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ABSTRACT
Face detection is an essential component of many tasks in com-
puter visionwith several applications. However, existing deep learn-
ing solutions are significantly slow and inefficient to enable face
detection on embedded platforms. In this paper, we proposeHDFace,
a novel framework for highly efficient and robust face detection.
HDFace exploits HyperDimensional Computing (HDC) as a neurally-
inspired computational paradigm thatmimics important brain func-
tionalities towards high-efficiency and noise-tolerant computation.
We first develop a novel technique that enables HDC to perform
stochastic arithmetic computations over binary hypervectors. Next,
we expand these arithmetic for efficient and robust processing of
feature extraction algorithms in hyperspace. Finally, we develop
an adaptive hyperdimensional classification algorithm for effective
and robust face detection.We evaluate the effectiveness ofHDFace
on large-scale emotion detection and face detection applications.
Our results indicate thatHDFace provides, on average, 6.1× (4.6×)
speedup and 3.0× (12.1×) energy efficiency as compared to neural
networks running on CPU (FPGA), respectively.
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1 INTRODUCTION
Face detection is an essential component of many computer vision
applications, such as face tracking for surveillance [1], face recog-
nition [2], emotion detection [3], face relighting and morphing [4],
and facial shape reconstruction [5]. Face detection has also found
several applications in human-computer and human-robot inter-
action systems. For example, recent digital cameras and commer-
cial robots (e.g., Nao [6]) come with an embedded face detection
module. In addition, the face detection is frequently used for im-
age/person tagging.

Deep Neural Networks (DNNs) use costly convolutional layers
as trainable feature extraction mechanisms. Due to its significant
training cost, face detection algorithms often rely on static feature
extractionmethods. Popular feature extractions are pre-trained con-
volution layers, Histograms of Oriented Gradients (HOGs) [7, 8],
Scale Invariant Feature Transform (SIFT) [9], Local Binary Patterns
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(LBPs) [10]. All these feature extractions are based on a set of arith-
metic operations and aim to extract knowledge (e.g., shape and
edge) from every image. Despite the success in the face detection
domain, there are two major challenges with existing face detec-
tion algorithms: (1) they rely on costly feature extraction and learn-
ing algorithms. Running these algorithms on existing embedded
platforms (e.g., devices limited power budget) results in slow and
inefficient computation. (2) Today’s face detection algorithms are
getting noise from multiple sources. For example, with technology
scaling, both hardware and network are becoming significantly
unreliable. Unfortunately, machine learning algorithms have very
low robustness to such noise and failure [11].

In this paper, we propose HDFace, a novel algorithm for highly
efficient and robust face detection. To realize real-time performance
and robustness, we redesign algorithms using strategies that more
closely model the human brain. We exploit neurally-inspired Hy-
perDimensional Computing (HDC) as an alternative paradigm that
mimics important brain functionalities towards high-efficiency and
noise-tolerant computation [12, 13, 14, 15]. HDC is motivated by
the observation that the human brain operates on high-dimensional
data representations. In HDC, objects are thereby encoded with
high-dimensional vectors, called hypervectors [16]. HDC incorpo-
rates learning capability along with typical memory functions of
storing/loading information. In this paper, we exploit HDC for two
main purposes in our HDFace framework:

• As a pre-processing method for feature extraction. We have de-
veloped a novel technique that enables HDC to perform arith-
metic computations. Inspired by stochastic computing, we de-
velop a framework supporting hyperdimensional stochastic arith-
metics. Instead of operating over original data, our framework
represents each pixel value using a binary holographic hypervec-
tor, where the information is stored in a neural pattern. We ac-
cordingly enable arithmetic operations over these hypervectors
using efficient and highly parallel operations. Finally, we expand
HDC arithmetics to support feature extractions algorithms fully
in hyperspace.

• We develop a hyperdimensional algorithm for effective and ro-
bust face detection. Our algorithm directly operates over hyper-
dimensional features exacted from feature exaction. Since fea-
ture extractors already generate hypervectors, there is no need
for HDC encoding to map data points into high-dimension.

Our HDFace framework provides several advantages over com-
peting learning: (1) being highly parallel and suitable for online on-
device learning, (2) exposing hidden features, enabling single-pass
learning with just a few samples, (3) being robust against noise and
corrupted data. Our evaluation on large-scale datasets shows that
HDFace provides better or comparable accuracy to state-of-the-art
face detection algorithms, which provide significantly higher effi-
ciency and robustness. Our results indicate that HDFace provides,
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on average, 6.1× and 3.0× (4.6× and 12.1×) speedup and energy ef-
ficiency compared to DNN running on CPU (FPGA), respectively.
Moreover, our framework provides at least an order of magnitude
higher computational robustness than DNN.

2 BACKGROUND AND MOTIVATION
Hyperdimensional computing (HDC): is based on the under-
standing that brains compute with patterns of neural activity that
are not readily associated with numbers. Due to the very size of
the brain’s circuits, neural patterns can be modeled with hypervec-
tors [12]. HDC builds upon a well-defined set of operations with
random hypervectors, is extremely robust in the presence of fail-
ures, and offers a complete computational paradigm that is easily
applied to learning problems [17, 18, 19, 20, 21, 22]. There exist
a huge number of different, nearly orthogonal hypervectors with
dimensionality in the thousands. This lets us combine such hyper-
vectors using well-defined vector space operations while keeping
the information of the two with high probability [15, 23, 24]. A hy-
pervector contains all the information combined and spread across
all its components in a full holistic representation so that no com-
ponent is more responsible for storing any piece of information
than another.

Feature Extraction:There are multiple existing feature extrac-
tion mechanisms for face detection. One example of feature extrac-
tions are Histogram of oriented Gradients (HOG), HAAR-like fea-
ture extraction, and convolution. Despite the difference in the func-
tionalities, these feature extraction methods operate over a simi-
lar set of arithmetic operations. As an example, here we explain
the functionality of HOG as one of the popular feature extraction
mechanisms [7, 8].

HDC & Feature Extraction: Although HDC is significantly
powerful in reasoning and association of the abstract information,
it is weak in feature extraction from complex data, e.g., image/video.
As a result, most existing HDC solutions are operating over costly
pre-processed data [25, 14, 26].This feature extraction often takes a
large portion of the total learning cost. More importantly, since fea-
ture extractions are running on original data representation, they
have high sensitivity to noise and failure. For example, we evalu-
ate HDC on a large-scale face detection [27]. We use HOG as a fea-
ture extraction mechanism. Our evaluation on the ARM A53 CPU
shows that HoG takes above 85% of total training time. In addition,
2% random bit error on HoG feature extraction causes 12% quality
loss, while the HDC model is significantly robust against noise.

3 HDFACE OVERVIEW
In this paper, we introduce HDFace, a robust and efficient brain-
inspired framework for face detection in hyperdimensional space.
Figure 1 shows an overview of HDFace framework consisting of
three main blocks: (a) base hypervector generation, (b) HDC fea-
ture extraction, and (c) HDC classification. In the following, we
explain the general functionality of each step.

Base Hypervector generation: Instead of operating over orig-
inal binary representation, HDFace assigns correlative hypervec-
tors to pixel values. Let us assume a black-white image. In tradi-
tional binary data, colors are represented using values between 0
to 2𝑛 − 1, where 𝑛 is bit precision. For example, in 𝑛 = 8 bit rep-
resentation, the white and black get 0 and 255 values, respectively.
In contrast, HDFace assigns each pixel to a hypervector depend-
ing on its color. We assign two random hypervectors representing

two extreme colors (Figure 1a). For example, white and black col-
ors are assigned to two random hypervector ®H𝑤 and ®H𝑏 , where
hypervectors belong to {0, 1}𝐷 . These hypervectors have nearly
orthogonal representation 𝛿 ( ®H𝑤 , ®H𝑏 ) ' 0. We use vector quanti-
zation to generate correlative hypervectors representing interme-
diate color values. For example, a pixel with 2𝑛−1 value (where
𝑛 is the bit precision) will get half of dimensions from black and
half from white hypervector to generate correlative hypervector,
𝛿 ( ®H2𝑛−1 ,

®H𝑤) ' 𝛿 ( ®H2𝑛−1 ,
®H𝑏 ) ' 0.5. Using the above vector quan-

tization, we will assign a hypervector representing each pixel.
HDCFeature Extraction:Wedevelop hyperdimensional arith-

metic operations that can be used to process the entire feature
extraction in hyperspace. Our method supports stochastic addi-
tion, subtraction, multiplication, division, and compare operations
over long binary vectors (Figure 1b). Our stochastic operations are
highly parallel and efficient with significant robustness to noise. In
Section 4, we cover the details of our HDC arithmetic operation.

HDC Learning:We develop a hyperdimensional learning algo-
rithm operating on extracted features to enable efficient and ro-
bust learning (Figure 1c). Unlike existing HDC learning methods
that require costly encoding, our extracted features are already in
high dimensional space.Therefore, they can be directly used for hy-
perdimensional learning. Our HDC learning is based on the mem-
orization of “face” and “no-face” as two hypervectors. Our learn-
ing framework eliminates redundant information memorization in
each hypervectors to eliminate overfitting. For a given query, we
first map data into high-dimensional space. A similarity search be-
tween an encoded query and an HDC model hypervector will re-
turn a prediction result. Details are explained in Section 5.

Our framework provides: (1) an end-to-end framework for fully
HDC-based face detection over raw image data, (2) high computa-
tional robustness, as the entire application (including feature ex-
tractor) can benefit from the holographic data representation, and
(3) significant efficiency as HDC revisits the complex feature ex-
traction with parallel bitwise operations.

4 HDFACE STOCHASTIC PRIMITIVES
4.1 HDC Supported Operations
HDC encoding works based on a set of defined primitives [12]. Our
goal is to exploit the same primitives to define SC-based arithmetic
operations over HDC vectors [15]. HDC is an algebraic structure; it
uses search along with several key operations (and their inverses):
Bundling (+) that acts as memorization during hypervector addi-
tion, Binding (*) that associates multiple hypervectors, and Permu-
tation (𝜌) which preserves the position by performing a single ro-
tational shift.
HDC Hypervector Generation: We generate a random hyper-
vector with elements ±1 such that +1 appears with probability 𝑝 .
This will allow us to construct HDC representations of arbitrary
numbers via a 𝐷 dimensional vector. In our HDC system, informa-
tion is stored with components ±1. We fix a random HDC vector
®V1 to be a Basis vector. A random HDC vector ®Vℎ (ℎ ∈ [−1, 1])
is said to represent the number ℎ if 𝛿 ( ®Vℎ, ®V1) = ℎ. This is consis-
tent with our notation for ®V1 which means that ®V1 represents the
number 1. Note that based on our representation, ®V−𝑎 = − ®V𝑎 .
Similarity Measurement: Between two HD vectors ®V1 and ®V2,
the similarity defines as 𝛿 ( ®V1, ®V2) =

®V1 · ®V2
𝐷 where𝐷 is the number
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Figure 1: Overview ofHDFace framework: (a) base hypervector generation, (c) HDC-based feature extraction, (c) HDC learning

of dimensions and (·) is the vector dot product operator. HDC sup-
ports other similarity metrics, such as Hamming similarity, that
measures dimensions at which two HDC vectors differ.

4.2 HDC Arithmetic Operations
Weighted Average: This operation constructs the weighted aver-
age of two numbers if we are given two random HDC vectors ®V𝑎

and ®V𝑏 with the corresponding weights {𝑝, 𝑞} ∈ [0, 1] (𝑝 + 𝑞 = 1)
respectively. We construct𝐶 = 𝑝 ®V𝑎 ⊕ 𝑞 ®V𝑏 by choosing each com-
ponent from ®V𝑎 or ®V𝑏 randomly with probability 𝑝 and 𝑞, respec-
tively.
Construction: In HDFace framework, we are given two random
vectors ®V0 and ®V1 which represent numbers 0 and 1 respectively.
Using the weighted average operation, we can construct the rep-
resentation of an arbitrary number 𝑎 ∈ [−1, 1] as ®V𝑎 = 𝑎+1

2
®V1 ⊕

1−𝑎
2 (− ®V1). Because 𝑎 ∈ [0, 1],we have that 1±𝑎

2 ∈ [0, 1] and so the
corresponding weights for averaging are positive.
Multiplication: We can multiply two HDC representations ®V𝑎

and ®V𝑏 to construct ®V𝑎𝑏 . If the 𝑖𝑡ℎ dimension of both ®V𝑎 and ®V𝑏

are equal, then set the corresponding dimension of ®V𝑎𝑏 to be that
of ®V1. Otherwise, set the corresponding dimension of ®V𝑎𝑏 to be
that of ®V−1. We denote the multiplication operation by ®V𝑎 ⊗ ®V𝑏 =
®V𝑎𝑏 .
Square Root: In the HOG process, we would need to calculate
the magnitude of vectors. For this, we need one last operation to
perform square roots of positive numbers. That is, given ®V𝑎 we
would like to construct ®V√

𝑎 . To do this, we perform a similar bi-
nary search method as division.

• Define ®V𝑙𝑜𝑤 = ®V0 and ®Vℎ𝑖𝑔ℎ = ®V1

• Define ®V𝑚 = 0.5 ®V𝑙𝑜𝑤 ⊕ 0.5 ®Vℎ𝑖𝑔ℎ and ®V𝑚2 = ®V𝑚 ⊗ ®V𝑚

• If ®V𝑚2 > ®V𝑎 , then do ®Vℎ𝑖𝑔ℎ → ®V𝑚

• If ®V𝑚2 < ®V𝑎 , then do ®V𝑙𝑜𝑤 → ®V𝑚

• Repeat from step 2 until ®V𝑚2 = ®V𝑎 upto statistical margins of
error

Thus, we have constructed ®V𝑚 = ®V√
𝑎

4.3 HOG Pre-Processing Using HDC
To perform HOG processing on the image, we first normalize the
image feature vector so that each value is between 0 and 1. This
is because the HD vectors in our design can only store values be-
tween −1 and 1. Then, we consider a 3 × 3 cell of pixels where the
𝑖𝑡ℎ row and 𝑗𝑡ℎ column has value 𝐶𝑖, 𝑗 (𝑖, 𝑗 = 0, 1, 2). First, we pro-
duce an HD representation for all the pixels, and we label this as
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Figure 2: Error for (a) Construction, (b) Average, and (c) Mul-
tiplication between two numbers.

®V𝐶𝑖,𝑗 . To calculate the contribution to the histogram by this cell,
we need to follow a three-step process.
Calculating Gradient: We need to calculate the gradient vector
®𝐺 = (𝐺𝑥 ,𝐺𝑦) of the pixels at location (1, 1).The components are
given by 𝐺𝑥 = (

(
𝐶2,1 −𝐶0,1

)
/2 ad 𝐺𝑦 =

(
𝐶1,2 −𝐶1,0

)
/2. The two

components can be found inHD space using ®V𝐺𝑥 = ®V(𝐶2,1−𝐶0,1)/2 =
®V𝐶2,1 ⊕

(
− ®V𝐶0,1

)
and ®V𝐺𝑦 = ®V(𝐶1,2−𝐶1,0)/2 = ®V𝐶1,2 ⊕

(
− ®V𝐶1,0

)
Calculating Magnitude: To find the magnitude, we first calcu-
late ®V𝐺2

𝑥 +𝐺2
𝑦

2

= ( ®V𝐺𝑥 ⊗ ®V𝐺𝑥 ) ⊕ ( ®V𝐺𝑦 ⊗ ®V𝐺𝑦 ). Next, we perform the

square root of this vector to find ®V√
𝐺2
𝑥 +𝐺2

𝑦
2

. Note that this differs

from the true magnitude of the gradient by a factor of 1√
2
, how-

ever it will not affect the final HOG features since all values will
be scaled evenly.
Calculating Angle Bin: The final step of HOG pre-processing is
to find the angle bin where we need to place the magnitude of the
gradient vector. However, this is the most complicated step if we
perform it in terms of HD operations. The original way is to find
the angle of the gradient vector using 𝜃 = arctan

𝐺𝑦

𝐺𝑥
. However,

the arctan function cannot be implemented easily within the HD
framework. As a workaround, we use the fact that the tan function
is a monotonic function within specific ranges. Suppose 𝜃𝑖 are the
boundaries of the bins, with 𝑖 = 1, 2, 3, 4, .., 7, 8. We first construct
the hypervectors ®Vtan𝜃𝑖 and ®Vcot𝜃𝑖 . The reason for considering
cot𝜃𝑖 will become clear soon. Next, we evaluate ®V𝐺𝑥 and ®V𝐺𝑦

to localize on the specific quadrant where the gradient vector lies
(Based on their signs).

Finally, we consider all the boundaries 𝜃𝑖 that lie in the quadrant
found. Our goal is to find the appropriate angle bin we need to add
the magnitude into to construct the histogram. To prevent compu-
tational difficulties, we add the point 𝜋/2 and 3𝜋/2 as boundaries
too because the tan function blows up and changes sign at these
point, and is no longer monotonic. If 𝜃 lies in bin 𝑖 , and in the 𝐼 or
𝐼𝑉 quadrant, then 𝜃𝑖 < 𝜃 < 𝜃𝑖+1 is satisfied. This is equivalent to
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tan𝜃𝑖 < tan𝜃 < tan𝜃𝑖+1. If it is in the 𝐼 𝐼 or 𝐼 𝐼 𝐼 quadrant, then the
corresponding relationship is tan𝜃𝑖+1 < tan𝜃 < tan𝜃𝑖 . Note that
the values of tan𝜃𝑖 and cot𝜃𝑖 are known to us.

In the end, we need some way to compare tan𝜃 = 𝐺𝑦/𝐺𝑥 with
a real number 𝑟 given only the vectors ®V𝐺𝑥 ,

®V𝐺𝑦 ,
®V𝑟 and ®V1/𝑟 .

Let us write 𝐺𝑦/𝐺𝑥 = 𝜎 |𝐺𝑦 |/|𝐺𝑥 | and 𝑟 = 𝜂 |𝑟 | where 𝜎 and 𝜂
denote the corresponding signs. If |𝑟 | < 1, we find the quantity 𝛼 =
𝜎 |𝐺𝑦 |−𝑟 |𝐺𝑥 |

2 . If 𝛼 > 0, then tan𝜃 > 𝑟 , if 𝛼 < 0 then tan𝜃 < 𝑟 and
tan𝜃 = 𝑟 otherwise. But, the hypervector for 𝛼 can be calculated
as ®V𝛼 = 0.5

(
𝜎 ®V𝐺𝑦

)
⊕ 0.5

(
− ®V𝑟×|𝐺𝑥 |

)
. By evaluating ®V𝛼 , we can

find the value of 𝛼 and use this for comparisons.
Above, we chose 𝛼 =

𝜎 |𝐺𝑦 |−𝑟 |𝐺𝑥 |
2 because 𝑟 |𝐺𝑥 | is a number

between −1 and 1. However, this need not be true if |𝑟 | > 1. In this

case we define 𝛼 =
𝜎 1

|𝑟 | |𝐺𝑦 |−𝜂 |𝐺𝑥 |
2 and ®V𝛼 = 0.5

(
𝜎 ®V 1

|𝑟 | ×𝐺𝑦

)
⊕

0.5
(
−𝜂 ®V|𝐺𝑥 |

)
Figure 2 shows the HDFace relative error during different oper-

ations. The results are reported for construction, average, and mul-
tiplication operation. Our evaluation shows that the relative error
rate decreases with the hypervector dimensionality. These error
rates can be easily expanded to analyze the error rate of different
feature extraction methods using stochastic arithmetic operations.
For example, the HOG error rate can be estimated in each dimen-
sionality. This, along with robustness analysis at the application
level, determines a suitable dimensionality that ensures accuracy.

5 HYPERDIMENSIONAL FACE DETECTION
We exploit hyperdimensional learning to directly operate over en-
coded data. Figure 3 shows an overview ofHDC classification. HDC
receives raw image data. After processing the images using our
HDC-based feature extractor, the pre-processed data is already in
high-dimensional space. This data will be given to our adaptive
training module to generate a single hypervector for each class.
During the inference, each given test image will pass through the
same feature extractor. Then, the generated hypervector, called
query hypervector, will be compared with all class hypervectors.
A class with the highest similarity will be selected as a prediction
result. In the following, we provide more details about HDC clas-
sification steps.

HDC identifies common patterns during learning and eliminates
the saturation of the class hypervectors during single-pass training.
In inference, HDC checks the similarity of each encoded test data
with the class hypervector in two steps. The first step encodes the
input to produce a query hypervector ®H . Then we compute the
similarity (𝛿) of ®H and all class hypervectors. Query data gets the
label of the class with the highest similarity.

Table 1: Datasets (𝑛: image size, 𝑘: number of classes)

𝑛 𝑘
Train
Size Description

EMOTION 48 × 48 7 36,685 Facial Emotion Detection [31]
FACE1 1024 × 1024 2 40,172 HD Face Detection [32]
FACE2 512 × 512 2 522,441 Face Detection [27]

6 EVALUATION
6.1 Experimental Setup
We developed a PyTorch-based library of Hyperdimensional face
detection, supporting all stochastic arithmetic and learning opera-
tions.We also design a cycle-accurate simulator based on PyTorch [28]
that emulates HDFace functionality during classification. We im-
plementHDFace training and testing on two embedded platforms:
Cortex A53 CPU and Kintex-7 FPGA. For FPGA, we design the
HDFace functionality using Verilog and synthesize it using Xil-
inx Vivado Design Suite [29]. The synthesis code has been imple-
mented on the Kintex-7 FPGA KC705 Evaluation Kit. We ensure
our efficiency is higher than the automated FPGA implementation
at [30]. For CPU, theHDFace code has been written in C++ and op-
timized for performance. The code has been implemented on Rasp-
berry Pi (RPi) 3B+ using ARM Cortex A53 CPU. The simulator col-
lects the execution time and measures power for each connected
platform while running the learning procedures. The power con-
sumption is collected by Hioki 3337 meter.

Table 1 summarizes the evaluated datasets. The tested bench-
marks range from emotion detection to two large-scale face de-
tection datasets, which include hundreds of thousands of images
of facial and non-facial data. We use HoG as a feature extraction
mechanism for all image data.

6.2 HDFace Learning Accuracy
State-of-the-art Learning Algorithms: We compare HDFace
classification accuracy with state-of-the-art learning algorithms,
including Deep Neural Networks (DNN) and Support Vector Ma-
chine (SVM). All learning modules use the same HOG feature ex-
traction, and they are optimized to provide their maximum accu-
racy. Our HDFace results are reported in three different configu-
rations: (1) HOG feature extraction running on original space. In
this configuration, HDC exploits non-linear encoder to map ex-
tracted features into high dimension. (2) HOG running based on
our stochastic hyperdimensional representation. For HDC, we use
the same dimensionality (𝐷 = 4𝑘) for both feature exaction and
learning. In this configuration, HDC learning directly happens on
extracted features (high-dimension) with no encoding module.

Our evaluation shows that HDC, regardless of feature extrac-
tion, provides better accuracy than state-of-the-art algorithms. For
example, HDC accuracy is, on average, 3.9% and 10.4% higher than
DNN and SVM, respectively. Our results also indicate that our sto-
chastic hyperdimensional feature extraction provides the same qual-
ity of detection as feature extraction in original space.

6.3 HDFace in Different Configurations
Figure 5a shows the impact of dimensionality on HDFace’s classi-
fication accuracy. The results are reported when the hypervector
dimensionality for pre-processing and learning scales from𝐷 = 1𝑘
to 𝐷 = 10𝑘 . In general, HDC accuracy increases with hypervec-
tor dimensionality. This accuracy improvement comes from: (1) in-
creasing the capacity of each hypervector to learn and memorize
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Figure 5: (a) Impact of dimensionality on HDFace accuracy
& training performance. (b) Impact of DNN configuration on
classification accuracy and training performance.

information, (2) enabling more accurate feature extraction, and (3)
reducing the chance of overfitting in high-dimension. Since HDC
operates over redundant representation, it has natural robustness
to dimensionality reduction. Our results in Figure 5a indicate that
HDFace provides maximum accuracy using 𝐷 = 4𝑘 dimensions.
Using longer dimensionality results in accuracy saturation.

Figure 5b shows the DNN accuracy using different network con-
figurations. We use four layers neural network where two hid-
den layers can get different sizes (as shown in the x-axis of Fig-
ure 5b). Our results indicate that DNN gets maximum accuracy us-
ing 1024 × 1024 neurons in hidden layers. However, this accuracy
is still slightly lower than the maximum accuracy that HDFace
provides in its best configuration (𝐷 = 4𝑘).

The heatmaps in Figure 5 compare HDFace and DNN training
performance in different configurations. While HDFace ensures
maximum accuracy with 𝐷 = 4𝑘 dimensions, DNN achieves its
maximum accuracy using hidden layers with 1024×1024 sizes. We
compareHDFace and DNN efficiency in these configurations. Our
results indicate that HDFace provides significantly faster training
than DNN. For example, training a single epoch in HDFace takes
0.9 seconds, while the DNN requires 5.4 seconds to be trained on
the embedded CPU.

6.4 HDFace Quality & Dimensionality
Figure 6a visually compares HDFace’s face detection accuracy us-
ing hypervectorwith different dimensions.The results are reported
when HoG feature extraction’s window moves across an image in
an overlapping manner. Each window gets blue color if HDFace
detects a face on that window. Our results show that HDFace can
accurately detect faces when the dimensionality is large. In our ex-
ample, HDFace with D=1k dimensions incorrectly predicts a few

D=1k D=2k

D=4k D=10k(a) Face Detection

surprise
surprise angry happy fearful

surprise
surprise sad happy neutral

surprise
surprise neutral happy neutral

surprise
surprise neutral happy neutral

D=1k D=2k

D=4k D=10k

(b) Emotion Detection

Figure 6: (a) visuallizing the impact of HDFace dimensional-
ity on (a) face detection (b) emotion detection.

places of an image as a face. This misprediction does not occur
when the dimensionality is over 𝐷 = 4𝑘 . Figure 6b also visual-
izes HDFace’s capability for emotion detection. Our results show
that HDFace can correctly identify the emotion using hypervec-
tors with large dimensions (𝐷 = 4𝑘 and larger). However, the pre-
diction will have an error when dimensionality reduces to 𝐷 = 1𝑘 .

6.5 Efficiency in Different Platforms
Figure 7 shows the computational efficiency of HDFace compared
to the DNN on an ARM Cortex A53 embedded CPU. Our results in-
dicate thatHDFace provides significantly higher computational ef-
ficiency thanDNN, especially during the training phase. Our evalu-
ation shows that HDFace’s training is, on average, 6.1× faster and
3.0× more efficient than DNN. Figure 7a also compares HDFace’s
computational efficiency with DNN on Kintex 7 FPGA platform.
Our evaluation shows that in all tested applications HDFace out-
performs DNN’s computational efficiency. This efficiency comes
fromHDFace’s capability in simplifying feature exaction and learn-
ing process such that end-to-end classification task can perform
using highly parallel bitwise or low-precision computations. The
data representation along with HDC’s natural parallelism makes
FPGA an ideal platform for hardware acceleration. FPGA consists
of a huge number of lightweight lookup tables (LUTs) resources
that can be used to accelerate HDC feature extraction and learn-
ing. In contrast, processing HOG and DNN on original data repre-
sentation relies on high-precision arithmetic that needs to be pro-
cessed using costly DSP resources of FPGA. Our results show that
HDFace achieves, on average, 4.6× speedup and 12.1× higher en-
ergy efficiency compare to DNN while running on the same FPGA
platform.

Figure 7b compares HDFace and DNN efficiency during the in-
ference. Unlike training,HDFace’s inference efficiency has a closer
margin to DNN. Our evaluation shows that HDFace’s inference is,
on average, 2.9× and 2.6× (1.4× and 1.7×) faster and more energy-
efficient than DNN running on FPGA (ARM CPU), respectively.

6.6 HDFace Robustness
Table 2 compares HDFace and DNN robustness to random bit er-
ror. For DNN, the results are reported when using a network with
16-bits, 8-bits, and 4-bits model precision. Our results indicate that
there is a tradeoff between accuracy and robustness in DNN. On
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Figure 7: Speedup and energy efficiency of HDFace and DNN on CPU and FPGA during (a) training and (b) inference.

Table 2: DNN and HDFace robustness to random noise.
Error Rate 0% 1% 2% 4% 8% 12% 14%

DNN
16-bit 0% 2.8% 4.8% 8.1% 13.8% 23.4% 39.8%
8-bit 1.6% 3.8% 5.1% 7.2% 10.6% 16.0% 24.7%
4-bit 2.7% 4.1% 4.7% 5.4% 6.5% 8.1% 10.2%

HDFace
+HoG
+Learn

D=10k 0% 0% 0% 0% 0.6% 0.9% 1.2%
D=4k 0% 0% 0% 0.2% 1.2% 1.8% 2.0%
D=1k 2.8% 2.8% 3.4% 3.9% 5.3% 6.0% 6.9%

HDFace
+Learn

D=10k 0% 1.8% 3.2% 5.5% 9.1% 17.3% 29.2%
D=4k 0% 2.3% 3.5% 5.2% 7.8% 12.1% 19.0%
D=1k 2.8% 3.5% 4.1% 4.9% 6.1% 7.5% 9.3%

the one hand, DNN requires high precision weights to ensure max-
imum classification accuracy. For example, DNN with a 4-bit pre-
cision model provides 1.1% and 2.7% lower accuracy than 8-bit and
16-bit models. On the other hand, DNN robustness reduces with
model precision. Errors in high-precision representation signifi-
cantly change DNN weight values, thus resulting in high sensitiv-
ity to even slight noise. For example, a 12% random bit error rate
could result in 8.1% and 23.4% quality loss in DNN with 4-bits and
16-bits, respectively.

In contrast,HDFace has significant robustness to random noise.
In HDFace, hypervectors have redundant holographic represen-
tation, where all hypervector element equality contribute on the
computation. This provides natural robustness to noise and failure
on hypervector elements. There are three directional tradeoffs in
selecting suitable HDFace dimensions: accuracy, efficiency, and
robustness. A low dimensional HDFace model is desired for effi-
cient computation. However, this model results in lower classifi-
cation accuracy and reduces the robustness of the model to pos-
sible noise. For example, HDFace in 𝐷 = 1𝑘 dimension provides
2.8% lower accuracy than 𝐷 = 4𝑘 dimensions. Although HDFace
with 𝐷 = 4𝑘 dimensions provides the best tradeoff between accu-
racy and efficiency, the model’s robustness can still be enhanced
by increasing the dimension size. Table 2 also shows HDFace ro-
bustness to bit error rate when processing HoG feature extraction
on original data representation. Our results show that processing
feature extraction on original data representation entirely removes
the advantage of our hyperdimensional model.
7 CONCLUSION
In this paper, we exploit hyperdimensional computing for high-
efficiency and noise-tolerant face detection.Wefirst develop a novel
technique that enables HDC to perform stochastic arithmetic com-
putations over binary hypervectors. Next, we expand these arith-
metic for efficient processing of feature extractions in hyperspace.
Finally, we develop an adaptive classification algorithm for effec-
tive and robust face detection. Our evaluation shows thatHDFace:
(1) is highly parallel and suitable for online on-device learning, (2)
exposes hidden features in a few iterations, (3) is robust against
noise and corrupted data.
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