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Moves on k-graphs preserving Morita
equivalence
Caleb Eckhardt, Kit Fieldhouse, Daniel Gent, Elizabeth Gillaspy,
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Abstract. We initiate the program of extending to higher-rank graphs (k-graphs) the geometric
classification of directed graph C∗-algebras, as completed in Eilers et al. (2016, Preprint). To be
precise, we identify four “moves,” or modifications, one can perform on a k-graph Λ, which leave
invariant the Morita equivalence class of its C∗-algebra C∗(Λ). These moves—in-splitting, delay,
sink deletion, and reduction—are inspired by the moves for directed graphs described by Sørensen
(Ergodic Th. Dyn. Syst. 33(2013), 1199–1220) and Bates and Pask (Ergodic Th. Dyn. Syst. 24(2004),
367–382). Because of this, our perspective on k-graphs focuses on the underlying directed graph.We
consequently include two new results, Theorem 2.3 and Lemma 2.9, about the relationship between
a k-graph and its underlying directed graph.

1 Introduction

Recent years have seen a number of breakthroughs in the classification of C∗-algebras
by K-theoretic invariants. For separable simple unital C∗-algebras A which have
finite nuclear dimension and satisfy the Universal Coefficient Theorem of [RS87],
the Elliott invariant (consisting of the ordered K-theory of A, its trace simplex, and
the pairing between traces and K0(A)) is a classifying invariant [TWW17, EGLN15,
GLN21b,GLN21a]: two suchC∗-algebrasA, B are isomorphic if and only if their Elliott
invariants are isomorphic. Work has already begun [EGLN20, GL20] on expanding
these results to the nonunital setting.

The Cuntz–Krieger algebras OA [CK80] associated with irreducible matrices A
were one of the early classes of C∗-algebras for which K-theory was shown to be a
classifying invariant [CK80, Fra84, Rø95].WhenA is not irreducible,OA is not simple,
leaving these C∗-algebras outside the scope of the Elliott classification program.
However, the proof of the K-theoretic classification of simple Cuntz–Krieger algebras
draws heavily on the dynamical characterization of Cuntz–Krieger algebras as arising
from one-sided shifts of finite type [CK80]. As this dynamical characterization holds
in the nonsimple case as well, Cuntz–Krieger algebras were a natural setting for a
first foray into classification of nonsimple C∗-algebras, andmany classes of nonsimple
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Cuntz–Krieger algebras were classified in [Res06, ET10, Sø13, ERRS18]. Indeed, recent
work of Eilers et al. [ERRS16] completes this classification.

Interpreting A as the adjacency matrix of a directed graph EA, we have a canon-
ical isomorphism OA ≅ C∗(EA). Using this perspective, as well as techniques from
symbolic dynamics [Hua96, Boy02, BH], Eilers et al. obtained both a K-theoretic and
a graph-theoretic classification of unital graph C∗-algebras. To be precise, Sørensen
[Sø13] identifies five “moves” on directed graphs E which preserve the stable isomor-
phism class of C∗(E), and shows that in fact these moves generate the equivalence
relation

E ∼ F ⇐⇒ C∗(E) ⊗K ≅ C∗(F) ⊗K(1.1)

among graphs with simple unitalC∗-algebras. In [ERRS18], Eilers et al. confirmed that
these fivemoves are not sufficient to generate the equivalence relation (1.1) on the class
of all finite graphs. However, [ERRS16] identifies a sixth operation on directed graphs
which preserves the equivalence relation (1.1), and uses filteredK-theory to show that,
among graphs with finitely many vertices, these six moves generate the equivalence
relation (1.1). That is, an isomorphism C∗(E) ⊗K ≅ C∗(F) ⊗K can only exist if we
can pass from E to F by a finite sequence of these six moves and their inverses. Eilers
et al. also showed in [ERRS16] that isomorphism of two unital graph C∗-algebras
C∗(E),C∗(F) is equivalent to the existence of an order-preserving isomorphism of
the filtered K-theory of C∗(E) and C∗(F).

The K-theory of a graph C∗-algebra [Cun81, BHRS02] dictates that if C∗(E)
is simple, it is either approximately finite-dimensional or purely infinite. Kumjian
and Pask developed the theory of higher-rank graphs, or k-graphs, in [KP00] to
provide a broader range of combinatorial examples of C∗-algebras. Formally, a k-
graph Λ is a countable category with a functor d ∶ Λ → N

k satisfying a factorization
property (see Definition 2.0.1 below). However, k-graphs are also closely linked to
buildings [RS99, KV15] and to higher-rank shifts of finite type via textile systems
[JM99]. The graph-theoretic inspiration for higher-rank graphs was made precise by
Hazlewood et al. [HRSW13], who detailed in [HRSW13, Theorems 4.4 and 4.5] the
correspondence between higher-rank graphs on the one hand, and on the other hand,
edge-colored directed graphs with an equivalence relation on their category of paths.
In this perspective, the factorization property of a k-graph is encoded in the set of
“commuting squares,” or length-2 paths ab ∼ cd which are equivalent in the edge-
colored directed graph.

The paper at hand constitutes a first step toward extending the geometric classifi-
cation of graph C∗-algebras to the setting of higher-rank graphs. Taking inspiration
from [Dri99, BP04, CG06, Sø13], we identify four moves (sink deletion, in-splitting,
reduction, and delay) on row-finite, source-free k-graphs Λ which preserve theMorita
equivalence class of C∗(Λ). These moves for k-graphs were inspired by their analogs
for directed graphs, and therefore involve adding or removing edges and vertices in
Λ. Performing such a move on a k-graph affects the factorization property, though,
as length-2 paths may become longer or shorter. Thus, geometric classification in
the k-graph setting faces a new technical hurdle: one must identify how to adjust
the factorization property after each move, so that the resulting object is still a
k-graph.
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As discussed in the introduction to [BP04], the moves of in-splitting and delay
originate in symbolic dynamics. For shifts of finite type, the natural relations of
conjugacy and flow equivalence [PS75] are generated by matrix operations which,
when translated into the graph setting, correspond to the moves of in-splitting,
out-splitting, and delay. (See [LM95, Sections 2.3 and 2.4] for more details.) For
directed graphs, the analogs (S) of sink deletion and (R) of reduction were first
isolated by Sørensen [Sø13], drawing on the very general framework given in [CG06]
for modifying a directed graph without changing its Morita equivalence class. The
main result of [Sø13, Theorem 4.3] establishes that, for directed graphs E , F with
finitely many vertices such that C∗(E) and C∗(F) are simple, any stable isomorphism
C∗(E) ⊗K ≅ C∗(F) ⊗K must arise from a finite sequence of in-splittings, out-
splittings, Cuntz splice, the moves (S) and (R), and their inverses. As mentioned
above, subsequent work by Eilers et al. [ERRS18, ERRS16] has extended this geometric
analysis of the equivalence relation (1.1) to cover many classes of nonsimple graph
C∗-algebras.

We now outline the structure of this paper. The picture of higher-rank graphs as
arising from edge-colored directed graphs underlies our work in this paper, and so
we take some pains in Section 2 to assure the reader of the equivalence between
our approach to k-graphs and the more common category-theoretic perspective.
To obtain our Morita equivalence results, we rely heavily on a generalization of
the gauge-invariant uniqueness theorem for k-graphs [KP00], and on Allen’s results
[All08] about corners in higher-rank graphs, so we also review these notions in
Section 2.

Each of Sections 3–6 is dedicated to one of our fourMorita equivalence-preserving
moves on k-graphs. For eachmove, we first ensure that its output is a k-graph, and then
we show that the resulting k-graphC∗-algebra isMorita equivalent to our originalC∗-
algebra. We begin with in-splitting in Section 3. We first describe conditions under
which we can “in-split” a k-graph at a vertex v—that is, create two copies of v and
divide the edges with range v among the two copies—in such a way that the resulting
object is still a k-graph (Theorem 3.8). Theorem 3.9 then establishes that in-splitting
produces a C∗-algebra which is isomorphic to our original one, not merely Morita
equivalent. Section 4 studies the move of “delaying” an edge by breaking it into two
edges. In order to delay an edge in a k-graph, the k-graph’s factorization rule also forces
us to delay many of the edges of the same color. In Theorem 4.1, we show that this
move results in a k-graph. Moreover, its C∗-algebra is Morita equivalent to that of our
original k-graph (Theorem 4.2). In Section 5, we show inTheorem 5.4 that if a vertex
is a sink—that is, it emits no edges of a given color—then after deleting the sink and all
incident edges, we are still left with a k-graph.The fact that this move does not change
the Morita equivalence class of the k-graph C∗-algebra is established in Theorem
5.5. Finally, we turn to “reduction” in Section 6, where we identify when contraction
(reduction) of a “complete edge” (see Definition 6.0.1) in a k-graph produces a k-
graph (Theorem 6.3). In this case, the C∗-algebra of the resulting k-graph is always
Morita equivalent to the original k-graphC∗-algebra, byTheorem6.4.Throughout the
paper, we include examples showcasing the moves and indicating the necessity of our
hypotheses.
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2 Notation

Fix an integer k ≥ 1. As our main objects of study in this paper are k-graphs (higher-
rank graphs), we begin by recalling their definition. First, however, we specify that
throughout this paper we regard 0 as an element of N, and we view N

k as a category,
with composition of morphisms given by addition. Consequently, Nk has one object
(namely (0, . . . , 0)). For n = ∑k

i=1 n i e i ∈ Nk , we write ∣n∣ = ∑i n i .

Definition 2.0.1 [KP00, Definition 1.1] Let Λ be a countable category and d ∶ Λ → N
k

a functor. If (Λ, d) satisfies the factorization rule—that is, for every morphism λ ∈ Λ
and n,m ∈ Nk such that d(λ) = n +m, there exist unique μ, ν ∈ Λ such that d(μ) = m,
d(ν) = n, and λ = μν—then (Λ, d) is a k-graph.

We write Λ1 = {λ ∈ Λ ∶ ∣d(λ)∣ = 1} and Λ0 = d−1(0). If e ∈ Λ1, we say e is an edge
of Λ, and Λ0 is the set of vertices of Λ.

Observe that the factorization rule guarantees, for each λ ∈ Λ, the existence of
unique v ,w ∈ Λ0 such that vλw = λ; we will write r(λ) for v and s(λ) for w. Similarly,
we write

vΛ = {λ ∈ Λ ∶ r(λ) = v} and vΛn = {λ ∈ vΛ ∶ d(λ) = n}

for any n ∈ Nk . The sets Λw , Λnw are defined analogously.

Our reason for the convention that the source of a morphism in Λ lies on its right,
and its range lies to the left, arises from the Cuntz–Krieger relations used to define
k-graph C∗-algebras; see Definition 2.1.1 and Remark 2.2 below.

We now briefly describe how to model k-graphs using k-colored graphs as we use
this framework extensively for our constructions. Following [HRSW13], we let G =
(G0 ,G1 , r, s) denote a directed graph withG0 its set of vertices andG1 its set of edges;
r, s ∶ G1 → G0 are the range and source map, respectively. For an integer n ≥ 2, let Gn

denote the paths of length n inG. By a slight abuse of notation, if δ ∈ Gn , we will write
∣δ∣ ∶= n.

We now color the graph G by assigning to each edge one of the standard basis
vectors, e i , of Nk and let Ge i be the set of edges assigned to e i , so that G1 = ⋃k

i=1 Ge i .
The path category,G∗ = ⋃n∈NGn ,may nowbe equippedwith a degree functor d ∶ G∗ →
N

k , given on the vertices by d(v) = 0 for all v ∈ G0, and on the edges by d( f ) = e i
if f was assigned the basis vector e i . On longer paths, d is extended to be additive:
d( fn⋯ f1) = ∑n

i=1 d( f i). (Our reason for this enumeration of the edges in a path is
that in a k-graph, by Definition 2.0.1, we have s( fi) = r( f i−1)whenever f i f i−1 is a well-
defined product of morphisms in a k-graph. Consistency with this definition requires
that the right-most edge in a path, f1, denotes the path’s initial edge and the left-most
edge, fn , its final edge.) As usual, the range and source maps r, s ∶ G1 → G0 extend to
well-defined maps from G∗ to G0, which we continue to denote by r and s.

Theorem 4.5 of [HRSW13] establishes that if G is a k-colored graph as described
above, then Λ = G∗/ ∼ is a k-graph for any (r, s, d)-preserving equivalence relation ∼
on G∗ which also satisfies
(KG0) If λ ∈ G∗ is a path such that λ = λ2λ1, then [λ] = [p2p1] whenever p1 ∈ [λ1]

and p2 ∈ [λ2].
(KG1) If f , g ∈ G1 are edges, then f ∼ g ⇔ f = g.
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Figure 1: (KG3).

(KG2) Completeness: For every μ = μ2μ1 ∈ G2 such that d(μ1) = e i , d(μ2) = e j ,
there exists a unique ν = ν2ν1 ∈ G2 such that d(ν1) = e j , d(ν2) = e i and μ ∼ ν.

(KG3) Associativity: For any e i–e j–e� path abc ∈ G3 with i , j, � all distinct, the e�–
e j–e i paths h jg , nrq constructed via the following two routes are equal.

Route 1: Let ab ∼ de, so abc ∼ dec.
Let ec ∼ f g, so abc ∼ d f g.
Let d f ∼ h j, so abc ∼ h jg.

Route 2: Let bc ∼ km, so abc ∼ akm.
Let ak ∼ np, so abc ∼ npm.
Let pm ∼ rq, so abc ∼ nrq.

In fact, [HRSW13, Theorem 4.4] shows that every k-graph arises in this way. That
is, given a k-graph Λ, we obtain a directed graph G by setting G0 = Λ0 ,G1 = Λ1. (This
justifies our decision to call Λ0 the vertices of Λ and Λ1 the edges of Λ.) Transferring
the degree map d ∶ Λ → N

k toGmakesG a k-colored graph; we obtain an equivalence
relation on G∗ by setting λ ∼ μ if the paths λ, μ represent the same morphism in Λ.
The factorization rule in Λ then implies that ∼ satisfies (KG0)–(KG3).

In this paper, we fully exploit the equivalence between k-colored directed graphs
with equivalence relations on the one hand, and k-graphs on the other hand. Our
general strategy will be to define a moveM on a k-graph Λ in terms of its impact on
the 1-skeleton G and the equivalence relation ∼ which give rise to Λ. This produces
a new colored graph GM with a new equivalence relation ∼M , which we then show
satisfies (KG0)–(KG3), so that the quotient GM/ ∼M is a new k-graph ΛM .

For λ ∈ G∗, we notate its equivalence class under ∼ as [λ] ∈ Λ. For n ∈ Nk , we write

Λn = {[λ] ∈ Λ ∶ d([λ]) = n}.

For our purposes in this paper, we will also need an alternative characterization of
the equivalence relations on G∗ which give rise to k-graphs. We begin by observing
that an inductive application of the factorization rule of Definition 2.0.1 reveals that
if Λ is a k-graph, then for any morphism λ ∈ Λ and ordered n-tuple (m1 , . . . ,mn) of
elements of Nk such that ∣m i ∣ = 1 for all i and m1 +⋯+mn = d(λ), there is a unique
set of edges λ1 , . . . , λn ∈ Λ1 such that λ = λn⋯λ1 where d(λ i) = m i .
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Definition 2.0.2 For a finite path λ in an edge-colored directed graphG, let λ i denote
the ith edge of λ (counting from the source of λ). The color order of λ is the ∣λ∣-tuple
(d(λ1), d(λ2), . . . , d(λ∣λ∣)).

This leads us to the following condition on an equivalence relation ∼ on G∗:
(KG4) For each λ ∈ G∗ and each permutation of the color order of λ, there is a unique

path μ ∈ [λ] with the permuted color order.

Theorem 2.1 Let G be an edge-colored directed graph and suppose ∼ is an (r, s, d)-
preserving equivalence relation on G∗ satisfying (KG0). The relation ∼ satisfies
(KG1), (KG2), and (KG3) (and hence G∗/ ∼ is a k-graph) if and only if ∼ satisfies
(KG4).

Proof First, assume (KG0) and (KG4) hold for ∼ and consider an e i–e j–e� path
λ ∈ G3. Convert λ into two e�–e j–e i paths via the routes described in (KG3) and
label them μ and ν. Because μ ∼ λ and ν ∼ λ by construction, the fact that ∼ is an
equivalence relation implies that μ ∼ ν. Condition (KG4) and the fact that μ, ν have
the same color order now give μ = ν.Thus, (KG3) holds. Similarly, if λ ∈ G2, then there
exists a unique μ ∈ [λ] of each permuted color order. Thus, (KG2) holds. Finally, for
e , f ∈ G1, we have e ∼ f �⇒ d(e) = d( f ) �⇒ e = f , because each color order has
a unique associated path. Also, e = f �⇒ e ∼ f . Thus, (KG1) holds.

Now, assume∼ satisfies (KG0), (KG1), (KG2), and (KG3).We know from [HRSW13,
Theorem 4.5] that Λ ∶= G∗/ ∼ is a k-graph. Thus, fix δ ∈ G∗, and choose a sequence
of basis vectors (m j)∣δ∣j=1 , with m j ∈ {e i}ki=1 for all j, such that d(δ) = ∑∣δ∣j=1 m j . An
inductive application of the factorization rule of Definition 2.0.1 implies the existence
of a unique path γ = γ∣δ∣⋯γ2γ1 ∈ [δ] where d(γ j) = m j for every j. Because our
ordering of the basis vectors (m1 , . . . ,m∣d(λ)∣) was arbitrary, it follows that ∼ satisfies
(KG4). ∎

Notation 2.1.1 A k-graphΛ is row-finite if for all v ∈ Λ0 and all 1 ≤ i ≤ k, we have ∣{λ ∈
Λe i ∶ r(λ) = v}∣ < ∞.We say v ∈ Λ0 is a source if there is i such that r−1(v) ∩ Λe i = ∅.

In this paper, we will focus exclusively on row-finite source-free k-graphs.

Definition 2.1.1 [KP00, Definition 1.5], [KPS12, Definition 7.4] Let Λ be a row-
finite, source-free k-graph Λ. A Cuntz–Krieger Λ-family is a collection of projec-
tions {Pv ∶ v ∈ Λ0} and partial isometries {Tf ∶ f ∈ Λ1} satisfying the Cuntz–Krieger
relations∶
(CK1) The projections Pv are mutually orthogonal.
(CK2) If a, b, f , g ∈ Λ1 satisfy a f ∼ gb, then TaTf = TgTb .
(CK3) For any f ∈ Λ1, we have T∗f Tf = Ps( f ).
(CK4) For any v ∈ Λ0 and any 1 ≤ i ≤ k, we have Pv = ∑

f ∶r( f )=v ,d( f )=e i
Tf T∗f .

There is a universal C∗-algebra for these generators and relations, which is denoted
C∗(Λ) = C∗({pv , t f }). For any Cuntz–Krieger Λ-family {Pv , Tf }, we consequently
have a surjective∗-homomorphism π ∶ C∗(Λ) → C∗({Pv , Te}), such that π(pv) = Pv
and π(t f ) = Tf for all v ∈ Λ0 , f ∈ Λ1.
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Remark 2.2 Observe that if {Tf , Pv} is a Cuntz–Krieger Λ-family, then (CK3)
implies that Tf Ps( f ) = Tf . Similarly, by (CK4) and the fact that a sum of projections
is a projection iff those projections are orthogonal, Pr( f )Tf = Tf . Thus, viewing edges
in Λ1 as pointing from right to left ensure the compatibility of concatenation of edges
in Λ with the multiplication in C∗(Λ).

If Λ = G∗/ ∼, and μ, ν ∈ G∗ represent the same equivalence class in Λ, then condi-
tion (CK2), together with conditions (KG0)–(KG2), guarantees that

tμn⋯tμ1 = tνn⋯tν2 tν1 .

Thus, for [μ] ∈ Λ,we define tμ ∶= tμn⋯tμ1 . [KP00, Lemma 3.1] then implies that {tμ t∗ν ∶
[μ], [ν] ∈ Λ} densely spans C∗(Λ).
Remark 2.3 We have opted to describe C∗(Λ) purely in terms of the partial isome-
tries associated with the vertices and edges, rather than themore common description
using all of the partial isometries {tλ ∶ λ ∈ Λ}, because all of our “moves” on k-graphs
occur at the level of the edges.

A crucial ingredient in our proofs that all of our moves preserve the Morita
equivalence class of C∗(Λ) is the gauge-invariant uniqueness theorem. To state this
theorem, observe first that the universality of C∗(Λ) implies the existence of a
canonical action α of Tk on C∗(Λ) which satisfies

αz(te) = zd(e)te and αz(pv) = pv

for all z ∈ Tk , e ∈ Λ1, and v ∈ Λ0.
Theorem 2.4 [KP00, Theorem 3.4] Fix a row-finite source-free k-graph Λ and a ∗-
homomorphism π ∶ C∗(Λ) → B. If B admits an action β ofTk such that π ○ αz = βz ○ π
for all z ∈ Tk , and for all v ∈ Λ0, we have π(pv) /= 0, then π is injective.

Many of the actions β that will appear in our applications of the gauge-invariant
uniqueness theorem take the form described in the following lemma. The proof is
a standard argument, using the universal property of C∗(Λ) to establish that βz is
an automorphism for all z, and using an ε/3 argument to show that β is strongly
continuous, so we omit the details.
Lemma 2.5 Let (Λ, d) be a row-finite source-free k-graph. Given a functor R ∶ Λ →
Z

k , the function β ∶ Tk → Aut(C∗(Λ)) which satisfies

βz(tμ t∗ν ) = zR(μ)−R(ν)tμ t∗ν
for all μ, ν ∈ Λ and z ∈ Tk , is an action of Tk on C∗(Λ).

In particular, we can apply the above lemmawhenever we have a function R ∶ Λ1 →
Z

k such that if we extend R to a function on Gn by the formula

R(λn⋯λ1) ∶= R(λn) +⋯ + R(λ1),
R becomes a well-defined function on Λ.

In addition to Theorem 2.4 and Lemma 2.5, our proofs that delay and reduction
preserve Morita equivalence will rely on Allen’s description [All08] of corners in k-
graph C∗-algebras. To state Allen’s result, we need the following definition.
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Definition 2.5.1 Let (Λ, d) be a row-finite k-graph.The saturation Σ(X) of a set X ⊆
Λ0 of vertices is the smallest set S ⊆ Λ0 which contains X and satisfies
(1) (Heredity) If v ∈ S and r(λ) = v, then s(λ) ∈ S;
(2) (Saturation) If s(vΛn) ⊆ S for some n ∈ Nk , then v ∈ S.

The following theorem results from combining Remark 3.2(2), Corollary 3.7, and
Proposition 4.2 from [All08].

Theorem 2.6 [All08] Let (Λ, d) be a k-graph and X ⊆ Λ0. Define

PX = ∑
v∈X

pv ∈ M(C∗(Λ)).

If Σ(X) = Λ0, then PXC∗(Λ)PX is Morita equivalent to C∗(Λ).

3 In-splitting

Themove of in-splitting a k-graph at a vertex vwhichwe describe in this section should
be viewed as the analog of the out-splitting for directed graphs which was introduced
by Bates and Pask in [BP04]. This is because the Cuntz–Krieger conditions used by
Bates and Pask to describe the C∗-algebra of a directed graph differ from the standard
Cuntz–Krieger conditions for k-graphs. In the former, the source projection t∗e te of
each partial isometry te , for e ∈ Λ1 , is required to equal pr(e), whereas our Definition
2.1.1 requires t∗e te = ps(e) .

The following definition indicates the care that must be taken in in-splitting for
higher-rank graphs. The pairing condition of Definition 3.0.1 is necessary even for 2-
graphs (cf. Examples 3.2 below), but is vacuous for directed graphs. Although in- and
out-splitting for directed graphs (cf. [BP04, Sø13]) allow one to “split” a vertex into
any finite number of new vertices, the delicacy of the pairing condition has led us to
“split” a vertex into only two new vertices.

Definition 3.0.1 Let (Λ, d) be a source-free k-graph with 1-skeleton
G = (Λ0 , Λ1 , r, s) and path category G∗. Fix v ∈ Λ0. Partition r−1(v) ∩ Λ1 into
two nonempty sets E1 and E2 satisfying the pairing condition: if a, f ∈ r−1(v) ∩ Λ1

and there exist edges g , b ∈ Λ1 such that ag ∼ f b, then f and a are contained in the
same set.

We will use the partition E1 ∪ E2 of r−1(v) ∩ Λ1 when we in-split Λ at v in
Definition 3.3.1 below. First, however, we pause to examine some consequences of the
pairing condition.

Remark 3.1 If a /= f are edges of the same color, then the relation ∼ underlying the k-
graph Λ will never satisfy ag ∼ f b. Thus, the pairing condition places no restrictions
on edges of the same color. It follows that our definition of in-splitting (Definition 3.3.1
below) is consistent with the definition of in-splitting [BP04, Section 5] for directed
graphs.

However, for k ≥ 2, the pairing condition means that not all k-graphs can be in-
split at all vertices. Satisfying the pairing condition requires that if f b ∼ ag, then f , a
are in the same set.This may force one of the sets Ei to be empty, which is not allowed
under Definition 3.0.1.
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Examples 3.2
(1) The property of having a valid partition E1 ∪ E2 of r−1(v) ∩ Λ1 at a given vertex v

depends not only on the 1-skeleton G of Λ, but also on the equivalence relation ∼
giving Λ = G∗/ ∼. For example, let Λ be a 2-graph with one vertex, Λe1 = {a, b}
and Λe2 = {e , f }.
(a) If we define ae ∼ ea, a f ∼ f a, be ∼ eb, and b f ∼ f b, repeatedly applying the

pairing condition gives E1 = {a, b, e , f } and so no valid partition is possible.
Thus, Λ cannot be in-split.

(b) On the other hand, if we set ae ∼ ea, a f ∼ eb, be ∼ f a, and b f ∼ f b, we can
take E1 = {a, e} and E2 = {b, f }. Thus, in this case, Λ can be in-split.

(2) It may be possible to find two different valid partitions at a given vertex. Let
Γ be a 2-graph with one vertex, Γe1 = {a, b, c, d} and Γe2 = {e , f , g , h}, and the
equivalence relation

ae ∼ ea, a f ∼ eb, ag ∼ ec, ah ∼ ed , be ∼ f a, b f ∼ f b, bg ∼ f c, bh ∼ f d ,
ce ∼ ga, c f ∼ gb, cg ∼ gc, ch ∼ gd , de ∼ hd , d f ∼ hc, dg ∼ hb, dh ∼ ha.

Then, E1 = {a, c, e , g}, E2 = {b, f , d , h} and E1 = {a, e}, E2 = {b, c, d , f , g , h}
are two partitions satisfying the pairing condition.

Lemma 3.3 For j ∈ {1, 2}, E j has an edge of every color.

Proof Note that there exists e ∈ E j and s(e) is not a source. Thus, for 1 ≤ i ≤ k,
there exists f ∈ r−1(s(e)) ∩ Λe i , and hence there exists a unique λ = λ1λ2 ∈ G2 such
that d(λ2) = d(e), d(λ1) = e i , and λ ∼ e f . Therefore, by the definition of E j , we have
λ1 ∈ E j . ∎

Definition 3.3.1 Let (Λ, d) be a source-free k-graph. Fix v ∈ Λ0 and a partition
E1 ∪ E2 of r−1(v) ∩ Λ1 satisfying Definition 3.0.1. We define the associated directed
k-colored graph GI = (Λ0

I , Λ1
I , rI , sI) with degree map dI by

Λ0
I = (Λ0/{v}) ∪ {v1 , v2} Λ1

I = (Λ1/s−1(v)) ∪ { f 1 , f 2 ∣ f ∈ Λ1 , s( f ) = v}, with
dI(g) = d(g) for g ∈ Λ1/s−1(v) and dI( f i) = d( f ).

The range and source maps in GI are defined as follows:

For f ∈ Λ1 such that s( f ) ≠ v , sI( f ) = s( f ),
for f ∈ Λ1 such that r( f ) ≠ v , rI( f ) = r( f ) and rI( f i) = r( f ),
for f ∈ Λ1 such that s( f ) = v , sI( f i) = v i for i = 1, 2,
for f ∈ Λ1 such that r( f ) = v and f ∈ Ei , rI( f ) = v i .

Examples 3.4
(1) The graph G shown in Figure 2 admits a unique equivalence relation ∼ such that

G∗/ ∼ is a 2-graph Λ, because there is always at most one red–blue path (and the
same number of blue–red paths) between any two vertices. Wemay in-split at the
vertex v with E1 = {a, e} and E2 = {b, f }. We duplicate x ∈ s−1(v) to x1 , x2 with
sources v1 and v2, respectively, and rI(x i) = r(x) for each i.
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G

v

p

a q
e

x
f

b

GI

v1

v2

p

a

qe
x1

f
x2

b

Figure 2: First example of in-splitting.

G

ve a

f

c

gb

GI

v1 v2e a

f

c

g1

b1 g2b2

Figure 3: In-splitting at a vertex v which has loops.

(2) We now give an example of an in-splitting where the vertex at which the splitting
occurs has a loop (Figure 3). The graph G in Figure 3 gives rise to multiple 2-
graphs; we fix the 2-graph structure on G given by the equivalence relation

ae ∼ ea, ce ∼ f a, gc ∼ b f , bg ∼ gb.

Thus, the sets E1 = {c, f },E2 = {b, g} satisfy the pairing condition, and we can
in-split at v (Figure 3).

Remark 3.5 While the vertex v at which we in-split the graph G from Figure 2 is
a sink, and hence could also be handled by the methods of Section 5 below, one
could easily modify Λ to be sink-free (at the cost of a more messy 1-skeleton diagram)
without changing the essential structure of the in-splitting at v.

In order to describe the factorization on GI which will make it a k-graph, we first
introduce some notation.

Definition 3.5.1 Define a function par ∶ G∗I → G∗ by

par(w) = w for all w ∈ Λ0/{v} and par(v i) = v for i = 1, 2,
par( f i) = f , for f i ∈ { f 1 , f 2∣ f ∈ Λ1 , sI( f ) = v},
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par( f ) = f , for f ∈ Λ1
I / { f 1 , f 2∣ f ∈ Λ1 , sI( f ) = v},

par(λ) = par(λ1)⋯par(λn), for λ = λ1⋯λn ∈ G∗I .

The effect of the function par is to remove the superscript on any edge (or path) of
GI , returning its “parent” in G (or G∗).

Definition 3.5.2 We define an equivalence relation on G∗I by λ ∼I μ if and only if
par(λ) ∼ par(μ), rI(λ) = rI(μ), and sI(λ) = sI(μ). Define ΛI ∶= G∗I / ∼I ; we say that
ΛI is the result of in-splitting Λ at v.

Examples 3.6
(1) Consider again the directed colored graph of Example 3.4(1). Observe that

x 1a ∼I qp in GI because both paths have the same range and source in GI and
[par(x 1a)] = [xa] = [qp] = [par(qp)] in Λ = G∗/ ∼.

(2) In the directed colored graph of Example 3.4(2), we have b2g1 ∼I g2b1, as
both paths have the same source and range and [par(b2g1)] = [bg] = [gb] =
[par(g2b1)] in Λ. Observe that although G admitted multiple factorizations, GI
admits only this one.

Remark 3.7
(1) For any λ, μ ∈ G∗I , if sI(λ) = sI(μ) and par(λ) = par(μ), we have λ = μ. To see

this, first observe that by definition an edge e ∈ Λ1 satisfies e = par(μ) for at most
two edges μ ∈ Λ1

I . Suppose that par(λ) = par(μ) = e1⋯en and sI(λ) = sI(μ). Let
jbe the largest index so that s(e j) = v.Thedefinition of par implies that par(λ�) =
par(μ�) = e� for all � > j. If j = n, then we may assume without loss of generality
that sI(λn) = sI(μn) = v1, and as there is only one edgewith a specified parent and
source, μn = λn . If j /= n and λ j /= μ j , then sI(λ j) /= sI(μ j), which contradicts the
fact that both λ je j+1 and μ je j+1 are well-defined paths in G∗I . In other words, our
hypotheses imply that λ� = μ� for all � ≥ j.We now repeat this analysis at the next-
smallest index i < j for which s(e i) = v, observing that e� = λ� = μ� for all � > i. If
λ i /= μ i , then sI(λ i) /= sI(μ i), and therefore at most one of λ iλ i+1 , μ iλ i+1 is well-
defined, contradiction. Continuing inductively, we conclude that λ = μ whenever
par(λ) = par(μ) and sI(λ) = sI(μ).

(2) Similarly, for any path λ ∈ G∗ , we have λ = par(μ) for at least one path μ ∈ G∗I .

Theorem 3.8 If (Λ, d) is a source-free k-graph, then the result (ΛI , dI) of in-splitting
Λ at a vertex v is also a source-free k-graph.

Proof Let (Λ, d) be a source-free k-graph and let (ΛI , dI) be produced by in-
splitting at some v ∈ Λ0. First note that ΛI satisfies (KG0) by our definition of par
and the fact that Λ has the factorization property. Lemma 3.3 and our hypothesis
that Λ be source-free guarantee that all vertices in Λ0

I receive edges of all colors,
so ΛI is source-free. Consider some path λ ∈ G∗I with color order (m1 , . . . ,mn).
Note that par(λ) also has color order (m1 , . . . ,mn), and because Λ is a k-graph, for
any permutation (c1 , . . . , cn) of (m1 , . . . ,mn), there exists a unique μ′ ∈ Λ that has
color order (c1 , . . . , cn) and μ′ ∈ [par(λ)]. By Remark 3.7, there exists a unique path
μ ∈ ΛI such that par(μ) = μ′ and sI(μ) = sI(λ). By construction, μ has color order
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(c1 , . . . , cn) and μ ∈ [λ]I . Thus, [λ]I contains a unique path for each permutation of
the color order of λ, and so (KG4) is satisfied. Therefore, by Theorem 2.1, ΛI is a k-
graph. ∎

Theorem 3.9 Let (Λ, d) be a row-finite, source-free k-graph, and let (ΛI , dI) be the
in-split graph of Λ at the vertex v for the partition E1 ∪ E2 of r−1(v) ∩ Λ1. Then, there is
a gauge-action-preserving isomorphism π ∶ C∗(Λ) → C∗(ΛI).

Proof Let {sλ ∶ λ ∈ Λ0
I ∪ Λ1

I} be the canonical Cuntz–Krieger ΛI-family which gen-
erates C∗(ΛI). For λ ∈ Λ0 ∪ Λ1, define

Tλ = ∑
par(e)=λ

se .

We first prove that {Tλ ∶ λ ∈ Λ0 ∪ Λ1} is a Cuntz–Krieger Λ-family in C∗(ΛI).
Note that the set {Tλ ∶ λ ∈ Λ0} is a collection of nonzero mutually orthogonal projec-
tions because each Tλ is a sum of projections satisfying the same properties.Therefore,
{Tλ ∶ λ ∈ Λ0} satisfies (CK1).

Note also that for λ ∈ Λ1 each Tλ is a partial isometry because the ranges of the
partial isometries se in the sum are mutually orthogonal. Now, choose ab, cd ∈ G2

such that [ab] = [cd]. As in Remark 3.7, observe that the sum defining Ta contains
at most two elements, and the only way it will contain two elements is if s(a) = v. In
that case, if ab ∈ G2 , then either b ∈ E1 or b ∈ E2, so if f ∈ G1

I satisfies par( f ) = b, then
rI( f ) ∈ {v1 , v2}, and so there is only one path e f ∈ G2

I whose parent is ab. Making the
same argument for the paths in G2

I with parent cd and using the factorization rule in
ΛI , we obtain

TaTb = ∑
par(e)=a

se ∑
par( f )=b

s f = ∑
par(e f )=ab

se s f = ∑
par(gh)=cd

sgsh = TcTd .

Thus, {Tλ ∶ λ ∈ Λ0 ∪ Λ1} satisfies (CK2). Now, take f ∈ Λ1. If s( f ) ≠ v, we have

T∗f Tf = s∗f s f = ss( f ) = Ts( f ) .

If s( f ) = v, we have {g ∶ par(g) = f } = { f 1 , f 2}, so the fact that v1 = sI( f 1) /=
sI( f 2) = v2 implies that

T∗f Tf =(s f 1 + s f 2)∗(s f 1 + s f 2) = s∗f 1 s f 1 + s∗f 2 s f 2 = sv 1 + sv2 = Tv .

Thus, {Tλ ∶ λ ∈ Λ0 ∪ Λ1} satisfies (CK3). Finally, fix a generator e i ∈ Nk and fixw ∈ Λ0.
We first observe that if two distinct edges in Λ1

I have the same parent, they must have
different sources (namely v1 and v2) and orthogonal range projections, and therefore,
for λ ∈ Λ1,

⎛
⎝ ∑
par(e)=λ

se
⎞
⎠
⎛
⎝ ∑
par(e)=λ

s∗e
⎞
⎠
= ∑

par(e)=λ
se s∗e .

It follows that
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∑
d(e)=e i
r(e)=w

TeT∗e = ∑
d(e)=e i
r(e)=w

⎛
⎝ ∑
par( f )=e

s f
⎞
⎠
⎛
⎝ ∑
par( f )=e

s∗f
⎞
⎠
= ∑

d(e)=e i
r(e)=w

∑
par( f )=e

s f s∗f

= ∑
d( f )=e i

r(par( f ))=w

s f s∗f = ∑
par(x)=w

sx = Tw .

Therefore, {Tλ ∶ λ ∈ Λ0 ∪ Λ1} satisfies (CK4), and hence is a Cuntz–Krieger Λ-
family in C∗(ΛI). Thus, by the universal property of C∗(Λ), there exists a ∗-
homomorphism π ∶ C∗(Λ) → C∗(ΛI) such that π(tλ) = Tλ , where {tλ ∶ λ ∈ Λ0 ∪ Λ1}
are the canonical generators of C∗(Λ). We claim that π is an isomorphism.

Fix w ∈ Λ0
I and note that if par(w) ≠ v then sw = Tw ∈ π(C∗(Λ)). Conversely, if

par(w) = v, then w = v j for some j ∈ {1, 2}. Thus, for a fixed generator e i ∈ Nk , we
have

∑
r(e)=v
d(e)=e i
e∈E j

TeT∗e = ∑
r(e)=v
d(e)=e i
e∈E j

∑
par(e′)=e

se′ s∗e′ = ∑
rI(e′)=v j

dI(e′)=e i

se′ s∗e′ = sv j ∈ π(C∗(Λ)).

Thus, all of the vertex projections of C∗(ΛI) are in Im(π). Because s f i = Tf sv i for i =
1, 2, and s f = Tf for f ∈ Λ1

I/Λ1, it follows that π(C∗(Λ)) contains all of the generators
of C∗(ΛI). Hence, π is surjective.

Consider the canonical gauge actions α of Tk on C∗(ΛI) and β of Tk on C∗(Λ).
Observe that for all z ∈ Tk , the fact that par is degree-preserving implies that

αz(Tλ) = ∑
par(μ)=λ

αz(sμ) = zd(λ) ∑
par(μ)=λ

sμ = zd(λ)Tλ .

Therefore,

π(βz(tλ)) = π(zd(λ)tλ) = zd(λ)Tλ = αz(Tλ) = αz(π(tλ)),

so π intertwines the canonical gauge actions. As π(tv) = Tv is nonzero for all v ∈ Λ0,
the gauge-invariant uniqueness theorem now implies that π is injective. Thus, π is a
gauge-action-preserving ∗-isomorphism, as claimed. ∎

4 Delay

Our goal in this section is to generalize to k-graphs the operation of delaying a graph
at an edge—that is, breaking an edge in two by adding a vertex in the “middle”
of the edge. The importance of this construction can be traced back to Parry and
Sullivan’s analysis [PS75] of flow equivalence for shifts of finite type; Drinen realized
[Dri99] that in the setting of directed graphs, these edge delays correspond to the
expansion matrices used by Parry and Sullivan to complete the characterization of
flow equivalence for shifts of finite type. Bates and Pask later generalized the “delay”
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operation in [BP04] and showed that the C∗-algebra of a delayed graph is Morita
equivalent to the C∗-algebra of the original graph.

In the setting of higher-rank graphs, the “delay” operation becomes more intricate.
So that the resulting object satisfies the factorization rule, after delaying an edge and
adding a new vertex, new edges of other colors (incident with the new vertex) must
be added. This procedure is described in Definition 4.0.1 below, and Theorem 4.1
establishes that the resulting object ΛD is indeed a k-graph. Theorem 4.2 then proves
that C∗(ΛD) is Morita equivalent to the C∗-algebra of the original k-graph Λ.

Definition 4.0.1 Let (Λ, d) be a k-graph and G = (Λ0 , Λ1 , r, s) its underlying
directed graph. Fix f ∈ Λ1; without loss of generality, assume d( f ) = e1. We first
recursively define the set Ee1 of all possible elements of Λe1 which will be affected
by delaying f, in that elements of Ee1 are opposite to f in some commuting square in
Λ. Namely, we set

A1 = { f } ∪ {g ∈ Λe1 ∶ ag ∼ f b or ga ∼ b f where a, b ∈ Λe i for 2 ≤ i ≤ k},
Am = {e ∈ Λe1 ∶ ag ∼ eb or ga ∼ be where a, b ∈ Λe i for 2 ≤ i ≤ k, g ∈ Am−1},

Ee1 =
∞

⋃
j=1

A j ⊆ Λe1 .

In the pictures below, the dashed edges would all lie in Ee1 .

● ● ● ●

● ● ● ●
f α β γ or

● ● ● ●

● ● ● ●
ξ η ζ f

Using Ee1 , we identify those commuting squares of degree (e1 + e i), i ≠ 1 in Λ
which contain an edge from Ee1 . These squares will form the set Ee i :

Ee i = {[ga] ∈ Λ ∶ g ∈ Ee1 , a ∈ Λe i}.

In the pictures above, if the solid black edges have degree e i , we have α, β, γ, ξ, η, ζ ∈
Ee i . By delaying f, these squares will be turned into rectangles.

To be precise, in the delayed graph, we will “delay” every edge in Ee1 , replacing it
with two edges:

● ● ● ●

● ● ● ●

● ● ● ●

f 1

f 2
or

● ● ● ●

● ● ● ●

● ● ● ●

f 1

f 2

Ee1
D = {g1 , g2 ∶ g ∈ Ee1}
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and add an edge for every square that has been turned into a rectangle.

● ● ● ●

● ● ● ●

● ● ● ●

f 1

f 2

eα eβ eγ or

● ● ● ●

● ● ● ●

● ● ● ●

f 1
eξ eη eζ

f2

Ee i
D = {eα ∶ α ∈ Ee i}.

Then, define the k-colored graph GD = (Λ0
D , Λ1

D , rD , sD) by

Λ0
D = Λ0 ∪ {vg}g∈Ee1 , Λe1

D = (Λe1/Ee1) ∪ Ee1
D , with

sD(g1) = s(g), sD(g2) = vg , rD(g1) = vg , rD(g2) = r(g);
Λe i

D = Λe i ∪ Ee i
D , with

sD(eα) = vg such that bg represents α and d(g) = e1 ,
rD(eα) = vh such that ha represents α and d(h) = e1 .

Inwords, to constructGD fromG, we add one vertex per delayed edge; each delayed
edge becomes two edges inGD ; andwe add one edge for each square that was stretched
into a rectangle by delaying the edges in Ee1 : If α ∈ Ee i , we set d(eα) = e i , and all other
edges inherit their degree from Λ.

Let ι ∶ GD → G be the partially defined inclusion map with domain (Λ0
D ∪

Λ1
D)/({⋃k

i=1 E
e i
D} ∪ {ve ∶ e ∈ Ee1}). Then, for edges g ∈ Λ1

D/⋃k
i=1 E

e i
D , we can define

sD(g) = s(ι(g)), rD(g) = r(ι(g)), dD(g) = d(ι(g)).

Now, let G∗D be the path category forGD and define the equivalence relation ∼D on
bicolor paths μ = μ2μ1 ∈ G2

D according to the following rules.

a

g h

b

a

g 1 h 1

e [bg ]

g 2 h 2

b

Figure 4: A commuting square in G and its “children” in GD , when h, g ∈ Ee1 .

Case 1: Assume μ1 , μ2 ∉ ⋃k
i=1 E

e i
D . Then, we set [μ]D = ι−1([ι(μ)]).

Case 2: Suppose μ j lies inEe1
D , so that μ j ∈ {g1 , g2} for some edge g ∈ Ee1 . If j = 1 and

μ1 = g2, then r(μ1) = s(μ2) = ι−1(r(g)) ∈ ι−1(Λ0), and the edges inGD with source in
ι−1(Λ0) and degree e i for i /= 1 are in ι−1(Λ1). Therefore, μ2 ∈ ι−1(Λe i ), and ι(μ2)g is
a bicolor path in G, so ι(μ2)g ∼ ha for edges h ∈ Ee1 , a ∈ Λe i . There is then an edge
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g β

α
∼ •

β

α
δ γ

Figure 5: The commuting squares of edges from⋃k
i=2E

e i
D .

e[μ2 g] ∈ Λ
e i
D with source s(μ1) = vg and range vh = s(h2); we define μ2μ1 = μ2g2 ∼D

h2e[μ2 g]. If j = 1 and μ1 = g1, the only edges in GD with source r(g1) = vg and degree
e i for i /= 1 are of the form e[bg] = e[ha] for some commuting square bg ∼ ha in Λ. In
this case, we will have h ∈ Ee1 , and r(h1) = vh = r(e[bg]), so we set e[bg]g1 ∼D h1a.

A similar argument shows that if j = 2, the path μ2μ1 will be of the form h1a or
h2e[ha], whose factorizations we have already described.

Case 3: Assume μ is of the form eβeα for α ∈ Ee i
D , and β ∈ Ee j

D with i ≠ j. Now,
sD(eβ) = rD(eα) = vg for some g ∈ Ee1 , and consequently α, β ∈ Λ are linked as shown
on the left-hand side of Figure 5. Because Λ is a k-graph, the 3-color path outlining
βα generates a 3-cube in Λ, which is depicted on the right-hand side of Figure 5. Let δ
and γ denote the faces of this cube which lie, respectively, opposite β and α. Because
g ∈ Ee1 , all of the vertical edges of this cube are inEe1 , and so δ ∈ Ee j , γ ∈ Ee i . Moreover,
the path eγeδ is composable in ΛD , and has the same source and range as eβeα . Set
eβeα ∼D eγeδ .

Observe that there are no two-color paths in G2
D of the form geα or eα g for

g ∈ ι−1(Λ1) and α ∈ Ee i , because rD(g), sD(g) ∈ ι−1(Λ0) but rD(eα), sD(eα) ∈ {ve ∶
e ∈ Ee1}.

Extend ∼D to be an equivalence relation on G∗D which satisfies (KG0) and (KG1);
observe that ∼D satisfies (KG2) by construction. Define ΛD = G∗D/ ∼D . We call ΛD the
graph of Λ delayed at the edge e.

Theorem 4.1 If Λ is a row-finite source-free k-graph, then ΛD is also a row-finite
source-free k-graph.

Proof Let (Λ, d) be a k-graph, and let (ΛD , dD) be the graph of Λ delayed at the
edge e ∈ Λe1 . Because ∼D satisfies (KG0), (KG1), and (KG2) by construction, it suffices
to show that ∼D satisfies (KG3). Let μ = μ3μ2μ1 ∈ G3

D be a tricolored path. Consider
the following cases.

Case 1: Assume μ j ∉
k
⋃
i=1

Ee i
D for all j ∈ {1, 2, 3}. Then, ι(μ) is a 3-colored path in Λ.

Because we defined [μ]D = ι−1([ι(μ)]), the fact that Λ satisfies (KG3)—hence, that
ι(μ) uniquely determines a 3-cube in Λ—implies that μ also gives rise to a well-
defined 3-cube in ΛD .

Case 2: Assume μ j ∈ Ee1
D for one j ∈ {1, 2, 3}. Then, μ has one of the forms of

tricolored paths on the right-hand side of Figure 6.This follows fromDefinition 4.0.1,
specifically the restrictions for when an edge in ι−1(Λ1) can precede or follow an edge
in Ee1

D , and when an edge in Ee i
D can precede or follow an edge in Ee1

D .
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Figure 6: A commuting cube in G and its “children” in GD , when e , f , g , h ∈ Ee1
D .

Figure 7: Factorization squares in Λ that will be delayed to produce μ.

For example, suppose μ2 = g2 for some g ∈ Ee1 . Then, sD(μ2) = rD(μ1) = vg , so
μ1 must be of the form eγ for some γ ∈ Ee i with γ = [gq]. Then, rD(μ2) = sD(μ3) =
ι−1(r(g)), and because d(μ3) /∈ {e1 , e i}, we must have μ3 ∈ ι−1(Λe j) for some j /= i.
But then, ι−1(μ3)gq ∈ G3 is a 3-color path, which defines a unique 3-cube in Λ (as
depicted on the left-hand side of Figure 6). It is now straightforward to check that the
two routes for factoring μ in ΛD (as in (KG3)) arise as “children” of this cube inGD , so
the fact that Λ is a k-graph implies that the two routes for factoring μ in ΛD lead to the
same result. A similar analysis of the other possibilities for having one edge μ j ∈ Ee1

D
reveals that whenever this occurs, the factorization of μ in ΛD satisfies (KG3).

We now observe that if a tricolored path without an edge fromEe1
D contains an edge

from⋃k
i=2 E

e i
D , it must consist entirely of edges in⋃k

i=2 E
e i
D . To see this, suppose that a

tricolored path contains eγ for a commuting square γ ∈ Λ, but that μ contains no edges
in Ee1

D . Because s(γ), r(γ) ∈ Λ0
D/ι−1(Λ0), the edge(s) preceding and following eγ must

be of the form eα for some α ∈ Ee i . Repeating the argument for eα if necessary shows
that μ consists entirely of edges in ⋃k

i=2 E
e i
D .

Thus, the only remaining case is the following case.

Case 3: Assume μ j ∈
k
⋃
i=2

Ee i
D for all j ∈ {1, 2, 3}, and without loss of generality,

assume μ = eα eβeγ is a blue–red–green path. Because of the definition of sD , rD for
edges of the form eλ in G1

D , μ ∈ G∗D arises from a sequence of commuting squares
α, β, γ in Λ which share edges in Ee1 . Figure 7 depicts (from left to right) the squares
γ, β, α ∈ Λ.The color in each square λ reflects the color of its horizontal edges, as these
determine the degree of the edge eλ ∈ G1

D .
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ν1 ν2 ν3

ν0

ν1

ν2 ν3

=

ν0

ν1 ν2
ν3

Figure 8: Associativity in ΛD via factorization squares in Λ.

Because Λ is a k-graph, the rectangle in Figure 7, which is reproduced in the top
line of Figure 8, determines a unique four-dimensional cube in Λ. Thus, as we follow
Route 1 of (KG3) and the instructions given in Case 3 of Definition 4.0.1 to factor

eα eβeγ = eα eηeκ = eδ eεeκ = eδ eϕeλ ,

the squares δϕλ—and indeed all of the intermediate squares—must lie on the four-
dimensional cube determined by αβγ. To be precise, δϕλ is the collection of green–
red–blue squares on the left-hand side of the bottom row of Figure 8. Similarly, when
we factor eα eβeγ via Route 2 of (KG3), we obtain the green–red–blue squares on the
right-hand side of the bottom row of Figure 8. Because these squares lie on the same
4-cube as δϕλ, and in the same position (compare the position of ν0 on both), they
must equal δϕλ. It follows that applying either Route 1 or Route 2 to eα eβeγ gives us
the same 3-colored path in GD .

Having confirmed that the factorization of an arbitrary tricolored path in GD
satisfies (KG3), we conclude that ΛD is a k-graph.
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It remains to check that ΛD is source-free and row-finite whenever Λ is. In
constructing ΛD , all newly created vertices vg have an edge g2 of color 1 emanating
from them. Moreover, because r(g) is not a source in Λ, there is an edge b i ∈ Λe i r(g)
for each i ≥ 2. Then, [b i g] ∈ Ee i and hence e[b i g] ∈ Λ

e i
Dvg for all i ≥ 2. In other words,

all of the new vertices vg emit at least one edge of each color.
Similarly, every vertex v ∈ ι−1(Λ0) emits an edge of each color, because the same is

true in Λ; if v emits an edge g ∈ Ee1 then sD(g1) = ι−1(s(g)) = v, and all other edges
emitted by ι(v) are in ι(Λ1

D) and hence also occur in ΛD .
Furthermore, the number of edges with range v in ΛD is the same as the number

of edges with range ι(v) ∈ Λ, if v /= vg . In this setting, an edge in vΛ1
D/ι−1(vΛ1

D) is
necessarily of the form g2 for some g ∈ vEe1 , so

∣r−1D (v)∣ = ∣vEe1 ∣ + ∣ι−1(vΛ1
D)∣ = ∣r−1(ι(v))∣.

If v = vg , then r−1D (v) is still finite as long as Λ is row-finite:

∣r−1D (vg)∣ = ∣{g1} ∪
k
⋃
i=2

vgEe i
D ∣ ≤ 1 + ∣{α ∈ Λ ∶ α = [gb] for some b ∈ Λ1}∣

= 1 + r−1(s(g)) < ∞.

We conclude that ΛD is a row-finite, source-free k-graph whenever Λ is. ∎

Theorem 4.2 Let (Λ, d) be a row-finite, source-free k-graph and let (ΛD , dD) be the
graph of Λ delayed at an edge f. Then, C∗(ΛD) is Morita equivalent to C∗(Λ).

Proof Let {tλ ∶ λ ∈ Λ1
D ∪ Λ0

D} be the canonical Cuntz–Krieger ΛD-family generat-
ing C∗(ΛD). Define

Sv = tv , for v ∈ Λ0 ,

Sh = {
tι−1(h) if h ∉ Ee1

th2 th1 if h ∈ Ee1 , for h ∈ Λ1 .

We claim that {Sλ ∶ λ ∈ Λ0 ∪ Λ1} is a Cuntz–Krieger Λ-family in C∗(ΛD). Note
that because {tv ∶ v ∈ Λ0

D} are mutually orthogonal projections, so are {Sv ∶ v ∈ Λ0}.
Therefore, {Sλ ∶ λ ∈ Λ0 ∪ Λ1} satisfies (CK1). Now, take arbitrary a, b, g , h ∈ Λ1 such
that ah ∼ gb. Assuming a, b, g , h ∉ Ee1 , Case 1 of Definition 4.0.1 implies that

SaSh = tι−1(a)tι−1(h) = tι−1(g)tι−1(b) = SgSb .

Conversely, suppose either a, b ∈ Ee1 , or g , h ∈ Ee1 . Without loss of generality, assume
g , h ∈ Ee1 . Then, α ∶= [ah] ∈ Ee i

D satisfies eαh1 ∼D g1b and ah2 ∼D g2eα . Hence,

SaSh = ta th2 th1 = tg2 teα th1 = tg2 tg1 tb = SgSb .

Therefore, {Sλ ∶ λ ∈ Λ0 ∪ Λ1} satisfies (CK2).
For (CK3), let h ∈ Λ1/Ee1 ; observe that Sh = th , and hence S∗hSh = t∗h th = tsD(h) =

Ss(h) . If h ∈ Ee1 , we similarly have S∗hSh = t∗h1 t∗h2 th2 th1 = tsD(h) = Ss(h) .Therefore, {Sλ ∶
λ ∈ Λ0 ∪ Λ1} satisfies (CK3).
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Finally, take an arbitrary v ∈ Λ0. Observe that if h ∈ Ee1 , then h1 is the only edge in
ΛD such that dD(h1) = e1 and rD(h1) = vh . Thus, tvh = th1 t∗h1 and consequently

∑
h∈r−1(v)∩Λe1

ShS∗h = ∑
h∈r−1(v)∩Λe1

h∉Ee1

tι−1(h)t∗ι−1(h) + ∑
h∈r−1(v)∩Λe1

h∈Ee1

th2 th1 t∗h1 t∗h2

= ∑
h∈r−1(v)∩Λe1

h∉Ee1

tι−1(h)t∗ι−1(h) + ∑
h∈r−1(v)∩Λe1

h∈Ee1

th2 t∗h2

= ∑
e∈r−1D (v)∩Λ

e1
D

te t∗e = tv = Sv .

Now, if 2 ≤ i ≤ k, the fact that v ∈ Λ0 means that ι−1(v)Λe i
D = ι−1(vΛe i ): there are no

edges of the form h j or eα with range v and degree e i . Consequently,

∑
h∈Λei

ShS∗h = ∑
h∈vΛei

th t∗h = tv = Sv .

Therefore, {Sλ ∶ λ ∈ Λ0 ∪ Λ1} satisfies (CK4), and hence is a Cuntz–Krieger Λ-family
in C∗(ΛD). By the universal property of C∗(Λ), there exists a homomorphism π ∶
C∗(Λ) → C∗(ΛD).

To see that that π is injective, we useTheorem 2.4 and Lemma 2.5. Define β ∶ Tk →
Aut(C∗(ΛD)) by setting, for all z ∈ Tk ,

βz(th) = zd(h)th , for h ≠ g1 ,
βz(th) = th , for h = g1 ,
βz(tv) = tv , for v ∈ Λ0 ,

and extending β to be linear and multiplicative. By applying Lemma 2.5, we see that
β is an action of Tk on C∗(ΛD). Let α be the canonical gauge action on C∗(Λ) =
C∗({sλ ∶ λ ∈ Λ0 ∪ Λ1}) and note that for e ∉ Ee1 , we have

π[αz(se)] = π[zd(e)se] = zd(e)Se = zd(e)te = βz(te) = βz(Te) = βz(π[se])

and for e ∈ Ee1 ,

π[αz(se)] = π[zd(e)se] = zd(e)Se = zd(e)te2 te 1 = βz(te2 te 1) = βz(Te) = βz(π[se]).

It is straightforward to check that α and β commute on the vertex projections.
Therefore, β commutes with the canonical gauge action, so Theorem 2.4 implies that
π is injective.

To see that Im(π) ≅ C∗(Λ) is Morita equivalent to C∗(ΛD), we invoke Theorem
2.6. Set X = ι−1(Λ0) ⊆ Λ0

D ; wewill show that the saturation Σ(X) ofX is Λ0
D . If g ∈ Ee1 ,

then r(g) ∈ ι(Λ0
D) and g2 ∈ ι−1(r(g))ΛD . Therefore, if H is hereditary and contains

X, we must have sD(g2) = vg ∈ H for all g ∈ Ee1 . Consequently, H = Λ0
D . Because Λ0

D
is evidently saturated, we have Σ(X) = Λ0

D as claimed. Theorem 2.6 therefore implies
that

PXC∗(ΛD)PX ≅ME C∗(ΛD).

https://doi.org/10.4153/S0008414X21000055 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000055


Moves on k-graphs preserving Morita equivalence 675

We will now complete the proof that C∗(Λ) ≅ME C∗(ΛD) by showing that

PXC∗(ΛD)PX = Im(π) ≅ C∗(Λ).

The generators {Sλ ∶ λ ∈ Λ0 ∪ Λ1} of Im(π) all satisfy PXShPX = Sh , so Im(π) ⊆
PXC∗(ΛD)PX . For the other inclusion, note that

PXC∗(ΛD)PX = span{tλ t∗μ ∶ λ, μ ∈ G∗D , sD(λ) = sD(μ), r(λ), r(μ) ∈ X}.

Given λ ∈ G∗D with rD(λ) ∈ X, create λ′ ∈ [λ]D by first replacing any path of the form
g2e[ah] in λ with its equivalent ah2, and then replacing paths of the form e[gb]h1 with
their equivalent g1b. Note that because r(λ) = rD(λ) ∈ X, we cannot have λ∣λ∣ ∈ Ee i

D
for any i /= 1. Because of this, λ′ will contain no edges in ⋃k

i=2 E
e i
D .

Thus, in λ′, any occurrence of an edge of the form g2 will be preceded by g1 unless
sD(λ′) /∈ X (in which case, if sD(λ′) = vg , λ′1 = g2). Consequently, if sD(λ′) ∈ X, then
tλ′
∣λ∣
⋯tλ′2 tλ′1 = tλ′ = tλ is a product of operators of the form Sh , S∗k for h, k ∈ Λ1.
Similarly, given μ ∈ G∗D with rD(μ) ∈ X and sD(μ) = sD(λ), create μ′ ∈ [μ]D by the

procedure above, so that μ′ contains no edges in ⋃k
i=2 E

e i
D and any edge in μ′ of the

form g2 (with the possible exception of μ′1) is preceded by g1. It follows that for any
μ, λ with rD(μ), rD(λ) ∈ X and sD(μ) = sD(λ) ∈ X, we have tλ t∗μ ∈ Im(π).

If tλ t∗μ ∈ PXC∗(ΛD)PX and sD(λ) /∈ X, write vg = sD(λ). As observed earlier, in
this case, we must have λ′1 = μ′1 = g2 . Moreover, because vg receives precisely one edge
of degree e1 (namely g1), we have pvg = tg1 t∗g1 . It follows that

tλ t∗μ = tλ′ t∗μ′ = tλ′ g1 t∗μ′ g1 .

Observe that neither λ′g1 nor μ′g1 contains any edge in⋃k
i=2 E

e i
D , and every occurrence

of an edge of the form h2 in either path is preceded by h1. Thus, in this case as well,
we can write tλ t∗μ as a product of operators of the form Sh , S∗k .

Because Im(π) is norm-closed, it follows that every element in span{tμ t∗λ ∶ λ, μ ∈
ΛD , r(λ) = r(μ) ∈ X} = PXC∗(ΛD)PX lies in Im(π). Thus,

C∗(Λ) ≅ Im(π) = PXC∗(ΛD)PX ≅ME C∗(ΛD),

as claimed. ∎

5 Sink deletion

In this section, we analyze the effect on C∗(Λ) of deleting a sink—a vertex which
emits no edges of a certain color—from Λ. This should be viewed as the analog of
move (S), removing a regular source, for directed graphs, as the conventions used to
define a Cuntz–Krieger family in [ERRS16, Sø13] differ from the standard conventions
for higher-rank graph C∗-algebras.We show inTheorem 5.4 that the result of deleting
a sink from a k-graph is still a k-graph, andTheorem 5.5 shows that the resulting C∗-
algebra is Morita equivalent to the original k-graph C∗-algebra.

Definition 5.0.1 Let Λ be a k-graph. We say v ∈ Λ0 is an e i sink if s−1(v) ∩ Λe i = ∅

for some 1 ≤ i ≤ k. We say v is a sink if it is an e i sink for some 1 ≤ i ≤ k.
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Definition 5.0.2 Let (Λ, d) be a k-graph. Let G = (Λ0 , Λ1 , r, s), and G∗ be its 1-
skeleton and category of paths, respectively. Let v ∈ Λ0 be a sink. We write w ≤ v if
there exists a λ ∈ G∗ such that s(λ) = v and r(λ) = w. Define the directed colored
graph GS = (Λ0

S , Λ1
S , rS , sS) by

Λ0
S ∶= {w ∶ w /≤ v}, Λ1

S ∶= Λ1/{ f ∈ Λ1 ∶ r( f ) ≤ v};
we set rS = r, sS = s, and dS = d. Let ι ∶ G∗S → G∗ be the inclusion map, and define an
equivalence relation onG∗S by μ ∼ λwhen [ι(μ)] = [ι(λ)] ∈ Λ.DefineΛS = G∗/ ∼ and
call ΛS the k-graph of Λ with the sink v deleted.
Example 5.1 Consider the graph G below. The graph GS is the result of deleting the
blue sink v of G, where blue is the dashed color.

G v GS

Example 5.2 The following example highlights the fact that performing a sink-
deletion (Figure 9) may introduce new sinks.When Λ has a finite vertex set, perform-
ing successive sink deletions will eventually produce a sink-free k-graph.
Lemma5.3 If (Λ, d) is a k-graphwith v ∈ Λ0 an e i sink, then {x ∈ Λ0 ∶ x ≤ v} consists
of e i sinks.
Proof Ifw ≤ v andw is not an e i sink, then there exists a y ∈ Λ0 and f ∈ Λe i such that
s( f ) = w and r( f ) = y. Thus, there exists a path f λ ∈ s−1(v) ∩ r−1(y). Furthermore,
because Λ is a k-graph, there exists a path μg ∼ f λ with g ∈ Λe i . That is, v is not an e i
sink. ∎
Theorem 5.4 If (Λ, d) is a source-free k-graph with v ∈ Λ0 a sink, then (ΛS , dS), the
graph of Λ with the sink v ∈ Λ0 deleted, is a source-free k-graph.
Proof Take λ ∈ G∗S . Because r(ι(λ)) /≤ v, if μ = μ1⋯μn ∼ ι(λ), then r(μ) /≤ v. In fact,
we have s(μ) = s(ι(λ)) /≤ v, and r(μ i) ∉ V for all 1 ≤ i ≤ n. To see this, simply recall
that if s(η) ≤ v, then r(η) ≤ v as well. Consequently, μ ∈ ι(G∗S ) and ι−1(μ) ∼S λ.Thus,
[λ]S = [ι(λ)], which satisfies (KG0) and (KG4), because Λ is a k-graph. Because
λ ∈ G∗S was arbitrary, it follows that ΛS is a k-graph.

To see that ΛS is source-free, note that whenever an edge e ∈ G1 was deleted in the
process of forming ΛS , so too was the vertex r(e) ∈ G0. Therefore, no sources were
created in the formation of ΛS , so the k-graph ΛS is source-free. ∎
Theorem 5.5 If (Λ, d) is a source free row finite k-graph with v ∈ Λ0 a sink and
(ΛS , dS) the k-graph of Λ with v deleted, then C∗(Λ) is Morita equivalent to C∗(ΛS).
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G

w v

GS

w

Figure 9: Sink deletion at v creating a new sink at w.

Proof Let {sλ ∶ λ ∈ Λ0 ∪ Λ1} be the canonical Cuntz–Krieger Λ-family in C∗(Λ).
Then, for every λ ∈ Λ0

S ∪ Λ1
S , define

Tλ = sι(λ) .

We first prove that {Tλ ∶ λ ∈ Λ0
S ∪ Λ1

S} is a Cuntz–Krieger ΛS-family in C∗(Λ). Note
that {sx ∶ x ∈ Λ0} are nonzero andmutually orthogonal, and thus so are {Tx ∶ x ∈ Λ0

S}.
Therefore, {Tλ ∶ λ ∈ Λ0

S ∪ Λ1
S} satisfies (CK1). Because {sλ ∶ λ ∈ Λ0 ∪ Λ1} is a Cuntz–

Krieger Λ-family in C∗(Λ), the fact that f g ∼S h j iff ι( f g) = ι( f )ι(g) ∼ ι(h)ι( j) =
ι(h j) tells us that if for f g ∼S h j, then

Tf Tg = sι( f )sι(g) = sι(h)sι(k) = ThTk ,

and therefore {Tλ ∶ λ ∈ Λ0
S ∪ Λ1

S} satisfies (CK2). Also, for f ∈ Λ1, we have

T∗f Tf = s∗ι( f )sι( f ) = sι(s( f )) = Ts( f ),

and therefore {Tλ ∶ λ ∈ Λ0
S ∪ Λ1

S} satisfies (CK3). Finally, note that for every f ∈ Λ1, if
r( f ) /≤ v then s( f ) /≤ v. Thus, for every x ∈ Λ0

S , because xwas not deleted, r−1(ι(x)) =
ι(r−1S (x)). So, for every basis vector e i of Nk , we have

Tx = sι(x) = ∑
d(ι(λ))=e i
r(ι(λ))=x

sι(λ)s∗ι(λ) = ∑
d S(λ)=e i
rS(λ)=x

TλT∗λ .

Thus (CK4) is satisfied, so {Tλ ∶ λ ∈ Λ0
S ∪ Λ1

S} is a Cuntz–Krieger ΛS-family inC∗(Λ).
By the universal property of C∗(ΛS), then, there exists a ∗-homomorphism π ∶
C∗(ΛS) → C∗(Λ) such that π(tλ) = Tλ for any λ ∈ Λ0

S ∪ Λ1
S . Observe that π com-

mutes with the canonical gauge actions on C∗(Λ) and C∗(ΛS); moreover, π(tx) /= 0
for any x ∈ Λ0

S . Consequently, the gauge-invariant uniqueness theorem (Theorem 2.4)
tells us that π is injective.

We now invoke Theorem 2.6 to show that Im(π) ≅ME C∗(Λ). Consider X =
ι(Λ0

S) ⊆ Λ0, and set p = ∑
x∈Λ0

S

pι(x). We claim that Σ(X) = Λ0, so that Theorem 2.6

implies that pC∗(Λ)p ≅ME C∗(Λ). To see this, recall from Lemma 5.3 that every
vertex in Λ0/X is an e i sink. Moreover, the fact that Λ is source-free implies that if
w ∈ Λ0 thenwΛe i is nonempty. Because s(wΛe i ) ⊆ X, it follows that everyw ∈ Λ0 lies
in Σ(X), as claimed.

We now show that pC∗(Λ)p ≅ Im(π). To that end, observe that

pC∗(Λ)p = span{sλs∗μ ∶ r(λ), r(μ) ∈ X = ι(Λ0
S)} = span{sλs∗μ ∶ r(λ), r(μ) /≤ v}.

Moreover, if r(λ) /≤ v then we must have s(λ) /≤ v. It follows that if sλs∗μ ∈ pC∗(Λ)p,
then sλ , sμ ∈ Im(π). Similarly, every generator sλ of Im(π) lies in pC∗(Λ)p. We
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conclude that, as desired,

C∗(ΛS) ≅ Im(π) = pC∗(Λ)p ≅ME C∗(Λ). ∎

6 Reduction

In the geometric classification of unital graph C∗-algebras, the “delay” operation does
not appear. Instead, we find its quasi-inverse reduction in the final list [ERRS16] of
moves on graphs which encode all Morita equivalences between graph C∗-algebras.
Indeed, reduction—rather than delay—was a central ingredient in [Sø13], and it is
more easily recognized as a special case of the general result of [CG06].

For directed graphs, any delay can be undone by a reduction. As we will see in the
following pages, however, reduction for higher-rank graphs is not evidently an inverse
to the “delay” move discussed in Section 4. For this reason, we have elected to include
a detailed treatment of both moves.

For row-finite directed graphs, reduction contracts an edge e to its source vertex
v, and can occur whenever s−1(v) = {e} and all edges with range v emanate from the
same vertex x /= v. In the setting of higher-rank graphs, we can only reduce complete
edges (see Notation 6.0.1 below) which emanate from a vertex v such that r−1(v) is also
a complete edge. Under these restrictions, however, reduction of a complete edge in
Λ results in a new k-graph ΛR such that C∗(Λ) ≅ME C∗(ΛR). (SeeTheorems 6.3 and
6.4 below.)

Notation 6.0.1 Let (Λ, d) be a k-graph. We say a collection of edges, E ⊆ Λ1, is a
complete edge if it has the following three properties:
(1) E contains precisely one edge of each color;
(2) s(e) = s( f ) and r(e) = r( f ) for every e , f ∈ E;
(3) if e ∈ E and a, b, f ∈ Λ1 satisfy ea ∼ f b or ae ∼ b f , then f ∈ E.

Example 6.1 The third condition in Notation 6.0.1 depends on the factorization
rules. For example, consider the edge-colored directed graph below.

v w
e2
f2

f1
e1 f3

e3

If we define f2e1 ∼ e2 f1 and f3e2 ∼ e3 f2, then each set {e i , f i} is a complete edge, for
i = 1, 2, 3. However, if we instead define f2e1 ∼ e3 f2 and f3e2 ∼ e2 f1, then there are no
complete edges.

Definition 6.1.1 Let (Λ, d) be a k-graph and G = (Λ0 , Λ1 , r, s) its 1-skeleton. Fix
v ∈ Λ0 such that both Λ1v and vΛ1 are complete, and such that v /= r(Λ1v) =∶ w. Define
the directed colored graph GR = (Λ0

R , Λ1
R , rR , sR) by

Λ0
R = Λ0/{v},

Λ1
R = Λ1/Λ1v ,

sR(e) = s(e),
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Λ

w v

ΛR

w

Figure 10: First example of reduction.

Γ

v w

ΓR

w

Figure 11: Second example of reduction.

rR(e) = {
r(e) if r(e) ≠ v
w if r(e) = v .

As the vertices and edges of GR are subsets of the vertices and edges of G, we write
ι ∶ Λ1

R ∪ Λ0
R → Λ0 ∪ Λ1 for the inclusion map.

LetG∗R be the path category ofGR ; we will define a parent function par ∶ G∗R → G∗.
To that end, fix an edge f ∈ Λ1v and define

par(x) = ι(x), for x ∈ Λ0
R ,

par(e) = {ι(e) if r(ι(e)) ≠ v
f ι(e) if r(ι(e)) = v , for e ∈ Λ1

R ,

par(λ) = par(λ∣λ∣)⋯par(λ1), for λ = λ∣λ∣⋯λ2λ1 ∈ G∗R .

Then, define the degree map dR on G∗R such that dR(e) = d(ι(e)). Define an equiva-
lence relation, ∼R , on G∗R by μ ∼R λ if par(μ) ∼ par(λ). Let ΛR = G∗R/ ∼R ; we call ΛR
the graph of Λ reduced at v ∈ Λ0.

Example 6.2 Figures 10 and 11 show the result of reduction at a vertex v in two
different k-graphs. In both cases, we only picture the underlying 1-skeleton, as we have
no choice in the factorization.

Theorem 6.3 If (Λ, d) is a row-finite, source-free k-graph, then (ΛR , dR), the graph of
Λ reduced at v ∈ Λ0, is a row-finite source-free k-graph.

Proof To see that∼R satisfies (KG0), suppose that λ = λ2λ1 ∈ G∗R and that μ1 , μ2 ∈ G∗R
satisfy par(λ i) ∼ par(μ i). Then, the definition of the parent function, and the fact
that ∼ satisfies (KG0), implies that s(μ1) = r(μ2) and that

par(μ2μ1) = par(μ2)par(μ1) ∼ par(λ2)par(λ1) = par(λ).

It follows that μ2μ1 ∼R λ, which establishes (KG0).
Now, take an arbitrary λ ∈ G∗R and suppose ι(λ) = par(λ). It follows that ι(λ)

never passes through v; the fact that both vΛ1 and Λ1v are complete edges therefore
implies that no path in [ι(λ)] passes through v. As Λ is a k-graph, [par(λ)] satisfies
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(KG4). Because [λ]R = ι−1([par(λ)]) and ι is both injective, and onto {μ ∈ G∗ ∶
v not on μ} ⊇ [par(λ)], it follows that [λ]R also satisfies (KG4).

If λ = λ∣λ∣⋯λ2λ1 and ι(λ) /= par(λ), then there exists at least one index 1 ≤ i ≤ ∣λ∣
such that rR(λ i) = w, where w is the range of the complete edge which was deleted to
form ΛR . For ease of notation, in what follows, we will assume that there is only one
such index i, but the same argument will work if there are several. Let the color order
of λ be (m1 , . . . ,m∣λ∣); then the color order of par(λ) is (m1 , . . . ,m i , d( f ), . . . ,m∣λ∣).
Now, [par(λ)] satisfies (KG4), so in particular, for each permutation (n1 , . . . , n∣λ∣) of
(m1 , . . . ,m∣λ∣), there exists a unique path μ′ ∈ [par(λ)] such that

d(μ′j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n j , j ≤ i ,
d( f ), j = i + 1,
n j−1 , j > i + 1.

Because μ′ and par(λ) both have an edge of degree d( f ) in the (i + 1)th position,
and ∼ satisfies (KG0) and (KG1), we must have μ′i+1 = (par(λ))i+1 = f . Thus, μ′ ∈
Im(par). Setting μ = par−1(μ′), we have μ ∼R λ. The fact that our permutation
(n1 , . . . , n∣λ∣) was arbitrary implies that [λ]R includes a path of every color order; the
fact that par is injective implies that such a path is unique.Thus, [λ]R satisfies (KG4),
so Theorem 2.1 tells us that ΛR is a k-graph.

To see that ΛR is row-finite, it suffices to observe that ∣xΛe i
R ∣ = ∣par(x)Λe i ∣ < ∞

for all x ∈ Λ0
R and for all 1 ≤ i ≤ k. The fact that ΛR is source-free follows from the

analogous fact that 0 /= ∣Λe i par(x)∣ = ∣Λe i
R x∣ for all x and i. ∎

Theorem 6.4 If (Λ, d) is a row-finite source-free k-graph, with (ΛR , dR) the graph of
Λ reduced at v ∈ Λ0, then C∗(Λ) is Morita equivalent to C∗(ΛR).

Proof Let {sλ ∶ λ ∈ Λ0 ∪ Λ1} be the canonical Cuntz–Krieger Λ-family generating
C∗(Λ). Define

Tλ = spar(λ), for λ ∈ Λ0
R ∪ Λ1

R .

We first prove that {Tλ ∶ λ ∈ Λ0
R ∪ Λ1

R} is a Cuntz–Krieger ΛR-family in C∗(Λ).
Note that {sx ∶ x ∈ Λ0} are nonzero and mutually orthogonal, and thus so are {Tx ∶
x ∈ Λ0

R}. Thus, {Tλ ∶ λ ∈ Λ0
R ∪ Λ1

R} satisfies (CK1). Furthermore, if ab, cd ∈ G∗R such
that ab ∼R cd, then [par(a)par(b)] = [par(ab)] = [par(cd)] = [par(c)par(d)].
By (KG0), we therefore have

TaTb = spar(a)spar(b) = spar(c)spar(d) = TcTd ,

and therefore {Tλ ∶ λ ∈ Λ0 ∪ Λ1} satisfies (CK2). Now, fix e ∈ Λ1
R . If r(ι(e)) /= v, we

have ι(e) = par(e) and hence

T∗e Te = s∗par(e)spar(e) = ss(par(e)) = spar(s(e)) = Ts(e) .

If r(ι(e)) = v, then we similarly have

T∗e Te = (s f se)∗(s f se) = s∗e s∗f s f se = s∗e sv se = ss(e) = Ts(e) .

Therefore, {Tλ ∶ λ ∈ Λ0
R ∪ Λ1

R} satisfies (CK3).
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Finally, to see that {Tλ ∶ λ ∈ Λ0
R ∪ Λ1

R} satisfies (CK4), we begin by considering
(CK4) for x ∈ Λ0

R such that x ≠ w(= r(Λ1v)). Note that for any basis vector e i ∈ Nk ,

∑
rR(e)=x
dR(e)=e i

TeT∗e = ∑
rR(e)=x
dR(e)=e i

se s∗e = ∑
r(e)=x
d(e)=e i

se s∗e = sx = spar(x) = Tx .

Thus, (CK4) holds for such vertices x.
In order to complete the proof that (CK4) holds, we first need a better understand-

ing of the equivalence relation ∼ for paths which pass through v ∈ Λ0. Because vΛ1

and Λ1v are complete edges by hypothesis, each set contains precisely one edge of
each color. Thus, if we write g i for the edge in vΛ1 with d(g i) = e i and h i for the edge
in Λ1v such that d(h i) = e i , then sv = sg i s∗g i for any i. Moreover, by our hypothesis that
vΛ1 and Λ1v are both complete edges, we have, for any 1 ≤ i , j ≤ k,

h j g i ∼ h i g j �⇒ sh j sg i = sh i sg j �⇒ sh j sg i s
∗
g i = sh i sg j s

∗
g i

�⇒ sh j = sh i sg j s
∗
g i .

Thus, because f = h j for a unique j,

s f s∗f = (sh i sg j s
∗
g i )(sh i sg j s

∗
g i )
∗ = sh i sg j s

∗
g i sg i s

∗
g j
s∗h i

= sh i s
∗
h i

for all i. It follows that

∑
rR(e)=w
dR(e)=e i

TeT∗e = Tg iT
∗
g i + ∑

rR(e)=w
e≠g i

dR(e)=e i

TeT∗e = (s f sg i )(s f sg i )∗ + ∑
e∈wΛei
s(e)≠v

se s∗e

= sh i s
∗
h i
+ ∑

e∈wΛei
s(e)≠v

se s∗e = ∑
e∈wΛei

se s∗e = sw = Tw .

Therefore, {Tλ ∶ λ ∈ Λ0
R ∪ Λ1

R} satisfies (CK4), and thus is a Cuntz–Krieger ΛR-
family in C∗(Λ). By the universal property of C∗(ΛR), there exists a homomor-
phism π ∶ C∗(ΛR) → C∗(Λ) such that if C∗(ΛR) = C∗({tλ ∶ λ ∈ Λ0

R ∪ Λ1
R}), we have

π(tλ) = Tλ for all λ ∈ Λ0
R ∪ Λ1

R . The computation above shows that our choice of edge
f does not affect the validity of the construction.

We now use the gauge-invariant uniqueness theorem and Lemma 2.5 to prove that
π is injective. If G is the 1-skeleton of Λ, we define R ∶ G∗ → Z

k by

R(e) = d(e), for e ∈ Λ1 s.t. s(e) ≠ v ,
R(e) = d(e) − d( f ), for e ∈ Λ1 s.t. s(e) = v ,

R(λ) =
∣λ∣

∑
i=1

R(λ i), for λ = λ∣λ∣⋯λ2λ1 ∈ G∗ ,

R(x) = 0, for x ∈ Λ0 .

To show that R induces a well-defined function on Λ, suppose that μ ∼ ν and consider
R(μ), R(ν). If s(μ i) = v, then the fact that Λ1v is a complete edge implies that s(ν i) =
v. Therefore, R(μ) = d(μ) − l ⋅ d( f ) and R(ν) = d(ν) − l ⋅ d( f ), where l ∈ N counts
the number of edges in μ with source v. Because d(μ) = d(ν), we conclude R(μ) =
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R(ν).Thus, the function β ∶ Tk → Aut(C∗(Λ)) defined by βz(sμs∗ν ) = zR(μ)−R(ν)sμs∗ν
is an action by Lemma 2.5.

Let α be the canonical gauge action on C∗(ΛR). For any e ∈ Λ1
R , s(ι(e)) ≠ v, so

R(ι(e)) = d(ι(e)) = dR(e). Moreover, if r(ι(e)) /= v, then ι(e) = par(e) and π(te) =
sι(e), and so for any z ∈ Tk ,

π(αz(te)) = π(zdR(e)te) = zd(ι(e))Te = zd(ι(e))sι(e) = zR(ι(e))sι(e)
= βz(spar(e)) = βz(π(te)).

If r(ι(e)) = v , we have

π(αz(te)) = π(zdR(e)te) = zdR(e)Te = zd(ι(e))s f sι(e) = zR( f )zR(e)s f sι(e)
= βz(s f sι(e)) = βz(Te) = βz(π(te)).

It is straightforward to check that αz and βz also commute on the vertex projections.
Therefore, π intertwines β with the canonical gauge action on C∗(ΛR) and thus, by
the gauge-invariant uniqueness theorem, π is injective.

We now use Theorem 2.6 to show that Im (π) ≅ C∗(ΛR) is Morita equivalent to
C∗(Λ). Define X ∶= Λ0/{v} and set PX = ∑x∈X sx ∈ M(C∗(Λ)). Our first goal is to
show that PXC∗(Λ)PX = Im(π).

To see that Im(π) ⊆ PXC∗(Λ)PX , recall that if λ ∈ ΛR , then the vertices
par(sR(λ)) = s(par(λ)), par(rR(λ)) = r(par(λ)) both lie in X. It follows that Tλ ∈
PXC∗(Λ)PX for all λ ∈ ΛR :

Tλ = spar(λ) = sr(par(λ))spar(λ)ss(par(λ)) = PX spar(λ)PX .

Thus, π(C∗(ΛR)) ⊆ PXC∗(Λ)PX .
For the other inclusion, note that

PXC∗(Λ)PX = span{sλs∗μ ∶ μ, λ ∈ G∗ , s(μ) = s(λ), r(λ), r(μ) ∈ X}.
We will show that each such generator sλs∗μ is in Im(π). We begin with the following
special case.

Claim 1: sh i s∗h j
∈ Im(π) for all edges h i , h j ∈ Λ1v.

To see this, recall that sh i = sh j sg i s∗g j
, and so

sh i s
∗
h j
= sh j sg i (sh j sg j)∗ .(6.1)

Now, write e� = d( f ). If � = j, then sh j sg i = Tι−1(g i) ∈ Im(π) and sh j sg j = Tι−1(g j), so
sh i s∗h j

∈ Im(π). Thus, we suppose � /= j.
By appealing to the results of Section 5, without loss of generality, we may assume

that w = r(h j) is not an e� sink. Thus, there is an edge e ∈ Λe�w. Because Λ1v is a
complete edge, we must have eh j ∼ h f for some edge h. It follows that

sh j sg i = sw sh j sg i = s∗e se sh j sg i = s∗e shs f sg i .

If r(e) = r(h) ∈ X, then e = par(ι−1(e)) and h f g i = par(ι−1(h)ι−1(g i)). Conse-
quently, in this case, we have

sh j sg i = s∗e Tι−1(h)Tι−1(g i) = T∗ι−1(e)Tι−1(h)Tι−1(g i) ∈ Im(π).
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If r(e) = r(h) = v, then writing sv = s∗f s f , we have

s∗e sh f g i = (s f se)∗s f hs f g i = T∗ι−1(e)Tι−1(h)Tι−1(g i) ∈ Im(π).

Similarly, we compute that sh j sg j = T∗ι−1(e)Tι−1(h)Tι−1(g j) ∈ Im(π). Equation (6.1)
then implies that sh i s∗h j

∈ Im(π) for all 1 ≤ i , j ≤ k, so Claim 1 holds.

Next, we establish our second claim via a case-by-case analysis.

Claim 2: If η ∈ G∗ and s(η) /= v, then sη ∈ Im(π).
To see this, note first that if v does not lie on η, then η = par(ι−1(η)), so Tι−1(η) =

sη ∈ PXC∗(Λ)PX .
If v lies on η, and η ∼ ρ, then the fact that Λ1v , vΛ1 are complete edges means that

ρ will also pass through v. If ρ ∼ η is such that every edge of ρ with source v is f, then
ρ ∈ Im(par) and therefore sρ = sη ∈ Im(π).

For the last case, suppose that v lies on η but that for every path ρ with ρ ∼ η, there
is an edge ρ i in ρ with s(ρ i) = v and ρ i /= f . Without loss of generality, suppose that i
is the smallest such. By hypothesis, s(η) = s(ρ) /= v, so i /= 1.

As established in the proof of Claim 1, sρ i = s∗e shs f for edges e of degree d( f ) and
h of degree d(ρ i), and we have

sρ i sρ i−1 = s∗e sh f ρ i−1 ∈ Im(π).

By construction, ρ i−2⋯ρ1 does not pass through v, and so sρ i−2⋯ρ1 ∈ Im(π). An
inductive application of this argument now shows that sρ = sη lies in Im(π)whenever
s(η) /= v. This completes the proof of Claim 2.

Finally, consider an arbitrary generator sλs∗μ of PXC∗(Λ)PX , with λ = λ∣λ∣⋯λ1 , μ =
μ∣μ∣⋯μ1 ∈ G∗. If s(λ) = s(μ) /= v, then applying Claim 2 to λ and μ, we see that
sλs∗μ ∈ Im(π). If v = s(λ) = s(μ), then by Claim 1, sλ1 s∗μ1

∈ Im(π). Because r(λ1) =
r(μ1) = w /= v, it follows from Claim 2 that if η ∶= λ∣λ∣⋯λ2 and ζ ∶= μ∣μ∣⋯μ2, then
sη , sζ ∈ Im(π). Consequently, sλs∗μ = sηsλ1 s∗μ1

s∗ζ ∈ Im(π) for any generator sλs∗μ of
PXC∗(Λ)PX .

Having established that PXC∗(Λ)PX = Im(π) ≅ C∗(ΛR), we now compute the
saturation Σ(X) in order to apply Theorem 2.6. Note that w ∈ X and there are edges
h j inwΛ1v, so any hereditary set containing Xmust also contain v. Thus, Σ(X) = Λ0.
Theorem 2.6 therefore tells us that C∗(Λ) ∼ME C∗(ΛR), as claimed. ∎
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