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ABSTRACT
Automata processing is an efficient computation model for regu-
lar expressions and other forms of sophisticated pattern matching.
The demand for high-throughput and real-time pattern matching
in many applications, including network intrusion detection and
spam filters, has motivated several in-memory architectures for
automata processing. Existing in-memory architectures focus on
accelerating the pattern-matching kernel, but either fail to sup-
port a practical reporting solution or optimistically assume that
the reporting stage is not the performance bottleneck. However,
gathering and processing the reports can be the major bottleneck,
especially when the reporting frequency is high. Moreover, all the
existing in-memory architectures work with a fixed processing rate
(mostly 8-bit/cycle), and they do not adjust the input consumption
rate based on the properties of the applications, which can lead to
throughput and capacity loss.

To address these issues, we present Sunder, an in-SRAM pattern
matching architecture, to processes a reconfigurable number of
nibbles (4-bit symbols) in parallel, instead of fixed-rate processing,
by adopting an algorithm/architecture methodology to perform
hardware-aware transformations. Inspired by prior work, we trans-
form the commonly-used 8-bit processing to nibble-processing
(4-bit processing) to reduce hardware requirements exponentially
and achieve higher information density. This frees up space for
storing reporting data in place, which significantly eliminates host
communication and reporting overhead. Our proposed reporting
architecture supports in-place report summarization and provides
an easy access mechanism to read the reporting data. As a result,
Sunder enables a low-overhead, high-performance, and flexible
in-memory pattern-matching and reporting solution. Our results
confirm that Sunder reporting architecture has zero performance
overhead for 95% of the applications and incurs only 2% additional
hardware overhead.
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1 INTRODUCTION
Pattern-based algorithms (pattern matching, pattern recognition,
etc.) are exceedingly common in network security [3, 7, 15, 23, 46,
64, 65], bioinformatics [8, 16, 31, 38, 50], data mining [10, 45, 51, 58,
59], machine learning [50], natural language processing [39, 66],
verification [52], and many other application domains [57]. Patterns
from these applications are often massive in number, complex in
structure, dynamic in behavior, and need to support a variety of
inexact matches. Besides, such applications are getting pushed
further into real-time scenarios (e.g., network processing), and in
many cases, sophisticated processing must be done in edge devices.
However, pattern matching is a memory-bound task, and off-the-
shelf von Neumann architectures struggle to meet today’s big-data
and streaming line-rate processing requirements.

One leading methodology for inexact pattern matching is to use
regular expressions to identify these complex patterns. Regular ex-
pressions are a widely used subset of pattern specification language,
and they are efficiently implemented via Finite Automata (FA) [22].
To address the memory-wall challenges [61], in-memory architec-
tures for automata processing have been introduced to benefit from
the massive internal memory bandwidth by performing massively-
parallel symbol matching usingmemory arrays [17, 41, 44, 48]. They
all support the execution of Non-deterministic Finite Automata
(NFA) by providing a reconfigurable infrastructure to implement
finite automata in memory arrays. The massive bit-level parallelism
of memory arrays allows a large number of state machines to be
executed in parallel, leveraging the high density of memory arrays.
If device capacity is not enough for an application, either more
hardware units or multiple rounds of reconfigurations are required.
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Many studies have shown in-memory automata processing provides
remarkable speedup over the existing software approaches, FPGA
solutions, and regex accelerators on a wide range of applications
[8, 10, 37–39, 45, 48, 50, 58, 59, 66].

In-memory automata processing has three processing stages;
state matching, state transition, and report gathering, and these can
be combined in a pipelined fashion. In the state-matching stage, the
current input symbol is decoded and all the states whose symbols
match against it are detected by reading the fetched memory row. In
the state-transition stage, active states’ successors are determined
by propagating activation signals via a programmable interconnect.
In the report-gathering phase, the report data are accumulated and
eventually analyzed for the final action or decision.

Prior in-memory automata accelerators have mostly overlooked
the real cost of reporting stage and optimistically assumed that
reporting is not a bottleneck [2, 32, 41, 48], thus, only evaluated
the first two stages (i.e., the kernel). However, reporting incurs a
significant cost when it is considered precisely [42]. For example,
the reporting architecture in the Micron’s Automata Processor (AP)
[17] has 40% area overhead [21] and up to 46× performance over-
head due to stalls and host communications [55]. To improve the
AP reporting architecture, Wadden et al. [55] propose finer-grain re-
porting buffers to reduce the report vector sparsity. However, their
approach (1) needs to store relatively large metadata, (2) requires
more complex peripherals to connect the smaller report buffers, (3)
causes frequent stalls in the execution because the reporting queue
gets filled quickly when an application reports frequently, and (4)
does not have any control to partially select or summarize the re-
port data when needed; all of which make their solution inefficient
and hard to scale.

To address these issues, we propose Sunder, a highly reconfig-
urable in-SRAM automata processing design with a flexible, com-
pact, simple, and low-overhead memory-mapped reporting archi-
tecture. Inspired by Impala [41], we first transform the common,
fixed 8-bit automata processing rate (which requires 28 memory
rows) to a multiple of 4-bit automata or nibble processing (which
requires groups of 24 memory rows). This can greatly reduce the
required number of rows in each subarray in memory-based au-
tomata processing solutions. We opportunistically utilize the saved
memory rows in the state matching subarrays to store the reporting
data locally and densely in the same subarray as state-matching
symbols. The low-overhead benefits are achieved by re-using ex-
isting memory rows and peripherals in state-matching subarrays,
which translates to area saving. This, in fact, provides exclusive
in-place reporting buffers for each automaton and avoids shared
bus conflicts (from state-matching array to report buffers); thus,
reducing the number of stalls and achieving performance benefits.

Overall, our reporting architecture (1) greatly eliminates data
movement and stalls due to reporting (zero stalls for 95% of the
applications), (2) reuses existing peripheral and circuitry in state
matching subarrays, thus, has minimal hardware overhead (less
than 2%), (3) provides an easy and flexible mechanism for the host to
analyze or summarize any portion of reporting data at any time, and
(4) efficiently supports both sparse and dense reporting behavior.

In addition, in contrast to all prior work, Sunder presents a recon-
figurable symbol processing rate for automata processing (i.e., 4-bit,
8-bit, and 16-bit symbols per cycle), which enables throughput and

density benefits for a diverse set of applications. This is facilitated
by packing multiple nibble processing in one memory subarray,
which allows for easy and low-overhead reconfiguration. This is un-
like Impala [41], where the processing rate is fixed in hardware and
multiple subarrays are used in parallel, which requires additional
hardware for aggregating the final results.

Liu et al. [32] demonstrated that not all the states in an NFA are
enabled during execution; thus do not need to be configured on the
hardware. This reduces the hardware resources for an automaton
on the in-memory automata accelerators (by splitting an automaton
between the CPU and the AP), which improves the performance
when the application is very large and would require several rounds
of reconfigurations. However, this approach generates more inter-
mediate results (or reports), which need to be transferred to the
CPU. Our proposed reporting architecture is complementary to
their technique and can significantly improve reporting efficiency
when larger intermediate reports are generated.

In summary, the paper makes the following contributions:
• We present a compact, simple, low overhead, and localized
memory-mapped reporting architecture for in-memory au-
tomata processing to significantly reduce data movement
and host communication. Our key insight is that nibble pro-
cessing, enabled by prior work [41], also enables reports to
be buffered directly in the same arrays that perform match-
ing, thus significantly minimizing stalls due to full report
buffers.

• We present a low-overhead reconfigurable processing rate in
hardware for in-memory automata processing, by processing
multiple nibbles in one memory array and accumulating the
partial results with multi-row activation in memory. This en-
ables throughput vs. density trade-off across a set of diverse
applications.

• For the same state density, Sunder provides 9× larger report-
ing buffer than the Micron’s Automata Processor and at the
same time, has 2.2× lower overall area overhead in the same
technology size. Moreover, on average, Sunder provides 280×
higher throughput compared to the Automate Processor and
4-8× higher throughput compared to the state-of-the-art
SRAM-based solutions (Impala [41] and Cache Automaton
[48]), assuming an AP-style reporting architecture.

2 BACKGROUND AND MOTIVATION
2.1 In-memory Automata Processing
This section presents an abstract architecture for processing one
symbol per cycle in common in-memory automata architectures.
Generally, automata processing has three main stages for each input
symbol, state match, state transition, and reporting.

In Figure 1, an example of classic and homogeneous NFA is pre-
sented. In a homogeneous NFA (STE: State Transition Element), all
transitions entering a state must happen on the same input symbol
[19]. For example, edges entering STE3 happen if the input symbol
is G. This property maps well with the in-memory implementa-
tion that finds matching states in one clock cycle and allows a
label-independent interconnect.

STE0-STE3 on the homogeneous example are one-hot encoded
in four memory columns. In the state matching phase, the current
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input symbol is decoded, and the set of states whose rule (label)
matches that input symbol is recognized through reading a row
of memory (match vector). Then, the set of potential next states
is combined with the match vector, which represents the set of
currently active states that can initiate state transitions (i.e., these
two vectors are ANDed). During the state-transition phase, the
potential next states (to be activated for the next cycle) are detected
by propagating signals from the active state vector through the
interconnect module to update the active state vector.

Figure 1: (left) In-memory automata processing model,
(right) Classic NFA and it equivalent homogeneous NFA.

In the example, the STE1 matching symbol is C, and the corre-
sponding position in the memory column encoding STE1 is set to
’1’ (i.e., in the third row). Because our example has four symbols
(i.e., A, T, C, and G), only four memory rows are enough for one-hot
encoding of symbols. Assume STE0 is a current active state. The
potential next cycle active states are the states connected to STE0,
which are STE0, STE1, and STE2. Assume the input symbol is ’C’,
then, the third row (Row2) is read into the row buffer (match vector).
Bitwise AND on thematch vector (i.e., 1100) and potential next states
(1110) determines STE0 and STE1 as the next active states.

Automata Reporting Stage: STE3 is the reporting state. In Fig-
ure 1, every time STE3 is set to ’1’, this indicates a matching has
occurred, and a report is generated, thus, the occurrence of the re-
port along with the report cycle information (i.e., metadata) should
be captured in a report buffer. For example, in real applications,
when a malicious network packet is matched with the intrusion
detection rules (and rules are represented by NFAs), a report will
be generated in the system. In in-memory automata processing ar-
chitectures, many memory subarrays are working in parallel, each
processing one or a few NFAs, and they all can potentially generate
reporting data every cycle. For example, SPM [58] can generate up
to 1394 reports per report-cycle - see Table 1. This causes many
stalls in the processing and negatively affect the performance. The-
oretically, each STE can be a reporting state; thus, a sparse or dense
report vector from each subarray is generated (each time there is a
least one report) and will be sent to the host for further processing.

2.2 Existing Reporting Architectures
Existing in-memory automata processing architectures either (I)
optimistically assume that reporting is not a performance bot-
tleneck [41, 43, 48], as they are focusing on improving the state

matching and interconnect stages (i.e., overall throughput is de-
termined by f r equency×(#bits/cycle)

r epor tinд−overhead and prior work calculates
f requency × (#bits/cycle) as the overall performance), or (II) they
fail to support a low-overhead and scalable reporting solution
[17, 55].

Micron’s Automata Processor (AP) [17] uses a hierarchical report-
ing architecture with two levels of buffers for offloading reporting
state bits. At the system level, the AP contains 32 D480 chips. Each
D480 chip (Fig. 2) contains two independent half-cores that have
independent automata states and edges. Each half-core has three
separate reporting regions, where each reporting region is respon-
sible for a maximum of 1024 reporting STEs . Each reporting STE is
routed to one if these three reporting regions.

Figure 2: The Automata Processor reporting architecture.

At runtime, if any of the 1024 reporting bits are activated, a
full 1024-bit vector and 64-bit metadata, are offloaded to the L1
storage buffer assigned to the triggered report state as shown in
Figure 2. When an L1 storage buffer is full, its content is offloaded
to one of two L2 buffers shared with the other half-core for eventual
export off-chip. This architecture must stall during this offloading
process because it does not support simultaneous push and pop
operations. These L2 buffers are then transferred to the host. The
AP reporting architecture can efficiently handle dense reporting,
but it is very ineffective when reporting is sparse and incurs a
significant performance overhead (up to 46× [55]).

To address the high cost of sparse reporting workloads on the
AP, Wadden et al. [55] introduce a reporting compression scheme,
called Report Aggregator Division (RAD), to break up a large output
report vector into smaller chunks in spatial automata architectures.
This approach reduces the amount of data sent from the spatial
accelerator to the host by offloading subsections of the report vec-
tor that contain report bits, thus, improves the stall rate by using
fine-grained report vectors. However, their solution has several
drawbacks: (1) the cost of metadata is increased, as each smaller
packet needs its own metadata; (2) similar to the AP, it still uses the
centralized and shared reporting buffers with its negative impact
on routing complexity and high propagation delay of reporting
signals from the report states to the buffers; (3) it does not provide
any summarization functionality in hardware to reduce the off-chip
communication for applications that do not need cycle-accurate
report data; and (4) it does not improve the reporting overhead for
dense reporting behavior (e.g., SPM).

The main contribution of this paper is designing an efficient and
flexible reporting architecture to gather, transfer, and summarize
reporting information at a very low cost for both dense and sparse
reporting behaviour.
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Table 1: Reporting behavior summary

Benchmark
Static Analysis Dynamic Behaviour (Input Dependent)

#Family #States #Report States #Report States/ #Reports #Report Cycles #Reports/Cycles #Reports/ #Report Cycles/
States (%) Report Cycles #Cycles (%)

Brill [56] Regex 42658 1962 4.6 1092388 118814 1.067 9.19 11.33%
Bro217 [6] Regex 2312 187 8.1 17219 17210 0.017 1.00 1.64%

Dotstar03 [6] Regex 12144 300 2.5 1 1 0.000 1.00 0%
Dotstar06 [6] Regex 12640 300 2.4 2 2 0.000 1.00 0%
Dotstar09 [6] Regex 12431 300 2.4 2 2 0.000 1.00 0%
ExactMatch [6] Regex 12439 297 2.4 35 35 0.000 1.00 0%
PowerEN [56] Regex 40513 3456 8.5 4304 4303 0.004 1.00 0.41 %
Protomata [56] Regex 42009 2365 5.6 127413 105722 0.124 1.21 10.08%
Ranges05 [6] Regex 12621 299 2.4 39 38 0.000 1.03 0%
Ranges1 [6] Regex 12464 297 2.4 26 26 0.000 1.00 0%
Snort [56] Regex 66466 4166 6.3 1710495 995011 1.670 1.72 94.89%
TCP [6] Regex 19704 767 3.9 103415 103198 0.101 1.00 9.84%

ClamAV [56] Regex 49538 515 1.0 0 0 0.000 0.00 0%
Hamming [56] Mesh 11346 186 1.6 2 2 0.000 1.00 0%
Levenshtein [56] Mesh 2784 96 3.4 4 4 0.000 1.00 0%

Fermi [56] Widget 40783 2399 5.9 96127 13444 0.094 7.15 1.28%
RandomForest [56] Widget 33220 1661 5.0 21310 3322 0.021 6.41 0.32%

SPM [56] Widget 100500 5025 5.0 47304453 33933 46.19 1394 3.24%
EntityResolution [56] Widget 95136 1000 1.1 37628 28612 0.037 1.32 2.73%

#Report States: the number of states that are designed to be the report states in the application.
#Reports: the total number of reports when streaming 1MB of input data.
#Report Cycles: the number of cycles that at least one report is generated.

2.3 Motivation
All previous memory-centric implementations for automata pro-
cessing [2, 9, 17, 18, 32, 41, 43, 48, 62] suffer from three problems.
First, they all work with a fixed (mostly 8-bit) symbol processing
rate decided at design time. Second, they all have either failed in
realizing an efficient report architecture design or overlook the real
cost of reporting stage for dense reporting behaviour. Third, their
rudimentary reporting architecture does not provide any support
to summarize reporting data in hardware.

Processing rate: existing in-memory automata accelerators
have a fixed processing rate set at design time—typically 8 bits
[17, 43, 48]. Impala [41] investigates different processing rates (i.e.,
4-bit, 8-bit, 16-bit); however, the processing rate is fixed at design
time and is not reconfigurable. This limits maximum capacity and
throughput utilization in a wide range of automata applications
with different symbol-set size. For example, genomics applications
usually have four symbols (i.e., A, T, C, and G), whereas data min-
ing applications (such as SPM [58]) can have millions of unique
symbols [40].

Reporting architecture issues: the reporting architecture is
responsible for collecting per-cycle report information and storing
them in a buffer temporarily to be transferred to the host. Designing
such a hardware module is not straightforward because there are
a few concerns that need to be considered. (I) Report states are
generated in different memory arrays and need to be routed to-
ward the global reporting buffers, potentially with high latency. (II)
Choosing the right buffer bit-width is challenging due to its effect
on area cost. A wide buffer solution (e.g., [17]) is attractive for an
area-efficient design, as many report states are combined to create
a single row of the report buffer, which results in smaller buffer
control logic. However, a wide buffer can be more troublesome for
applications with sparse and persistent reporting behavior, as the

buffer gets filled up frequently, mostly with 0s. On the other hand, a
narrow buffer solution (e.g., [55]) works effectively for applications
with sparse reporting behavior and can physically be placed near
where the report states are generated. Because buffers are narrow
and their capacity is limited, we need many of them to cover all
the report states. The cost of the control and access logic of the
reporting buffers from the host becomes an issue as each needs to
be controlled separately.We believe the lack of a feasible and efficient
reporting architecture in prior work is one of the main concerns of
integrating an efficient automata processing accelerator in a system.

Reporting strategy: None of the prior work on reporting ar-
chitecture provides report summarization support, which can help
to reduce the reporting I/O cost. Instead, they move the entire re-
porting data from the reporting buffers to the host and have the
software to extract the information. For example, if an application
only wants to know if a specific state has been triggered since the
last time the report buffer was flushed, the host processor must first
read all the reporting data of the buffer associated with that state
and calculate the row-wise logical OR of the reporting cycles.

3 ANALYZING REPORTING BEHAVIOR
To motivate our efficient memory-mapped reporting architecture
design, we first analyze the reporting behavior of a wide range of
real-world automata benchmarks from ANMLZoo [56] and Regex
[6] benchmark suites using their associated input streams. We use
Virtual Automata Simulator (VASim) [54] to simulate the applica-
tions on the 1MB input stream provided with the benchmark suites
and track all the reports throughout automata execution.

Table 1 shows a summary of the automata report statistics and
behavior. #States represents the number of states in each application.
#Report States shows the number of states labeled as reporting states
in the application. As the fifth column represents, minimum 1% and
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Figure 3: An 8-bit automaton (a) is converted to the minimized 1-bit automaton (b). The 4-bit automaton (c) is generated from
the 1-bit automaton. Finally, the 4-bit automaton (C) is strided to a 16-bit processing (d) using nibble units.

maximum 8.5% of the states in the applications are reporting state.
We use this observation to optimize the resources for our reporting
architecture. #Reports shows the total number of generated reports
across the entire execution of the application. #Report Cycle shows
the number of cycles in which at least one report is generated. For
example, ExactMatch generates exactly one report in 35 cycles. One
input symbol is processed per clock cycle; thus, the total number of
cycles for the entire application to run is 1,000,000 for 1MB input
stream. The last column shows the percentage of the cycles where
at least one report is generated.

Reporting behavior: as Table 1 suggests, the reporting be-
havior varies significantly from application to application. Some
applications report very infrequently (i.e., Dotstar03-09, ClamAV,
Ranges05, Ranges 1). This is mainly because the automata in these
applications are either a set of virus scanning signatures or detect-
ing a bad behavior in a network, and this reporting behavior is
expected. Hamming and Levenstein applications are designed for
approximate string matching. Their input is generated randomly,
and only a few strings within the scoring metrics were identified.

SPM reports nearly every 30 cycles (1,000,000/33,933), and in
each reporting cycle, 1394 reports out of 5025 report states are
generated on average (i.e., 20% of the reporting states generate a
report every 30 cycles). This implies that the reporting architecture
should handle the bursty and dense reporting behavior of such
applications to avoid significant performance loss.

Snort reports nearly every cycle, and 1.72 reports are generated
on average in each reporting cycle. This implies that the reporting
architecture needs to handle frequent but sparse reporting behavior
efficiently. Other applications, such as Fermi, and RandomForest,
report less frequently (e.g., once every 3000 cycles), and generate
roughly 7 reports in each reporting cycle. They exhibit infrequent
and relatively less sparse reporting behavior. These all imply that
when designing a reporting architecture, hardware and application
considerations must have a stall-free, efficient, and general-purpose
solution for a variety of behaviors.

Application-specific report analysis: In addition to under-
standing the reporting behavior, it is crucial to realize how and
when the generated reports for an application will be transferred
to the host. For example, in network security applications, the
generated reports (which demonstrate a malicious behavior in the
network) should be immediately sent back to the host to make a
quick decision. Moreover, some applications, such as SPM [58], may
need to check if a range of input stream has generated a report or
not, and they do not need to know all the reports during the entire
execution of an application. Likewise, some applications only need
to know if at least one report has happened during a portion or

entire execution of the input stream; thus, a summarized reporting
would be enough.

A well-designed reporting architecture should transfer the min-
imal required reporting data (i.e., summarized, a portion, or the
entire reports) when the application needs it. To the best of our
knowledge, all the existing in-memory automata processing solu-
tions send the entire reporting data when the allocated buffers are
filled as buffer flush instruction, and there is no control from the
host/application to transfer data selectively. In Sunder, for the first
time, our proposed reporting architecture provides access from the
host to request the entire, a portion, or summarized reporting data at
any point of time efficiently and cost-effectively (Section 5.1.2).

Dependency to input stream: the reporting behavior in each
application changes with changing the size and characteristics
of the input stream (i.e., dynamic behavior), and therefore, the
underlying architecture should be robust and still efficient in these
cases. The sensitivity analysis of reporting is discussed in Section
7.5.

4 ALGORITHMIC TRANSFORMATION
Sunder leverages the fact that 4-bit automata consume exponen-
tially fewer memory rows for state encoding than 8-bit automata (24
vs. 28). The unused memory rows in a standard memory or cache
subarray can be used to store the reporting data at a minimal cost lo-
cally. This section explains the algorithmic aspects of transforming
an NFA with m-bit symbols (m is usually 8 and 28 memory rows are
required for one-hot encoding of states) to 4-bit symbol automata
(i.e., nibble processing). 4-bit symbols only require 24 memory rows
for one-hot symbol encoding. We then stride the nibbles to achieve
our desired processing rate, and configure Sunder’s processing rate
accordingly.

Transforming to nibble processing: we use FlexAmata [40],
which is an automata transformation tool, and transforms an m-bit
automaton to an equivalent n-bit automaton. In our architecture,m
is an application-dependent (i.e., depends on the number of unique
symbols in the application, and this is usually 8 because of the byte-
oriented processing nature of the problems), and n is 4. The main
reason to transform to 4-bit automata (instead of 2-bit, 5-bit, etc.)
is that 4-bit processing has the lowest transformation overhead.

Figure 3 explains how an 8-bit NFA is transformed into a 4-bit
NFA. In the notation STE

y
x , x is state index and y is the symbol

size. The original homogeneous NFA (a) has two states and accepts
language (A|B)C+. FlexAmata generates a binary NFA (b) and min-
imizes the states when possible. For example, the first 6 bits of
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symbols A and B can be merged. Then, the 4-bit NFA (c) is gen-
erated from the bit-automaton. In the 4-bit NFA, STE40 is a start
state and STE43 is the final state. Each state processes one or more
4-bit symbols. STE113 in 1-bit-automata is equivalent to reaching the
state STE42 in the 4-bit automaton. Although this transformation
seems intuitive in this simple example, the real-word automata are
very complex with loops and different rule properties, making the
conversion non-intuitive.

Temporal striding: as expected, the nibble processing scheme
halves the processing rate compared to the 8-bit automata. To in-
crease the throughput (equals or more than 8-bit processing), we
utilize the Vectorized Temporal Striding technique introduced in
Impala [41] to reshape the 4-bit automaton and find its equiva-
lent automaton that processes multiple nibbles per cycle. Temporal
Striding [4, 12] and its vectorized version are transformations that
repeatedly square the input symbol of an automaton and adapt
its matching symbols and transition graph accordingly. Figure 3
(d) shows how a 4-bit automaton is temporally strided to a 16-bit
automaton with nibble units (i.e., a vector of four 4-bit symbols)
- see Impala [41] for details. The State and transition overhead of
nibble processing transformation is discussed in Section 7.2.

5 SUNDER ARCHITECTURE
In this section, we explain how Sunder implements reconfigurable
nibble processing and reporting architecture together in the state
matching subarrays. Moreover, we explain how state transition
(interconnect) is implemented in Sunder. Figure 4 shows the Sunder
architecture for one processing unit (PU), which can accommodate
an NFA with up to 256 states. Each PU includes the state matching
and reporting array, state transition (interconnect) unit, and the
global memory-mapped switches to provide inter PU connecting
when processing larger automaton (with up to 1024 states).

5.1 State Matching & Reporting Subarray
The green region in Figure 4 depicts one memory subarray of size
256×256, where matching symbols are encoded in the yellow region
(upper rows of the subarray), and the reporting data is stored in
the gray region (lower rows of the subarray) or partially in the
yellow region (depends on the configured processing rate). In prior
solutions [17, 43, 48], one memory subarray of size 256×256 is used
to only encode 8-bit symbols for state matching stage. However,
Sunder leverages nibble processing from prior work [41], and pro-
poses to utilize one memory subarray of size 256×256 to encode
up to 16-bit symbols (four 4-bit symbols in the first 64 rows of the
subarray in Figure 4) and to store up to 60Kb reporting data! This
is achieved only at the expense of 2% hardware overhead (the blue
regions in Figure 4) compared to prior solutions.

To perform statematching and to store reporting data in the same
subarrays in one cycle, we utilize the dual-port functionality of 8T
SRAM memeory cells [25], with two sets of sense amplifiers (SA)
and two sets of decoders. In the state matching/reporting subarray
of Figure 4 (green region), up to four 4-bit symbols are decoded
using the four 4:16 decoders on the right side of the subarray. The
bitwise NOR of multiple activated rows (up to four rows) are sensed
by the row buffer on the bottom of the subarray (i.e., Row-buffer B)
- see Section 5.1.3.

The reporting data is stored in and read from the same subarray
(i.e., the lower part of the state matching/reporting subarrays in
Figure 4) using the left-side 8:256 decoder and the row buffer on
the top of the subarrays (i.e., Row-buffer A). Moreover, the left-side
8:256 decoder is also used to write the state-matching data in the
Automata Mode (AM), and also read/write normal cache data in the
Normal Mode (NM).

5.1.1 Reconfigurable Nibble Processing. Different from all prior
work, Sunder supports a reconfigurable symbol processing rate (i.e.,
4-bit, 8-bit, and 16-bit symbols per cycle). This is unlike Impala [41],
where the processing rate is fixed in hardware (i.e., if the hardware
is designed for 16-bit processing, the 8-bit processing is not able to
utilize half of the subarrays). Each state is encoded in one memory
column by embedding multiple 4-bit symbols. The processing rate
can be determined by the user based on the application size and
requested throughput. If the application is small, automata can be
transformed to process more nibbles in one cycle, which results
in higher throughput at the expense of utilizing unused hardware
resources. On the other hand, if the application is large and several
rounds of reconfiguration are needed to process the entire set of
rules/automata, a smaller processing rate that avoids overhead from
extra states can be selected to optimize for space.

In the state matching/reporting subarray, Row[0:15] encodes
the first nibble, Row[16:31] encodes the second nibble, Row[32:47]
encodes the third nibble, and Row[48:63] encodes the fourth nibble
of the symbol. When the processing rate is 4 bits per cycle, only
the first 16 rows are used to encode the 4-bit symbols using a
one-hot encoding scheme; thus, only the associated decoder to the
first 16 rows will be enabled. This means the remaining rows (i.e.,
Row[16:255]) are used for storing the reporting data. Likewise, in
8-bit processing, the first 32 rows are used to encode two nibbles;
thus, the first two decoders are enabled, and the remaining rows
can be used for reporting data. Finally, when the processing rate is
16 bits per cycle, Row[0:63] will be used for state encoding (for four
nibbles), and their associated decoders will be enabled accordingly.
In this scenario, Row[64:255] can be used to store the reporting
data.

The partial state matching results from nibbles are combined
using bitwise operations with multi-row activation of SRAM ar-
rays. For example, for the 16-bit processing, four memory rows are
activated (with the four 4:16 decoders), then their matching results
are bitwise ANDed to generate the final matching results. Jeloka
et al. [26] have shown the stability of simultaneously activating 64
wordlines on SRAM subarrays by lowering the wordline voltage
and verified this across 20 fabricated chips.

5.1.2 Reporting Architecture. Sunder proposes to localize the re-
porting data within the same memory subarrays performing the
state matching, with minimal hardware overhead. This helps to
avoid long wires from report states to buffers and their likely la-
tency and routing congestion. It also helps to share many of the
report buffer peripherals with the existing state-matching logic.
Thanks to the nibble processing technique, which exponentially
saves the memory footprint in the state matching subarrays, and
the choice of dual-port 8T cells to isolate read port from write port
(Section 5.1.3), Sunder can store the reporting data in each cycle at
the bottom rows of the state-matching subarrays. Sunder introduces
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Figure 4: Sunder architecture for state matching/reporting (green), state transition or interconnect (pink), and additional mod-
ules to enable reconfigurable nibble processing and reporting architecture (blue).

Figure 5: Mapping STEs to reporting/non-reporting regions

several unique features, which can greatly reduce the overhead of
reporting.

Storing reporting data in to the state matching/reporting
subarray: assume the processing rate is 16-bit (i.e., four 4-bit nib-
bles); therefore, the first 64 rows in the state matching/reporting
subarray in Figure 4 are used for encoding the states. We assume
m reporting states in each memory subarrays, and we map the
reporting states in an automaton to the m-reporting-enabled states
in the memory subarrays, which are the last m memory columns
as shown in Figure 5 (STE2 is a reporting state and is encoded
in the reporting columns). Having a pre-defined reporting region
is necessary to efficiently detect if there is at least one generated
report.

At run-time, in the automata-mode, after the current active states
have been calculated, we check if there is at least reporting data is
generated. This is done by ORing the m-bit reporting states (Figure
4 - blue region - upper right side) driven from the active state vector
(pink region). If at least one report is generated, we need to write
the m-bit report data (out of 256 bit) and the cycle in which the
report has occurred (n-bit metadata) into the reporting rows. The

cycle count (i.e., n-bit metadata) is generated from a global counter
in the hardware.

Reporting data and metadata are written into the reporting re-
gion row-wise, starting from row 64 in 16-bit processing (or starting
from row 32 in 8-bit processing). To track the currently available
location in the reporting region (i.e., the currently generated m-
bit report is written into which row and which columns), a local
counter is used. The counter size is calculated as:

LocalCountersize = ⌈log(#ReportRows)⌉ +
⌈
log(

256
m + n

)

⌉
(1)

#ReportRows is the number of rows configured for storing report-
ing data (i.e., in the 16-bit processing, 192 rows can be preserved
for reporting data).m is the number of states in a subarray that
can be a reporting state (Figure 5), and n is the global counter
size. For example, in 16-bit processing, #ReportRows is 192, there-
fore, ⌈log(#ReportRows)⌉ is 8. Assuming 8 states out 256 states
in a subarray can be reporting states (i.e., m=8) and 10MB input
size (i.e., n=24), the local counter is 16-bit. The 8-bit MSB (i.e.,
⌈log(#ReportRows)⌉) is used for the address decoder to activate a
row, and the 8-bit LSB (i.e.,

⌈
log( 256

m+n )
⌉
) selects the bitlines for the

next available location in a row. Therefore, the corresponding bit-
lines are pre-charged to writem+n-bit reporting data and metadata
into the selected columns. The address controller simply selects
the address from the host when writing the state matching data at
the configuration time, or from the local counter in the Automata
Mode. It also masks the row address depends on the number of
reporting rows at the configuration time.

As 8T cells have different ports for read and write, the state
matching phase and reporting phase (from the previous cycle) can
be pipelined. This approach does not need any additional hardware
resources such as an arbiter or global buffer, as report information
is locally stored in the same memory array as matching data has
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been stored. This way, accessing the report information is much
easier, as it translates to simply reading data from memory.

Reporting architecture highlights: Sunder introduces unique
features that have never been explored before, and can greatly re-
duce the overhead of reporting in automata processing applications.

Report summarization: an important concern in the reporting
architecture is the I/O cost. We observed that not all the applications
required cycle-accurate report information (such as SPM [58]). All
the previous accelerators are designed to read bulky cycle-accurate
report information and post-process them on the host. In Sunder,
report summarization is achieved by performing the column-wise
NOR operation among report rows using Port 2 in Figure 6, thanks
to wired-NOR functionality of the 8T SRAM subarrays (please note
that when report summarization is requested by the host, the state
matching is stalled for 1-2 cycles as Port 2 is used for the multi-row
activation required by summarization). This feature is beneficial for
applications that have a very frequent reporting behavior, where
the existence of a report in a specific duration matters. In other
words, the user does not care about the specific cycle that the report
has happened (Evaluation in Section 7.5).

Selective reporting: Sunder provides great freedom to the host to
read the report status of every state at any cycle with a constant
time while the conventional approaches fill the report buffers with
report data that might not be interesting at that particular time,
and this introduces more stalls to transfer reporting data.

Optimized for different reporting behaviors: when the application
has a dense but infrequent reporting behavior, the reporting region
has minimal usage. On the other hand, when the application has a
sparse but frequent reporting behavior, the reports are compacted
in the report-storing subarrays; thus reducing the number of stalls.

FIFO strategy for the reporting buffers: our study on real-world
applications reveals that they only generate at least one report in
less than 12% of total execution cycles (see Table 1). This implies
that in more than 88% of the cycles, no report is generated, and
nothing will be written in the subarray. We take advantage of this
observation and start reading the reporting data from the beginning
of the reporting region. This is enabled by using Port 1 (in Figure
6) for reading reporting data and using Port 2 for performing the
state matching, both at the same time. When the report buffer is
full, the reports will be written to the buffer starting from the head.
If the report generation rate is higher than consumption and the
report buffer is full, the execution is stalled.

5.1.3 Enabling In-Situ Reporting using Dual-PortMemory Cell Struc-
ture. To enable state matching and reading or writing reporting
data at the same time in one memory subarray, we utilize dual-port
functionality of 8T SRAM cells, presented in Figure 6. The cell sup-
ports read/write operation through Port 1 and read-only operation
through Port 2. Port 1 is used for (1) writing initial automata config-
uration (i.e., encoded symbol-set) to the state-matching subarray
(i.e., the upper yellow rows in Figure 4), and (2) reading/writing
report data from/to the report region (i.e., the lower gray rows in
Figure 4). Port 2 is used for performing state matching operation by
reading the matching data from the memory rows. To perform state
matching on multiple nibbles (up to four), the four 4:16 decoder
in Figure 4 are used, each activate one row in the subarray, and

Figure 6: Dual port 8T SRAM cell

BL2 calculates the wired-NOR functionality of the activated rows
(explained bellow).

An 8T SRAM cell consists of a classical 6T SRAM cell and two
additional transistors, which connect the memory cell to BL2. An
8T SRAM cell read operation from Port 2 starts by precharging the
bitline (BL2); then evaluation is done by two serial transistors, one
derived by enable bit value and the other (i.e., activator) by the
wordlines of the 4:16 decoders (Figure 4, right-side decoders). This
means the 6T cell drive the Port 2 bitline (BL2) only when the cell
holds ’1’ and the right row decoder has activated the target cell
row. Otherwise, it does affect the bitline (BL2) value. This implies
the BL2 implements the wired-NOR functionality of the activated
rows. The WWL wordlines are derived by the left-side decoder
(8:256) in Figure 4 for read/write operations (same functionality as
classical 6T SRAM cell). Sunder also benefits from the wired-NOR
functionality enabled by 8T cells for the multi-row activation in
the full-crossbar interconnect subarrays.

5.2 Interconnect
The interconnect allows active states to move forward in time to the
next states. If (I) the current input symbol matches the state S and
(II) any of parents of state S were activated in the previous cycle,
then the state S will be activated. The second condition implies
that the interconnect should provide the OR-functionality, which is
feasible with 8T SRAM switch cells. Similar to prior work [43, 48],
we use a memory-mapped full-crossbar interconnect based on 8T
SRAMmemory cells, to provide wired-NOR functionally on bitlines.
The left-side blue wordlines are driven by the left-side decoder (and
are connected to WWL in 8T cells) for writing the connectivity data
into the enable bits at the configuration time (Figure 6). The right-
side purple wordlines are driven active state vector (see Figure 4),
which determines the currently active states, and are connected to
the activators in 8T cells. The bitlines (or columns) drive the same set
of states (i.e., one column per state). Since every column intersects
with every row, the interconnect provides connections between
every pair of 256 states, thus, avoiding interconnect congestion
even for highly connected NFA.
6 SYSTEM INTEGRATION
Sunder can be realized by repurposing the last level cache (LLC) of
recent processors, such as Intel Xeon with large L3 cache capacity
(as Sunder’s subarrays have the same size as a conventional L3 cache
[14]). In the Sandy Bridge microarchitecture, the LLC is split into
independent slices (usually equal to the number of cores), connected
via a ring topology. To access the target slice, the physical address
should go through a hashing block. This hash block distributes
addresses uniformly across the slices with the granularity of cache
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Figure 7: Memory-mapped local & global interconnect

lines, so it is possible to have two consecutive memory addresses
mapped to two different memory arrays in different slices. However,
to configure Sunder, we need flat accesses to certain arrays. Intel has
not published the details of the hashing function. To find physical
addresses for the slices repurposed for Sunder, we can use the
existing efforts to reverse engineer the hash function [35]. Inside
a slice, to access the correct memory array in a certain cache way,
we use Cache Allocation Technology (CAT) [1] to restrict the ways
accessed by the program.

To cover all the addresses in a certain slice, we can set the page
size to 1GB using mmap at configuration time. To translate the
virtual addresses of the arrays to the physical addresses, page ta-
ble information in /proc/self/pagemap can be used. Automata are
configured in the cache by writing configuration values at these
addresses. At runtime, to collect the report information, the host
application issues load instruction at the regions assigned to the
report arrays for immediate processing or issues clflush to store the
report data into the DRAM for post-processing.

7 PERFORMANCE EVALUATION
7.1 Evaluation Methodology
NFAworkloads:we use ANMLZoo [56] and Regex [6] benchmark
suites to evaluate Sunder. They present a range of applications,
such as network intrusion detection, natural language processing,
and data mining. A summary of the applications is represented in
Table 1.

Experimental setup: we use our open-source in-house Au-
tomata compiler and simulator1 to perform the preprocessing steps,
and simulate Sunder, Cache Automaton (CA) [48], Impala [41], and
the Automata Processor (AP) [17], and also to perform the automata
transformation for nibble processing. The simulator takes NFA in
ANML format and processes the input cycle-by-cycle. Per-cycle sta-
tistics are used to calculate the number of active states, the number
of reports, and communication overhead. To estimate area, delay,
and power of the memory subarray in Sunder, Cache Automaton,
and Impala model, we use a standard memory compiler (under
NDA) for 14nm technology and nominal voltage 0.8V (details in
Table 2). For example, Impala uses SRAM subarrays of size 16×16
with 6T cells for state matching, or Sunder uses SRAM Subarrays of
size 256×256 with 8T cells for both state matching and the intercon-
nect. The global wire-delays are calculated using SPICE modeling

1https://github.com/gr-rahimi/APSim

in CA. Because the 8T-cell design has wider transistors than the
6T-cell design in the memory compiler, 8T subarrays are faster and
have a higher area overhead than 6T subarrays.

Reporting architecture: Impala and CA overlook the real cost
of reporting, and they mainly evaluate the matching kernel. To
provide a fair and thorough comparison across different solutions,
we assume the AP-style reporting architecture for the CA and
Impala.

Parameter selection: on average, 3.9% of the states are the
reporting states (Table 1, fifth column). Therefore, on average, 10
out of 256 states (3.9%×256) are reporting states. Based on this
observation, we allocate 12 bits for the reporting data and 20 bit for
metadata (i.e., the global counter to count for 1Mb of input data),
depicted in Figure 4. To allow capturing the reporting information
for larger input, the stride value is concatenated with all zeros in the
reporting data and is written in the metadata + report data region.

AP-style reporting parameters: following [55], each L1 report
buffer size is 481Kb and each L2 report buffer size is 64KB (in total,
11.3MB L1 and 4MB L2).

Table 2: Subarray parameters for state-matching and inter-
connect (including peripheral overhead) in 14nm technol-
ogy.

Usage Cell Size Delay Read Power Area
Type (ps) (mW) (µm2)

State-matching (Impala) 6T 16×16 180 0.58 453
State-matching (CA) 6T 256×256 220 5.52 9394

Interconnect (CA, Impala, Sunder) 8T 256×256 150 6.07 20102State-matching (Sunder)

7.2 State and Transition Overhead
This section discusses the state and transition overhead for different
processing rates (i.e., 1, 2, and 4-nibble processing). Table 3 shows
the number of states and transitions in each bitwidth, normalized
to the number of states and transition in the original 8-bit design.
We observed that benchmarks with higher symbol density (i.e.,
states that accept larger alphabet), such as Brill, EntityResolution,
Hamming, Protomata, and RandomForest, have higher state and
transition overhead in different bitwidths.

On average, 1, 2, 4-nibble designs have 3.1×, 1.0×, and 1.2×more
states and 4.5×, 1.0×, and 1.8× more transitions over the original
8-bit designs. The increase in the number of states translates to
utilizing more memory-column resources in in-memory designs.
The increase in the number of transitions translates to utilizing
more switches in our memory-mapped full crossbar interconnect
(Figure 7) and does not incur extra resource overhead.

This means that compared to the original 8-bit processing, 4-nibble
processing (or 16-bit processing) provides 2× throughput benefit only
at the expense of 1.2× more memory columns. Moreover, 4-nibble pro-
cessing requires 64 (4×24) memory rows to encode four 4-bit symbols,
whereas the original 8-bit processing requires 256 (28) memory rows
to encode one 8-bit symbol. Sunder opportunistically utilized the 192
(256-64) unused memory rows to store the reporting data with a simple
and compact solution. This confirms that our algorithm/architecture
methodology provides throughput and area benefits compared to prior
works.
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Table 3: Number of state and transitions in Sunder normal-
ized to the original 8-bit automata.

Benchmark
Sunder State Sunder Transition

1-nibble 2-nibble 4-nibble 1-nibble 2-nibble 4-nibble
(4-bit) (8-bit) (16-bit) (4-bit) (8-bit) (16-bit)

Brill 5.3× 1.0× 1.9× 11.9 × 1.0× 1.8×
Bro217 2.0× 1.0× 1.0× 2.1 × 1.0× 7.4×

Dotstar03 2.2× 1.0× 1.0× 2.6 × 1.0× 1.1×
Dotstar06 2.3× 1.0× 1.0× 3.0 × 1.0× 1.1×
Dotstar09 2.4× 1.0× 1.0× 3.5 × 1.0× 1.2×
ExactMatch 2.0× 1.0× 1.0× 2.0 × 1.0× 1.0×
PowerEN 2.3× 1.0× 1.1× 3.1 × 1.0× 1.0×
Protomata 6.0× 1.0× 1.2× 12.5 × 1.0× 1.1×
Ranges05 2.0× 1.0× 1.0× 2.1 × 1.0× 1.0×
Ranges1 2.1× 1.0× 1.0× 2.2 × 1.0× 1.0×
Snort 2.5× 1.0× 1.1× 3.8 × 1.0× 1.4×
TCP 2.5× 1.0× 1.1× 3.9 × 1.0× 1.3×

Hamming 6.5× 1.1× 1.3× 9.7 × 1.1× 1.4×
Levenshtein 2.8× 1.1× 2.2× 1.9 × 1.1× 3.5×

Fermi 2.2× 1.0× 1.0× 2.1 × 1.0× 1.3×
RandomForest 5.3× 1.0× 1.0× 9.4 × 1.0× 1.0×

SPM 2.7× 1.1× 2.3× 2.7 × 1.1× 4.6×
EntityResolution 3.2× 0.7× 0.9× 2.8 × 0.7× 1.6×

Average 3.1× 1.0× 1.2× 4.5 × 1.0× 1.8×

7.3 Performance Overhead Analysis
Table 4 summarize the reporting overhead for Sunder (with and
without FIFO strategy), the AP, and the AP augmented with the
Report Aggregator Division (RAD) proposed by Wadden et al. [55]
(AP+RAD). For all these architectures, automata matching computa-
tions and communication happens within a single cycle. Therefore,
the "nominal" time it takes for the matching kernel (i.e., only state
matching and transition) to run automata on the input symbol
stream is equal to the symbol cycle time of the device multiplied
by the number of symbols in the input symbol stream. To have
apples-to-apples comparison across different solutions, we assume
the AP-style reporting architecture (Figure 2) for both Impala and
CA (as they overlook the real-cost of reporting overhead), and add
the reporting overhead to the "nominal" kernel execution cycles in
CA and Impala.

Performance overhead: the number of flushes is the total num-
ber of times an application needs to flush the whole reporting region
due to overflow. While a subarrray is flushing out the reporting
data, the symbol processing for the whole application is stalled. The
reporting overhead (the stalls due to gathering and sending the re-
porting data to the host) represents the slowdown over the nominal
execution cycles. Some benchmarks have little or no reporting over-
heads, even on the AP reporting architecture (e.g., Dotstar, Ranges,
ClamAV). This is simply because these benchmarks report infre-
quently or not at all (Table 1). Some benchmarks incur extremely
large reporting overheads on the AP-style reporting. For example,
Snort incurs a 46× slowdown over ideal performance, and 7 out of
19 benchmarks spend more time processing reporting overheads
than processing automata transitions. AP+RAD reduces the report-
ing overhead of the applications with sparse reporting behavior,
such as Snort and Protomata. However, it does not improve the
overhead of dense reporting, such as SPM, mainly because RAD
technique has finer-grain reporting granularity that reduces the
sparsity of sparse reporting behavior and has almost no impact on
dense reporting.

As expected, Sunder reporting architecture incurs negligible
overhead, which is less than 1.06× slowdown with no FIFO design,

Table 4: Reporting overhead for four nibble processing.
Sunder w/o FIFO Sunder w/ FIFO AP (8-bit) AP+RAD (8-bit)

Benchmark #Flushes Reporting #Flushes Reporting Reporting Reporting
Overhead Overhead Overhead Overhead

Brill 666 1.04× 0 1× 7.07× 2.95×
Bro217 0 1× 0 1× 1.6× 1.3×

Dotstar03 0 1× 0 1× 1× 1×
Dotstar06 0 1× 0 1× 1× 1×
Dotstar09 0 1× 0 1× 1× 1×
ExactMatch 0 1× 0 1× 1× 1×
PowerEN 0 1× 0 1× 1.1× 1.05×
Protomata 0 1× 0 1× 5.8× 2.32×
Ranges05 0 1× 0 1× 1× 1×
Ranges1 0 1× 0 1× 1× 1×
Snort 1 1.01× 0 1× 46× 9×
TCP 0 1× 0 1× 3.8× 2.5×

ClamAV 0 1× 0 1× 1× 1×
Hamming 0 1× 0 1× 1× 1×
Levenshtein 0 1× 0 1× 1× 1×

Fermi 0 1× 0 1× 2.3× 1.5×
RandomForest 0 1× 0 1× 1.6× 1.3×

SPM 9212 1.06× 3870 1.03× 9.7× 9.7×
EntityResolution 0 1× 0 1× 2.25× 1.8×
Avg. Overhead NA 1× NA 1× 4.69× 2.23×

and this can even further decrease to less than 1.03×when applying
the FIFO strategy (which reads from the beginning of the report
array during the application execution). This simply means that
Sunder’s end-to-end performance is almost equal to the kernel
performance, andminimizing the datamovement overhead between
CPU and memory is an ultimate mission in processing-in-memory
architectures! Technically, Sunder does not incur stalls during the
execution of an application due to reporting, can be used for real-
time processing with a reliable and predictable performance.

SPM has extremely high-frequency reporting behavior and is the
only application that has reporting overhead in Sunder architecture
(3% reporting overhead - 6th column in Figure 4). Interestingly,
the SPM application mostly requires to know if a single report has
happened for specific input intervals with no interest in knowing
the exact cycles that report events have occurred. This means that
our report summarizing technique can further reduce the report-
ing overhead for the applications with extremely high reporting
behavior.

7.4 Comparison with Prior Work
Overall performance: The delays and frequencies of different
pipeline stages for Sunder, Impala, CA, and the AP are shown in
Table 5 (derived from Table 2). Sunder uses memory subarrays
with 8T cells for both state matching and interconnect. Sunder,
CA, and Impala have similar hierarchical interconnect designs, and
both local and global switches are evaluated in parallel (Figure
4). We assume an SRAM slice of 3.19mm × 3mm based on CA. As
a result, the distance between SRAM arrays and global switch is
assumed to be 1.5mm. The wire delay was found to be 66ps/mm
from SPICE modeling; therefore, the wire delay for global switches
is 99ps . Global switch delay for CA and Sunder is 249 ps, composed
of read-access latency (150ps) and wire delay latency (99ps). Impala
state-matching subarray is ∼5X smaller; therefore, we assume 20ps
wire-delay for Impala. Therefore, the global switch delay for Impala
is 170 ps.

The frequency is determined based on the slowest pipeline stage.
To consider potential estimation errors, we assume the operating
frequency to be 10% less than what we have calculated. The AP is
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Table 5: Delays and operating frequency in pipleline stages.
The AP’s detail implementation is not publicly available.

Architecture State Local Global Max Operating
Matching Switch Switch Freq. (GHz) Freq. (GHz)

Sunder (14nm) 150 ps 150 ps 249 ps 4.01 3.6
Impala (14nm) 180 ps 150 ps 170 ps 5.55 5
CA (14nm) 220 ps 150 ps 249 ps 4.01 3.6
AP (50nm) - - - 0.133 0.133
AP (14nm)* - - - 1.69 1.69

* Projected to 14nm

Figure 8: Throughput of different automata accelerators.

designed in 50nm DRAM technology. To have a fair comparison,
we project the frequency to 14nm, which is an ideal assumption.

The overall throughput of in-memory automata processing ar-
chitectures is determined by f r equency×(#bits/cycle)

r epor tinд−overhead . This is un-
like prior work that calculates f requency × (#bits/cycle) as the
overall performance and overlooks the reporting overhead. The
reportinд − overhead is the average reporting overhead in Table
4, and is equal for CA, Impala, and AP. Based on Table 4, Sunder’s
reporting architecture has almost no performance overhead across
all the benchmarks, thus, throughput for all the applications is fixed
and calculated by multiplying frequency (3.6 GHz) by the number
bits processed per cycle (i.e., 16 bits/cycle). Impala has a fixed 16-bit
per cycle processing rate, whereas Sunder has a reconfigurable 16-
bit per cycle processing rate. CA and AP design only work with 8-bit
per cycle rate. Figure 8 compares the average throughput across the
19 benchmarks for Sunder against Impala, CA, and the AP for both
AP-style reporting architecture and RAD reporting proposed in [55].
Sunder achieves 280× (133×), 22× (10.4×), 10× (4.8×), and 4× (1.9×)
higher throughput compared to the AP (50nm), AP (14nm), CA, and
Impala, respectively, with considering AP reporting architecture
(with considering AP+RAD reporting architecture). This benefit
comes from the fact that Sunder has almost no reporting overhead
(i.e., reporting does not cause a slowdown in performance), which
can provide a deterministic throughput of one input symbol per
cycle!

Area Overhead: Figure 9 compares the area overhead of state-
matching, interconnect, and reporting of Sunder with Impala, CA
and, and the AP (all in 14nm) for 32K STEs. Impala uses four 16×16
SRAM subarrays (6T cells) for the state matching, thus, has the
minimum area overhead for this stage. Impala and CA reporting
overhead are modeled after the AP reporting architecture. In Sunder,
the reporting architecture is infused in the state matching subarray,
and there is only an additional 2% overhead for the addition circuitry
(i.e., blue area in Figure 4). Both state matching and interconnect
switches in Sunder are designed with 8T SRAM subarrays, which

Figure 9: Comparing area overhead for 32K STEs.

Figure 10: Performance slowdown for various reporting
rates.

is 2.1× larger than the 6T subarrays (Table 2). Overall, Sunder has
2.1×, 1.6×, and 1.5× lower area overhead than AP, Impala, and
CA, respectively. This benefit comes from the compact and in-place
reporting enabled by algorithmic transformation. Moreover, Sunder
incurs almost no performance penalty for the reporting, while the
other solutions cause up to 46× slowdown due to stalls for reporting.

7.5 Input Stream Sensitivity Analysis
Variations on the input steam change the reporting behavior. To
evaluate this, we perform a sensitivity analysis on the percentage of
reporting cycles, sweeping from 1% to 100%. We assume 12 report-
ing states in each subarray (based on the analysis in Table 1). Figure
10 represents the performance slowdown with and without sum-
marization technique (Section 5.1.2). As expected, Sunder reporting
architecture incurs negligible performance overhead when the re-
porting cycles are less than 5%. In the absolute worst-case scenario,
which is reporting 100% of the times, Sunder with no summarizing
incurs only 7× performance overhead. However, if the application
only needs to know the report occurrence, then Sunder can sum-
marize the reporting region in 16-row batches, which improve the
performance overhead to only 1.4×. However, the AP-style report-
ing incurs up to 46× slowdown with only 3.24% of report cycles
(SPM in Table 1).

8 RELATEDWORK
Data movement is highly expensive, much more expensive than the
computation [11, 28–30]. Generally, automata processing on von
Neumann architectures exhibits highly irregular memory access
patterns with poor temporal and spatial locality, which often leads
to poor cache and memory behavior [5, 13, 24, 53, 56, 60], and this
increases the cost of data movement.

Existing regular expression accelerators [18, 20, 34, 49] and FPGA
solutions [27, 53, 63, 64] aremainly targeting network security appli-
cations. However, recent effort on in-memory automata processing
architectures are optimizing for general-purpose pattern matching,
and they have shown their effectiveness on a wide-range of appli-
cations [17, 36, 41, 47, 48] They all optimize for NFA processing by
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exploiting the inherent bit-level parallelism of memory, and these
allow many patterns to be processed at the same time.

The Automata Processor (AP) [17] presented the first in-memory
automata processing solution by repurposing DRAM arrays. Wad-
den et al. [55] introduce a reporting compression scheme (RAD)
to reduce the reporting overhead in spatial automata accelerators,
such as the AP. Impala [41] and Cache Automaton (CA) [48] repur-
pose a portion of the LLC (when in automata mode) to lay out the
patterns in the cache subarrays, and thus, providing a solution that
can be on the same chip as the CPU, as well as higher-frequency op-
eration due to use of SRAM. Impala transforms automata to process
four 4-bit symbols in parallel using smaller subarrays. However, Im-
pala’s processing rate is not reconfigurable. Moreover, both Impala
and CA overlook the real cost of reporting.

Prior work has already shown that the AP performs at least an
order of magnitude better than GPUs and multi-core processors
[10, 39, 45, 50, 58, 59], and CA performs at least an order of magni-
tude better than the AP [48]. Liu et al. [33] proposed an optimized
GPU solution for NFA processing by identifying the source of data
movement and achieved significant speedup over existing GPU
solutions, and even outperforming the AP for several applications.
On average, Sunder outperforms the AP 280×, and therefore, we
do not compare with the GPU solutions.

9 CONCLUSIONS
We introduce Sunder, a fully reconfigurable, efficient, and low over-
head in-SRAM pattern processing accelerator. Sunder integrates
our analysis of the prior architectures and sources of inefficien-
cies, and our study of the static structure and dynamic behavior
of real-world applications, to implement the next-generation of
in-memory automata processing. Transforming an automaton for
better hardware utilization exponentially reduces memory usage
and increases information density. This frees up space in the mem-
ory subarrays and creates an opportunity to store the reporting data
locally in each subarray to significantly reduce the host communi-
cation and stabilize the processing throughput across the execution
of an application. Sunder’s reporting architecture incurs less than
2% hardware overhead (as the reporting data are co-located in the
state matching subarrays and use shared resources). On average,
Sunder has two orders of magnitude higher throughput than Mi-
cron’s AP and one order to magnitude higher throughput than the
state-of-the-art SRAM-based solutions.

Moreover, our software and hardwaremethodology enables three
orders of magnitude higher throughput per unit area compared
to the Micron’s AP, and this low-cost, high-throughput solution
hopefully shows a path toward commercial viability and unlocks
the full potential of automata processing by making it accessible to
an increasing set of pattern processing applications with real-time
requirements.
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