12b also shows the impact on regeneration frequency on
NeuralHD final accuracy. Increasing the frequency of regeneration
from 𝐹 = 1 iteration to 𝐹 = 5 iteration results in higher classifi-
cation accuracy. As discussed in Section 3.6, a large regeneration
frequency, i.e., lazy update, gives a higher chance to newly updated
dimensions to increase their variance through the iterative learning

10



0
0.2
0.4
0.6
0.8

1
Iterative Single-Pass Iterative Single-Pass Iterative Single-Pass Iterative Single-Pass

Computation Communication

0
0.2
0.4
0.6
0.8

1

PECAN PAMAP2 APRI PDP

N
or

m
. E

xe
cu

tio
n 

Ti
m

e 
(C

-C
PU

=1
)

N
or

m
. E

ne
rg

y 
C

on
s.

 (C
-C

PU
=1

)

Figure 11: NeuralHD efficiency vs state-of-the-art during training and inference.

20
10

00
5

10

95

85

90

Ac
cu

ra
cy

 (%
)

(c) Low Frequency (F=1)   (d) High Frequency (F=5)      

Ite
ra

tio
ns

0   

10

20

40

30

Dimensions
20010050 1500 10050 1500 200

Dimensions

a b

c d

87

91

95

1 6 11 16 21 26 31

A
cc

ur
ac

y 
(%

)

Iterations

R=0.02
R=0.05
R=0.2

Figure 12: (a)NeuralHDaccuracy using different regenerated
rates (b) NeuralHD accuracy using different regeneration
frequencies, (c-d) visualizing regenerated dimensions dur-
ing different regeneration frequencies.

process. Therefore, they would not repeatedly select as candidate di-
mensions for regeneration. As Figure 12b shows, further increasing
the frequency reduces NeuralHD effective dimensions resulting in
lower classification accuracy. Figure 12c,d visually show NeuralHD
regenerated dimensions (indices) during the learning iterations.
Using high regeneration frequency, NeuralHD drops and regener-
ates similar dimensions in every learning iterations (Figure 12c). In
contrast, using lower frequency, NeuralHD regenerates different
dimensions through iterations (Figure 12d). In addition, using very
large frequency results in less regeneration.

6.6 Reset vs Continuous Learning
We compare NeuralHD accuracy and number of iterations using re-
set and continuous learning (introduced in Section 3.4). The results
are reported when both approaches are using the same physical
dimension (𝐷 = 500) and regeneration rate. Figure 13 shows that
NeuralHD with reset learning provides higher classification accu-
racy as compared to continuous learning, while the training takes
much longer to converge. The top x-axis in Figure 13 shows the

0
30
60
90

120

# 
of

 It
er

at
io

ns

0.4% 0.7% 1.2% 0.5% 0.6% 0.4% 1.1% 1.0%
Reset–Continuous Accuracy (%)

Reset 
Learning

Continuous 
Learning

Figure 13: Reset and continuous learning: accuracy andnum-
ber of training iterations.

higher accuracy values of reset learning as compared to continu-
ous learning. In Reset learning, NeuralHD starts learning a new
model in each iteration (from scratch) after updating the encoding
module. In this approach, the loss of prior knowledge slows down
the training process. In contrast, continuous learning continues
learning from the previously trained model. Although this approach
provides faster training, it may result in sub-optimal converges and
potentially lower classification accuracy. For learning tasks focused
on inference efficiency, Reset learning is a suitable solution as it
ensures maximum accuracy. In contrast, for tasks requiring a fast
training phase, continuous learning is more suitable as the learning
converges with a much lower number of iterations.

6.7 Robustness to Noise
The technological and fabrication issues in highly scaled technol-
ogy nodes add a significant amount of noise to both memory and
computing units [64–66]. Here, we consider the impact of noise on
both edge devices and the network. One of the main advantages of
NeuralHD is its high robustness to noise and failure. In NeuralHD,
hypervectors are random and holographic with i.i.d. components.
Each hypervector stores information across all its components so
that no component is more responsible for storing any information
than another. This makes a hypervector robust against errors. We
can exploit NeuralHD robustness to optimize total system energy
by relaxing the computation and communication. We perform ex-
periments to explore the robustness of NeuralHD and DNN to noise
in both hardware and network.

Noise in Hardware: Table 5 reports the average quality loss of
DNN and NeuralHD during the different percentage of hardware
errors in the edge devices and the cloud. The error rates are the

11



Table 5: Quality loss using noisy hardware & network

Hardware Error 1% 2% 5% 10% 15%

DNN 3.9% 9.4% 16.3% 26.4% 40.0%
NeuralHD (𝐷 = 2𝑘) 0.0% 0.0% 0.9% 3.1% 5.2%
NeuralHD (𝐷 = 0.5𝑘) 0.0% 0.4% 1.4% 4.7% 7.9%

Network Error 1% 20% 40% 50% 80%

DNN 0% 2.3% 6.3% 14.5% 37.5%
NeuralHD (𝐷 = 2𝑘) 0% 0.7% 1.3% 3.6% 6.4%
NeuralHD (𝐷 = 0.5𝑘) 0.0% 1.0% 1.9% 5.6% 9.2%

percentage of random bit flips on memory storing DNN and Neu-
ralHD models. For fairness, all DNN weights are quantized to their
effective 8-bits representation. In DNN, random bit flip results in
significant quality loss as corruptions on most significant bits can
cause major changes in the weights. In contrast, NeuralHD has
higher robustness to noise due to its redundant and holographic
distribution. For example, 5% bit flip in hardware results in 16.3%
quality loss in DNN, while this error results in 1.4% (0.9%) quality
loss in NeuralHD using 𝐷 = 500 (𝐷 = 2𝑘). NeuralHD robustness
directly depends on hypervector dimensions. As Table 5 shows,
NeuralHD in higher dimensionality provides more redundant rep-
resentation; thus, higher robustness to noise.

Noise in Network:We explore DNN and NeuralHD robustness
to noise in the network. The noise is modeled as a loss in random
packet during data communication between edge devices and the
cloud. Table 5 the quality loss in the classification accuracy for DNN
and NeuralHD in centralized learning. Our evaluation indicates
that DNN has a much higher sensitivity to communication noise as
compared to NeuralHD. In DNN, losing packets can be equivalent
to losing the entire information. In contrast, NeuralHD holographic
distribution and redundancy increase its robustness to the noise.
In centralized learning, edge devices are transferring encoded data
points to the cloud. In this configuration, an error in the network
results in losing a part of the encoded hypervector. However, we
observe that the cloud has a high chance of recovering the lost
information during the retraining phase by replacing it with other
data points with similar patterns. Our evaluations show that adding
40% network noise results in 14.5% quality loss in DNN, while this
noise results in less than 3.6% (5.6%) quality loss in NeuralHD using
𝐷 = 2𝑘 (𝐷 = 0.5𝑘) dimensions.

7 RELATED WORK
Edge-Based Learning: Several work studied the feasibility of
edge-based learning as a counterpart of the centralized comput-
ing [67–69]. Prior work showed that deep neural networks compu-
tation should be split between cloud and edge devices for higher
efficiency [5, 70]. These applications rely on neural network appli-
cations only limited to inference tasks. Work in [71, 72] rewrote
for ML in heterogeneous hierarchical IoT systems, but they are
restricted to the linearly decomposable inference computation. Re-
cently, Google also proposed a federated learning approach [46]
for collaborative learning. In their approach, each client needs to
learn the local model based on the private training data to update
the central model in the cloud. Prior work also investigated hot to
fuse sensor data streams using ML models [73, 74]. To reduce the

amount of transferred data in sensor networks, prior work studied
compressive sensing techniques that statistically choose samples
and features without losing too much information [75, 76]. These
techniques are orthogonal to our method and can be potentially
integrated with our learning solution. To summarize, our work
is different from the previous work in that it enables distributed
learning for both online training and inference tasks.
Hyperdimensional Computing: Prior research have applied
the idea of hyperdimensional computing to diverse cognitive tasks,
such as robotics [14, 21], analogy-based reasoning [77], latent se-
mantic analysis [78], language recognition [20], clustering [79],
prediction from multimodal sensor fusion [18, 19], and bio-signal
processing [80, 81]. For example, the work in [78] proposed a text
classification algorithm based on random indexing as a scalable
alternative to latent semantic analysis. The work in [82] showed an
HDC classificationmethod for voice data. Several recent works have
presented novel architecture to accelerate the HDC inference task
efficiently. For example, work in [12, 23, 83–87] designed processing
in-memory architecture, which supports all HDC operations inside
the memory array. However, all existing HDC algorithms are using
a static encoder. This makes HDC very inefficient as it requires to
use of large dimensionality to solve realistic problems. In addition,
the existing encoding methods do not consider non-linear interac-
tions between features, resulting in insufficient prediction accuracy
on feature vectors. To the best of our knowledge, NeuralHD is the
first effort to design an adaptive encoder for HDC. Our approach
identifies insignificant dimensions and regenerates them to ensure
efficient and scalable learning systems.

8 CONCLUSION
In this paper, we proposed NeuralHD, a novel hyperdimensional
learning system with a dynamic encoder for adaptive learning. Neu-
ralHD identifies dimensions with less impact on the learning task
and regenerates them in the encoding module to enhance learning.
We show the capability of NeuralHD to support online learning
from the stream of data received in real-time. Our evaluation shows
that NeuralHD provides the same accuracy as state-of-the-art HD-
based algorithms in much lower physical dimensionality. Therefore,
NeuralHD provides, on average, 3.6× and 4.2× (12.3× and 14.1×)
faster and more energy-efficient training than the HD-based algo-
rithms (DNNs).

ACKNOWLEDGMENT
This work was supported in part by National Science Foundation
(NSF) #2127780, Semiconductor Research Corporation (SRC) Task
No. 2988.001, Department of the Navy, Office of Naval Research,
grant #N00014-21-1-2225, and a generous gift from Cisco.

REFERENCES
[1] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an intelligent

edge: wireless communication meets machine learning,” IEEE Communications
Magazine, vol. 58, no. 1, pp. 19–25, 2020.

[2] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge ai: Intel-
ligentizing mobile edge computing, caching and communication by federated
learning,” arXiv preprint arXiv:1809.07857, 2018.

[3] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task
learning,” in Advances in Neural Information Processing Systems, pp. 4424–4434,
2017.

[4] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to backdoor
federated learning,” arXiv preprint arXiv:1807.00459, 2018.

12



[5] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang, “Neu-
rosurgeon: Collaborative intelligence between the cloud and mobile edge,” ACM
SIGPLAN Notices, vol. 52, no. 4, pp. 615–629, 2017.

[6] J. Pan and J. McElhannon, “Future edge cloud and edge computing for internet
of things applications,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 439–449,
2017.

[7] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for the internet
of things with edge computing,” IEEE network, vol. 32, no. 1, pp. 96–101, 2018.

[8] O. Yilmaz, “Symbolic computation using cellular automata-based hyperdimen-
sional computing,” Neural computation, vol. 27, no. 12, pp. 2661–2692, 2015.

[9] P. Kanerva, “Hyperdimensional computing: An introduction to computing in
distributed representation with high-dimensional random vectors,” Cognitive
Computation, vol. 1, no. 2, pp. 139–159, 2009.

[10] P. Kanerva, J. Kristofersson, and A. Holst, “Random indexing of text samples
for latent semantic analysis,” in Proceedings of the 22nd annual conference of the
cognitive science society, vol. 1036, Citeseer, 2000.

[11] P. Poduval et al., “Stochd: Stochastic hyperdimensional system for efficient and
robust learning from raw data,” in IEEE/ACM Design Automation Conference
(DAC), 2021.

[12] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring hyper-
dimensional associative memory,” in High Performance Computer Architecture
(HPCA), 2017 IEEE International Symposium on, pp. 445–456, IEEE, 2017.

[13] T. F. Wu, H. Li, P.-C. Huang, A. Rahimi, J. M. Rabaey, H.-S. P. Wong, M. M.
Shulaker, and S. Mitra, “Brain-inspired computing exploiting carbon nanotube
fets and resistive ram: Hyperdimensional computing case study,” in 2018 IEEE
International Solid-State Circuits Conference-(ISSCC), pp. 492–494, IEEE, 2018.

[14] A. Mitrokhin, P. Sutor, C. Fermüller, and Y. Aloimonos, “Learning sensorimotor
control with neuromorphic sensors: Toward hyperdimensional active perception,”
Science Robotics, vol. 4, no. 30, p. eaaw6736, 2019.

[15] A. Hérnandez-Cano et al., “Reghd: Robust and efficient regression in hyper-
dimensional learning system,” in IEEE/ACM Design Automation Conference (DAC),
2021.

[16] P. Poduval et al., “Cognitive correlative encoding for genome sequence matching
in hyperdimensional system,” in IEEE/ACM Design Automation Conference (DAC),
2021.

[17] A. Mitrokhin, P. Sutor, D. Summers-Stay, C. Fermüller, and Y. Aloimonos, “Sym-
bolic representation and learning with hyperdimensional computing,”

[18] O. Räsänen and S. Kakouros, “Modeling dependencies in multiple parallel data
streams with hyperdimensional computing,” IEEE Signal Processing Letters, vol. 21,
no. 7, pp. 899–903, 2014.

[19] O. Rasanen and J. Saarinen, “Sequence prediction with sparse distributed hyper-
dimensional coding applied to the analysis of mobile phone use patterns,” IEEE
Transactions on Neural Networks and Learning Systems, vol. PP, no. 99, pp. 1–12,
2015.

[20] A. Joshi, J. Halseth, and P. Kanerva, “Language geometry using random indexing,”
Quantum Interaction 2016 Conference Proceedings, In press.

[21] S. Jockel, “Crossmodal learning and prediction of autobiographical episodic
experiences using a sparse distributed memory,” 2010.

[22] L. Ge and K. K. Parhi, “Classification using hyperdimensional computing: A
review,” arXiv preprint arXiv:2004.11204, 2020.

[23] H. Li, T. F. Wu, A. Rahimi, K.-S. Li, M. Rusch, C.-H. Lin, J.-L. Hsu, M. M. Sabry,
S. B. Eryilmaz, J. Sohn, et al., “Hyperdimensional computing with 3d vrram
in-memory kernels: Device-architecture co-design for energy-efficient, error-
resilient language recognition,” in Electron Devices Meeting (IEDM), 2016 IEEE
International, pp. 16–1, IEEE, 2016.

[24] P. Poduval et al., “Hyperdimensional self-learning systems robust to technology
noise and bit-flip attacks,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), IEEE, 2021.

[25] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and T. Rosing, “A
framework for collaborative learning in secure high-dimensional space,” in 2019
IEEE 12th International Conference on Cloud Computing (CLOUD), pp. 435–446,
IEEE, 2019.

[26] A. Hérnandez-Cano et al., “Prid: Model inversion privacy attacks in hyperdi-
mensional learning systems,” in IEEE/ACM Design Automation Conference (DAC),
2021.

[27] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier
using brain-inspired hyperdimensional computing,” in Proceedings of the 2016
International Symposium on Low Power Electronics and Design, pp. 64–69, 2016.

[28] M. Imani, Z. Zou, S. Bosch, S. A. Rao, S. Salamat, V. Kumar, Y. Kim, and T. Rosing,
“Revisiting hyperdimensional learning for fpga and low-power architectures,” in
2021 IEEE International Symposium on High-Performance Computer Architecture
(HPCA), pp. 221–234, IEEE, 2021.

[29] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing, “Bric: Locality-
based encoding for energy-efficient brain-inspired hyperdimensional computing,”
in Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6,
2019.

[30] J. H. Morrison and P. R. Hof, “Life and death of neurons in the aging brain,”
Science, vol. 278, no. 5337, pp. 412–419, 1997.

[31] E. I. Rugarli and T. Langer, “Mitochondrial quality control: a matter of life and
death for neurons,” The EMBO journal, vol. 31, no. 6, pp. 1336–1349, 2012.

[32] F. H. Gage and S. Temple, “Neural stem cells: generating and regenerating the
brain,” Neuron, vol. 80, no. 3, pp. 588–601, 2013.

[33] L. Gao, W. Guan, M. Wang, H. Wang, J. Yu, Q. Liu, B. Qiu, Y. Yu, Y. Ping, X. Bian,
et al., “Direct generation of human neuronal cells from adult astrocytes by small
molecules,” Stem cell reports, vol. 8, no. 3, pp. 538–547, 2017.

[34] G. Stoll and H. W. Müller, “Nerve injury, axonal degeneration and neural regen-
eration: basic insights,” Brain pathology, vol. 9, no. 2, pp. 313–325, 1999.

[35] “Number of new generated neurons every day, Nicolas Toni.” https://wp.unil.ch/
discoverunil/2017/06/we-create-1500-new-neurons-every-day/.

[36] S. Ackerman et al., Discovering the brain. National Academies Press, 1992.
[37] Z. Zou et al., “Manihd: Efficient hyper-dimensional learning using manifold

trainable encoder,” in 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 850–855, IEEE, 2021.

[38] M. Imani, S. Bosch, M. Javaheripi, B. Rouhani, X.Wu, F. Koushanfar, and T. Rosing,
“Semihd: Semi-supervised learning using hyperdimensional computing,” in 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–8,
IEEE, 2019.

[39] P. Kanerva, “Encoding structure in boolean space,” in ICANN 98, pp. 387–392,
Springer, 1998.

[40] B. Pakkenberg, D. Pelvig, L. Marner, M. J. Bundgaard, H. J. G. Gundersen, J. R.
Nyengaard, and L. Regeur, “Aging and the human neocortex,” Experimental
gerontology, vol. 38, no. 1-2, pp. 95–99, 2003.

[41] B. B. Andersen, H. J. G. Gundersen, and B. Pakkenberg, “Aging of the human
cerebellum: a stereological study,” Journal of Comparative Neurology, vol. 466,
no. 3, pp. 356–365, 2003.

[42] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in
Advances in neural information processing systems, pp. 1177–1184, 2008.

[43] B. Scholkopf, K.-K. Sung, C. J. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vap-
nik, “Comparing support vector machines with gaussian kernels to radial ba-
sis function classifiers,” IEEE transactions on Signal Processing, vol. 45, no. 11,
pp. 2758–2765, 1997.

[44] L. Marner, J. R. Nyengaard, Y. Tang, and B. Pakkenberg, “Marked loss of myeli-
nated nerve fibers in the human brain with age,” Journal of comparative neurology,
vol. 462, no. 2, pp. 144–152, 2003.

[45] M. F. Paredes, S. F. Sorrells, A. Cebrian-Silla, K. Sandoval, D. Qi, K. W. Kelley,
D. James, S. Mayer, J. Chang, K. I. Auguste, et al., “Does adult neurogenesis persist
in the human hippocampus?,” Cell Stem Cell, vol. 23, no. 6, pp. 780–781, 2018.

[46] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-
preserving machine learning,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1175–1191, 2017.

[47] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.
[48] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible fpga-based

framework for refreshing hyperdimensional computing,” in FPGA, pp. 53–62,
ACM, 2019.

[49] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[50] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks
for image classification,” in Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pp. 3642–3649, IEEE, 2012.

[51] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.
[52] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity

recognition on smartphones using a multiclass hardware-friendly support vec-
tor machine,” in International workshop on ambient assisted living, pp. 216–223,
Springer, 2012.

[53] A. Angelova, Y. Abu-Mostafam, and P. Perona, “Pruning training sets for learning
of object categories,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, IEEE, 2005.

[54] “Pecan street dataport.” https://dataport.cloud/.
[55] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for activity

monitoring,” in Wearable Computers (ISWC), 2012 16th International Symposium
on, pp. 108–109, IEEE, 2012.

[56] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, et al., “Apache spark: a unified engine for big
data processing,” Communications of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[57] Y. Kim, P. Mercati, A. More, E. Shriver, and T. Rosing, “P4: Phase-based
power/performance prediction of heterogeneous systems via neural networks,”
in Computer-Aided Design (ICCAD), 2017 IEEE/ACM International Conference on,
pp. 683–690, IEEE, 2017.

[58] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[59] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-generation
hyperparameter optimization framework,” in Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 2623–2631,
2019.

13

https://wp.unil.ch/discoverunil/2017/06/we-create-1500-new-neurons-every-day/
https://wp.unil.ch/discoverunil/2017/06/we-create-1500-new-neurons-every-day/
http://archive.ics.uci.edu/ml/datasets/ISOLET
https://dataport.cloud/


[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning
in python,” Journal of Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830,
2011.

[61] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, “A binary learning framework
for hyperdimensional computing,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 126–131, IEEE, 2019.

[62] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and
H. Esmaeilzadeh, “From high-level deep neural models to fpgas,” inMicroarchitec-
ture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on, pp. 1–12,
IEEE, 2016.

[63] T. Geng, T.Wang, A. Sanaullah, C. Yang, R. Xu, R. Patel, andM. Herbordt, “Fpdeep:
Acceleration and load balancing of cnn training on fpga clusters,” in 2018 IEEE
26th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 81–84, IEEE, 2018.

[64] S.-H. Lee, “Technology scaling challenges and opportunities of memory devices,”
in 2016 IEEE International Electron Devices Meeting (IEDM), pp. 1–1, IEEE, 2016.

[65] K. T. Lee, W. Kang, E.-A. Chung, G. Kim, H. Shim, H. Lee, H. Kim, M. Choe,
N.-I. Lee, A. Patel, et al., “Technology scaling on high-k & metal-gate finfet
bti reliability,” in 2013 IEEE International Reliability Physics Symposium (IRPS),
pp. 2D–1, IEEE, 2013.

[66] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in Computer Architecture (ISCA), 2011
38th Annual International Symposium on, pp. 365–376, IEEE, 2011.

[67] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” in
2015 Third IEEEWorkshop on Hot Topics inWeb Systems and Technologies (HotWeb),
pp. 73–78, IEEE, 2015.

[68] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for mobile
computing,” in INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications, IEEE, pp. 1–9, IEEE, 2016.

[69] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and
challenges,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 5,
pp. 37–42, 2015.

[70] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host partitioning of
deep neural networks with feature space encoding for resource-constrained
internet-of-things platforms,” arXiv preprint arXiv:1802.03835, 2018.

[71] J. Venkatesh, C. Chan, A. S. Akyurek, and T. S. Rosing, “A modular approach to
context-aware iot applications,” in Internet-of-Things Design and Implementation
(IoTDI), 2016 IEEE First International Conference on, pp. 235–240, IEEE, 2016.

[72] H. Grunert and A. Heuer, “Rewriting complex queries from cloud to fog under
capability constraints to protect the users’ privacy,” Open Journal of Internet Of
Things (OJIOT), vol. 3, no. 1, pp. 31–45, 2017.

[73] “Aws greengrass.” https://aws.amazon.com/greengrass/.
[74] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor data fusion: A

review of the state-of-the-art,” Information fusion, vol. 14, no. 1, pp. 28–44, 2013.
[75] S. Qaisar, R. M. Bilal, W. Iqbal, M. Naureen, and S. Lee, “Compressive sensing:

From theory to applications, a survey,” Journal of Communications and networks,
vol. 15, no. 5, pp. 443–456, 2013.

[76] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

[77] P. Kanerva, “What we mean when we say “what’s the dollar of mexico?”: Pro-
totypes and mapping in concept space,” in AAAI Fall Symposium: Quantum
Informatics for Cognitive, Social, and Semantic Processes, pp. 2–6, 2010.

[78] P. Kanerva, J. Kristofersson, and A. Holst, “Random indexing of text samples
for latent semantic analysis,” in Proceedings of the 22nd annual conference of the
cognitive science society, vol. 1036, Citeseer, 2000.

[79] A. Hernández-Cano et al., “A framework for efficient and binary clustering in
high-dimensional space,” in 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1859–1864, IEEE, 2021.

[80] A. Burrello, K. Schindler, L. Benini, and A. Rahimi, “One-shot learning for ieeg
seizure detection using end-to-end binary operations: Local binary patterns
with hyperdimensional computing,” in 2018 IEEE Biomedical Circuits and Systems
Conference (BioCAS), pp. 1–4, IEEE, 2018.

[81] D. Kleyko, A. Rahimi, D. A. Rachkovskij, E. Osipov, and J. M. Rabaey, “Classifica-
tion and recall with binary hyperdimensional computing: Tradeoffs in choice of
density and mapping characteristics,” IEEE transactions on neural networks and
learning systems, no. 99, pp. 1–19, 2018.

[82] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional com-
puting for efficient speech recognition,” in 2017 IEEE international conference on
rebooting computing (ICRC), pp. 1–8, IEEE, 2017.

[83] M. Imani, S. Bosch, S. Datta, S. Ramakrishna, S. Salamat, J. M. Rabaey, and
T. Rosing, “Quanthd: A quantization framework for hyperdimensional computing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2019.

[84] T.Wu, P. Huang, A. Rahimi, H. Li, J. Rabaey, P.Wong, and S. Mitra, “Brain-inspired
computing exploiting carbon nanotube fets and resistive ram: Hyperdimensional
computing case study,” in IEEE Intl. Solid-State Circuits Conference (ISSCC), IEEE,
2018.

[85] M. Imani, S. Pampana, S. Gupta, M. Zhou, Y. Kim, and T. Rosing, “Dual: Accelera-
tion of clustering algorithms using digital-based processing in-memory,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 356–371, IEEE, 2020.

[86] A. Kazemi et al., “Mimhd: Accurate and efficient hyperdimensional inference us-
ing multi-bit in-memory computing,” in 2021 IEEE/ACM International Symposium
on Low Power Electronics and Design (ISLPED), pp. 1–6, IEEE, 2021.

[87] M. Imani, X. Yin, J. Messerly, S. Gupta, M. Niemier, X. S. Hu, and T. Rosing,
“Searchd: A memory-centric hyperdimensional computing with stochastic train-
ing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 39, no. 10, pp. 2422–2433, 2019.

14

https://aws.amazon.com/greengrass/


Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We ran the NeuralHD learning algorithm that’s described in the
paper with CPU. The following artifact contains the optimized code
as well as the code for the evaluation/visualization as detailed in
the paper in CPU, implemented in python.

Author-Created or Modified Artifacts:

Persistent ID: https://gitlab.com/biaslab/neuralhd
Artifact name: Source Code for NeuralHD

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel(R) Core(TM) i7-7700HQ CPU @
2.80GHz 2.80 GHz

Operating systems and versions: Windows 10 Home, version
20H2, build 19042.1083

Compilers and versions: Python 3.7.8

Applications and versions: N/A

Libraries and versions: scikit-learn 0.23.2

Key algorithms: Hyperdimensional Classification

Input datasets and versions: MNIST, smart home


	Abstract
	1 Introduction
	2 Hyperdimensional Computing
	2.1 Encoding
	2.2 HDC Learning
	2.3 Challenges

	3 Proposed NeuralHD
	3.1 NeuralHD Overview
	3.2 Drop Insignificant Dimensions
	3.3 NeuralHD Dimension Regeneration
	3.4 NeuralHD Retraining
	3.5 Similarity To Brain Regeneration
	3.6 NeuralHD Learning Convergence

	4 NeuralHD Edge Learning
	4.1 NeuralHD Federated Learning
	4.2 Online Learning on the Edge

	5 Hardware Acceleration
	6 Experimental Results
	6.1 Experimental Setup
	6.2 NeuralHD Accuracy
	6.3 NeuralHD vs DNN
	6.4 NeuralHD CPU Efficiency
	6.5 Regeneration Rate and Frequency
	6.6 Reset vs Continuous Learning
	6.7 Robustness to Noise

	7 Related work
	8 Conclusion
	References

