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ABSTRACT

Today’s machine learning platforms have major robustness issues
dealing with insecure and unreliable memory systems. In conven-
tional data representation, bit flips due to noise or attack can cause
value explosion, which leads to incorrect learning prediction. In this
paper, we propose RobustHD, a robust and noise-tolerant learning
system based on HyperDimensional Computing (HDC), mimicking
important brain functionalities. Unlike traditional binary represen-
tation, RobustHD exploits a redundant and holographic represen-
tation, ensuring all bits have the same impact on the computation.
RobustHD also proposes a runtime framework that adaptively iden-
tifies and regenerates the faulty dimensions in an unsupervised way.
Our solution not only provides security against possible bit-flip
attacks but also provides a learning solution with high robustness
to noises in the memory. We performed a cross-stacked evaluation
from a conventional platform to emerging processing in-memory
architecture. Our evaluation shows that under 10% random bit flip
attack, RobustHD provides a maximum of 0.53% quality loss, while
deep learning solutions are losing over 26.2% accuracy.

ACM Reference Format:

Prathyush Poduval®, Yang Ni®, Yeseong Kim?, Kai Ni®, Raghavan Kumar?,
Rossario Cammarota* and Mohsen Imani®*. 2022. Adaptive Neural Recovery
for Highly Robust Brain-like Representation. In Proceedings of the 59th
ACM/IEEE Design Automation Conference (DAC) (DAC °22), July 10-14, 2022,
San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3489517.3530659

1 INTRODUCTION

For a long time, storing information in hardware was a solution to
ensure the security and reliability of data. Addressing to a particular
memory location could be restricted to ensure that non-authorized
users cannot access the memory values. However, security and pri-
vacy face another level of uncertainty, as values in memory can also
be attacked without physically accessing the memory values. In
recent years, multiple attacks have been introduced to change the
memory values without directly accessing the memory cells, such
as the Row Hammer attack [1]. Although researchers are working
on solutions to eliminate such memory attacks, there is no evidence
showing the memory’s inviolability to other unknown attack mech-
anisms. In other words, memory technologies might be vulnerable
to other attacks that have not been discovered yet. Furthermore,
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from an efficiency point of view, memory technologies, e.g., SRAM,
DRAM, and SSD, have been optimized by the industry for maximum
density. Changing the memory blocks to ensure security for each
new possible attack could be significantly costly and less desirable.

Besides bit-flip attacks, emerging memory devices have various
reliability issues such as endurance, durability, and variability [2].
The security and unreliability of memory systems created several
challenges in the machine learning area [3, 4]. Regardless of the
learning algorithm, hardware platforms store the trained learning
model in their memory blocks. In traditional data representation,
flipping the exponent or most significant bits can increase the
weight value to extremely large, thus changing the prediction result.
For example, prior work showed how few bit flips on Deep Neural
Network (DNN) model can result in a major change in the prediction
result [5]. Unfortunately, existing learning solutions have almost
no robustness to possible noise or bit-flip attacks in memory.

In contrast, the human brain can do much of this learning ef-
fortlessly and efficiently without much concern about noisy neu-
rons [6]. Every minute, our brain is losing thousands of neurons
while providing the same quality of learning. To more closely model
the human brain, earlier researchers proposed HyperDimensional
Computing (HDC) as an alternative computing method, which
mimics important brain functionalities towards self-adaptive, high-
efficiency, and noise-tolerant computation [6]. HDC is motivated by
the observation that the human brain operates on high-dimensional
representations of data. In HDC, objects and data are thereby en-
coded with high-dimensional vectors, called hypervectors, which
have 10,000 or more elements [7, 8]. HDC can then perform various
learning tasks with computation in the high dimensional space.
HDC is well suited to address the efficiency and robustness of
learning systems, as: (i) HDC is inherently redundant with strong
robustness to noise and failure [9, 10], (ii) HDC models are compu-
tationally efficient to train, highly parallel at heart, and amenable
to hardware level optimization [9, 11], (iii) it offers an intuitive
and human-interpretable model [12], (iv) HDC offers a complete
computational paradigm that can be applied to cognitive as well as
learning problems [13, 14], and (v) HDC naturally enables low-cost
secure and private learning [15].

In this paper, we propose RobustHD, a hyperdimensional self-
learning system robust to technology noise and bit-flip attack. Our
solution exploits a redundant and holographic representation, en-
suring all bits have the same impact on computing. The main con-
tributions of the paper are listed below:

e RobustHD exploits hyperdimensional learning by transform-
ing data into high-dimensional representation. Since encoding
spreads the data over a very large hypervector, a substantial
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number of bits can be corrupted while preserving sufficient in-

formation, resulting in the high robustness of HDC to noise and

bit-flip attacks.

e Similar to the human brain, we propose a framework that self-
recovers the HDC model to regenerate dimensions with possible
attack or noise. Our solution splits the HDC dimensions into
smaller chunks. During runtime, RobustHD adaptively identifies
possible noisy or attacked chunks and adaptively regenerates
them in an unsupervised way.

e We show the advantage of RobustHD to (i) increase the robust-
ness of today’s computing systems without any changes on the
hardware, (ii) increase the feasibility of processing in-memory
platform by enhancing the memory lifetime during computation,
and (iii) eliminate the necessity of using costly error correction
code or costly refresh cycle in memory blocks.

We performed a cross-stacked evaluation from a conventional
platform to emerging processing in-memory architecture. Our eval-
uation shows that under 10% random (targeted) bit flip, RobustHD
provides less than 2.7% (2.9%) quality loss, while deep neural net-
works are losing over 26.2% (68.1%) of accuracy. Our RobustHD
self-learning framework can further reduce the quality loss to 0.53%
by adaptively identifying and regenerating the faulty dimensions.
In addition, RobustHD systematically enhances the feasibility of
processing in-memory platforms by increasing the lifetime from
three months to five years.

2 RELATED WORK AND MOTIVATION

Bit-Level Attack & Technology Noise: The adversarial attack has
been widely used to evaluate the robustness of machine learning
methods. However, there are still several concerns about the effect
of model parameters/weights on learning accuracy. The deep neural
networks (DNNs) parameters have been attacked using different
hardware trojans, which require a specific pattern of input to trigger
the trojan inside the network [16]. In many scenarios, such trojan
attacks may not be feasible as the attacker does not have access
to make the hardware-level modification. Fault injection attacks
are another type of attack on machine learning parameters. For
example, a single bias attack changes a certain bias term in a neuron
to change the classification result. Prior work also injected fault
into the activation function of DNN to misclassify a target input [5].
Several recent works studied the possibility of a bit-flip attack in
memory technologies, mainly targeting machine learning applica-
tions. An example of this attack is a Row Hammer attack [3, 4] that
attempts to change learning parameters stored in DRAM. These
methods are focused on flipping extremely vulnerable bits, e.g.,
exponent bits in floating-point precision. The explanation behind
that is flipping the exponent bit can increase the weight value to
extremely large, thus leading to exploding the prediction result.
From the other side, recent DNN accelerators, e.g., Google’s Ten-
sor Processing Units (TPU) [17], are working with quantized 8-bit
values. Although this representation gives higher robustness to
parameter perturbation, work in [5] introduced a method to mali-
ciously cause a DNN system malfunction by flipping an extremely
small amount of vulnerable bits in the network weights. The tech-
nological and fabrication issues in highly scaled technology are
another source of noise that can significantly change the machine
learning behavior [2, 18].
Hyperdimensional computing (HDC): The brain’s circuits are
massive in terms of numbers of neurons and synapses, suggest-
ing that large circuits are fundamental to the brain’s computing.

Hyperdimensional computing (HDC) [6] explores this idea by look-
ing at computing with ultra-wide words — that is, with very high-
dimensional vectors, or hypervectors. This lets us combine such hy-
pervectors into a new hypervector using well-defined vector space
operations while keeping the information of the two with high
probability. Hypervectors are holographic and (pseudo)random
with i.i.d. components. A hypervector contains all the information
combined and spread across all its components in a full holistic
representation so that no element is more responsible for storing
any piece of information than another.

In this paper, for the first time, we explore the effectiveness of
hyperdimensional representation to provide inherent robustness
against noise and attack to machine learning parameters. We also
propose a novel self-recovery framework that adaptively identifies
and regenerates faulty bits of the HDC learning model at runtime
in an unsupervised way. Our solution can perform an accurate
learning prediction even under serious unknown bit-flip attacks or
possible hardware failure.

Challenges in Binary Data Representation: In existing machine
learning algorithms, e.g., DNNs, weights represent using fixed-point
or floating-point value. A single error in the hardware, e.g., bit flip
in the memory store DNN weights, can result in different levels
of errors on the weight value. We evaluate the robustness of the
DNN model on multiple datasets (listed in Table 2) using an 8-bit
fixed-point representation. Our evaluation shows that a 2% random
(targeted) bit flip attack can cause 7.9% (13.5%) quality loss in DNN.

3 HYPERDIMENSIONAL LEARNING

3.1 HDC Learning Steps

The first step in HDC is to map each data points into high-dimensional
space. The mapping procedure is often referred to as encoding.
Assume an input vector (an image, voice, etc.) in original space
F={fi, o -, fn} and F € R™. The encoding module maps this
vector into high-dimensional vector, H € {0, l}D , where D >> n.
The following equation shows an encoding method that maps input
vector into high-dimensional space [19]: H = ZZ:1 lfcler @ @k,
where @ denotes binding (XOR operation) and f?ks are randomly cho-
sen base hypervectors of dimension D = 10k to retain the spatial or
temporal location of features in an input. That is, By € {0,1}? and
1 (ékl, fgkz) ~ D/2, where § denotes Hamming distance similarity.
To find the universal property for each class in the training
dataset, the trainer module linearly combines hypervectors belong-
ing to each class, i.e., adding the hypervectors to create a single
hypervector for each class. Once combining all hypervectors, we
treat per-class accumulated hypervectors, called class hypervectors,
as the learned model. Assuming a problem with k classes, the model
represents using: M = {61, Ca.- - ,6k}. For example, after gener-
ating all encoding hypervector of inputs belonging to class/label [,

the class hypervector C! can be obtained by bundling (adding) all
Hls. Assuming there are J inputs having label I: C! = 2}7 ‘HJI
HDC checks the Hamming distance similarity of each encoded

test data with the class hypervector in two steps. The first step
encodes the input (the same encoding used for training) to produce
a query hypervector H. We compute the similarity (§) of H and
all class hypervectors. Query data gets the label of the class with
the highest Hamming similarity.
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Figure 1: Overview of RobustHD framework identifying and data recovery from faulty dimensions in hyperdimensional system.

Table 1: HDC quality loss under random noise using models
with different precision and dimensionality.

Hardware Error ‘ 1% 2% 5% 10% 15%

2-bits | 0.0% 0.2% 1.1% 3.5% 5.7%

DNN | 3.9% 9.4% 163% 26.4% 40.0%
Dosk 1-bit | 0.0% 0.0% 09% 31% 52%
B 2-bits | 0.0% 0.4% 14% 47% 1.9%
D10k 1-bit ‘0.0% 0.0% 0.6% 17% 3.3%

3.2 Hypervector Representation

One of the main advantages of HDC is its high robustness to noise
and failure. In HDC, hypervectors are random and holographic
with ii.d. components. Each hypervector stores the information
across all its components so that no component is more responsible
for storing any piece of information than another. This makes a hy-
pervector robust against errors in its components. HDC efficiency
and robustness depend on two parameters: (i) the hypervector di-
mensionality that determines the hypervector capacity and the
level of redundancy, and (ii) the precision of each hypervector ele-
ment. Increasing dimensionality or precision of elements results
in improving the classification accuracy. However, increasing di-
mensionality results in an efficiency issue, while high precision
representation reduces the computation robustness.

Table 1 show the computational robustness of HDC to a dif-
ferent percentage of random noise in hardware. The results are
reported for a human activity recognition task (UCIHAR) [20] us-
ing hypervectors with different dimensions (D = 5k and D = 10k)
and different bit precision. Our results indicate that HDC provides
higher computational robustness when using a high-dimensional
and lower precision model. To ensure robustness, we always use
HDC with a binary model. This makes HDC ideal for a robust and
secure learning method, as even a substantial noise cannot change
the prediction result.

4 ROBUSTHD SELF DATA RECOVERY

In this section, we propose RobustHD, a framework that identifies
noisy or attacked dimensions of the hyperdimensional learning
model stored in the memory. Next, RobustHD regenerates the faulty
model dimensions in order to overcome the noise accumulation
that can cause the wrong HDC prediction. The main challenge
in RobustHD is detecting the noisy elements, and their recovery
needs to happen in an unsupervised way, without accessing any
training data. This is a challenging process since the entire memory
is vulnerable to attack. This makes it impossible to assume there is
any non-faulty copy of the HDC model stored in memory. Figure 1
shows an overview of RobustHD framework. RobustHD exploits

inference (unlabeled) data in order to identify and recover the faulty
dimensions in the HDC model. For each inference data, the HDC
model makes a prediction. For queries with high confidence, we
consider the prediction result as a possible label for the query. Then,
RobustHD splits the HDC dimensions into smaller chunks and
identifies chunks that negatively affect the prediction as potential
faulty dimensions. Finally, RobustHD updates the noisy chunks by
inherently substituting the chunk elements with query bits.

4.1 RobustHD Prediction Confidence

As explained in Section 3.1, during the inference, RobustHD checks
the similarity of a query with all class hypervectors (@). A query
data assigns to a class with the highest similarity. Since class hy-
pervectors and queries are binary, we use Hamming distance as a
similarity metric (@). RobustHD defines confidence for each pre-
diction bypassing the similarity values (8) through a normalization
block, i.e., softmax. The 5’(@, éi) indicates the confidence of each
class hypervector (@). The confidence not only determines how
similar a query is with a certain class but also what its margin is
to other class hypervectors. For query data with higher confidence
than a threshold (T¢), RobustHD trusts the prediction results as a
possible label for the query.

4.2 Noisy Chunk Detection

Let us consider a query é matched with high confidence with class

C?, in an example shown in Figure 1(@). RobustHD splits the
query and class hypervectors into m smaller chunks with a size
of d, where d = D/m. Next, RobustHD looks at each chunk as a
separate HDC model and checks the correctness of the correspond-

ing query (d dimensional query) with our expected class, C2. We
consider all chunks with a correct prediction as healthy chunks,
while mismatched chunks are considered faulty (@).

4.3 Probabilistic Substitution

Assume A and B are two randomly generated vectors. In order to
bring vector A closer to vector B, a random (typically small) subset
of vector B’s indices is forced onto vector A by setting those indices
in vector A to match the bits in vector B. Therefore, the Hamming
distance between vector A and B is made smaller through partial
cloning. When vector A and B are already similar, then indices
selected probably contain the same bits, and thus the information
in A does not change (@). The advantage of this operation is that
it involves no arithmetic, leading to fast and memory-efficient hard-
ware implementation. Binary substitution updates each dimension

of the selected class stochastically with p probability: pé|(l - p)é :



In other words, with flip probability p, each element of the selected
class hypervector will be replaced with the elements of the query
hypervector (@). Using a small probability is conservative, as the
model will have minor changes during data recovery. A larger learn-
ing rate will result in major changes in a model after each iteration,
resulting in a higher probability of divergence.

5 PROCESSING IN-MEMORY

Running big data algorithms with large datasets on conventional
processors results in high energy consumption and slow processing
speed. Although new processor technology has evolved to serve
computationally complex tasks more efficiently, data movement
costs between the processor and memory still hinder the higher ef-
ficiency of application performance. Processing in-memory (PIM) is
a promising solution to accelerate applications with a large amount
of parallelism. Several recent works have explored the advantage of
SRAM, DRAM, and non-volatile memory to enable PIM function-
ality to accelerate big data applications [21, 22, 23]. In this work,
we focus on developing a digital-based PIM architecture (called
DPIM) that exploits the switching characteristic of Non-Volatile
Memory (NVM) technologies to perform bitwise operations in mem-
ory [23, 21, 22]. DPIM is a tensor-based processor supporting an
extensive amount of vector operation locally in memory.

In this paper, we exploit DPIM arithmetic to accelerate existing
machine learning solutions. Then, we explain major robustness
challenges that makes today’s DPIM platforms infeasible to operate
over existing data representation. Finally, we introduce hyperdi-
mensional computing as an ideal representation for DPIM and other
noisy PIM platforms.

5.1 PIM Supported Operations

PIM supports arithmetic operations directly on digital data stored in
memory without reading them out of sense amplifiers [23, 24]. Our
design exploits the NVM switching characteristic to implement NOR
gates in digital memory [24, 23]. Our solution selects three or more
columns of the memory as input NOR operands by connecting them
to ground voltage. Next, DPIM connects the bitline corresponding
to the output of NOR operation to a write voltage (Vp). In addition, all
outputs NVMs located in the output column are initialized to Ron
in the beginning. To execute NOR in a row, an execution voltage, Vj,
is applied at the p terminals of the inputs while the p terminal of
the output NVM is grounded. During NOR computation, the output
memristor is switched from Rpon (blue color) to Rogr (red color)
when one or more inputs stored ‘1. value (Ron). In fact, the low
resistance input passes a current through an output NVM resulting
in writing R,y value on it. This NOR computation performs in
row-parallel on all the activated memory rows by the row-driver.

5.2 Endurance & Memory

NVM devices have limited endurance; thus, their lifetime depends
on the number of write operations. During memory functionality,
NVM devices often do not face many write operations. However,
the memory can be still become unreliable after many write oper-
ations on NVM cells. To overcome the endurance challenge and
increase the lifetime, memory technologies often equipped with
wear-leveling and error correction codes (ECC) techniques. The
wear-leveling uniformly distributes the write operations over all
memory blocks to ensure the endurance similarly affects all cells.

Table 2: Datasets (n: feature size, k: number of classes)

Train Test
n k Size Size

MNIST 784 10 60,000 10,000 Handwritten Recognition[25]
UCIHAR | 561 12 6,213 1,554  Activity Recognition(Mobile)[20]
ISOLET | 617 26 6,238 1,559 Voice Recognition [26]
FACE 608 2 522,441 2,494 Face Recognition[27]
PAMAP | 75 5 611,142 101,582  Activity Recognition(IMU) [28]
PECAN | 312 3 22,290 5,574 Urban Electricity Prediction [29]

Description

Memory technologies also use ECC to detect and recover possi-
ble errors in memory. The usage of ECC becomes more important
when the memory blocks are more impacted by endurance. The
cost of ECC can dominate the system performance when we deal
with noisy memory blocks.

5.3 Endurance & Processing In-Memory

Unlike the memory functionality, the PIM operations are causing
extensive switching and write operations in NVM devices. This can
significantly affect the reliability of the devices and the functionality
of an accelerator as a whole. The PIM architecture is going to
have a more negative impact on endurance when performing high
precision arithmetics. In the PIM platform, the number of sequential
cycles (the number of write operations) is increasing quadratically
with the bit-width during PIM multiplication operation. On another
side, using high precision values increases the possibility of a bit
flip in MSBs or exponents positions that can cause major changes
in the value. Unlike existing machine learning algorithms that work
over traditional data representation, our HDC solution operates
over high-dimensional vectors with binary representation. This
makes HDC significantly robust to operate over unreliable devices.
In Section 6.5, we show PIM lifetime accuracy accelerating DNN
and HDC algorithm.

6 EVALUATION
6.1 Experimental Setup

We implement RobustHD using both software and hardware sup-
port. In software, we verified RobustHD functionality using Python
implementation. In hardware, we designed a cycle-accurate simula-
tor based on TensorFlow [30] that emulates memory functionality
running the neural network and hyperdimensional computing. For
the hardware design, we use HSPICE for circuit-level simulations
to measure the energy consumption and performance of all the
PIM operations in 28nm technology. PIM works with any bipolar
resistive technology, which is the most commonly used in exist-
ing NVMs. In order to have the highest similarity to commercially
available 3D Xpoint, we adopt the memristor device with a VTEAM
model [31]. The memristor’s model parameters are chosen to pro-
duce a switching delay of 1ns, a voltage pulse of 1V and 2V for
RESET and SET operations to fit practical devices [32].

We evaluate RobustHD accuracy and efficiency on six popular
datasets (listed in Table 2), ranging from small data collected in
a small IoT network to large data, which includes hundreds of
thousands of images of facial data. We compare RobustHD accuracy
and efficiency with state-of-the-art deep neural network solutions.
All network configurations are selected based on the work in [33].

6.2 RobustHD Accuracy

We compare RobustHD accuracy with state-of-the-art learning
methods when assuming a different level of faulty bits. In all im-
plementations, we assume the trained model, i.e., model weight,



Table 3: HDC quality loss using different number of bits.

Error Rate | 2% 4% 6% 8%  10% 12%
DNN Random | 79% 84% 16.6% 21.0% 26.2% 29.6%
Targeted | 135% 15.9% 34.8% 505% 68.1% 80.0%
SVM Random | 3.7% 53% 89% 13.4% 16.1% 22.4%
Targeted | 5.6% 9.0% 16.9% 28.1% 35.9% 53.1%
Random | 13% 25% 29% 42% 73% 116%
AdaBoost ‘ Targeted | 34% 65% 7.5% 109% 19.0% 302%
Hpc | Random | 07%  10%  16%  20% 27%  32%
Targeted | 0.7% 1.1% 1.8% 23% 3.1% 3.3%
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Figure 2: PIM efficiency running DNN and HDC.

are stored in a memory that is possibly vulnerable to attack or er-
ror. Table 3 compares RobustHD classification accuracy with deep
neural network and boosting algorithms under different levels of
faulty bits. The results are reported for two scenarios: (1) Random
Attack: where any arbitrary bits can be flipped, and (2) Targeted
Attack: where the error is the worst-case, and it occurs on the
most significant bits. Our evaluation shows that existing learning
solutions have a very high sensitivity to faulty bits. This sensitiv-
ity is significantly higher using targeted attack since each bit-flip
makes greater changes in the weight values. For example, DNN
and AdaBoost lose 29.6% and 11.6% (80.0% and 30.2%) assuming
12% random (targeted) bit flip on the memory storing the learning
weights. In contrast, RobustHD has significantly high robustness to
faulty bits. RobustHD has holographic binary distribution where all
bits have the same impact on the computation. This, along with the
high-dimensionality (redundancy) of HDC representation, makes
HDC significantly robust against possible error rate in the mem-
ory. In addition, RobustHD has the same behavior using a random
or targeted bit attack. For example, HDC provides 3.2% and 3.3%
quality loss using a 12% random and targeted bit-flip attack.

6.3 RobustHD Efficiency

Figure 2 compares RobustHD efficiency with the state-of-the-art
learning solutions running on processing in-memory architecture.
All results are normalized to DNN running on NVIDIA 1080 GTX
GPU. Both PIM and GPU platforms are working based on the Ten-
sorFlow backend, aiming to maximize the throughput. Our evalu-
ation shows that our PIM platform significantly accelerates DNN
and HDC computation as compared to GPU architecture. This effi-
ciency comes from PIM’s capability to address the data movement
issue as well as providing extensive parallelism. Our results also
indicate that HDC provides higher computation efficiency as com-
pared to DNN running on the PIM platform. This higher efficiency
comes from (i) the parallelism supported by the HDC algorithm,
which translates the learning task to simple and parallel operations
over hypervectors, (ii) simplifying the learning process to bitwise
operations, rather than DNNs that use non-friendly fixed-point
operations. Our evaluation shows that HDC provides 2.4x and 3.7x
(47.6x and 21.2X) faster and higher energy efficiency compared to
DNN running on PIM (GPU).

Table 4: Quality loss with/without RobustHD data recovery.

Error Rate ‘ MNIST UCIHAR ISOLET FACE PAMAP PECAN
Without 2% 0.46% 0.93% 0.14% 0.32% 0.68% 1.61%
Recover 6% 1.77% 1.96% 0.79% 1.43% 1.80% 2.14%

Y| 107 | 275% 3.18% 1.30% 2.47% 2.94% 3.7%

. 2% 0% 0% 0% 0% 0% 0%
Revcvol\t/}elr 6% 0.10% 0.17% 0.07% 0.19% 0.15% 0.16%
Y| 10% | 026% 0.48% 0.44% 0.28% 0.42% 0.53%

6.4 RobustHD Data Recovery

We show the impact of RobustHD self data recovery on the accu-
racy of HDC learning systems. In existing learning systems, we
cannot identify and recover a faulty bit since we assume there is
no secure memory that can store the non-faulty version of model
weights. In contrast, RobustHD inherently supports a self data re-
covery method that can identify and fix possible noisy bits in an
unsupervised way. Table 4 reports the classification accuracy of
HDC classification accuracy with and without RobustHD frame-
work assuming different faulty bits. Our evaluation shows that HDC
without RobustHD starts losing accuracy when the portion of bit
flip increases. For example, with 6% (12%) bit flip error, RobustHD
reducing the quality loss to 0.15% (0.39%).

Confidence Level: The confidence value (T¢) and the rate of bit
substitution (S) significantly impact RobustHD effectiveness on
faulty bit recovery. Figure 3 shows the number of samples required
by RobustHD to recover noisy dimensions and the final quality
loss after RobustHD data recovery. Using a large Tc reduces the
number of data samples that can update the faulty dimensions. This
results in a higher rate of error accumulation on the HDC model
(when the rate of bit flip is high), which eventually results in a high-
quality loss. In addition, a larger T¢ only trusts high confident data
to update the model, thus enabling less fluctuation on the accuracy
after each data recovery. In contrast, a low T¢ updates the HDC
model more frequently but with a more destructive update process.
This causes fluctuation in the model accuracy during RobustHD
data recovery.

Substitution Rate: Figure 3 also shows the impact of bit substitu-
tion, S, on the effectiveness of RobustHD framework. Our evalua-
tion shows that the higher S makes the HDC model more robust
against possible bit-flip attacks. However, this can cause lower clas-
sification accuracy as HDC cannot rely on the dimensions of a
single query to update a chunk. Similarly, the low substitution rate
results in a lower data recovery rate, leading to error accumulation
on class hypervectors (when the substitution rate is lower than the
attack rate).

6.5 RobustHD & In-Memory Lifetime

Figure 4a shows the classification accuracy of PIM architecture
accelerating DNN and HDC algorithms. The results are reported
for the NVM device with 10° endurance [2]. As explained in Sec-
tion 5, PIM arithmetic operations involve several write operations
in memory, which can cause device failure due to limited endurance
in NVM devices. In conventional data representation, this failure
can result in significant quality loss in learning accuracy. In con-
trast, HDC has high robustness to device failure. As Figure 4a
shows, PIM running DNNs will start losing accuracy in less than
three months. A higher quality loss is observed when using high-
precision or floating-point precision. This is because bit failures
on high-precision values can potentially cause larger changes in
the computation, e.g., weight values in DNN. In contrast, HDC
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provides very robust accuracy results over the years of using the
PIM processor. RobustHD robustness is increasing with the size
of hypervector dimensions. RobustHD with D = 4k and D = 10k
can provide the same learning accuracy (less than 1% quality loss)
during 3.4 years and 5 years, respectively. Our solution makes the
PIM platform more feasible to be used as an accelerator.

6.6 DRAM Relaxation for Higher Efficiency

In DRAM, most of the power is consumed to perform refresh cycles.
In each cycle, DRAM constantly (every 64 milliseconds) overwrite
decaying bits. This process consumes a major portion of DRAM
power consumption. Recently, multiple industries have been aiming
to design low-power DRAM in which the refresh rate of the DRAM
was reduced in order to cut power consumption. However, reducing
the refresh time causes errors in the memory block. As we explained
in Section 2, in traditional data representation, a bit-flip error can
cause significant changes in the memory value. In contrast, in our
HDC representation, we have higher redundancy and robustness to
noise in each value. We observe that one of the main advantages of
RobustHD is its capability to eliminate expensive error correction
codes. RobustHD framework inherently recovers the faulty bits
stored in memory while improving the total memory efficiency by
removing error correction costs. Figure 4b compares the efficiency
improvement of DRAM storing models of DNN and HDC. DRAM
with a conventional 64ms refresh cycle has almost no error rate;
thus, both DNN and HDC models can provide maximum learning
accuracy. Relaxing the memory refresh time can cause memory to
have bit errors while making the memory more energy efficient.
Our evaluation shows that relaxing DRAM refreshing time to have
a 4% (6%) error rate can result in 14% (22%) improvement in DRAM
energy efficiency. As we explained in Section 6.2, these error rates
have a low impact on RobustHD quality loss.

7 CONCLUSION

In this paper, we propose RobustHD, a robust and noise-tolerant
learning system based on hyperdimensional computing, mimicking
important brain functionalities. RobustHD exploits a redundant
and holographic representation, ensuring all bits have the same
impact on the computation. RobustHD also presents a framework
that adaptively identifies and regenerates the faulty dimensions in
an unsupervised way at runtime. Our solution not only provides
security against possible bit-flip attack but also provides a learning
solution with high robustness to noises in the memory technology.
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