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ABSTRACT
Traditional robot control or more general continuous control tasks
often rely on carefully hand-crafted classic control methods. These
models often lack the self-learning adaptability and intelligence to
achieve human-level control. On the other hand, recent advance-
ments in Reinforcement Learning (RL) present algorithms that have
the capability of human-like learning. The integration of Deep Neu-
ral Networks (DNN) and RL thereby enables autonomous learning
in robot control tasks. However, DNN-based RL brings both high-
quality learning and high computation cost, which is no longer
ideal for currently fast-growing edge computing scenarios.

In this paper, we introduceHDPG, a highly-efficient policy-based
RL algorithm using Hyperdimensional Computing. Hyperdimen-
sional computing is a lightweight brain-inspired learning methodol-
ogy; its holistic representation of information leads to awell-defined
set of hardware-friendly high-dimensional operations. Our HDPG
fully exploits the efficient HDC for high-quality state value approx-
imation and policy gradient update. In our experiments, we use
HDPG for robotics tasks with continuous action space and achieve
significantly higher rewards than DNN-based RL. Our evaluation
also shows that HDPG achieves 4.7× faster and 5.3× higher energy
efficiency than DNN-based RL running on embedded FPGA.
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1 INTRODUCTION
Intelligent robotics, as one of the most important branches and
early goals of Artificial Intelligence (AI), has drawn great attention
along with fast developments in the field of AI. Robots need to
have human-like intelligence, which is adaptive to task require-
ments and, more importantly, capable of learning similar to us
humans [1]. Its adaptability and intelligence are therefore closely
connected to recent advancements in Reinforcement Learning (RL),
which has shown beyond-human performance in multiple applica-
tions [2, 3]. There are a few distinguishing RL properties that attract
researchers: (1) it does not rely on labeled training datasets; (2) it
learns and adapts continuously using environment observations.
In other words, the outcome of RL perfectly suits the definition of
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intelligent robotics, which is a self-learning agent that automati-
cally learns a task through human-like trial-and-error. Moreover,
compared to supervised learning, RL methods are appealing be-
cause, in reality, robotics tasks have fast-changing environments
and the examples of expected behavior are hard to collect or simply
unavailable.

Current RL algorithms are being categorized into value-based
and policy-based methods. The value-based method learns a value
function that evaluates every possible action choice at each time
step with the current observation of the environment. It then fol-
lows a greedy policy to select the action with the highest value.
The well-known Q-learning [4] is a typical value-based RL algo-
rithm, in which the Q-value function, given a particular action-state
pair, approximates the future accumulated rewards. However, in
policy-based RL, the agent directly learns the optimal policy that
guides its selection of actions under different conditions. The target
of both RL methods is to maximize the total rewards. While the
value-based methods try to optimize the reward for each action
separately, policy-based methods view this target as a single op-
timization problem conditioned on a parameterized policy. The
advantages of policy-based RL over its value-based counterpart
include a smoother learning curve and the capability to deal with
tasks with a continuous action space. The latter one is especially
important for real-world robotics control tasks, where the main
focus is on policy-based RL algorithms.

Most prior works used the gradient ascent method to update the
parameterized policy towards higher rewards [5, 6]. For example,
the REINFORCE algorithm [7], a generalized form of policy gradi-
ent RL, is used for skill acquisition in robotics [8]. These gradient-
backed methods make it easier to tackle continuous control tasks
that require real-valued stochastic policies, while Q-learning meth-
ods require action discretization or function approximation for the
continuous action space [9, 10]. However, the vanilla policy gradient
suffers from the low learning efficiency and high reward variance.
Later methods such as Actor-Critic [11] solve the high variance
problem by including a value-based critic. Nowadays, most modern
policy-based RL algorithms, such as TRPO [12] and PPO [13] are
closely connected to Deep Neural Networks (DNN) because tasks
have more complicated environments and a higher requirement for
learning quality. Using DNN in the policy network of RL agents
brings increased power to discover the optimal action decision,
which helps shape the recent success of policy-based RL, including
Atari games [12, 13], system resource management [14] and robot
control [15]. While traditional RL methods struggle to handle the
large action and state spaces in these applications, DNN provides
approximated yet good enough solutions. However, with edge com-
puting becoming favorable in recent RL applications, a complex
DNN-based RL algorithm leads to heavy computation burdens that
are not friendly to devices with limited computing power.

In this paper, we bring a more efficient machine learning method
to the field of RL. Instead of using DNN, we power the policy-based
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RL algorithmwith the novel brain-inspired Hyperdimensional Com-
puting (HDC) [16]. While DNN mimics neuron connections in hu-
man brains using deep hierarchical networks, HDC focuses on how
information is represented and memorized in the brain. HDC is
motivated by an observation that human memory, perception, and
cognition rely on neural activities in large dimensions. Therefore,
HDC encodes low-dimensional inputs to another space where the
output encoded vectors have significantly higher dimensions, i.e.,
Hypervectors. Although HDC operates in high dimensions, its com-
putation is highly efficient because of the hardware-friendly paral-
lelizable hypervector operations, e.g., element-wise addition and
multiplication. These operations are designed to realize brain-like
learning and reasoning, with which multiple prior works have pre-
sented the successful application of HDC. For example, in human-
activity recognition [17], bio-signal processing [18], manufactur-
ing [19], and brain-like reasoning [20], HDC is capable of achieving
high quality results comparable to Support Vector Machines (SVM)
andMulti-layer Perceptron (MLP). Different HDC hardware acceler-
ation designs are also proposed to exploit the efficient hypervector
operations, using FPGA and emerging processing in-memory tech-
nologies [21ś23]. Considering how current HDCworks successfully
contribute to supervised and unsupervised learning problems, we
believe that RL tasks could also benefit from the higher efficiency
of HDC.

In this paper, we propose HDPG, a novel hyperdimensional
policy-based reinforcement learning that fully utilizes the efficient
HDC operations and targets at RL robotics tasks with continuous
action space. Our contributions in this paper are listed below:

• To the best of our knowledge, HDPG is the first hyperdimen-
sional policy-based RL algorithm to solve general continuous
control tasks such as robot control. Compared to DNN-based
policy-based RL,HDPG utilizes highly-parallelizable HDC opera-
tions for decision-making and shows comparable performance in
experiments. Most importantly, the high efficiency of our HDPG
brings the greater potential to low-power RL at the edge.

• We also design a hyperdimensional critic that uses efficient HDC
regression to provide a high-quality state value approximation.
This critic then functions as the baseline in the actor training
process and reduces the variance of the policy gradient. For HDC
regression, we utilize a distance-preserving exponential encoder
that maintains the lower-dimension distance in the hyperdimen-
sional space.

• We verify our HDPG in two simulated robot control tasks with
continuous action space. We compare the performance and run-
time ofHDPGwith the DNN-based Proximal Policy Optimization
(PPO) algorithm, a state-of-the-art policy-based RL method. Our
experiments on CPU platform show that, comparing to PPO,
HDPG achieves higher quality results and also provides better
learning efficiency in both tasks. Our evaluation also shows that
HDPG training achieves 4.7× faster and 5.3× higher energy effi-
ciency than PPO running on embedded FPGA.

2 PRELIMINARIES

2.1 Hyperdimensional Computing
A unique property of the hyperdimensional space is that we can
create a large number of near-orthogonal hypervectors by ran-
domly sampling elements from {−1, 1} [24]. We consider two ran-

domly sampled hypervectors ®H1 and ®H2 with dimension 𝐷 . With
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Figure 1: Reinforcement Learning overview.

large enough 𝐷 , the hamming distance ®H1 · ®H2 ≈ 0. The or-
thogonality in HDC makes it possible to have multiple highly
parallelizable operations such as similarity calculation, binding
and bundling. Similarity: it calculates the distance between the
query hypervector and the model hypervector. For real-valued hy-

pervectors, 𝛿 ( ®H1, ®H2) = 𝑐𝑜𝑠 ( ®H1, ®H2); for bipolar hypervectors,
it simplifies to hamming distance. Bundling: element-wise addi-
tion that creates a set of hypervectors. If we add two hypervectors

as ®H𝑏𝑢𝑛𝑑𝑙𝑒 =
®H1 + ®H2, unlike vector addition in lower dimen-

sion, it is easy to verify whether a query hypervector is in the set.

For example, 𝛿 ( ®H𝑏𝑢𝑛𝑑𝑙𝑒 ,
®H1) >> 0 while 𝛿 ( ®H𝑏𝑢𝑛𝑑𝑙𝑒 ,

®H3) ≈ 0 if
®H3 is another randomly sampled hypervector. Binding: element-
wise multiplication that associates two hypervectors and creates
another near-orthogonal hypervector. Two hypervectors bind as
®H𝑏𝑖𝑛𝑑 =

®H1 ∗ ®H2. The information from both hypervectors is

preserved because this operation is reversible ®H𝑏𝑖𝑛𝑑 ∗ ®H1 =
®H2.

2.2 Reinforcement Learning
Figure 1 illustrates a typical RL task, in which we define a self-
learning agent that interacts with the environment following a
certain learned policy 𝜋𝜃 , where 𝜃 is the policy parameter. The
interaction is bidirectional, in which the agent acts based on the
observed state 𝑆 of the environment, and that action 𝐴 influences
the environment state and leads to a reward 𝑟 . RL tasks usually as-
sume that the Markov Property holds, i.e., the future is independent
of the past given the present. Therefore, we can mathematically
formulate the trajectories of the interaction between the agent and
the environment. Consider a trajectory 𝜏 with 𝑇 steps, we have
𝜏 = {𝑆1, 𝐴1, . . . , 𝑆𝑇 , 𝐴𝑇 } and the probability of having such trajec-
tory is 𝑝𝜃 (𝜏). We also define the decision-making process as the
distribution of actions given the current state, i.e., 𝜋𝜃 (𝐴𝑡 |𝑆𝑡 ). Then,
the trajectory probability is expanded using the Markov Property as

the following: 𝑝𝜃 (𝜏) = 𝑝 (𝑆1)
∏𝑇

𝑡=1 𝜋𝜃 (𝐴𝑡 |𝑆𝑡 )𝑝 (𝑆𝑡+1 |𝑆𝑡 , 𝐴𝑡 ) , where
𝑝 (𝑆1) is the probability of starting at state 𝑆1 and the last term stands
for the transition probability from 𝑆𝑡 to 𝑆𝑡+1. The experience of a
trajectory is usually saved to the local memory as 𝐸 = {𝑆𝑡 , 𝐴𝑡 , 𝑟𝑡 },
which is then used for learning.

The ultimate goal of every RL agent, irrespective of whether it
is value-based or policy-based, is to maximize the total returned
rewards in one trajectory. At each step 𝑡 in the trajectory, the agent
maximizes the future accumulated rewards 𝑅𝑡 =

∑∞
𝑖=0 𝛾

𝑖𝑟𝑡+𝑖 with a
discount factor 𝛾 between 0 and 1. A factor close to zero means the
agent gives more credit to returns in the near future, resulting in a
short-sighted agent.

The value function is another important component in RL al-
gorithms that is closely connected to rewards. In value-based RL
methods, value functions are used to evaluate the current action
choices and state observations on their ability to acquire rewards.



For example, the action-state value function, or known as the Q-
value function, returns a higher value for the better action choice
under the current state. This action-state value 𝑄𝜋 (𝑆,𝐴), if accu-
rately computed, is E[𝑅𝑡 |𝑆𝑡 = 𝑆,𝐴𝑡 = 𝐴, 𝜃 ]. As for the state value
function, it is calculated similarly as 𝑉 𝜋 (𝑆) = E[𝑅𝑡 |𝑆𝑡 = 𝑆, 𝜃 ].

3 VANILLA POLICY GRADIENT METHOD
Policy gradient ascent is a natural solution for RL tasks, since the
target is essentially a function optimization problem that max-
imizes the reward. The formal objective function is defined as

the following: 𝐽 (𝜃 ) = E𝜏∼𝑝𝜃 (𝜏) [
∑
𝑡 𝑅𝑡 ] =

∫
𝑝𝜃 (𝜏)𝑅(𝜏)𝑑𝜏 , where

𝑅(𝜏) is the accumulated rewards for the trajectory 𝜏 . The gradi-
ent of this objective is: ∇𝜃 𝐽 (𝜃 ) = E𝜏∼𝑝𝜃 (𝜏) [(∇𝜃 log𝑝𝜃 (𝜏))𝑅(𝜏)] =

E𝜏∼𝑝𝜃 (𝜏) [
∑𝑇
𝑡=1 ∇𝜃 log𝜋𝜃 (𝐴𝑡 |𝑆𝑡 )𝑅𝑡 ]. A common transform is used

here to equalize the integral gradient to another expectation, which
is desirable for Monte-Carlo sampling. We directly sample the past
trajectory from the starting point to its end. Within a sampled full
trajectory, both discounted reward and action distribution at each
step are known for calculating the gradient. Therefore, parameters
of the policy 𝜋 are updated using: 𝜃 = 𝜃 + 𝛼∇𝜃 𝐽 (𝜃 ). In DNN-based
policy gradient, the output of neural networks is the distribution of
action space 𝜋𝜃 (𝐴𝑡 ) given the input state vector 𝑆𝑡 . However, the
deep network structure in DNN brings high computation costs for
both forward inference and backward training; thereby, it is not
ideal for RL implementation on low-power devices. In this section,
we use HDC to reduce the computation cost and provide better
parallelism.
HDC non-linear encoder: Considering that input state observa-
tions are real-valued vectors, we encode them using random projec-
tion with non-linearity. Assuming an 𝑛-variable state observation
𝑆 = [𝑠1, 𝑠2, . . . , 𝑠𝑛], we create the corresponding base hypervectors

H = { ®H1, ®H2, . . . , ®H𝑛} for each state variable. Instead of using
only bipolar hypervectors, we generate base hypervectors with
elements randomly sampled from i.i.d. Gaussian distribution in
order to capture subtle interconnections between input variables.

Thus, for elements in ®H ∈ R𝐷 , {ℎ1, ℎ2, . . . , ℎ𝐷 } ∼ N (0, 1). We also

generate a uniformly distributed bias hypervector ®B ∈ R𝐷 with its
elements 𝑏 ∼ U(0, 2𝜋). In the end of encoding, we add a 𝑐𝑜𝑠 acti-
vation layer that provides extra non-linearity. The complete HDC
encoding process for policy gradient is shown as the following:
®S = cos(𝑆H + ®B) = cos(𝑆 [ ®H1, ®H2, . . . , ®H𝑛] + ®B).
HDC learning: To optimize the objective reward function, we
apply gradient-based HDC learning. We first initialize𝑚 all-zero

model hypervectors ®C for each of the variables in the continuous
action vector𝐴 = [𝑎1, 𝑎2, . . . , 𝑎𝑚]. We view these hypervectors as a

trainable parameter matrix C = [ ®C1, ®C2, . . . , ®C𝑚], and similarly for
encoding, we have a fixed encodingmatrixH. The first matrix maps
inputs to hypervectors, and the second matrix gives the similarity
between the encoded state observation and the model hypervectors.
In this way, our HDC learning can be easily fitted into the common
ML frameworks, such as PyTorch, for gradient calculations.

Our hyperdimensional policy gradient provides a continuous
stochastic policy, in which we assume that every action variable
follows a Gaussian distribution with mean 𝜇 and variance 𝜎2. For
different observations, the agent selects actions from distributions
centered at different mean values. The variance is annealing at a
fixed rate during the learning process to control the exploration
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Figure 2: HDPG: hyperdimensional policy-based RL.

rate. The forward propagation is shown as the following:

𝐴 ∼ N(®𝜇, Σ) where ®𝜇 =
®SC = [𝜇1, 𝜇2, . . . , 𝜇𝑚] (1)

The action is sampled from a multivariate Gaussian distribution
with a co-variance matrix Σ that is non-zero only at diagonal terms.
We derive the policy gradient loss function at each step 𝑡 of a
sampled trajectory:

L𝑡 = − log𝑝 (𝐴𝑡 )𝑅𝑡 where 𝐴𝑡 ∼ N( ®𝜇𝑡 , Σ𝑡 )

L𝜏 =

1

𝑇

𝑇∑︁

𝑡=1

(L𝑡 ) and C = C + 𝛼∇CL𝜏 (Iterative Learning)
(2)

We back-propagate the gradient of the averaged trajectory loss L𝜏

to update the trainable parameters in model hypervectors C. Notice
that the encoding weight matrix and bias vector are not updated.
For each sampled trajectory 𝜏 , the learning on each data point is
iterated multiple times.

Comparing DNN-based policy gradient with our hyperdimen-
sional method, although both utilize back-propagation for gradient
update, our method reduces the computation cost. Usually, for
complicated tasks, DNN not only has a larger number of Multiply-
Accumulate (MAC) operations due to multiple hidden layers, it also
suffers from the multi-level back-propagation. We only have one
weight matrix to update during each step of training, while DNN
has at least two. It is also well-known that back-propagation is
hard to parallelize across layers. In addition, the HDC encoding pro-
cess is highly-parallelizable and easy to accelerate using hardware
platforms like FPGA.

4 HYPERDIMENSIONAL POLICY-BASED RL
In the previous section, we proposed a hyperdimensional policy
gradient that directly optimizes the RL policy and objective with a
well-defined loss. However, this vanilla policy-based RL has many
drawbacks. The most crucial one is that the loss function is largely
based on rewards from trajectory sampling. The sampled rewards
have a significant variance due to the high randomness of the RL
process. For example, the same action-state pair at the current step
can lead to vastly different rewards at the end of trajectory, simply
because of the uncertainty in the following steps. The second point
to notice is that the model update corresponding to the gradient
is not limited, potentially leading to model divergence since the
gradient has a high variance. To reduce the variance, we include a
value-based critic that functions as a baseline of rewards. Then we
apply a clipping method for the policy gradient update [13].

As shown in Figure 2, we propose HDPG, a hyperdimensional
policy-based reinforcement algorithm featuring an actor for decision-
making and a value-based critic for variance reduction. Both com-
ponents are constructed using efficient HDC. At each step, the



observed state ®S𝑡 is encoded to two different hypervectors using
the non-linear encoder•1 and the exponential encoder•2 respec-
tively. The actor selects an action𝐴𝑡 and the critic generates a state
value𝑉𝑆𝑡•3 using the HDC models. The feedback reward and state
value are then used for actor training•4 and critic training•5 .

4.1 Critic: State Value Approximation
The critic in our HDPG approximates the advantage of each action-
state pair in the sampled trajectories. Assuming the Q-value func-
tion 𝑄 (𝐴𝑡 , 𝑆𝑡 ) and the state value function 𝑉 (𝑆𝑡 ), the advantage
A is defined as the difference between them. Intuitively, we inter-
pret the advantage as the extra rewards gained by taking action
𝐴𝑡 compared to the averaged return under state 𝑆𝑡 . The benefit
of using advantage is that a high reward, possibly caused by vari-
ance, no longer has an excessive influence on the model update.
Instead, only the difference between the state value and the reward
is counted towards the loss function. Specifically, in our HDPG, we
use an approximation for the advantage to avoid the calculation of
𝑄 (𝐴𝑡 , 𝑆𝑡 ).

A(𝐴𝑡 , 𝑆𝑡 ) = 𝑄 (𝐴𝑡 , 𝑆𝑡 ) −𝑉 (𝑆𝑡 ) ≈ 𝑅𝑡 −𝑉 (𝑆𝑡 ) (3)

Therefore, the critic requires only the value function. In DNN-based
RL, this function is parameterized with a trainable neural network
similar to the policy. In our HDPG, we use HDC as a lightweight
alternative for the value function approximation. We consider the
value function approximation as a supervised regression problem
within the policy-based RL. The target is to predict the state value as
accurately as possible, in other words, as close as possible to the true
value. Although RL is not typical supervised learning, the true value
is available for 𝑉 (𝑆𝑡 ) training. In the following, we explain how
to map this task into high-dimensional space and enable efficient
HDC learning.
HDC exponential encoder for regression: Compared to classi-
fication problems that are not sensitive to slight variations in the
output class probabilities, regression is all about precision. The pre-
dicted output is strictly compared with the true value, and inputs
close to each other should also return similar outputs. Unfortunately,
the non-linear encoder designed for policy gradient, as shown in
Section 3, is no longer ideal for regression, and we show that its
mapping does not fully preserve the distance between inputs in the
hyperdimensional space.

On the other hand, we design an HDC encoder that maps in-
puts to hypervectors with exponential components. Specifically in
HDPG critic, an input state observation 𝑆 will be encoded as the

following: ®S = 𝑒𝑖 (𝑆H+ ®B) , where H and ®B are the same as those
in the policy gradient HDC encoder. The major advantage of this
encoder is that it creates a high-dimensional Gaussian space, in
which the similarity between two encoded hypervectors closely
correlates to the original low-dimensional distance. Assuming two-
state observations 𝑆1 and 𝑆2, and 𝑑 (𝑆1, 𝑆2) = | |𝑆1 − 𝑆2 | |

2 ≈ 0. After
encoding, the similarity of two hypervectors is:

𝛿 ( ®S1, ®S2) = 𝑟𝑒𝑎𝑙 (
®S1 · 𝑐𝑜𝑛 𝑗 ( ®S2)

𝐷
)

= 𝑟𝑒𝑎𝑙 (
𝑒𝑖 (𝑆1H+ ®B) · 𝑒−𝑖 (𝑆2H+ ®B)

𝐷
) ≈ 1

(4)

Similarly, if two state observations are largely different, the simi-
larity after encoding will be nearly zero.

HDC regression for state value approximation: HDC regres-
sion is the core of HDPG critic, in which we use a single model

hypervector ®M to provide the prediction of E[𝑅𝑡 |𝑆𝑡 , 𝜃 ]. Assume
the input is 𝑆𝑡 , our regression model generates the prediction as

𝑉𝑝𝑟𝑒𝑑 (𝑆𝑡 ) = 𝛿 ( ®S𝑡 , ®M) (5)

The model training process relies on lightweight hypervector addi-
tion and subtraction. With the available true value 𝑉𝑡𝑟𝑢𝑒 (𝑆𝑡 ) = 𝑅𝑡
and learning rate 𝛽 , we update the model with

®M𝑛𝑒𝑤 =
®M𝑜𝑙𝑑 + 𝛽 (𝑉𝑡𝑟𝑢𝑒 (𝑆𝑡 ) −𝑉𝑝𝑟𝑒𝑑 (𝑆𝑡 ))

®S𝑡 (6)

4.2 Actor: Policy Gradient with Clipping
Our actor in HDPG is constructed based on the vanilla HDC policy
gradient, which defines the policy of how agents act. While the
state encoding and forward inference is exactly the same, the loss
in Equation 2 is modified to tackle the high training variance. We
present the new loss function at step 𝑡 as:

L𝑡 = −min(L𝑜 ,L𝑐𝑙𝑖𝑝 ) − 𝑐 · Entropy

where L𝑜 = Ratios × Advantage =
log𝑝𝑛𝑒𝑤 (𝐴𝑡 )

log 𝑝𝑜𝑙𝑑 (𝐴𝑡 )
(𝑅𝑡 −𝑉𝑝𝑟𝑒𝑑 (𝑆𝑡 ))

and L𝑐𝑙𝑖𝑝 = Clip(Ratios, 1 + 𝜖, 1 − 𝜖) × Advantage

(7)

The hyperdimensional critic plays an important role in the actor
update. The difference between the actual return and the state value
predicted by the critic approximates the advantage. This means
that the model will only get positive updates when the advantage
is positive, i.e., the action returns more rewards than the baseline.
On the other hand, the model gets explicit negative updates if the
action does not lead to expected rewards.

Instead of using the logarithmic probability directly in the loss,
we use the clipped ratio between new and old probabilities to con-
trol the rate of change in iterative model updates. For example, if the
advantage is positive, the model is reinforced towards the selected
action. This reinforcement is limited due to the ratio capped at 1+𝜖 .
However, the ratio is not limited in the other direction because the
model should not update much if the select action previously does
not have a high probability. Similarly, when the advantage is nega-
tive, the model gets discouraged, and the discouragement is also
limited with the ratio bottomed at 1 − 𝜖 . The other direction is not
capped because we want to correct the model when a previously
high-probability action gets a negative advantage. This simple clip-
ping function effectively and intelligently limits the model update
in a reasonable range under all circumstances. The entropy term
L𝑡 encourages the agent to explore.

5 EXPERIMENTAL RESULT

5.1 Experiment Settings
In order to evaluate the performance of ourHDPG, we implement it
on both a traditional CPU platform and FPGA. For CPU, we use an
AMD Ryzen R5-3600X, and the FPGA implementation is based on
Xilinx Kintex-7 FPGA. We select two continuous control tasks from
OpenAI RoboSchool [25], which provides many simulated robot
control environments. The first task is ’HalfCheetah’ in which a
robot resembles half of a cheetah. The second task is ’Walker2D’
where a two-legged robot mimics human walking. The goal of both
tasks is to run as fast as possible. To compare ourHDPGwith DNN-
based RL, we implement the state-of-the-art PPO algorithm. For
both the actor and critic in the PPO method, we use DNN with
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Figure 3: Rewards and runtime comparison of HDPG and
DNN-based PPO: (a) the number of episodes and runtime is
recorded when the 100-episode average reward reaches 1000;
(b) they are recorded when the average reward reaches 600.

two 128-neuron hidden layers. For HDPG, the dimensionality of
hypervectors is set to 1000 for the HalfCheetah task and 1500 for the
Walker2D task. For both methods, the model update happens per
3000 steps, i.e., after the agent collects 3000 samples. The maximum
number of steps within a single episode or trajectory is 1000. All
the recorded rewards, shown in this section, are averaged over the
past 100 episodes due to the fluctuation in both methods, and we
will refer to them as average rewards.

5.2 Rewards and Runtime Comparison
In Figure 3, we present the performance comparison between two
methods in terms of final average reward and episodes/runtime
needed for achieving the goal of two robot control tasks. Figure 4
provides the learning curves of HDPG and PPO for both tasks. The
results in this subsection are collected on CPU.

For the comparison of HalfCheetah results, Figure 3(a) shows that
our HDPG achieves the 100-episode average reward of 1811, which
is significantly higher than the PPO method. From the learning
curves in Figure 4, it is clear that HDPG not only provides better
learning quality in HalfCheetah task but also faster learning speed.
When we set the average reward goal as 1000, HDPG reaches the
goal about 1.6 times (more than 400 seconds) faster in terms of
runtime and 500 episodes earlier in terms of the number of episodes.

In Walker2D task, the average reward goal is 600. Figure 3(b)
shows that HDPG achieves an average reward of 743 at the end of
9000 episodes, which is about 130 more comparing to PPO. When
comparing the efficiency, HDPG reaches the goal more than 300
episodes earlier than PPO. In terms of actual runtime, our HDPG is
about 1.3 times (about 380 seconds) faster than PPO.

The learning results and CPU runtime comparison show that
HDPG provides high-quality RL in continuous control tasks. We
also notice that this HDC-based RL method has better learning
efficiency even on a CPU platform.

5.3 HDPG Efficiency on Different Platforms
Figure 5 compares the training execution time and energy consump-
tion of HDPG running on AMD Ryzen CPU and Xilinx Kintex-7
FPGA platform. The results are reported as for value-based and
policy-based networks, separately. Both networks are designed to
work in their best configurations. Our evaluation shows thatHDPG
is significantly more efficient than PPO for both actor and critic
networks. For example, HDPG is on average 2.1× faster and pro-
vides 2.6× higher energy efficiency than PPO running on CPU. Note
that HDPG efficiency mainly comes from the critic network. PPO
utilizes a similar DNN network representing both actor and critic,
while HDPG relies on a lightweight regression model for the critic.
Our evaluation shows that actors and critics are, on average, 1.3×
and 3.8× faster than PPO.
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Figure 4: Larning curve comparison between HDPG and PPO
for HalfCheetah and Walker2D.

We observe that CPU is not the best platform to accelerateHDPG.
Unlike PPO, HDPG operates over high-dimensional vectors where
CPU processors are not well-optimized to (1) access large-size hy-
pervectors from memory and (2) provide enough parallelism re-
quired by our HDPG model. In contrast, FPGA implementation
provides custom features to read and manage memory access pat-
terns to ensure maximum parallelism and resource utilization. In
addition, since HDPG is based on low-precision computation, it
exploits FPGA Look-up tables (LUTs) that are significantly more ef-
ficient than Digital Signal Processors (DSPs). Our evaluation shows
that HDPG achieves 4.7× faster and 5.3× higher energy efficiency
than PPO on the FPGA platform.

5.4 HDPG & Dimensionality
In Figure 6, we change the dimensionality of HDPG with a range of
𝐷 = 250 to 𝐷 = 4000 and observe its effect on runtime and rewards
using the HalfCheetah task. We collect these results at the end of
5000 episodes to show a clear trend. This bar graph shows that,
with higher dimensionality, the achieved reward is also generally
higher. For example, the average reward is about 1200 when the
dimension is set to 4000, which is about 600 higher than the results
achieved with only 250 dimensions. However, it should be noticed
that higher dimensionality does not guarantee better rewards, and
the improvement will finally saturate if dimensions keep increas-
ing. In addition, larger dimensions bring higher computation cost
and longer runtime. As shown in the figure, the runtime at 5000
episodes increases with dimensions. Our default dimension setting
for HalfCheetah, which is 1000, tries to balance the learning quality
and runtime.

6 RELATED WORK
Hyperdimensional Computing: For ML applications in low-
power environments, HDC is a more efficient alternative computing
paradigm compared to DNN. Its advantages include lightweight
operations, less computation, more transparent models, great com-
patibility with multiple hardware acceleration technologies. Many
prior works propose to use HDC for low-power classification al-
gorithms, e.g., voice recognition [26] and neuromorphic comput-
ing [27], online classification [28, 29]. In the biomedical field, work
in [18] proposes an HDC-based seizure detection algorithm and
work in [30ś32] utilize HDC for DNA pattern matching. For robot-
ics, in work [33], researchers use hypervectors for the integration of
sensory perception and action, i.e., sensorimotor control. In contrast
to the supervised learning applications mentioned above, for the
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Figure 5: HDPG and PPO performance and energy efficiency
on CPU and FPGA platforms (normalized to PPO).

first time, we exploit efficient HDC in policy-based RL algorithms
for continuous control.
Deep Reinforcement Learning: The abilities to handle large
inputs and capture complicated patterns make Deep Reinforcement
Learning (DRL) a good candidate for self-learning agents in more
and more demanding tasks. We mainly focus on the policy-based
DRL since it supports not only discrete action spaces but also con-
tinuous ones. In recent years, many policy-based RL algorithms
have been proposed. For example, TRPO [12] introduces a con-
straint for updating the network, which improves the stability of
the policy gradient update. The PPO [13] method provides a sim-
pler constraint that is built into the loss function. There are many
recent RL applications that are implemented using these methods,
including Unmanned Aerial Vehicles (UAV) [34], active object de-
tection [35], humanoid robot [36], traffic control [37]. Work in [37]
uses a model-accelerated PPO to control automated vehicles in
intersections without traffic signals. However, in these applications,
the computation cost of learning a deep network is sub-optimal for
low-power devices. In ourHDPG, we utilize the novel HDCmethod
for both actor and critic in the policy-based RL to provide more
efficiency, such that the learning runtime is significantly reduced
while maintaining the learning quality.

7 CONCLUSION
In this paper, we introduce HDPG, a highly-efficient policy-based
RL algorithm using Hyperdimensional Computing. Hyperdimen-
sional computing is a lightweight brain-inspired learning methodol-
ogy; its holistic representation of information leads to awell-defined
set of hardware-friendly high-dimensional operations. Our HDPG
fully exploits the efficient HDC for high-quality state value approx-
imation and policy gradient update. In our experiments, we use
HDPG for robotics tasks with continuous action space and achieve
significantly higher rewards than DNN-based RL.
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