
Journal of Computational Physics 463 (2022) 111301
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Physics and equality constrained artificial neural networks:
Application to forward and inverse problems with
multi-fidelity data fusion

Shamsulhaq Basir, Inanc Senocak ∗

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, PA 15261, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 September 2021
Received in revised form 10 February 2022
Accepted 11 May 2022
Available online 16 May 2022

Keywords:
Constrained optimization
Augmented Lagrangian method
Residual neural networks
Partial differential equations
Forward and Inverse problems
Multi-fidelity learning

Physics-informed neural networks (PINNs) have been proposed to learn the solution of
partial differential equations (PDE). In PINNs, the residual form of the PDE of interest and
its boundary conditions are lumped into a composite objective function as soft penalties.
Here, we show that this specific way of formulating the objective function is the source of
severe limitations in the PINN approach when applied to different kinds of PDEs. To address
these limitations, we propose a versatile framework based on a constrained optimization
problem formulation, where we use the augmented Lagrangian method (ALM) to constrain
the solution of a PDE with its boundary conditions and any high-fidelity data that may be
available. Our approach is adept at forward and inverse problems with multi-fidelity data
fusion. We demonstrate the efficacy and versatility of our physics- and equality-constrained
deep-learning framework by applying it to several forward and inverse problems involving
multi-dimensional PDEs. Our framework achieves orders of magnitude improvements in
accuracy levels in comparison with state-of-the-art physics-informed neural networks.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Deep learning has been highly impactful in a plethora of fields such as pattern recognition [1,2], speech recognition [3],
natural language processing [4–6] and in the solution of partial differential equations (PDE) for forward and inverse prob-
lems. The success of these models owes to the rapid development of available information, the advancement of computing
power, and the advent of efficient learning algorithms for training neural networks [7]. With the emergence of universal
approximation theorem [8,9], new studies have focused on using neural networks to solve ODEs and PDEs. One of the mo-
tivations for using neural networks in solving differential equations is their potential to break the curse of dimensionality
[10–12] and its ability to fuse data in the learned solution. Neural network-based methods with their meshless nature can
reduce the tedious effort of mesh generation, which is common with finite-difference, element, or volume methods. More-
over, in contrast to conventional numerical methods, once the neural network is trained, it can produce results at any point
in the domain.

Dissanayake and Phan-Thien pioneered using neural networks to solve PDEs. They combined the residual form of a given
PDE and its boundary conditions as soft constraints for training their neural network model. van Milligen et al. presented
a similar approach and demonstrated its potential on a magnetohydrodynamics plasma equilibrium problem. This general

* Corresponding author.
E-mail address: senocak@pitt.edu (I. Senocak).
https://doi.org/10.1016/j.jcp.2022.111301
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111301
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111301&domain=pdf
mailto:senocak@pitt.edu
https://doi.org/10.1016/j.jcp.2022.111301

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
neural network-based technique was applied with satisfactory results to non-linear Schrodinger equations in [15], to a non-
steady fixed bed non-catalytic solid-gas reactor problems in [16], and to the one-dimensional Burgers equation in [17]. A
neural network-based approach to solving PDEs and ODEs on orthogonal box domains was also proposed by Lagaris et al. by
constructing trial functions that satisfy boundary conditions by construction. Unlike the approach in [13,14], the approach
in [18] is limited to regular geometries as it is not trivial to create trial functions for irregular domains. Also, creating trial
functions imposes inductive bias toward a certain class of functions that might not be optimal. These early works did not
receive broader acceptance and appreciation by other researchers likely because of a lack of computing resources and a
limited understanding of neural networks at the time of their introduction.

Machine learning frameworks with automatic differentiation capabilities [19,20] have revived the use of neural networks
to solve ODEs and PDEs. The overall technical approach for using neural networks to solve PDEs and ODEs that was adopted
in the aforementioned works, particularly the method described in [13,14], has found a resurgent interest in recent years
[21–24]. Raissi et al. [25] dubbed the term physics-informed neural networks (PINNs), which has been growing fast in
popularity and applied to several unique forward and inverse problems [26–33]. Even though neural networks offer a
powerful framework to faithfully integrate data and physical laws in solving forward and ill-posed inverse problems, training
these models is not trivial for challenging problems [34–36]. Extensive reviews of the current state in physics-informed
machine learning are available in literature [37,38], but we will also elaborate on the challenges faced by the PINN approach
in later sections.

Our paper is structured as follows. In §2 we present a technical overview of the physics-based neural networks following
the original formulation of [13,14]. Subsequently, we describe a recently proposed empirical algorithm for improving the
predictive capability of these models as well as its limitations. Next, we describe the augmented Lagrange method, which
forms the backbone of our approach. In §3 we propose the physics and equality constrained artificial neural networks
(PECANN) framework and provide a training algorithm for it. In §4 we conduct a comparative analysis of our method on
several benchmark problems. In §5 we demonstrate the performance of the PECANN approach on three different inverse
problems with multi-fidelity data fusion. Finally, in §6 we summarize our results and provide several directions for future
research. All the codes and data accompanying this paper are publicly available at https://github .com /HiPerSimLab /PECANN.

2. Technical background

Consider a scalar function u(x, t) : Rd+1 → R on the domain � ⊂ Rd with its boundary ∂� satisfying the following
partial differential equation

F(x, t; ∂u

∂t
,
∂2u

∂t2
, · · · ,

∂u

∂x
,
∂2u

∂x2
, · · · ,ν) = 0, ∀(x, t) ∈ U, (1)

B(x, t, g;u,
∂u

∂x
, · · ·) = 0, ∀(x, t) ∈ ∂U, (2)

I(x, t,h;u,
∂u

∂t
, · · ·) = 0, ∀(x, t) ∈ �, (3)

where F is the residual form of the PDE containing differential operators, ν is a vector PDE parameters, B is the residual
form of the boundary condition containing a source function g(x, t) and I is the residual form of the initial condition
containing a source function h(x, t). U = {(x, t) | x ∈ �, t = [0, T]}, ∂U = {(x, t) | x ∈ ∂�, t = [0, T]} and � = {(x, t) | x ∈
∂�, t = 0}.
2.1. Physics-informed neural networks

Here, we present the common elements of the physics-informed learning framework that was presented in the works of
Dissanayake and Phan-Thien and van Milligen et al., and, in the work of Raissi et al. as part of contemporary developments in
physics based deep learning methods. Suppose we seek a solution uθ (x) represented by a neural network parameterized by
θ for Eq. (1) with its boundary condition Eq. (2) and its initial condition Eq. (3). We can write the following loss functional
L(θ) to train a physics-informed neural network.

L(θ) = λFLF (θ) + λBLB(θ) + λILI(θ), (4)

LF (θ) = 1

NF

NF∑
i=1

‖F(x(i), t(i))‖22, (5)

LB(θ) = 1

NB

NB∑
i=1

‖B(x(i), t(i), g(i))‖22, (6)

LI(θ) = 1

NI

NI∑
‖I(x(i), t(i),h(i))‖22, (7)
i=1

2

https://github.com/HiPerSimLab/PECANN

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
where {x(i), t(i)}NF
i=1 is the set of residual points in U for approximating the physics loss LF (θ), ({x(i), t(i)), g(i)}NB

i=1 is the set
boundary points on ∂U for approximating the boundary loss LB(θ) and {(x(i), t(i)), h(i)}NI

i=1 is the set of initial data on � for
approximating the loss on initial condition LI (θ). λF , λB and λI are hyperparameters to balance the interplay between
the loss terms and L(θ) is the sum of all the objective functions used for training a neural network model. It is worth
noting that in conventional PINNs λF = λB = λI = 1.

Since training PINNs minimizes a weighted sum of several objective functions as in Eq. (4), the prediction of the network
highly depends on the choice of these weights. Manual setting of these weights by trial and error tuning is extremely
tedious and time-demanding. Based on our own experience, we find that manual tuning of these weights is not ideal,
because it creates a ripple effect as we then need to tune other hyperparameters, such as the number of collocations points,
the learning rate, and the architecture. Also, the optimal choice of these weights for a problem under a certain training
setting might not transfer across different problems and may not even produce acceptable results if the training setting is
changed. Proper choice of these free parameters is still an active area of research [36,35,34]. Next, we discuss an empirical
algorithm proposed by Wang et al. [36] for choosing these hyperparameters.

2.2. Learning rate annealing for physics-informed neural networks

Consider a physics-informed neural network with parameters θ and a loss function as follows

L(θ) = λFLF (θ) +
M∑
i=1

λiLi(θ), (8)

where LF (θ) is the PDE residual loss as in Eq. (5), Li(θ) correspond to data-fit terms (e.g., measurements, initial or bound-
ary conditions), λF and λi, i = 1, · · · , M are free parameters used to balance the interplay between different loss terms. The
necessary optimality condition for Eq. (8) is

∇θL(θ) = λF∇θLF (θ) +
M∑
i=1

λi∇θLi(θ) = 0, (9)

where λs are learned such that the optimality condition is satisfied. Wang et al. recently proposed an empirical algorithm
for setting these weights based on matching the magnitude of the back-propagated gradients as follows

λF = 1, (10a)

λ̂i = maxθn {|∇θLF (θn)|}
|∇θnλiLi(θn)|

, i = 1, · · · ,M, (10b)

λi = (1− α)λi + αλ̂i, (10c)

where θn denotes the values of the network parameters at nth iteration, | · | denotes the elementwise absolute value, and the
overbar signifies the algebraic mean of the gradient vector. Although this method improves on the original PINN approach
(λF = λi = 1, i = 1, · · · , M), there are fundamental issues with this approach. First, approximating λ̂i in Eq. (10b) does
not necessarily meet the optimality condition as in Eq. (9). Therefore, the optimizer may settle to a point in the space of
parameters that may not be an actual local minimum for the objective function as in Eq. (8). Second, the values of the
network parameters can oscillate back and forth around a minimum, which requires slowing down the parameter update by
decreasing the learning rate [39]. However, λ̂i grows unbounded when the denominator in Eq. (10b) approaches zero which
makes the effective learning rate extremely high and causes the optimizer to diverge. Also, in the case of noisy measurement
data, this algorithm tries to fit the noise in the objective function as it is agnostic to the quality of data, and because of the
noise in the objective function, its approximated free parameter will oscillate which could hinder convergence. Finally, the
method is computationally expensive as it requires M + 1 number of backward passes through the computational graph to
evaluate the gradients of the network parameter with respect to each term in the objective function.

2.3. Augmented Lagrangian method for constrained optimization

Consider the following nonlinear, equality-constrained optimization problem with n decision variables, and m equality
constraints

min
θ∈Rn

J (θ),

subject to Ci(θ) = 0, ∀i = 1, · · · ,m
(11)

where J is a nonlinear function of Rn in R, Ci is a nonlinear function of Rn in R and θ is a given subset of Rn ,
n-dimensional Euclidean space. Augmented Lagrangian method (ALM) [40,41] which is also the method of choice in the
3

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
present work can be used to convert the constrained optimization problem of Eq. (11) into an unconstrained optimization
problem as follows

min
θ∈�

L(θ;λ,μ) = J (θ) +
m∑
i=1

λiCi(θ) + μ

2

m∑
i=1

|Ci(θ)|2, (12)

where λ ∈ Rm is a vector of Lagrange multipliers and μ is a positive penalty parameter, and the semicolon denotes that λ
and μ are fixed. We update the vector of Lagrange multipliers based on the current estimate of the Lagrange multipliers
and constraint values using the following rule

λi ← λi + μCi(θ). (13)

In ALM, the objective function is minimized possibly by violating the constraints. Subsequently, the feasibility is restored
progressively as the iterations proceed [42]. If λ vanish, the penalty method is recovered, whereas when μ vanishes we
get the method of Lagrange multipliers. As discussed in Martins and Ning [43], ALM avoids the ill-conditioning issue of the
penalty method while having a better convergence rate than the Lagrange multiplier method [44]. Therefore, we could say
that ALM combines the merit of both methods. Convergence in ALM may occur with finite μ, and optimization problem
does not even have to possess a locally convex structure [45,46,44,42,43]. These aspects of the ALM make it a suitable choice
for neural networks as their objective functions are typically non-convex with respect to the parameters of the network.

ALM has been used in scientific machine learning in the context of PDE-constrained optimization [47,48]. In Dener
et al. [47], authors train a physics-constrained encoder-decoder neural network using ALM in a supervised learning fashion.
In Lu et al. [48], the authors use ALM to train a PDE-constrained neural network model that satisfies the boundary conditions
by construction, following an approach similar to the one proposed in [18].

3. Proposed method: physics & equality constrained artificial neural networks

Here, we propose a novel approach in using neural networks for the solution of forward problems and inverse problems
with multi-fidelity data. This framework is noise-aware, physics-informed and equality constrained. We start by presenting
a constrained optimization problem aimed at minimizing the sum of physics loss and noisy data (low-fidelity) loss such
that any high fidelity data (boundary conditions, known equality constraints) are strictly satisfied. Considering Eq. (1) with
its boundary condition (2) and initial condition (3), we write the following constrained optimization problem:

min
θ

JF (θ) +JM(θ), (14)

subject to

φ(B(x(i), t(i), g(i))) = 0, ∀(x(i), t(i), g(i)) ∈ ∂U, i = 1, · · · ,NB (15)

φ(I(x(i), t(i),h(i))) = 0, ∀(x(i), t(i),h(i)) ∈ �, i = 1, · · · ,NI , (16)

where JF (θ) is the loss function for the given PDE, φ is a distance function and JM(θ) is the objective function for noisy
(low-fidelity) measurement data given

ũ(x(i), t(i)) = uθ (x
(i), t(i)) + ε(i),∀i = 1, · · · ,NM (17)

where NM is the number of observations, ũ(x(i), t(i)) is the ith measurement at (x(i), t(i)), uθ (x(i), t(i)) is ith prediction
from our neural network model at (x(i), t(i)) and ε(i) captures the error associated with the ith data point. Assuming that
the errors are normally distributed with mean zero and a standard deviation of σ , we can minimize the log likelihood of the
predictions uθ (x, t) conditioned on the observed data ũθ (x, t) to obtain JM(θ) as follows [43]

JM(θ) = 1

2σ 2

NM∑
i=1

‖uθ (x
(i), t(i)) − ũ(x(i), t(i))‖22. (18)

In this work, we set σ = 1/
√
2 ≈ 0.7 which results in a sum-of-squared errors for the noisy data, however, the user can

assign any value to σ depending on the quality of the measurement data. It is worth noting, that a smaller value of σ
which corresponds to less noisy data will put more weight on JM and vice versa. Using the augmented Lagrange method,
we can write the resulting objective function as follows

L(θ;λ,μ) = JF (θ) +JM(θ) +
NB∑

λ
(i)
B φ(B(x(i), t(i), g(i))) +

NI∑
λ

(i)
I φ(I(x(i), t(i),h(i))) + μ

2
π(θ), (19)
i=1 i=1

4

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
π(θ) =
NB∑
i=1

|φ(B(x(i), t(i), g(i)))|2 +
NI∑
i=1

|φ(I(x(i), t(i),h(i)))|2, (20)

JF (θ) =
NF∑
i=1

‖F(x(i), t(i))‖22, (21)

where NF , NB , NI are the number of data points in U , ∂U and � respectively. We note that any equality constraints can
be incorporated as Eq. (15) and (16) should they arise. λB ∈ RNB is an NB-dimensional vector of Lagrange multipliers for
the constraints on ∂U , λI ∈ RNI is an NI -dimensional vector of Lagrange multipliers for the constraints on �, and μ is a
positive penalty parameter. We update the vector of Lagrange multipliers using the following rule

λ
(i)
B ← λ

(i)
B + μφ(B(x(i), t(i), g(i))), ∀(x(i), t(i), g(i)) ∈ ∂U, i = 1, · · ·NB, (22)

λ
(i)
I ← λ

(i)
I + μφ(I(x(i), t(i),h(i))), ∀(x(i), t(i),h(i)) ∈ �, i = 1, · · ·NI (23)

Algorithm 1: Training algorithm for the PECANN framework.

1 Input: θ0, μmax, E, S
2 λB, λI ← 0 /* Initializing the multipliers */

3 ε ← 10−8 /* Assigning the tolerance for constraints violation */
4 μ0 ← 1.0 /* Initializing the penalty term */
5 η ← 0/* Placeholder for violation of constraint */
6 Output: θ∗

7 for epoch ← 1 to E do
/* Iterate over all training batches */

8 for batch ← 1 to S do
9 θ∗ ← argmin

θ

L(θ; λ, μ)/* Optimizing the network’s parameters */

10 if (
√

π(θ) ≥ 0.25η) & (√π(θ) > ε) then
11 μ ← min(2μ, μmax) /* Updating the penalty parameter */
12 λB ← λB + φ(B(x, t, g))/* Updating the Lagrange multiplier for the boundary condition */
13 λI ← λI + φ(I(x, t, h)) /* Updating the Lagrange multipliers for the initial condition */

14 η = √
π(θ)/* Recording the current penalty loss */

15 end
16 end

In Algorithm 1, we present a training algorithm using the objective function presented in (19). The input to the algorithm
is an initialized set of parameters for the network, a maximum value μmax for safeguarding the penalty term, the number of
epochs E , and the training set S . We should note that over-focusing on the constraints might result in a trivial prediction,
where the constraints are satisfied, but the solution has not been found. Therefore, we tackle this issue by updating the
multipliers when two conditions are met simultaneously: First, the ratio of the penalty loss term from successive iterations
has not decreased. Second, the maximum allowable violation on the constraints has not been met. The first condition helps
prevent aggressive updating of multipliers that might cause the aforementioned issue. In the second condition, we relax
updating the multipliers if a satisfactory precision set by the user ε has been achieved. This, in return, enables the network
to freely choose to optimize any loss terms in the objective function to not sacrifice any loss term.

Next, we discuss a “lean” residual neural network that we employ for some of our numerical experiments. Conventional
feed-forward neural networks are prone to the notorious problem of vanishing-gradients, which makes learning signifi-
cantly stiff. He et al. [2] proposed residual learning to alleviate this issue by introducing skip connections. Fig. 1(a) shows a
schematic representation of a residual block that has two weight layers and a nonlinear activation function σ [2]. However,
to preclude the problem of vanishing gradient, the non-linearity after the summation junction +© and the shortcut connec-
tion should be identity as proposed by He et al. [49] as well as in [50]. We further observe that the weight layer before
the junction becomes redundant because the output of the current residual layer will be fed to another residual layer that
processes its input through a weight layer. In other words, linearly stacking two weight layers can be collapsed into a single
weight layer. Therefore, we eliminate this extra weight layer and obtain a leaner residual layer. A schematic representation
of our proposed modified residual layer is shown in Fig. 1(b) with S(x) shortcut mappings, which are identity mappings
except for the input layer to project the input dimension to the correct dimension of the hidden layers.

3.1. Performance metrics

We assess the accuracy of our models by providing the L∞ and the relative L2 errors. Given an n-dimensional vector
of predictions û ∈ Rn and an n-dimensional vector of exact values u ∈ Rn , we define the relative L2 norm and L∞ norm as
follows:
5

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
Fig. 1. (a) a schematic representation of the original residual block with a set of parameters θ and nonlinear activation functions σ , (b) a schematic
representation of our proposed residual neural network architecture with a set of parameters θ and nonlinear activation functions σ with S(·) skip
connections.

Relative L2 = ‖û − u‖2
‖u‖2 , L∞ = ‖û − u‖∞ (24)

where ‖ · ‖2 indicates the Euclidean norm.

4. Application to forward problems

We apply our framework to learn the solution of several prototypical partial differential equations (PDE) that appear
in computational physics. We also compare our results with existing methods to highlight the marked improvements in
accuracy levels.

4.1. Two-dimensional Poisson’s equation

Elliptic PDEs lack any characteristic path, which makes the solution at every point in the domain influenced by all other
points. Therefore, learning the solution to elliptic PDEs with neural network based approaches that do not properly constrain
the boundary conditions becomes challenging as we will show in this section. Here, we solve a two-dimensional Poisson’s
equation on a complex domain to not only highlight the applicability of our approach to irregular domains, but also show
that our framework properly imposes the boundary conditions and produces physically feasible solutions. We also conduct
a study to show the impact of distance functions φ and the maximum penalty parameter μmax that appear in Eq. (19) on
the prediction of our neural network model. Let us consider the following PDE:

∇2u(x, y) = f (x, y), (x, y) ∈ �, (25a)

u(x, y) = h(x, y) (x, y) ∈ ∂�, (25b)

where f (x, y) and h(x, y) are source functions, � = {(x, y) | x = 0.55ρ(θ) cos(θ), y = 0.75ρ(θ) sin(θ)} and ρ(θ) = 1 +
cos(θ) sin(4θ) for 0 ≤ θ ≤ 2π . We manufacture a complex oscillatory solution for Eq. (25a) and its boundary conditions
Eq. (25b) as follows:

u(x, y) = cos(πx) cos(3π y), (x, y) ∈ �. (26)

The corresponding source functions f (x, y) and g(x, y) can be calculated exactly using Eq. (26). We use our “lean”
residual neural network architecture with 3-layer hidden layers and 50 neurons per layer. We generate N� = 512 residual
points uniformly from the interior part of the domain at each optimization step and N∂� = 512 from the boundaries only
once before training. Our optimizer is Adam with its default parameters and an initial learning rate of 10−2. We train our
network for 25000 epochs. We reduce our learning rate by a factor of 0.95 after 100 epochs with no improvement using
ReduceLROnPlateau learning scheduler that is built in PyTorch framework [20]. For the present case, the prediction of our
PECANN model for the entire domain is juxtaposed in Fig. 2.

From Fig. 2 we observe that our neural network model trained with our proposed approach has successfully learned
the underlying solution. Since our physics-informed neural network model diverged, we do not portray its prediction for
the entire domain. However, we present a summary of our error norms averaged over five independent trials with random
Xavier initialization scheme [51] for both approaches in Table 1. The results indicate that our method achieves a relative
L2 = 5.90 × 10−4, which is three orders of magnitude lower than the one obtained from conventional physics-informed
neural networks.

Next, we conduct an ablation study to investigate the impact of the distance function φ on the prediction of our model.
A schematic representation of two different distance functions is presented in Fig. 3(a). Our analysis reveals that quadratic
distance functions are not only insensitive to the choice of the maximum penalty parameter μmax but also significantly
outperform the absolute distance function as shown in Fig. 3(b)-(c). Therefore, we adopt the quadratic distance function
in our proposed method. To complement our analysis of elliptic PDEs, we present the applications of the PECANNs for a
one-dimensional and a three-dimensional Poisson equation in the appendix.
6

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
Fig. 2. Poisson’s equation: (a) exact solution, (b) predicted solution by PECANN with quadratic distance function, (c) absolute point-wise error. (For inter-
pretation of the colors in the figures, the reader is referred to the web version of this article.)

Table 1
2D Poisson’s equation. Summary of the average and the standard deviation of the relative L2 and
L∞ errors over 5 independent trials along with the number of generated collocation points for
training a fixed neural network architecture with different methods.

Models Relative L2 L∞ N� N∂�

PINN 1.29× 10−1 ± 2.28× 10−2 4.67× 10−1 ± 8.68× 10−2 512 × 25000 512
PECANN 5.90× 10−4 ± 7.69× 10−5 4.12× 10−3 ± 1.47× 10−3 512 × 25000 512

Fig. 3. (a) quadratic and absolute distance functions, (b) relative L2 error bars versus μmax for quadratic distance function averaged over 5 independent
trials, (c) relative L2 error bars versus μmax for absolute distance function averaged over 5 independent trials.

4.2. Two-dimensional Helmholtz equation

Helmholtz equation arises in the study of electromagnetic radiation [52,53], seismology [54], acoustics [55] and many
areas of engineering science. In this section, we study the following benchmark problem that was presented in [36]

∇2u(x, y) + k2u(x, y) = q(x, y), ∀(x, y) ∈ �, (27a)

u(x, y) = 0, ∀(x, y) ∈ ∂�, (27b)

where k = 1, � = {(x, y) | − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1} and ∂� is its boundary. Following the equation presented above, we
manufacture an oscillatory solution that satisfy Eq. (27b) with its boundary conditions as follows:

u(x, y) = sin(πx) sin(4π y),∀(x, y) ∈ �. (28)

We use the same fully connected neural network architecture as in [36], which consists of three hidden layers with 30
neurons per layer and the tangent hyperbolic activation function. We use a Sobol sequence to sample N� = 512 residual
points from the interior part of the domain and N∂� = 256 from the boundaries only once before training. We note that
[36] is generating their data at every epoch, which amounts to N� = 5.12 × 106 and N∂� = 20.48 × 106. Our optimizer is
L-BFGS [56] with its default parameters and strong Wolfe line search function that is built in PyTorch framework [20]. We
train our network for 5000 epochs with our safeguarding penalty parameter μmax = 104.

As illustrated in Fig. 4(b), our PECANN model produces an accurate prediction to the underlying solution with uniform
error distribution across the domain as shown in Fig. 4(c). We also present a summary of the error norms from our approach
and state-of-the-art results presented in [36] averaged over ten independent trials with random Xavier initialization scheme
[51] in Table 2. We observe that results obtained from our method achieve a relative L2 = 4.23 × 10−4, which is two orders
of magnitude lower than 4.31 × 10−2 obtained from the method presented in Wang et al. [36] with only a fraction of their
generated data.
7

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
Fig. 4. Helmholtz equation: (a) exact solution, (b) predicted solution from PECANN model, (c) absolute point-wise error.

Table 2
Helmholtz equation: summary of the average and the standard deviations of the relative L2 and L∞ errors over
10 independent trials along with the number of generated collocation points for training a fixed neural network
architecture with different methods along.
Models Relative L2 L∞ N� N∂�

Ref. [36] 4.31× 10−2 ± 1.68× 10−2 – 128× 40000 4× 128 × 40000
PECANN 4.23× 10−4 ± 3.09× 10−4 1.53× 10−3 ± 7.66× 10−4 512 4× 64

Fig. 5. Klein Gordon equation: (a) exact solution, (b) predicted solution by PECANN, (c) point-wise absolute error.

4.3. Klein-Gordon equation

We consider a nonlinear time-dependent benchmark problem known as the Klein-Gordon equation, which plays a sig-
nificant role in many scientific applications such as particle physics, astrophysics, cosmology, and classical mechanics. This
problem was considered in the work of Wang et al. [36] as well. Consider the following partial differential equation

∂2u

∂t2
+ α

∂2u

∂x2
+ βu + γ uk = f (x, t), ∀(x, t) ∈ � × [0, T], (29a)

u(x,0) = g1(x), ∀x ∈ �, (29b)

∂u(x,0)

∂x
= g2(x), ∀x ∈ �, (29c)

u(x, t) = h(x, t) ∀(x, t) ∈ ∂� × [0, T], (29d)

where α = −1, β = 0, γ = 1 and k = 3 are known constants. � = [0, 1] × [0, 1] with T = 1. The manufactured solution
presented in [36] is as follows

u(x, t) = x cos(5πt) + (xt)3. (30)

The corresponding forcing function f (x, t), boundary condition h(x, t) and initial conditions g1(x) and g2(x) can be calcu-
lated exactly using Eq. (30). We use the same neural network architecture as in [36] which is a deep fully connected neural
network with 5 hidden layers each with 50 neurons that we train for 1500 epochs total. We use Sobol sequence to generate
N� = 512 residual points from the interior part of the domain, N∂� = 512 points from the boundaries and NI = 256 points
for each of the initial conditions as in Eq. (29b) and Eq. (29c) only once before training. Our optimizer is LBFGS with its
default parameters and strong Wolfe line search function that is built in PyTorch framework [20]. Our safeguarding penalty
parameter μmax = 104 as in the previous problem.

As illustrated in Fig. 5(b), our PECANN model produces an accurate prediction to the underlying solution with uniform
error distribution across the domain as shown in Fig. 5(c). In addition, we present a summary of the error norms averaged
over ten independent trials with random Xavier initialization scheme [51] in Table 3. We observe that the best relative L2
8

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
Table 3
Klein–Gordon equation: summary of the average and the standard deviations of the relative L2 and L∞ errors over 10 independent trials along with the
number of generated collocation points for training a fixed neural network architecture with different methods along.
Models Best Relative L2 Relative L2 L∞ N� N∂� NI

Ref. [36] 1.062× 10−2 – – 128 × 40000 2× 128 × 40000 2× 128 × 40000
PECANN 2.158 × 10−4 6.139× 10−4 ± 3.337 × 10−4 1.043 × 10−3 ± 5.908× 10−4 512 2 × 256 2 × 256

error obtained from our PECANN model is two orders of magnitude lower than the best relative L2 norm error reported in
[36] with only a fraction of their generated data. This highlights the predictive power of our method over state-of-the-art
physics-informed neural networks for the solution of a non-linear time-dependent Klein-Gordon equation.

5. Application to inverse problems

In this section, we use our PECANN framework for the solution of inverse problems with multi-fidelity data. By multi-
fidelity, we mean that we have both clean (high-fidelity) data and noisy (low-fidelity) data. We tackle three inverse problems
involving PDEs. It is worth reiterating that we only impose equality constraints and use noisy data (e.g., noisy boundary
conditions, noisy measurement data) as a soft-regularizer JM(θ) in Eq. (19).

5.1. Learning hydraulic conductivity of nonlinear unsaturated flows from multi-fidelity data

Our PECANN framework is also suitable for the solution of inverse-PDE problems using multi-fidelity data. With multi-
fidelity, we mean that the observed data may include both data with low accuracy and data with very high accuracy. As part
of our objective function formulation, we can constrain the high-fidelity data in a principled fashion and take advantage
of the low-fidelity data to regularize our hypothesis space. To demonstrate our framework, we study one of the difficult
multi-fidelity example problems that were tackled in Meng and Karniadakis [32] with composite neural networks. This
particular inverse-PDE problem arises in unsaturated flows as they are central in characterizing contaminant transport [57],
soil-atmosphere interaction [58], soil-plant-water interaction [59], ground-subsurface water interaction zone [60] to name
a few. Describing processes involving soil-water interactions at a microscopic level is very complex due to the existence
of tortuous, irregular, and interconnected pores [61]. Therefore, these flows are generally characterized in terms of their
macroscopic characteristics. An important quantity that is essential in describing flows through unsaturated soil is hydraulic
conductivity, which is a nonlinear parameter that is highly dependent on the geometry of the porous media [61]. Let us
consider the following nonlinear differential equation representing an unsaturated one-dimensional (1D) soil column with
variable water content:

d

dx
(K (h)

dh(x)

dx
) = 0, x ∈ �, (31)

subject to the following boundary conditions,

h(0) = −3, (32a)

h(200) = −10, (32b)

where � = {x | 0 ≤ x ≤ 200 cm}, h(x) is the pressure head (cm) and K (h) is the hydraulic conductivity (cm h−1) which is
described as follows:

K (h) = Ks S
1/2
e

[
1− (1− S1/me)m

]2
, (33)

where Ks is the saturated hydraulic conductivity (cm h−1), and Se is the effective saturation expressed as follows [62]:

Se = 1

(1+ |αh|n)m ,m = 1− 1/n, (34)

where α is an empirical parameter that is inversely related to the air-entry pressure value (cm−1) and m is an empirical
parameter related to the pore-size distribution that is hard to measure due to the complex geometry of the porous media.
We aim to infer the unknown empirical parameters α, and m from sparse measurements of pressure head h. To generate
multi-fidelity synthetic measurements or experimental data, we select the soil type loam for which the empirical parameters
are as follows: α = 0.036 and m = 0.36.

We generate high-fidelity pressure data using the exact empirical parameters and low-fidelity data with α = 0.015
and m = 0.31. Using the built-in bvp5c MATLAB function, we solve the governing PDE as given in Eqs. (31) through
Eq. (34) using the selected empirical parameters to generate multi fidelity training data as shown in Fig. 6(a). In Fig. 6(b)
we also depict the corresponding hydraulic conductivity k(h) values for the pressure head data, which shows that low-
fidelity hydraulic conductivity has a significant deviation from the exact hydraulic conductivity distribution. To highlight the
9

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
Fig. 6. Parameter inference on multi-fidelity data for unsaturated flow through porous media: (a) low fidelity (LF) and high fidelity (HF) pressure head
data used for training, (b) hydraulic conductivity corresponding to low-fidelity and high-fidelity training data, (c) pressure head reconstruction by PECANN
model trained on high-fidelity and multi-fidelity data separately, (d) reconstructed hydraulic conductivity by PECANN model trained by high-fidelity and
multi-fidelity data separately.

Table 4
Summary of the inferred parameters from using high-fidelity (HF) only or multi-fidelity (MF) data in the learning process
averaged over ten different runs. Note that the training time, averaged over 10 independent trials, for our PECANN model is
only 4 seconds on a CPU.
Models Avg. α σ(α) Relative Error(α) Avg. m σ(m) Relative Error(m)

Ref. [32] with HF data only 0.0440 – 22.22% 0.377 – 4.72%
PECANN with HF data only 0.0351 7.18× 10−4 2.58% 0.354 2.78× 10−3 1.78%
Ref. [32] with MF data 0.0337 7.91× 10−4 6.39% 0.349 3.70× 10−3 3.06%
PECANN with MF data 0.0359 7.51× 10−4 0.30% 0.357 2.74× 10−3 0.86%
Exact value 0.0360 – – 0.360 – –

robustness, efficiency, and accuracy of our framework on an inverse-PDE with multi-fidelity data fusion, we compare our
results with the results reported in Meng and Karniadakis [32]. For comparison purposes, we also choose a feed-forward
neural network with two hidden layers with 20 neurons per layer as in [32] for their physics-informed neural network
trained on high fidelity alone which failed to discover the parameters of interest. However, Meng and Karniadakis [32]
constructed customized networks for high fidelity data and low fidelity data separately and then aggregated them together
by manually crafted correlations. Therefore, they refer to their approach as composite neural networks. Unlike Meng and
Karniadakis [32], we do not need to make any inductive bias about the data and, therefore, use a single network initialized
with Xavier initialization technique [51] that we separately train on high-fidelity and multi-fidelity data. This shows the
robustness and efficiency of our approach that we can train the same network on multi-fidelity data without the need to
design customized networks to process data differently. We let a single network discover and extract features from multi-
fidelity data with the help of known physics. We use Adam with its default parameters and 10−2 initial learning rate. We
set the maximum penalty parameter μmax = 104 and train our network for 2000 epochs total. As for the collocation points,
we use the Sobol sequence and generate 400 residual points from across our domain in each epoch. As considered in [32],
we assume the flux at the inlet q0 is known, which allows us to use the integral form of Eq. (31) given as follows,

q(x) = −K (h)
dh(x)

dx
= q0,

dq(x)

dx
= 0. (35)

Fig. 6(a) and Fig. 6(b) depict the reconstructed pressure head and the corresponding hydraulic conductivity distributions
obtained from our PECANN model trained on high-fidelity and multi-fidelity data separately. Compared with the exact
solution, it is seen that the inferred results are highly accurate, which shows the robustness and efficiency of our method.
Furthermore, in Table 4, we report the average and standard deviation of inferred α and m from our model along with the
results from Meng and Karniadakis [32]. The results are over 10 independent trials with random initialization using Xavier
[51] scheme.

From Table 4, we observe that our results are significantly outperforming the reported results in [32]. It is worth noting
that we are using just a single neural network architecture that is the low-fidelity model in the composite neural network
model proposed in [32] and our average CPU training time is only 4 seconds.

5.2. Boundary heat flux identification

In this section, we apply our framework to study an inverse heat conduction problem (IHCP) where boundary condi-
tions are partially accessible. Typically, these problems arise in a plethora of industrial and engineering applications where
measurements can only be made in easily-accessible locations or the quantity of interest can be measured indirectly. Unfor-
tunately, inverse problems are ill-posed and ill-conditioned because unknown solutions and parameter values usually have
10

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
Fig. 7. (a) exact qx , (b) exact qy , (c) location of thermocouples.

to be determined from indirect observable data that contains measurement error [63–66]. Here, we aim to identify spatio-
temporal boundary heat flux given partial spatio-temporal temperature observations inside the domain as in the work of
Wang and Zabaras [66].

∂T

∂t
= ∂2T

∂x2
+ ∂2T

∂ y2
, 0 < x, y < 1, t ∈ [0,1], (36a)

T (x, y,0) = −2 sin(πx) sin(π y), 0 ≤ x, y ≤ 1, (36b)

T |x=1 = T |y=1 = 0, 0 < t < 1 (36c)

∂T

∂x

∣∣∣∣∣
x=0

= qx (unknown), 0 < t < 1, (36d)

∂T

∂ y

∣∣∣∣∣
y=0

= qy, (unknown) 0 < t < 1, (36e)

where qx and qy are the unknown heat fluxes to be discovered. As considered in [66], an analytical solution to this problem
can be obtained as follows

T (x, y, t) = −2π sin(πx) sin(π y)e−2π2t, (37)

with the exact heat fluxes as follows

qx = −2π sin(π y)e−2π2t (38a)

qy = −2π sin(πx)e−2π2t. (38b)

An exact representation of qx and qy are presented in Fig. 7(a) and (b). The inverse problem is to discover qx and qy given
partial observation from a set of thirteen thermocouples with 0.125 space interval and 0.125 distance to the boundary as
shown in Fig. 7(c).

The sampling time interval is taken as dt = 0.002. The heat flux history was reconstructed for the time range t ∈ [0 :
0.05], N = 25, hence, there are 325 observations. Wang and Zabaras [66] represented the unknown flux quantities by
parametric linear functions and proposed a Bayesian approach by employing a specialized model of Markov random field
(MRF) as prior distribution. Three different cases were considered. Uncertainty in temperature measurements was modeled
as stationary zero-mean white noise with standard deviations of σ = 0.005, σ = 0.01 and σ = 0.02. We employ a 3 hidden-
layer fully-connected neural network with 30 neurons per layer to learn the temperature field for the entire domain. Our
optimizer is LBFGS with its default parameters and strong-Wolfe line search function built-in PyTorch framework. We set
the limiting penalty parameter μmax = 104 similar to previous problems and we train our network for 10000 epochs. We
use Sobol sequences to sample 512 residual points in the domain, 512 points for the Dirichlet boundary conditions, and
512 points for the initial condition only once before training our network. The predictions of our neural network model
are shown in Fig. 8. We observe that our network has successfully inferred heat fluxes for all three cases. A summary of
the error percentage from our method along with the best results from [66] is provided in Table 5. We observe that our
approach has improved the reported results of [66] by a factor of 10 in all three cases.

5.3. Patient-specific tumor growth modeling

In this section, we aim to develop a patient-specific tumor model using noisy magnetic resonance images (MRI).
Treatment for tumors involves surgery, radiation, and chemotherapy. Nevertheless, cancer cells may remain after surgery,
resulting in recurrence of the tumor and eventual death [67,68]. Therefore, models based on patient-specific information
11

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
Fig. 8. Heat flux reconstruction: Top row: qx (a) predicted flux distribution for case I, (b) predicted flux distribution for case II, (c) predicted flux distribution
for case III. Bottom row: qy , (d) predicted flux distribution for case I, (e) predicted flux distribution for case II, (f) predicted flux distribution for case III.

Table 5
qx reconstruction error by different methods with noisy measure-
ment data.
Models σ = 0.005 σ = 0.01 σ = 0.02

Ref. [66] 4.62% 5.45% 5.75%
PECANN with MF data 0.53% 0.61% 0.89%

are needed to identify tumor cells that may lie beyond the threshold visible to magnetic resonance imaging. Assuming
isotropic brain structure and radial symmetry, we can describe tumor cell density evolution using the following non-linear
reaction-diffusion type partial differential equation [69–73].

∂u(r, t)

∂t
= D

∂2u(r, t)

∂r2
+ ρu(r, t)(1 − u(r, t)), in � × [0,5] (39)

∂u(r, t)

∂r
= 0, on ∂� (40)

u(r,0) = ϕ(r), in � (41)

where � = {r | 0 ≤ r ≤ 10} is the domain with its boundary ∂�, u(r, t) is the unknown tumor cell density at time t [year]
and distance r [mm]. D is the unknown diffusion coefficient of tumor cells in the brain tissue and ρ is the unknown
proliferation coefficient. ϕ is a point source initial condition. It is assumed that at the time of death t = 5, the visually
detectable area of tumor volume is equal to a circle of 10 mm in radius. As a proof of concept, we generate synthetic MRI
data by solving Eq. (39) in forward mode using finite difference scheme with �r = 0.0196, �t = 10−5 assuming D = 0.50,
ρ = 1.00 with the following initial condition

ϕ(r) = 1

10
e−r, in �. (42)

Our synthetic data includes two solutions at t = 1 and t = 2 that simulate patient tumor cell density distribution obtained
from MRI of brain scans at the corresponding time states. We further corrupt these data using uncorrelated Gaussian noise
with σ = 0.01. The corresponding noise percent of the data is presented in Table 6.

From Table 6 we observe that our data contain different levels of noise which indicates different levels of fidelity. Finally,
we use our corrupted tumor density distribution at t = 1 and t = 2 as low fidelity data along with Eq. (40) as our boundary
constraint (high fidelity data) to infer unknown parameters of Eq. (39). For this problem, we generate N� = 512 residual
points to approximate the loss on Eq. (39) and N∂� = 512 to constrain the boundaries only once before training. We also
generate 512 points with their labels from our corrupted synthetic brain scan data. We use a feed-forward neural network
12

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
Table 6
Error percentage of corrupted MRI data
with uncorrelated Gaussian noise with
standard deviation σ = 0.01.

u(r, t = 1) u(r, t = 2)

Noise % 10.34% 5.01%

Fig. 9. Natural tumor cell density distribution at different time states. Top row: (a) synthetic brain scan at year one used for training, (b) synthetic brain
scan at year two used for training, (c) synthetic brain scan at year five used for testing. Bottom row: (d) reconstructed brain scan data at year one, (e)
reconstructed brain scan data at year two, (f) predicted brain scan data at year five.

Table 7
Tumor growth modeling. Summary of inferred parameters using multi-
fidelity data in the learning process averaged over ten independent trials
with random initialization.

D ρ

Exact 0.50 1.00
PECANN with MF data 0.49± 4.90× 10−3 1.00± 9.93× 10−4

with two hidden layers each with 10 neurons per layer. Our optimizer is LBFGS with its default parameters and strong
Wolfe line search function built in PyTorch framework [20]. Our network is trained for 200 epochs with Xavier initialization
scheme [51]. We initialize D ∈ [0.3285, 0.973] and ρ ∈ [0.73, 2.92] randomly as suggested in [74].

From Fig. 9 we observe that our model not only reconstructs the original data from corrupted noisy data, but also
generalizes well to predict the unseen MRI data at the terminal year t = 5.

A summary of our inferred parameters is presented on Table 7 over 10 independent trials with random Xavier initializa-
tion scheme [51].

6. Conclusion

We have shown that the unconstrained optimization problem formulation pursued in physics-informed neural networks
(PINN) is a major source of poor performance when the PINN approach is applied to learn the solution of more challenging
multi-dimensional PDEs. We addressed this issue by introducing physics- and equality-constrained artificial neural networks
(PECANN), in which we pursue a constrained-optimization technique to formulate the objective function in the first place.
Specifically, we adopt the augmented Lagrangian method (ALM) to constrain the PDE solution with its boundary and initial
conditions, and with any high-fidelity data that may be available. The objective function formulation in the PECANN model
is sufficiently general to admit low-fidelity data to regularize the hypothesis space in inverse problems as well. We applied
our proposed method for both forward problems and inverse problems with multi-fidelity data fusion. For all the problems
13

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
considered, our PECANN model produced results that are in excellent agreement with exact solutions, while the PINN
approach failed to produce acceptable predictions.

It is a common practice to use conventional feed-forward neural networks in the PINN approach. However, these types
of neural networks are known to suffer from the so-called vanishing gradient problem, which stalls the learning process.
Residual layers (a.k.a. ResNets) that were originally proposed by He et al. [2] tackle the vanishing gradient problem with
identity skip connections. In our work, we have modified the original residual layers by restricting them to a single weight
layer with a tanh activation function and identity skip connections. We find our leaner version of the residual layers to be
very effective in improving the accuracy of the PDE predictions for both the original PINN model and our PECANN model.

Our findings suggest that not only the choice of the neural network architecture, but also the optimization problem
formulation is crucial in accurately learning PDEs using artificial neural networks. We conjecture that future progress in
physics-constrained (informed) learning of PDEs would come from exploring new approaches in the field of non-convex
constrained optimization field. Future endeavors could shed light on challenging questions such as: how does the loss
landscape of neural networks change with respect to the optimization problem formulation? What is the optimal neural
network architecture for PDE learning? And, is there a physics-based approach in searching for optimal architectures?

CRediT authorship contribution statement

Shamsulhaq Basir: Conceptualization, Formal analysis, Investigation, Methodology, Software, Validation, Visualization,
Writing – review & editing. Inanc Senocak: Conceptualization, Funding acquisition, Methodology, Resources, Supervision,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1953204 and in part
by the University of Pittsburgh, Center for Research Computing through the resources provided.

Appendix A. Additional examples

A.1. One-dimensional Poisson’s equation

The aims of this pedagogical example are twofold: First, we thoroughly demonstrate the implementation intricacies
of our proposed method and highlight its advantages over the PINN approach. Second, we demonstrate the significant
improvement achieved in the model prediction using our modified residual architecture relative to the original residual
networks [2].

Let us consider the following one-dimensional Poisson’s equation

d2u

dx2
= −(15π)2 cos(15πx), x ∈ �, (A.1)

u(x) = cos(15πx), x ∈ ∂�, (A.2)

where � = {x | 0 ≤ x ≤ 1} and ∂� is its boundary. The exact solution to the above problem is a sinusoidal nonlinear function
u(x) = cos(15πx). Considering a neural network solution for the above equation as û(x; θ) parameterized with θ , we write
the residual form of this one-dimensional Poisson’s equation as follows:

F := d2uθ

dx2
+ (15π)2 cos(15πx) x ∈ �, (A.3)

B := uθ (x) − cos(15πx), x ∈ ∂�. (A.4)

Next, we use the above residual form of this differential equation to construct an objective function as proposed earlier in
Eq. (19)

L(θ) =
N�∑
i=1

|F(x(i))|2 +
2∑

i=1

λ(i)φ(B(x(i))) + μ

2

2∑
i=1

|φ(B(x(i)))|2 (A.5)

where μ is the penalty parameter and N� is the number residual points sample from � at every epoch. λ ∈R2 is a vector
of Lagrange multipliers for the boundary constraints and φ is the quadratic distance function. In contrast to our constrained
14

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
Fig. A.10. Performance comparison of PINN vs PECAN for different neural network architectures: (a) conventional neural network, (b) original residual neural
network, (c) modified residual neural network. Note that PECANN approach converged with all network architectures while PINN only converged with our
proposed modified residual neural network but with poor norms of errors.

Table A.8
One dimensional Poisson’s equation: summary of relative L2 norms and L∞ norms for
different neural network models trained with different approaches.

PINN PECANN

Relative L2 L∞ L2 L∞
Conventional NN 1.00 1.00 1.73× 10−3 1.80× 10−3

Original Residual NN 4.75 5.84 3.41× 10−3 3.43× 10−3

Proposed Residual NN 4.63× 10−2 5.74 × 10−2 1.35× 10−4 1.66× 10−4

optimization with the ALM, the composite objective function adopted in PINNs (i.e. Eq. (4)) yields the following loss function
for the current example

L(θ) = 1

N�

N�∑
i=1

|F(x(i))|2 + 1

2

2∑
i=1

|B(x(i))|2 (A.6)

Having constructed the objective functions using the constrained-optimization method in the present work and the com-
posite approach adopted in PINNs, we design three networks in such a way that they have the same number of neurons and
hidden layers to allow a fair comparison. We use six weight layers with 50 neurons per layer in all three neural network
models. More specifically, we have six weight layers in our conventional feed-forward neural network model. Similarly, our
second neural network model with the original residual layers has one weight layer in the front with two residual layers
and an output weight layer, which makes a total of six weight layers. For our last neural network model with our proposed
residual layers, we have a weight layer succeeded by four modified residual layers and an output weight layer that amounts
to six weight layers as well. Therefore, all three models have the same number of neurons and the same number of weight
layers and are end-to-end trainable. For this problem, the parameters of the network are initialized randomly with the
Xavier initialization technique [51]. We use Adam [75] with an initial learning rate of 10−2. We reduce our learning rate by
a factor of 0.95 after 100 epochs with no improvement in the objective function. We use the same hyperparameters and
train all the models under the same training settings with both objectives as in Eq. (A.5) and Eq. (A.6). We set the limiting
penalty parameter μmax = 102. As for the collocation points, we randomly generate N� = 654 residual points from across
our domain with uniform probability along with two boundary conditions at each optimization step. The results from all
three neural network architectures trained with the PINN and PECANN approaches are juxtaposed in Fig. A.10. We observe
from these results that the PINN model with a composite objective function is visibly sensitive to the neural network choice
and benefits the most from the adoption of modified residual layers, whereas the PECANN model with equality-constrained
optimization is qualitatively less sensitive to the choice of the neural network architecture and performs very well for all
three networks. From Table A.8 we observe that for conventional NN and for the original residual neural network the rel-
ative L2 error from our PECANN model is three orders of magnitude lower than the one obtained from our PINN model.
However, with our lean residual network, it decreases to two orders of magnitude which demonstrates the impact of our
neural network architecture.

A.2. Three-dimensional Poisson’s equation

We consider the following non-homogeneous three dimensional Poisson’s equation in a cubic domain

∇2u(x, y, z) = f (x, y, z), (x, y, z) ∈ �, (A.7)

subject to the following boundary conditions

u(x, y, z) = g(x, y, z), (x, y, z) ∈ ∂�, (A.8)
15

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
Fig. A.11. Three dimensional Poisson’s equation. Top row: cross section view of the solution at z = 0.2, (a) exact solution, (b) predicted solution from
PECANN model, (c) absolute point-wise error distribution. Bottom row: plots over line obtained from different methods, (d) straight line connecting point
(0, 0, 0) to point (1, 1, 1), (e) straight line connecting (0, 0, 0) and (0, 0, 1) points, (f) straight line connecting point (0, 0, 1) to point at (1, 0, 1).

Table A.9
Three dimensional Poisson’s equation: summary of relative L2 norms and L∞ norms for different
neural network models averaged over 10 independent trials with random initialization with Xavier
scheme.

Models Relative L2 L∞ N� N∂�

PINN 1.09× 10−1 ± 1.54× 10−2 2.31 × 10−1 ± 4.56× 10−2 256 × 15000 6× 256
PECANN 2.39× 10−3 ± 2.93 × 10−4 6.21× 10−3 ± 1.55 × 10−3 256 × 15000 6× 256

where � = {0 ≤ x, y, z ≤ 1} with its boundary ∂�, f and g are known source functions in � and on ∂�. We manufacture
a sinusoidal solution of the following form

u(x, y, z) = cos(2πx) cos(π y) cos(π z),∀(x, y, z) ∈ �. (A.9)

We will use the exact solution eq. (A.9) to evaluate the source functions f and g and solve Eq. (A.7). For this purpose, we use
our lean residual neural network with three hidden layers each with 50 neurons. Our optimizer is Adam [75] with its default
parameters and 10−2 initial learning rate. We also reduce our learning rate by a factor of 0.95 if the objective does not
improve after 100 optimization steps. Our network is trained for 15000 epochs with randomly initialized weights according
to Xavier scheme [51]. We generate N∂� = 6 × 256 number of points on the boundaries ∂� only once before training and
N� = 256 residual points in the domain � at every optimization step. We present a section view of the predicted solution
obtained from our PECANN model in Fig. A.11. Since our physics-informed neural network failed to converge as can be seen
from the error norms in Table A.9, we did not include a section view of its predicted solution. However, we provide plots
over straight lines drawn between two points within the domain. From Fig. A.11(d)-(f) we observe that our PINN model
either underpredicted or overpredicted the regions with high gradients and regions close to the boundaries. However, our
PECANN model successfully learned the underlying solution. From Table A.9 we observe that for the relative L2 error from
our PECANN model is two orders of magnitude lower than the one obtained from our PINN model which highlights the
effectiveness of our method over conventional physics-informed neural networks.

References

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, NIPS 25 (2012) 1097–1105.
[2] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 770–778.
[3] G. Hinton, L. Deng, D. Yu, G.E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T.N. Sainath, B. Kingsbury, Deep neural networks for

acoustic modeling in speech recognition: the shared views of four research groups, IEEE Signal Process. Mag. 29 (2012) 82–97.
[4] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks, CoRR, arXiv:1409 .3215, 2014.
[5] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, in: 3rd International Conference on Learning

Representations, ICLR 2015, 2015.
16

http://refhub.elsevier.com/S0021-9991(22)00363-1/bib3C34DCA6396B36E024787CB654EDBD8Ds1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib1159C580214BA145EFEFCE903CCC1A58s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib1159C580214BA145EFEFCE903CCC1A58s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib5A89250201CE334ABAEFCA4E65AFB49Bs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib5A89250201CE334ABAEFCA4E65AFB49Bs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibAB94CAEE7D91F4F58787B06C45E4AC78s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib049DEBCB3359458965E10F1A345FE1EDs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib049DEBCB3359458965E10F1A345FE1EDs1

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
[6] J. Weston, S. Chopra, K. Adams, #TagSpace: semantic embeddings from hashtags, in: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Association for Computational Linguistics, Doha, Qatar, 2014, pp. 1822–1827.

[7] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 (2015) 85–117.
[8] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359–366.
[9] M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function,

Neural Netw. 6 (1993) 861–867.
[10] P. Grohs, F. Hornung, A. Jentzen, P. Von Wurstemberger, A proof that artificial neural networks overcome the curse of dimensionality in the numerical

approximation of Black–Scholes partial differential equations, arXiv preprint, arXiv:1809 .02362, 2018.
[11] J. Darbon, G.P. Langlois, T. Meng, Overcoming the curse of dimensionality for some Hamilton–Jacobi partial differential equations via neural network

architectures, Res. Math. Sci. 7 (2020).
[12] J. Berner, P. Grohs, A. Jentzen, Analysis of the generalization error: empirical risk minimization over deep artificial neural networks overcomes the

curse of dimensionality in the numerical approximation of Black–Scholes partial differential equations, SIAM J. Math. Data Sci. 2 (2020) 631–657.
[13] M.W.M.G. Dissanayake, N. Phan-Thien, Neural-network-based approximations for solving partial differential equations, Commun. Numer. Methods Eng.

10 (1994) 195–201.
[14] B.P. van Milligen, V. Tribaldos, J.A. Jiménez, Neural network differential equation and plasma equilibrium solver, Phys. Rev. Lett. 75 (1995) 3594–3597.
[15] C. Monterola, C. Saloma, Solving the nonlinear Schrodinger equation with an unsupervised neural network, Opt. Express 9 (2001) 72–84.
[16] D. Parisi, M.C. Mariani, M. Laborde, Solving differential equations with unsupervised neural networks, Chem. Eng. Process. 42 (2003) 715–721.
[17] M. Hayati, B. Karami, Feedforward neural network for solving partial differential equations, J. Appl. Sci. 7 (2007) 2812–2817.
[18] I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (1998)

987–1000.
[19] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G.

Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: a system for large-scale machine learning, in: Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, USENIX Association, USA, 2016, pp. 265–283.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: an imperative style, high-performance deep learning library, in:
Advances in Neural Information Processing Systems, vol. 32, 2019, pp. 8024–8035.

[21] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018) 1–12.
[22] J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. USA 115 (2018) 8505–8510.
[23] J. Sirignano, K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[24] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty

quantification without labeled data, J. Comput. Phys. 394 (2019) 56–81.
[25] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involv-

ing nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[26] M. Raissi, Deep hidden physics models: deep learning of nonlinear partial differential equations, J. Mach. Learn. Res. 19 (2018) 932–955.
[27] M. Raissi, Z. Wang, M.S. Triantafyllou, G.E. Karniadakis, Deep learning of vortex-induced vibrations, J. Fluid Mech. 861 (2019) 119–137.
[28] G. Kissas, Y. Yang, E. Hwuang, W.R. Witschey, J.A. Detre, P. Perdikaris, Machine learning in cardiovascular flows modeling: predicting arterial blood

pressure from non-invasive 4D flow MRI data using physics-informed neural networks, Comput. Methods Appl. Mech. Eng. 358 (2020) 112623.
[29] A. Yazdani, L. Lu, M. Raissi, G.E. Karniadakis, Systems biology informed deep learning for inferring parameters and hidden dynamics, PLoS Comput.

Biol. 16 (2020) e1007575.
[30] B.M. de Silva, J. Callaham, J. Jonker, N. Goebel, J. Klemisch, D. McDonald, N. Hicks, J.N. Kutz, S.L. Brunton, A.Y. Aravkin, Physics-informed machine

learning for sensor fault detection with flight test data, arXiv preprint, arXiv:2006 .13380, 2020.
[31] Y. Liu, J.N. Kutz, S.L. Brunton, Hierarchical deep learning of multiscale differential equation time-steppers, arXiv preprint, arXiv:2008 .09768, 2020.
[32] X. Meng, G.E. Karniadakis, A composite neural network that learns from multi-fidelity data: application to function approximation and inverse pde

problems, J. Comput. Phys. 401 (2020) 109020.
[33] A.A. Ramabathiran, P. Ramachandran, SPINN: sparse, physics-based, and partially interpretable neural networks for PDEs, J. Comput. Phys. 445 (2021)

110600.
[34] R. van der Meer, C.W. Oosterlee, A. Borovykh, Optimally weighted loss functions for solving PDEs with neural networks, CoRR, arXiv:2002 .06269, 2020.
[35] L. McClenny, U. Braga-Neto, Self-adaptive physics-informed neural networks using a soft attention mechanism, arXiv preprint, arXiv:2009 .04544, 2020.
[36] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies in physics-informed neural networks, SIAM J. Sci. Comput. 43

(2021) A3055–A3081.
[37] S.L. Brunton, B.R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics, Annu. Rev. Fluid Mech. 52 (2020) 477–508.
[38] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (2021) 422–440.
[39] M.D. Zeiler, Adadelta: an adaptive learning rate method, arXiv preprint, arXiv:1212 .5701, 2012.
[40] M.J. Powell, A method for nonlinear constraints in minimization problems, in: R. Fletcher (Ed.), Optimization; Symposium of the Institute of Mathe-

matics and Its Applications, University of Keele, England, 1968, Academic Press, London, New York, 1969, pp. 283–298.
[41] M.R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl. 4 (1969) 303–320.
[42] M. Bierlaire, Optimization: Principles and Algorithms, EPFL Press, CRC Press, Lausanne, Boca Raton, 2015.
[43] J.R. Martins, A. Ning, Engineering Design Optimization, Cambridge University Press, 2021.
[44] S. Boyd, N. Parikh, E. Chu, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Now Publishers Inc.,

2011.
[45] D.P. Bertsekas, Multiplier methods: a survey, Automatica 12 (1976) 133–145.
[46] J. Nocedal, S. Wright, Numerical Optimization, Springer Science & Business Media, 2006.
[47] A. Dener, M.A. Miller, R.M. Churchill, T. Munson, C.-S. Chang, Training neural networks under physical constraints using a stochastic augmented La-

grangian approach, arXiv preprint, arXiv:2009 .07330, 2020.
[48] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, S.G. Johnson, Physics-informed neural networks with hard constraints for inverse design, SIAM J. Sci.

Comput. 43 (2021) B1105–B1132.
[49] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks, in: European Conference on Computer Vision, Springer, 2016, pp. 630–645.
[50] E. Weinan, A proposal on machine learning via dynamical systems, Commun. Math. Stat. 5 (2017) 1–11.
[51] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Y.W. Teh, M. Titterington (Eds.), Proceedings of

the Thirteenth International Conference on Artificial Intelligence and Statistics, in: Proceedings of Machine Learning Research, PMLR, vol. 9, 2010,
pp. 249–256.

[52] J.-H. Li, X.-Y. Hu, S.-H. Zeng, J.-G. Lu, G.-P. Huo, B. Han, R.-H. Peng, Three-dimensional forward calculation for loop source transient electromagnetic
method based on electric field Helmholtz equation, Chin. J. Geophys. 56 (2013) 4256–4267.

[53] L. Greengard, J. Huang, V. Rokhlin, S. Wandzura, Accelerating fast multipole methods for the Helmholtz equation at low frequencies, IEEE Comput. Sci.
Eng. 5 (1998) 32–38.
17

http://refhub.elsevier.com/S0021-9991(22)00363-1/bib3406CEBB0477CDDED9C7E79D4E72B640s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib3406CEBB0477CDDED9C7E79D4E72B640s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib13A7E28FB3EBDA0FE1E793E32755D0EFs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibB552F98C7E0C024B25FE654A214EE2E1s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib389EF6677188C627E38B6DD2E7F47418s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib389EF6677188C627E38B6DD2E7F47418s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibE72EA92426C6F98B85C9BCE6CA1E6BFCs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibE72EA92426C6F98B85C9BCE6CA1E6BFCs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib5A456D60F8BE5D61EBAE87E79EA0AAE9s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib5A456D60F8BE5D61EBAE87E79EA0AAE9s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibE121D013BB13B3E41E8019768BF0E96Ds1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibE121D013BB13B3E41E8019768BF0E96Ds1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib6F61703F07A2466167D962A6FB23EBEBs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib6F61703F07A2466167D962A6FB23EBEBs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibB48DDB6BB45A404C9DB0F0C1A0FCDA2Cs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib6061AA9BAAD32BB562C796F9A6196C19s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib364C43A54063FF625B453F25E4CBB80Cs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib5BB5F3BC4546789CD28F758E8D9DE9BCs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib3BAB71061A41AAFC901D883266809035s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib3BAB71061A41AAFC901D883266809035s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibA3F24B687BED6361BD7EB7C52B2B209Es1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibC67D4A5E237287213B8F979EE8AF44D4s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib8B90E81BB28AC40F01D08933FA24746Es1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib5410791384447F47C4E36D681546FC53s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib5410791384447F47C4E36D681546FC53s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib231A287367CFEE39E4657EA7B54D6F4As1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib231A287367CFEE39E4657EA7B54D6F4As1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib13CCFE1DBA8497442CF037F2CCDDC30As1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib1326E29EA3F938282E7FEC2D8F15E192s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib0105BE1901C56081FD9250FB5273AA89s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib0105BE1901C56081FD9250FB5273AA89s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib098B19BFF30F3D41341C92E4E68C83E8s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib098B19BFF30F3D41341C92E4E68C83E8s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibC28D1AD2A123C8FAF65B6A117D7E5716s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibC28D1AD2A123C8FAF65B6A117D7E5716s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibC34A6FBB843ADB91924BB0699D48A263s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibD6CAA32441E862DB3C88A66E6A6F49E5s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibD6CAA32441E862DB3C88A66E6A6F49E5s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibB5A59511E746276103B7ECC65E96FB0Es1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibB5A59511E746276103B7ECC65E96FB0Es1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib6C079372D30F79B03F22CBEBF5774BDAs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib37091E90D1DF7F03A8A42BFA6F6DC43Es1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib4D2EFF244A9E41090258B56606DD5F16s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib4D2EFF244A9E41090258B56606DD5F16s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibBCAF3F7D4CAFBFBEF3C34CCD99B1A3EEs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibA4B38A846DC1F3C5A36203BEF49C3641s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibDDB0C57362AC68470FE3D3FDCCDEDFAEs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibDBE54741A264E3371AB7B35F0D3CA091s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibDBE54741A264E3371AB7B35F0D3CA091s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib3D16167CCE4FAECBC8911C8E68E1E011s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib6A6495D032E175501CCBECB6D0F83983s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibE03AADF86DD596E7F68599A20956F081s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibBC921F23AF43AE450FD3C614607E4C0Bs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibBC921F23AF43AE450FD3C614607E4C0Bs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibF58E0033F7DB0A9BADD381EAD0FDA367s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib4DA0EF93AE8FDBAF2EC9720200F337BDs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib22F922FC1E40092AB8F9F55A79F6AE89s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib22F922FC1E40092AB8F9F55A79F6AE89s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib2244AF586A96EBC2E58AC5A7FAC0D7FBs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib2244AF586A96EBC2E58AC5A7FAC0D7FBs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib246C6B1CC941E3334E8F72F30C0C1E97s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibC882CE334754AE4ACF75BC943E72EC3Ds1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib7D49A3E95768F824C80E5D1A8A0D9AB0s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib7D49A3E95768F824C80E5D1A8A0D9AB0s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib7D49A3E95768F824C80E5D1A8A0D9AB0s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib9B8370F302EA85CD6DF96957826EDF43s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib9B8370F302EA85CD6DF96957826EDF43s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib3BFEA652318651D7FEBB34FD673027E7s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib3BFEA652318651D7FEBB34FD673027E7s1

S. Basir and I. Senocak Journal of Computational Physics 463 (2022) 111301
[54] R.-E. Plessix, A Helmholtz iterative solver for 3D seismic-imaging problems, Geophysics 72 (2007) SM185–SM194.
[55] A. Bayliss, C.I. Goldstein, E. Turkel, The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics, Comput.

Math. Appl. 11 (1985) 655–665.
[56] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput. 35 (1980) 773–782.
[57] A.A. Javadi, M.M. Al-Najjar, B. Evans, Flow and contaminant transport model for unsaturated soil, in: Theoretical and Numerical Unsaturated Soil

Mechanics, Springer, 2007, pp. 135–141.
[58] N. An, S. Hemmati, Y. Cui, Numerical analysis of soil volumetric water content and temperature variations in an embankment due to soil-atmosphere

interaction, Comput. Geotech. 83 (2017) 40–51.
[59] V. Gadi, S. Singh, M. Singhariya, A. Garg, S. Sreedeep, K. Ravi, Modeling soil-plant-water interaction: effects of canopy and root parameters on soil

suction and stability of green infrastructure, Eng. Comput. (2018).
[60] M. Hayashi, D.O. Rosenberry, Effects of ground water exchange on the hydrology and ecology of surface water, Ground Water 40 (2002) 309–316.
[61] D. Hillel, Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations, Elsevier, 1998.
[62] M.T. Van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44 (1980) 892–898.
[63] J.V. Beck, B. Blackwell, C.R.S. Clair Jr, Inverse Heat Conduction: Ill-posed Problems, James Beck, 1985.
[64] Y. Hon, T. Wei, A fundamental solution method for inverse heat conduction problem, Eng. Anal. Bound. Elem. 28 (2004) 489–495.
[65] S.-Y. Shen, A numerical study of inverse heat conduction problems, Comput. Math. Appl. 38 (1999) 173–188.
[66] J. Wang, N. Zabaras, A Bayesian inference approach to the inverse heat conduction problem, Int. J. Heat Mass Transf. 47 (2004) 3927–3941.
[67] K.R. Swanson, C. Bridge, J. Murray, E.C. Alvord Jr, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion,

J. Neurol. Sci. 216 (2003) 1–10.
[68] A. Giese, R. Bjerkvig, M. Berens, M. Westphal, Cost of migration: invasion of malignant gliomas and implications for treatment, J. Clin. Oncol. 21 (2003)

1624–1636.
[69] R. Jaroudi, Inverse Mathematical Models for Brain Tumour Growth, vol. 1787, Linköping University Electronic Press, 2018.
[70] S. Jbabdi, E. Mandonnet, H. Duffau, L. Capelle, K.R. Swanson, M. Pélégrini-Issac, R. Guillevin, H. Benali, Simulation of anisotropic growth of low-grade

gliomas using diffusion tensor imaging, Magn. Reson. Med. 54 (2005) 616–624.
[71] K. Painter, T. Hillen, Mathematical modelling of glioma growth: the use of diffusion tensor imaging (dti) data to predict the anisotropic pathways of

cancer invasion, J. Theor. Biol. 323 (2013) 25–39.
[72] E. Özuğurlu, A note on the numerical approach for the reaction–diffusion problem to model the density of the tumor growth dynamics, Comput. Math.

Appl. 69 (2015) 1504–1517.
[73] R. Rockne, E. Alvord, J. Rockhill, K. Swanson, A mathematical model for brain tumor response to radiation therapy, J. Math. Biol. 58 (2009) 561–578.
[74] J. Larsson, Solving the Fisher Equation to Capture Tumour Behaviour for Patients with Low Grade Glioma, Master’s thesis, Chalmers University of

Technology, Gothenburg, Sweden, 2019.
[75] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Y. Bengio, Y. LeCun (Eds.), Proceedings of the 3rd International Conference on

Learning Representations, 2015.
18

http://refhub.elsevier.com/S0021-9991(22)00363-1/bib6B6C4FAB3970C03B22B0783D1D8AD235s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibAF5CF28D51D29D8FAE6E1AA5590CAC76s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibAF5CF28D51D29D8FAE6E1AA5590CAC76s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib5A8AC9F39B5F0F1EFAAF550B3B998101s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibB438562A93DAEBE5F9227BF761724C94s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibB438562A93DAEBE5F9227BF761724C94s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib8D5CC49C468AC2E352974CC17C0AD362s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib8D5CC49C468AC2E352974CC17C0AD362s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibC9A832CEBE65A7E92C3CCAC1865B0E73s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibC9A832CEBE65A7E92C3CCAC1865B0E73s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib3EE16DFF5A3B1CA01BB3DA5DFE120361s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibAE8DC3CB152C34D24EF6A923882176F6s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibC59F7B6AA24363E8B1945A8A8E958370s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibD2139399CECC9E257E340AAE7191E37Fs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib0B0B788736F19F405E03AB282B5B9BA6s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibDDC9AD9F2AEFF787929519A58EBDABC8s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibE06155D358D92F7A6CC69A8A0716B269s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib56F2343FC1DE4FC87CB7763B92187A3Ds1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib56F2343FC1DE4FC87CB7763B92187A3Ds1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib2B5C0A6B689225FBADC3FAE8D3787F1Bs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib2B5C0A6B689225FBADC3FAE8D3787F1Bs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibA15A7F63655C44880AE8D6258B1ED036s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibCEB54721C06F87983E6D8ED4F6C7683Cs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibCEB54721C06F87983E6D8ED4F6C7683Cs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibD758C53A9891AC406570346EBFD46980s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibD758C53A9891AC406570346EBFD46980s1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib8E6F8286CE6748B1D738FAA22A197D6Es1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib8E6F8286CE6748B1D738FAA22A197D6Es1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bib311365E3ADBBD794171FE8EF3D2B0C2Bs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibC9255C4B180640F968DA0C4D6667049Es1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibC9255C4B180640F968DA0C4D6667049Es1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0021-9991(22)00363-1/bibB88B8F9E9C5AF9DF750A673227029C8Fs1

	Physics and equality constrained artificial neural networks: Application to forward and inverse problems with multi-fidelit...
	1 Introduction
	2 Technical background
	2.1 Physics-informed neural networks
	2.2 Learning rate annealing for physics-informed neural networks
	2.3 Augmented Lagrangian method for constrained optimization

	3 Proposed method: physics & equality constrained artificial neural networks
	3.1 Performance metrics

	4 Application to forward problems
	4.1 Two-dimensional Poisson’s equation
	4.2 Two-dimensional Helmholtz equation
	4.3 Klein-Gordon equation

	5 Application to inverse problems
	5.1 Learning hydraulic conductivity of nonlinear unsaturated flows from multi-fidelity data
	5.2 Boundary heat flux identification
	5.3 Patient-specific tumor growth modeling

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Additional examples
	A.1 One-dimensional Poisson’s equation
	A.2 Three-dimensional Poisson’s equation

	References

