
Journal of Computational Physics 463 (2022) 111301
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Physics and equality constrained artificial neural networks:
Application to forward and inverse problems with
multi-fidelity data fusion

Shamsulhaq Basir, Inanc Senocak ∗

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, PA 15261, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 September 2021
Received in revised form 10 February 2022
Accepted 11 May 2022
Available online 16 May 2022

Keywords:
Constrained optimization
Augmented Lagrangian method
Residual neural networks
Partial differential equations
Forward and Inverse problems
Multi-fidelity learning

Physics-informed neural networks (PINNs) have been proposed to learn the solution of
partial differential equations (PDE). In PINNs, the residual form of the PDE of interest and
its boundary conditions are lumped into a composite objective function as soft penalties.
Here, we show that this specific way of formulating the objective function is the source of
severe limitations in the PINN approach when applied to different kinds of PDEs. To address
these limitations, we propose a versatile framework based on a constrained optimization
problem formulation, where we use the augmented Lagrangian method (ALM) to constrain
the solution of a PDE with its boundary conditions and any high-fidelity data that may be
available. Our approach is adept at forward and inverse problems with multi-fidelity data
fusion. We demonstrate the efficacy and versatility of our physics- and equality-constrained
deep-learning framework by applying it to several forward and inverse problems involving
multi-dimensional PDEs. Our framework achieves orders of magnitude improvements in
accuracy levels in comparison with state-of-the-art physics-informed neural networks.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Deep learning has been highly impactful in a plethora of fields such as pattern recognition [1,2], speech recognition [3],
natural language processing [4–6] and in the solution of partial differential equations (PDE) for forward and inverse prob-
lems. The success of these models owes to the rapid development of available information, the advancement of computing 
power, and the advent of efficient learning algorithms for training neural networks [7]. With the emergence of universal 
approximation theorem [8,9], new studies have focused on using neural networks to solve ODEs and PDEs. One of the mo-
tivations for using neural networks in solving differential equations is their potential to break the curse of dimensionality 
[10–12] and its ability to fuse data in the learned solution. Neural network-based methods with their meshless nature can 
reduce the tedious effort of mesh generation, which is common with finite-difference, element, or volume methods. More-
over, in contrast to conventional numerical methods, once the neural network is trained, it can produce results at any point 
in the domain.

Dissanayake and Phan-Thien pioneered using neural networks to solve PDEs. They combined the residual form of a given 
PDE and its boundary conditions as soft constraints for training their neural network model. van Milligen et al. presented 
a similar approach and demonstrated its potential on a magnetohydrodynamics plasma equilibrium problem. This general 
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neural network-based technique was applied with satisfactory results to non-linear Schrodinger equations in [15], to a non-
steady fixed bed non-catalytic solid-gas reactor problems in [16], and to the one-dimensional Burgers equation in [17]. A 
neural network-based approach to solving PDEs and ODEs on orthogonal box domains was also proposed by Lagaris et al. by 
constructing trial functions that satisfy boundary conditions by construction. Unlike the approach in [13,14], the approach 
in [18] is limited to regular geometries as it is not trivial to create trial functions for irregular domains. Also, creating trial 
functions imposes inductive bias toward a certain class of functions that might not be optimal. These early works did not 
receive broader acceptance and appreciation by other researchers likely because of a lack of computing resources and a 
limited understanding of neural networks at the time of their introduction.

Machine learning frameworks with automatic differentiation capabilities [19,20] have revived the use of neural networks 
to solve ODEs and PDEs. The overall technical approach for using neural networks to solve PDEs and ODEs that was adopted 
in the aforementioned works, particularly the method described in [13,14], has found a resurgent interest in recent years 
[21–24]. Raissi et al. [25] dubbed the term physics-informed neural networks (PINNs), which has been growing fast in 
popularity and applied to several unique forward and inverse problems [26–33]. Even though neural networks offer a 
powerful framework to faithfully integrate data and physical laws in solving forward and ill-posed inverse problems, training 
these models is not trivial for challenging problems [34–36]. Extensive reviews of the current state in physics-informed 
machine learning are available in literature [37,38], but we will also elaborate on the challenges faced by the PINN approach 
in later sections.

Our paper is structured as follows. In §2 we present a technical overview of the physics-based neural networks following 
the original formulation of [13,14]. Subsequently, we describe a recently proposed empirical algorithm for improving the 
predictive capability of these models as well as its limitations. Next, we describe the augmented Lagrange method, which 
forms the backbone of our approach. In §3 we propose the physics and equality constrained artificial neural networks 
(PECANN) framework and provide a training algorithm for it. In §4 we conduct a comparative analysis of our method on 
several benchmark problems. In §5 we demonstrate the performance of the PECANN approach on three different inverse 
problems with multi-fidelity data fusion. Finally, in §6 we summarize our results and provide several directions for future 
research. All the codes and data accompanying this paper are publicly available at https://github .com /HiPerSimLab /PECANN.

2. Technical background

Consider a scalar function u(x, t) : Rd+1 → R on the domain � ⊂ Rd with its boundary ∂� satisfying the following 
partial differential equation

F(x, t; ∂u

∂t
,
∂2u

∂t2
, · · · ,

∂u

∂x
,
∂2u

∂x2
, · · · ,ν) = 0, ∀(x, t) ∈ U, (1)

B(x, t, g;u,
∂u

∂x
, · · · ) = 0, ∀(x, t) ∈ ∂U, (2)

I(x, t,h;u,
∂u

∂t
, · · · ) = 0, ∀(x, t) ∈ �, (3)

where F is the residual form of the PDE containing differential operators, ν is a vector PDE parameters, B is the residual 
form of the boundary condition containing a source function g(x, t) and I is the residual form of the initial condition 
containing a source function h(x, t). U = {(x, t) | x ∈ �, t = [0, T ]}, ∂U = {(x, t) | x ∈ ∂�, t = [0, T ]} and � = {(x, t) | x ∈
∂�, t = 0}.
2.1. Physics-informed neural networks

Here, we present the common elements of the physics-informed learning framework that was presented in the works of 
Dissanayake and Phan-Thien and van Milligen et al., and, in the work of Raissi et al. as part of contemporary developments in 
physics based deep learning methods. Suppose we seek a solution uθ (x) represented by a neural network parameterized by 
θ for Eq. (1) with its boundary condition Eq. (2) and its initial condition Eq. (3). We can write the following loss functional 
L(θ) to train a physics-informed neural network.

L(θ) = λFLF (θ) + λBLB(θ) + λILI(θ), (4)

LF (θ) = 1

NF

NF∑
i=1

‖F(x(i), t(i))‖22, (5)

LB(θ) = 1

NB

NB∑
i=1

‖B(x(i), t(i), g(i))‖22, (6)

LI(θ) = 1

NI

NI∑
‖I(x(i), t(i),h(i))‖22, (7)
i=1

2
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where {x(i), t(i)}NF
i=1 is the set of residual points in U for approximating the physics loss LF (θ), ({x(i), t(i)), g(i)}NB

i=1 is the set 
boundary points on ∂U for approximating the boundary loss LB(θ) and {(x(i), t(i)), h(i)}NI

i=1 is the set of initial data on � for 
approximating the loss on initial condition LI (θ). λF , λB and λI are hyperparameters to balance the interplay between 
the loss terms and L(θ) is the sum of all the objective functions used for training a neural network model. It is worth 
noting that in conventional PINNs λF = λB = λI = 1.

Since training PINNs minimizes a weighted sum of several objective functions as in Eq. (4), the prediction of the network 
highly depends on the choice of these weights. Manual setting of these weights by trial and error tuning is extremely 
tedious and time-demanding. Based on our own experience, we find that manual tuning of these weights is not ideal, 
because it creates a ripple effect as we then need to tune other hyperparameters, such as the number of collocations points, 
the learning rate, and the architecture. Also, the optimal choice of these weights for a problem under a certain training 
setting might not transfer across different problems and may not even produce acceptable results if the training setting is 
changed. Proper choice of these free parameters is still an active area of research [36,35,34]. Next, we discuss an empirical 
algorithm proposed by Wang et al. [36] for choosing these hyperparameters.

2.2. Learning rate annealing for physics-informed neural networks

Consider a physics-informed neural network with parameters θ and a loss function as follows

L(θ) = λFLF (θ) +
M∑
i=1

λiLi(θ), (8)

where LF (θ) is the PDE residual loss as in Eq. (5), Li(θ) correspond to data-fit terms (e.g., measurements, initial or bound-
ary conditions), λF and λi, i = 1, · · · , M are free parameters used to balance the interplay between different loss terms. The 
necessary optimality condition for Eq. (8) is

∇θL(θ) = λF∇θLF (θ) +
M∑
i=1

λi∇θLi(θ) = 0, (9)

where λs are learned such that the optimality condition is satisfied. Wang et al. recently proposed an empirical algorithm 
for setting these weights based on matching the magnitude of the back-propagated gradients as follows

λF = 1, (10a)

λ̂i = maxθn {|∇θLF (θn)|}
|∇θnλiLi(θn)|

, i = 1, · · · ,M, (10b)

λi = (1− α)λi + αλ̂i, (10c)

where θn denotes the values of the network parameters at nth iteration, | · | denotes the elementwise absolute value, and the 
overbar signifies the algebraic mean of the gradient vector. Although this method improves on the original PINN approach 
(λF = λi = 1, i = 1, · · · , M), there are fundamental issues with this approach. First, approximating λ̂i in Eq. (10b) does 
not necessarily meet the optimality condition as in Eq. (9). Therefore, the optimizer may settle to a point in the space of 
parameters that may not be an actual local minimum for the objective function as in Eq. (8). Second, the values of the 
network parameters can oscillate back and forth around a minimum, which requires slowing down the parameter update by 
decreasing the learning rate [39]. However, λ̂i grows unbounded when the denominator in Eq. (10b) approaches zero which 
makes the effective learning rate extremely high and causes the optimizer to diverge. Also, in the case of noisy measurement 
data, this algorithm tries to fit the noise in the objective function as it is agnostic to the quality of data, and because of the 
noise in the objective function, its approximated free parameter will oscillate which could hinder convergence. Finally, the 
method is computationally expensive as it requires M + 1 number of backward passes through the computational graph to 
evaluate the gradients of the network parameter with respect to each term in the objective function.

2.3. Augmented Lagrangian method for constrained optimization

Consider the following nonlinear, equality-constrained optimization problem with n decision variables, and m equality 
constraints

min
θ∈Rn

J (θ),

subject to Ci(θ) = 0, ∀i = 1, · · · ,m
(11)

where J is a nonlinear function of Rn in R, Ci is a nonlinear function of Rn in R and θ is a given subset of Rn , 
n-dimensional Euclidean space. Augmented Lagrangian method (ALM) [40,41] which is also the method of choice in the 
3
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present work can be used to convert the constrained optimization problem of Eq. (11) into an unconstrained optimization 
problem as follows

min
θ∈�

L(θ;λ,μ) = J (θ) +
m∑
i=1

λiCi(θ) + μ

2

m∑
i=1

|Ci(θ)|2, (12)

where λ ∈ Rm is a vector of Lagrange multipliers and μ is a positive penalty parameter, and the semicolon denotes that λ
and μ are fixed. We update the vector of Lagrange multipliers based on the current estimate of the Lagrange multipliers 
and constraint values using the following rule

λi ← λi + μCi(θ). (13)

In ALM, the objective function is minimized possibly by violating the constraints. Subsequently, the feasibility is restored 
progressively as the iterations proceed [42]. If λ vanish, the penalty method is recovered, whereas when μ vanishes we 
get the method of Lagrange multipliers. As discussed in Martins and Ning [43], ALM avoids the ill-conditioning issue of the 
penalty method while having a better convergence rate than the Lagrange multiplier method [44]. Therefore, we could say 
that ALM combines the merit of both methods. Convergence in ALM may occur with finite μ, and optimization problem 
does not even have to possess a locally convex structure [45,46,44,42,43]. These aspects of the ALM make it a suitable choice 
for neural networks as their objective functions are typically non-convex with respect to the parameters of the network.

ALM has been used in scientific machine learning in the context of PDE-constrained optimization [47,48]. In Dener 
et al. [47], authors train a physics-constrained encoder-decoder neural network using ALM in a supervised learning fashion. 
In Lu et al. [48], the authors use ALM to train a PDE-constrained neural network model that satisfies the boundary conditions 
by construction, following an approach similar to the one proposed in [18].

3. Proposed method: physics & equality constrained artificial neural networks

Here, we propose a novel approach in using neural networks for the solution of forward problems and inverse problems 
with multi-fidelity data. This framework is noise-aware, physics-informed and equality constrained. We start by presenting 
a constrained optimization problem aimed at minimizing the sum of physics loss and noisy data (low-fidelity) loss such 
that any high fidelity data (boundary conditions, known equality constraints) are strictly satisfied. Considering Eq. (1) with 
its boundary condition (2) and initial condition (3), we write the following constrained optimization problem:

min
θ

JF (θ) +JM(θ), (14)

subject to

φ(B(x(i), t(i), g(i))) = 0, ∀(x(i), t(i), g(i)) ∈ ∂U, i = 1, · · · ,NB (15)

φ(I(x(i), t(i),h(i))) = 0, ∀(x(i), t(i),h(i)) ∈ �, i = 1, · · · ,NI , (16)

where JF (θ) is the loss function for the given PDE, φ is a distance function and JM(θ) is the objective function for noisy 
(low-fidelity) measurement data given

ũ(x(i), t(i)) = uθ (x
(i), t(i)) + ε(i),∀i = 1, · · · ,NM (17)

where NM is the number of observations, ũ(x(i), t(i)) is the ith measurement at (x(i), t(i)), uθ (x(i), t(i)) is ith prediction 
from our neural network model at (x(i), t(i)) and ε(i) captures the error associated with the ith data point. Assuming that 
the errors are normally distributed with mean zero and a standard deviation of σ , we can minimize the log likelihood of the 
predictions uθ (x, t) conditioned on the observed data ũθ (x, t) to obtain JM(θ) as follows [43]

JM(θ) = 1

2σ 2

NM∑
i=1

‖uθ (x
(i), t(i)) − ũ(x(i), t(i))‖22. (18)

In this work, we set σ = 1/
√
2 ≈ 0.7 which results in a sum-of-squared errors for the noisy data, however, the user can 

assign any value to σ depending on the quality of the measurement data. It is worth noting, that a smaller value of σ
which corresponds to less noisy data will put more weight on JM and vice versa. Using the augmented Lagrange method, 
we can write the resulting objective function as follows

L(θ;λ,μ) = JF (θ) +JM(θ) +
NB∑

λ
(i)
B φ(B(x(i), t(i), g(i))) +

NI∑
λ

(i)
I φ(I(x(i), t(i),h(i))) + μ

2
π(θ), (19)
i=1 i=1

4
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π(θ) =
NB∑
i=1

|φ(B(x(i), t(i), g(i)))|2 +
NI∑
i=1

|φ(I(x(i), t(i),h(i)))|2, (20)

JF (θ) =
NF∑
i=1

‖F(x(i), t(i))‖22, (21)

where NF , NB , NI are the number of data points in U , ∂U and � respectively. We note that any equality constraints can 
be incorporated as Eq. (15) and (16) should they arise. λB ∈ RNB is an NB-dimensional vector of Lagrange multipliers for 
the constraints on ∂U , λI ∈ RNI is an NI -dimensional vector of Lagrange multipliers for the constraints on �, and μ is a 
positive penalty parameter. We update the vector of Lagrange multipliers using the following rule

λ
(i)
B ← λ

(i)
B + μφ(B(x(i), t(i), g(i))), ∀(x(i), t(i), g(i)) ∈ ∂U, i = 1, · · ·NB, (22)

λ
(i)
I ← λ

(i)
I + μφ(I(x(i), t(i),h(i))), ∀(x(i), t(i),h(i)) ∈ �, i = 1, · · ·NI (23)

Algorithm 1: Training algorithm for the PECANN framework.

1 Input: θ0, μmax, E, S
2 λB, λI ← 0 /* Initializing the multipliers */

3 ε ← 10−8 /* Assigning the tolerance for constraints violation */
4 μ0 ← 1.0 /* Initializing the penalty term */
5 η ← 0/* Placeholder for violation of constraint */
6 Output: θ∗

7 for epoch ← 1 to E do
/* Iterate over all training batches */

8 for batch ← 1 to S do
9 θ∗ ← argmin

θ

L(θ; λ, μ)/* Optimizing the network’s parameters */

10 if (
√

π(θ) ≥ 0.25η) & (√π(θ) > ε) then
11 μ ← min(2μ, μmax) /* Updating the penalty parameter */
12 λB ← λB + φ(B(x, t, g))/* Updating the Lagrange multiplier for the boundary condition */
13 λI ← λI + φ(I(x, t, h)) /* Updating the Lagrange multipliers for the initial condition */

14 η = √
π(θ)/* Recording the current penalty loss */

15 end
16 end

In Algorithm 1, we present a training algorithm using the objective function presented in (19). The input to the algorithm 
is an initialized set of parameters for the network, a maximum value μmax for safeguarding the penalty term, the number of 
epochs E , and the training set S . We should note that over-focusing on the constraints might result in a trivial prediction, 
where the constraints are satisfied, but the solution has not been found. Therefore, we tackle this issue by updating the 
multipliers when two conditions are met simultaneously: First, the ratio of the penalty loss term from successive iterations 
has not decreased. Second, the maximum allowable violation on the constraints has not been met. The first condition helps 
prevent aggressive updating of multipliers that might cause the aforementioned issue. In the second condition, we relax 
updating the multipliers if a satisfactory precision set by the user ε has been achieved. This, in return, enables the network 
to freely choose to optimize any loss terms in the objective function to not sacrifice any loss term.

Next, we discuss a “lean” residual neural network that we employ for some of our numerical experiments. Conventional 
feed-forward neural networks are prone to the notorious problem of vanishing-gradients, which makes learning signifi-
cantly stiff. He et al. [2] proposed residual learning to alleviate this issue by introducing skip connections. Fig. 1(a) shows a 
schematic representation of a residual block that has two weight layers and a nonlinear activation function σ [2]. However, 
to preclude the problem of vanishing gradient, the non-linearity after the summation junction +© and the shortcut connec-
tion should be identity as proposed by He et al. [49] as well as in [50]. We further observe that the weight layer before 
the junction becomes redundant because the output of the current residual layer will be fed to another residual layer that 
processes its input through a weight layer. In other words, linearly stacking two weight layers can be collapsed into a single 
weight layer. Therefore, we eliminate this extra weight layer and obtain a leaner residual layer. A schematic representation 
of our proposed modified residual layer is shown in Fig. 1(b) with S(x) shortcut mappings, which are identity mappings 
except for the input layer to project the input dimension to the correct dimension of the hidden layers.

3.1. Performance metrics

We assess the accuracy of our models by providing the L∞ and the relative L2 errors. Given an n-dimensional vector 
of predictions û ∈ Rn and an n-dimensional vector of exact values u ∈ Rn , we define the relative L2 norm and L∞ norm as 
follows:
5
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Fig. 1. (a) a schematic representation of the original residual block with a set of parameters θ and nonlinear activation functions σ , (b) a schematic 
representation of our proposed residual neural network architecture with a set of parameters θ and nonlinear activation functions σ with S(·) skip 
connections.

Relative L2 = ‖û − u‖2
‖u‖2 , L∞ = ‖û − u‖∞ (24)

where ‖ · ‖2 indicates the Euclidean norm.

4. Application to forward problems

We apply our framework to learn the solution of several prototypical partial differential equations (PDE) that appear 
in computational physics. We also compare our results with existing methods to highlight the marked improvements in 
accuracy levels.

4.1. Two-dimensional Poisson’s equation

Elliptic PDEs lack any characteristic path, which makes the solution at every point in the domain influenced by all other 
points. Therefore, learning the solution to elliptic PDEs with neural network based approaches that do not properly constrain 
the boundary conditions becomes challenging as we will show in this section. Here, we solve a two-dimensional Poisson’s 
equation on a complex domain to not only highlight the applicability of our approach to irregular domains, but also show 
that our framework properly imposes the boundary conditions and produces physically feasible solutions. We also conduct 
a study to show the impact of distance functions φ and the maximum penalty parameter μmax that appear in Eq. (19) on 
the prediction of our neural network model. Let us consider the following PDE:

∇2u(x, y) = f (x, y), (x, y) ∈ �, (25a)

u(x, y) = h(x, y) (x, y) ∈ ∂�, (25b)

where f (x, y) and h(x, y) are source functions, � = {(x, y) | x = 0.55ρ(θ) cos(θ), y = 0.75ρ(θ) sin(θ)} and ρ(θ) = 1 +
cos(θ) sin(4θ) for 0 ≤ θ ≤ 2π . We manufacture a complex oscillatory solution for Eq. (25a) and its boundary conditions 
Eq. (25b) as follows:

u(x, y) = cos(πx) cos(3π y), (x, y) ∈ �. (26)

The corresponding source functions f (x, y) and g(x, y) can be calculated exactly using Eq. (26). We use our “lean” 
residual neural network architecture with 3-layer hidden layers and 50 neurons per layer. We generate N� = 512 residual 
points uniformly from the interior part of the domain at each optimization step and N∂� = 512 from the boundaries only 
once before training. Our optimizer is Adam with its default parameters and an initial learning rate of 10−2. We train our 
network for 25000 epochs. We reduce our learning rate by a factor of 0.95 after 100 epochs with no improvement using 
ReduceLROnPlateau learning scheduler that is built in PyTorch framework [20]. For the present case, the prediction of our 
PECANN model for the entire domain is juxtaposed in Fig. 2.

From Fig. 2 we observe that our neural network model trained with our proposed approach has successfully learned 
the underlying solution. Since our physics-informed neural network model diverged, we do not portray its prediction for 
the entire domain. However, we present a summary of our error norms averaged over five independent trials with random 
Xavier initialization scheme [51] for both approaches in Table 1. The results indicate that our method achieves a relative 
L2 = 5.90 × 10−4, which is three orders of magnitude lower than the one obtained from conventional physics-informed 
neural networks.

Next, we conduct an ablation study to investigate the impact of the distance function φ on the prediction of our model. 
A schematic representation of two different distance functions is presented in Fig. 3(a). Our analysis reveals that quadratic 
distance functions are not only insensitive to the choice of the maximum penalty parameter μmax but also significantly 
outperform the absolute distance function as shown in Fig. 3(b)-(c). Therefore, we adopt the quadratic distance function 
in our proposed method. To complement our analysis of elliptic PDEs, we present the applications of the PECANNs for a 
one-dimensional and a three-dimensional Poisson equation in the appendix.
6
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Fig. 2. Poisson’s equation: (a) exact solution, (b) predicted solution by PECANN with quadratic distance function, (c) absolute point-wise error. (For inter-
pretation of the colors in the figures, the reader is referred to the web version of this article.)

Table 1
2D Poisson’s equation. Summary of the average and the standard deviation of the relative L2 and 
L∞ errors over 5 independent trials along with the number of generated collocation points for 
training a fixed neural network architecture with different methods.

Models Relative L2 L∞ N� N∂�

PINN 1.29× 10−1 ± 2.28× 10−2 4.67× 10−1 ± 8.68× 10−2 512 × 25000 512
PECANN 5.90× 10−4 ± 7.69× 10−5 4.12× 10−3 ± 1.47× 10−3 512 × 25000 512

Fig. 3. (a) quadratic and absolute distance functions, (b) relative L2 error bars versus μmax for quadratic distance function averaged over 5 independent 
trials, (c) relative L2 error bars versus μmax for absolute distance function averaged over 5 independent trials.

4.2. Two-dimensional Helmholtz equation

Helmholtz equation arises in the study of electromagnetic radiation [52,53], seismology [54], acoustics [55] and many 
areas of engineering science. In this section, we study the following benchmark problem that was presented in [36]

∇2u(x, y) + k2u(x, y) = q(x, y), ∀(x, y) ∈ �, (27a)

u(x, y) = 0, ∀(x, y) ∈ ∂�, (27b)

where k = 1, � = {(x, y) | − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1} and ∂� is its boundary. Following the equation presented above, we 
manufacture an oscillatory solution that satisfy Eq. (27b) with its boundary conditions as follows:

u(x, y) = sin(πx) sin(4π y),∀(x, y) ∈ �. (28)

We use the same fully connected neural network architecture as in [36], which consists of three hidden layers with 30 
neurons per layer and the tangent hyperbolic activation function. We use a Sobol sequence to sample N� = 512 residual 
points from the interior part of the domain and N∂� = 256 from the boundaries only once before training. We note that 
[36] is generating their data at every epoch, which amounts to N� = 5.12 × 106 and N∂� = 20.48 × 106. Our optimizer is 
L-BFGS [56] with its default parameters and strong Wolfe line search function that is built in PyTorch framework [20]. We 
train our network for 5000 epochs with our safeguarding penalty parameter μmax = 104.

As illustrated in Fig. 4(b), our PECANN model produces an accurate prediction to the underlying solution with uniform 
error distribution across the domain as shown in Fig. 4(c). We also present a summary of the error norms from our approach 
and state-of-the-art results presented in [36] averaged over ten independent trials with random Xavier initialization scheme 
[51] in Table 2. We observe that results obtained from our method achieve a relative L2 = 4.23 × 10−4, which is two orders 
of magnitude lower than 4.31 × 10−2 obtained from the method presented in Wang et al. [36] with only a fraction of their 
generated data.
7
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Fig. 4. Helmholtz equation: (a) exact solution, (b) predicted solution from PECANN model, (c) absolute point-wise error.

Table 2
Helmholtz equation: summary of the average and the standard deviations of the relative L2 and L∞ errors over 
10 independent trials along with the number of generated collocation points for training a fixed neural network 
architecture with different methods along.
Models Relative L2 L∞ N� N∂�

Ref. [36] 4.31× 10−2 ± 1.68× 10−2 – 128× 40000 4× 128 × 40000
PECANN 4.23× 10−4 ± 3.09× 10−4 1.53× 10−3 ± 7.66× 10−4 512 4× 64

Fig. 5. Klein Gordon equation: (a) exact solution, (b) predicted solution by PECANN, (c) point-wise absolute error.

4.3. Klein-Gordon equation

We consider a nonlinear time-dependent benchmark problem known as the Klein-Gordon equation, which plays a sig-
nificant role in many scientific applications such as particle physics, astrophysics, cosmology, and classical mechanics. This 
problem was considered in the work of Wang et al. [36] as well. Consider the following partial differential equation

∂2u

∂t2
+ α

∂2u

∂x2
+ βu + γ uk = f (x, t), ∀(x, t) ∈ � × [0, T ], (29a)

u(x,0) = g1(x), ∀x ∈ �, (29b)

∂u(x,0)

∂x
= g2(x), ∀x ∈ �, (29c)

u(x, t) = h(x, t) ∀(x, t) ∈ ∂� × [0, T ], (29d)

where α = −1, β = 0, γ = 1 and k = 3 are known constants. � = [0, 1] × [0, 1] with T = 1. The manufactured solution 
presented in [36] is as follows

u(x, t) = x cos(5πt) + (xt)3. (30)

The corresponding forcing function f (x, t), boundary condition h(x, t) and initial conditions g1(x) and g2(x) can be calcu-
lated exactly using Eq. (30). We use the same neural network architecture as in [36] which is a deep fully connected neural 
network with 5 hidden layers each with 50 neurons that we train for 1500 epochs total. We use Sobol sequence to generate 
N� = 512 residual points from the interior part of the domain, N∂� = 512 points from the boundaries and NI = 256 points 
for each of the initial conditions as in Eq. (29b) and Eq. (29c) only once before training. Our optimizer is LBFGS with its 
default parameters and strong Wolfe line search function that is built in PyTorch framework [20]. Our safeguarding penalty 
parameter μmax = 104 as in the previous problem.

As illustrated in Fig. 5(b), our PECANN model produces an accurate prediction to the underlying solution with uniform 
error distribution across the domain as shown in Fig. 5(c). In addition, we present a summary of the error norms averaged 
over ten independent trials with random Xavier initialization scheme [51] in Table 3. We observe that the best relative L2
8
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Table 3
Klein–Gordon equation: summary of the average and the standard deviations of the relative L2 and L∞ errors over 10 independent trials along with the 
number of generated collocation points for training a fixed neural network architecture with different methods along.
Models Best Relative L2 Relative L2 L∞ N� N∂� NI

Ref. [36] 1.062× 10−2 – – 128 × 40000 2× 128 × 40000 2× 128 × 40000
PECANN 2.158 × 10−4 6.139× 10−4 ± 3.337 × 10−4 1.043 × 10−3 ± 5.908× 10−4 512 2 × 256 2 × 256

error obtained from our PECANN model is two orders of magnitude lower than the best relative L2 norm error reported in 
[36] with only a fraction of their generated data. This highlights the predictive power of our method over state-of-the-art 
physics-informed neural networks for the solution of a non-linear time-dependent Klein-Gordon equation.

5. Application to inverse problems

In this section, we use our PECANN framework for the solution of inverse problems with multi-fidelity data. By multi-
fidelity, we mean that we have both clean (high-fidelity) data and noisy (low-fidelity) data. We tackle three inverse problems 
involving PDEs. It is worth reiterating that we only impose equality constraints and use noisy data (e.g., noisy boundary 
conditions, noisy measurement data) as a soft-regularizer JM(θ) in Eq. (19).

5.1. Learning hydraulic conductivity of nonlinear unsaturated flows from multi-fidelity data

Our PECANN framework is also suitable for the solution of inverse-PDE problems using multi-fidelity data. With multi-
fidelity, we mean that the observed data may include both data with low accuracy and data with very high accuracy. As part 
of our objective function formulation, we can constrain the high-fidelity data in a principled fashion and take advantage 
of the low-fidelity data to regularize our hypothesis space. To demonstrate our framework, we study one of the difficult 
multi-fidelity example problems that were tackled in Meng and Karniadakis [32] with composite neural networks. This 
particular inverse-PDE problem arises in unsaturated flows as they are central in characterizing contaminant transport [57], 
soil-atmosphere interaction [58], soil-plant-water interaction [59], ground-subsurface water interaction zone [60] to name 
a few. Describing processes involving soil-water interactions at a microscopic level is very complex due to the existence 
of tortuous, irregular, and interconnected pores [61]. Therefore, these flows are generally characterized in terms of their 
macroscopic characteristics. An important quantity that is essential in describing flows through unsaturated soil is hydraulic 
conductivity, which is a nonlinear parameter that is highly dependent on the geometry of the porous media [61]. Let us 
consider the following nonlinear differential equation representing an unsaturated one-dimensional (1D) soil column with 
variable water content:

d

dx
(K (h)

dh(x)

dx
) = 0, x ∈ �, (31)

subject to the following boundary conditions,

h(0) = −3, (32a)

h(200) = −10, (32b)

where � = {x | 0 ≤ x ≤ 200 cm}, h(x) is the pressure head (cm) and K (h) is the hydraulic conductivity (cm h−1) which is 
described as follows:

K (h) = Ks S
1/2
e

[
1− (1− S1/me )m

]2
, (33)

where Ks is the saturated hydraulic conductivity (cm h−1), and Se is the effective saturation expressed as follows [62]:

Se = 1

(1+ |αh|n)m ,m = 1− 1/n, (34)

where α is an empirical parameter that is inversely related to the air-entry pressure value (cm−1) and m is an empirical 
parameter related to the pore-size distribution that is hard to measure due to the complex geometry of the porous media. 
We aim to infer the unknown empirical parameters α, and m from sparse measurements of pressure head h. To generate 
multi-fidelity synthetic measurements or experimental data, we select the soil type loam for which the empirical parameters 
are as follows: α = 0.036 and m = 0.36.

We generate high-fidelity pressure data using the exact empirical parameters and low-fidelity data with α = 0.015
and m = 0.31. Using the built-in bvp5c MATLAB function, we solve the governing PDE as given in Eqs. (31) through 
Eq. (34) using the selected empirical parameters to generate multi fidelity training data as shown in Fig. 6(a). In Fig. 6(b) 
we also depict the corresponding hydraulic conductivity k(h) values for the pressure head data, which shows that low-
fidelity hydraulic conductivity has a significant deviation from the exact hydraulic conductivity distribution. To highlight the 
9
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Fig. 6. Parameter inference on multi-fidelity data for unsaturated flow through porous media: (a) low fidelity (LF) and high fidelity (HF) pressure head 
data used for training, (b) hydraulic conductivity corresponding to low-fidelity and high-fidelity training data, (c) pressure head reconstruction by PECANN 
model trained on high-fidelity and multi-fidelity data separately, (d) reconstructed hydraulic conductivity by PECANN model trained by high-fidelity and 
multi-fidelity data separately.

Table 4
Summary of the inferred parameters from using high-fidelity (HF) only or multi-fidelity (MF) data in the learning process 
averaged over ten different runs. Note that the training time, averaged over 10 independent trials, for our PECANN model is 
only 4 seconds on a CPU.
Models Avg. α σ(α) Relative Error(α) Avg. m σ(m) Relative Error(m)

Ref. [32] with HF data only 0.0440 – 22.22% 0.377 – 4.72%
PECANN with HF data only 0.0351 7.18× 10−4 2.58% 0.354 2.78× 10−3 1.78%
Ref. [32] with MF data 0.0337 7.91× 10−4 6.39% 0.349 3.70× 10−3 3.06%
PECANN with MF data 0.0359 7.51× 10−4 0.30% 0.357 2.74× 10−3 0.86%
Exact value 0.0360 – – 0.360 – –

robustness, efficiency, and accuracy of our framework on an inverse-PDE with multi-fidelity data fusion, we compare our 
results with the results reported in Meng and Karniadakis [32]. For comparison purposes, we also choose a feed-forward 
neural network with two hidden layers with 20 neurons per layer as in [32] for their physics-informed neural network 
trained on high fidelity alone which failed to discover the parameters of interest. However, Meng and Karniadakis [32]
constructed customized networks for high fidelity data and low fidelity data separately and then aggregated them together 
by manually crafted correlations. Therefore, they refer to their approach as composite neural networks. Unlike Meng and 
Karniadakis [32], we do not need to make any inductive bias about the data and, therefore, use a single network initialized 
with Xavier initialization technique [51] that we separately train on high-fidelity and multi-fidelity data. This shows the 
robustness and efficiency of our approach that we can train the same network on multi-fidelity data without the need to 
design customized networks to process data differently. We let a single network discover and extract features from multi-
fidelity data with the help of known physics. We use Adam with its default parameters and 10−2 initial learning rate. We 
set the maximum penalty parameter μmax = 104 and train our network for 2000 epochs total. As for the collocation points, 
we use the Sobol sequence and generate 400 residual points from across our domain in each epoch. As considered in [32], 
we assume the flux at the inlet q0 is known, which allows us to use the integral form of Eq. (31) given as follows,

q(x) = −K (h)
dh(x)

dx
= q0,

dq(x)

dx
= 0. (35)

Fig. 6(a) and Fig. 6(b) depict the reconstructed pressure head and the corresponding hydraulic conductivity distributions 
obtained from our PECANN model trained on high-fidelity and multi-fidelity data separately. Compared with the exact 
solution, it is seen that the inferred results are highly accurate, which shows the robustness and efficiency of our method. 
Furthermore, in Table 4, we report the average and standard deviation of inferred α and m from our model along with the 
results from Meng and Karniadakis [32]. The results are over 10 independent trials with random initialization using Xavier 
[51] scheme.

From Table 4, we observe that our results are significantly outperforming the reported results in [32]. It is worth noting 
that we are using just a single neural network architecture that is the low-fidelity model in the composite neural network 
model proposed in [32] and our average CPU training time is only 4 seconds.

5.2. Boundary heat flux identification

In this section, we apply our framework to study an inverse heat conduction problem (IHCP) where boundary condi-
tions are partially accessible. Typically, these problems arise in a plethora of industrial and engineering applications where 
measurements can only be made in easily-accessible locations or the quantity of interest can be measured indirectly. Unfor-
tunately, inverse problems are ill-posed and ill-conditioned because unknown solutions and parameter values usually have 
10
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Fig. 7. (a) exact qx , (b) exact qy , (c) location of thermocouples.

to be determined from indirect observable data that contains measurement error [63–66]. Here, we aim to identify spatio-
temporal boundary heat flux given partial spatio-temporal temperature observations inside the domain as in the work of 
Wang and Zabaras [66].

∂T

∂t
= ∂2T

∂x2
+ ∂2T

∂ y2
, 0 < x, y < 1, t ∈ [0,1], (36a)

T (x, y,0) = −2 sin(πx) sin(π y), 0 ≤ x, y ≤ 1, (36b)

T |x=1 = T |y=1 = 0, 0 < t < 1 (36c)

∂T

∂x

∣∣∣∣∣
x=0

= qx (unknown), 0 < t < 1, (36d)

∂T

∂ y

∣∣∣∣∣
y=0

= qy, (unknown) 0 < t < 1, (36e)

where qx and qy are the unknown heat fluxes to be discovered. As considered in [66], an analytical solution to this problem 
can be obtained as follows

T (x, y, t) = −2π sin(πx) sin(π y)e−2π2t, (37)

with the exact heat fluxes as follows

qx = −2π sin(π y)e−2π2t (38a)

qy = −2π sin(πx)e−2π2t. (38b)

An exact representation of qx and qy are presented in Fig. 7(a) and (b). The inverse problem is to discover qx and qy given 
partial observation from a set of thirteen thermocouples with 0.125 space interval and 0.125 distance to the boundary as 
shown in Fig. 7(c).

The sampling time interval is taken as dt = 0.002. The heat flux history was reconstructed for the time range t ∈ [0 :
0.05], N = 25, hence, there are 325 observations. Wang and Zabaras [66] represented the unknown flux quantities by 
parametric linear functions and proposed a Bayesian approach by employing a specialized model of Markov random field 
(MRF) as prior distribution. Three different cases were considered. Uncertainty in temperature measurements was modeled 
as stationary zero-mean white noise with standard deviations of σ = 0.005, σ = 0.01 and σ = 0.02. We employ a 3 hidden-
layer fully-connected neural network with 30 neurons per layer to learn the temperature field for the entire domain. Our 
optimizer is LBFGS with its default parameters and strong-Wolfe line search function built-in PyTorch framework. We set 
the limiting penalty parameter μmax = 104 similar to previous problems and we train our network for 10000 epochs. We 
use Sobol sequences to sample 512 residual points in the domain, 512 points for the Dirichlet boundary conditions, and 
512 points for the initial condition only once before training our network. The predictions of our neural network model 
are shown in Fig. 8. We observe that our network has successfully inferred heat fluxes for all three cases. A summary of 
the error percentage from our method along with the best results from [66] is provided in Table 5. We observe that our 
approach has improved the reported results of [66] by a factor of 10 in all three cases.

5.3. Patient-specific tumor growth modeling

In this section, we aim to develop a patient-specific tumor model using noisy magnetic resonance images (MRI). 
Treatment for tumors involves surgery, radiation, and chemotherapy. Nevertheless, cancer cells may remain after surgery, 
resulting in recurrence of the tumor and eventual death [67,68]. Therefore, models based on patient-specific information 
11
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Fig. 8. Heat flux reconstruction: Top row: qx (a) predicted flux distribution for case I, (b) predicted flux distribution for case II, (c) predicted flux distribution 
for case III. Bottom row: qy , (d) predicted flux distribution for case I, (e) predicted flux distribution for case II, (f) predicted flux distribution for case III.

Table 5
qx reconstruction error by different methods with noisy measure-
ment data.
Models σ = 0.005 σ = 0.01 σ = 0.02

Ref. [66] 4.62% 5.45% 5.75%
PECANN with MF data 0.53% 0.61% 0.89%

are needed to identify tumor cells that may lie beyond the threshold visible to magnetic resonance imaging. Assuming 
isotropic brain structure and radial symmetry, we can describe tumor cell density evolution using the following non-linear 
reaction-diffusion type partial differential equation [69–73].

∂u(r, t)

∂t
= D

∂2u(r, t)

∂r2
+ ρu(r, t)(1 − u(r, t)), in � × [0,5] (39)

∂u(r, t)

∂r
= 0, on ∂� (40)

u(r,0) = ϕ(r), in � (41)

where � = {r | 0 ≤ r ≤ 10} is the domain with its boundary ∂�, u(r, t) is the unknown tumor cell density at time t [year] 
and distance r [mm]. D is the unknown diffusion coefficient of tumor cells in the brain tissue and ρ is the unknown 
proliferation coefficient. ϕ is a point source initial condition. It is assumed that at the time of death t = 5, the visually 
detectable area of tumor volume is equal to a circle of 10 mm in radius. As a proof of concept, we generate synthetic MRI 
data by solving Eq. (39) in forward mode using finite difference scheme with �r = 0.0196, �t = 10−5 assuming D = 0.50, 
ρ = 1.00 with the following initial condition

ϕ(r) = 1

10
e−r, in �. (42)

Our synthetic data includes two solutions at t = 1 and t = 2 that simulate patient tumor cell density distribution obtained 
from MRI of brain scans at the corresponding time states. We further corrupt these data using uncorrelated Gaussian noise 
with σ = 0.01. The corresponding noise percent of the data is presented in Table 6.

From Table 6 we observe that our data contain different levels of noise which indicates different levels of fidelity. Finally, 
we use our corrupted tumor density distribution at t = 1 and t = 2 as low fidelity data along with Eq. (40) as our boundary 
constraint (high fidelity data) to infer unknown parameters of Eq. (39). For this problem, we generate N� = 512 residual 
points to approximate the loss on Eq. (39) and N∂� = 512 to constrain the boundaries only once before training. We also 
generate 512 points with their labels from our corrupted synthetic brain scan data. We use a feed-forward neural network 
12
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Table 6
Error percentage of corrupted MRI data 
with uncorrelated Gaussian noise with 
standard deviation σ = 0.01.

u(r, t = 1) u(r, t = 2)

Noise % 10.34% 5.01%

Fig. 9. Natural tumor cell density distribution at different time states. Top row: (a) synthetic brain scan at year one used for training, (b) synthetic brain 
scan at year two used for training, (c) synthetic brain scan at year five used for testing. Bottom row: (d) reconstructed brain scan data at year one, (e) 
reconstructed brain scan data at year two, (f) predicted brain scan data at year five.

Table 7
Tumor growth modeling. Summary of inferred parameters using multi-
fidelity data in the learning process averaged over ten independent trials 
with random initialization.

D ρ

Exact 0.50 1.00
PECANN with MF data 0.49± 4.90× 10−3 1.00± 9.93× 10−4

with two hidden layers each with 10 neurons per layer. Our optimizer is LBFGS with its default parameters and strong 
Wolfe line search function built in PyTorch framework [20]. Our network is trained for 200 epochs with Xavier initialization 
scheme [51]. We initialize D ∈ [0.3285, 0.973] and ρ ∈ [0.73, 2.92] randomly as suggested in [74].

From Fig. 9 we observe that our model not only reconstructs the original data from corrupted noisy data, but also 
generalizes well to predict the unseen MRI data at the terminal year t = 5.

A summary of our inferred parameters is presented on Table 7 over 10 independent trials with random Xavier initializa-
tion scheme [51].

6. Conclusion

We have shown that the unconstrained optimization problem formulation pursued in physics-informed neural networks 
(PINN) is a major source of poor performance when the PINN approach is applied to learn the solution of more challenging 
multi-dimensional PDEs. We addressed this issue by introducing physics- and equality-constrained artificial neural networks 
(PECANN), in which we pursue a constrained-optimization technique to formulate the objective function in the first place. 
Specifically, we adopt the augmented Lagrangian method (ALM) to constrain the PDE solution with its boundary and initial 
conditions, and with any high-fidelity data that may be available. The objective function formulation in the PECANN model 
is sufficiently general to admit low-fidelity data to regularize the hypothesis space in inverse problems as well. We applied 
our proposed method for both forward problems and inverse problems with multi-fidelity data fusion. For all the problems 
13
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considered, our PECANN model produced results that are in excellent agreement with exact solutions, while the PINN 
approach failed to produce acceptable predictions.

It is a common practice to use conventional feed-forward neural networks in the PINN approach. However, these types 
of neural networks are known to suffer from the so-called vanishing gradient problem, which stalls the learning process. 
Residual layers (a.k.a. ResNets) that were originally proposed by He et al. [2] tackle the vanishing gradient problem with 
identity skip connections. In our work, we have modified the original residual layers by restricting them to a single weight 
layer with a tanh activation function and identity skip connections. We find our leaner version of the residual layers to be 
very effective in improving the accuracy of the PDE predictions for both the original PINN model and our PECANN model.

Our findings suggest that not only the choice of the neural network architecture, but also the optimization problem 
formulation is crucial in accurately learning PDEs using artificial neural networks. We conjecture that future progress in 
physics-constrained (informed) learning of PDEs would come from exploring new approaches in the field of non-convex 
constrained optimization field. Future endeavors could shed light on challenging questions such as: how does the loss 
landscape of neural networks change with respect to the optimization problem formulation? What is the optimal neural 
network architecture for PDE learning? And, is there a physics-based approach in searching for optimal architectures?
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Appendix A. Additional examples

A.1. One-dimensional Poisson’s equation

The aims of this pedagogical example are twofold: First, we thoroughly demonstrate the implementation intricacies 
of our proposed method and highlight its advantages over the PINN approach. Second, we demonstrate the significant 
improvement achieved in the model prediction using our modified residual architecture relative to the original residual 
networks [2].

Let us consider the following one-dimensional Poisson’s equation

d2u

dx2
= −(15π)2 cos(15πx), x ∈ �, (A.1)

u(x) = cos(15πx), x ∈ ∂�, (A.2)

where � = {x | 0 ≤ x ≤ 1} and ∂� is its boundary. The exact solution to the above problem is a sinusoidal nonlinear function 
u(x) = cos(15πx). Considering a neural network solution for the above equation as û(x; θ) parameterized with θ , we write 
the residual form of this one-dimensional Poisson’s equation as follows:

F := d2uθ

dx2
+ (15π)2 cos(15πx) x ∈ �, (A.3)

B := uθ (x) − cos(15πx), x ∈ ∂�. (A.4)

Next, we use the above residual form of this differential equation to construct an objective function as proposed earlier in 
Eq. (19)

L(θ) =
N�∑
i=1

|F(x(i))|2 +
2∑

i=1

λ(i)φ(B(x(i))) + μ

2

2∑
i=1

|φ(B(x(i)))|2 (A.5)

where μ is the penalty parameter and N� is the number residual points sample from � at every epoch. λ ∈R2 is a vector 
of Lagrange multipliers for the boundary constraints and φ is the quadratic distance function. In contrast to our constrained 
14
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Fig. A.10. Performance comparison of PINN vs PECAN for different neural network architectures: (a) conventional neural network, (b) original residual neural 
network, (c) modified residual neural network. Note that PECANN approach converged with all network architectures while PINN only converged with our 
proposed modified residual neural network but with poor norms of errors.

Table A.8
One dimensional Poisson’s equation: summary of relative L2 norms and L∞ norms for 
different neural network models trained with different approaches.

PINN PECANN

Relative L2 L∞ L2 L∞
Conventional NN 1.00 1.00 1.73× 10−3 1.80× 10−3

Original Residual NN 4.75 5.84 3.41× 10−3 3.43× 10−3

Proposed Residual NN 4.63× 10−2 5.74 × 10−2 1.35× 10−4 1.66× 10−4

optimization with the ALM, the composite objective function adopted in PINNs (i.e. Eq. (4)) yields the following loss function 
for the current example

L(θ) = 1

N�

N�∑
i=1

|F(x(i))|2 + 1

2

2∑
i=1

|B(x(i))|2 (A.6)

Having constructed the objective functions using the constrained-optimization method in the present work and the com-
posite approach adopted in PINNs, we design three networks in such a way that they have the same number of neurons and 
hidden layers to allow a fair comparison. We use six weight layers with 50 neurons per layer in all three neural network 
models. More specifically, we have six weight layers in our conventional feed-forward neural network model. Similarly, our 
second neural network model with the original residual layers has one weight layer in the front with two residual layers 
and an output weight layer, which makes a total of six weight layers. For our last neural network model with our proposed 
residual layers, we have a weight layer succeeded by four modified residual layers and an output weight layer that amounts 
to six weight layers as well. Therefore, all three models have the same number of neurons and the same number of weight 
layers and are end-to-end trainable. For this problem, the parameters of the network are initialized randomly with the 
Xavier initialization technique [51]. We use Adam [75] with an initial learning rate of 10−2. We reduce our learning rate by 
a factor of 0.95 after 100 epochs with no improvement in the objective function. We use the same hyperparameters and 
train all the models under the same training settings with both objectives as in Eq. (A.5) and Eq. (A.6). We set the limiting 
penalty parameter μmax = 102. As for the collocation points, we randomly generate N� = 654 residual points from across 
our domain with uniform probability along with two boundary conditions at each optimization step. The results from all 
three neural network architectures trained with the PINN and PECANN approaches are juxtaposed in Fig. A.10. We observe 
from these results that the PINN model with a composite objective function is visibly sensitive to the neural network choice 
and benefits the most from the adoption of modified residual layers, whereas the PECANN model with equality-constrained 
optimization is qualitatively less sensitive to the choice of the neural network architecture and performs very well for all 
three networks. From Table A.8 we observe that for conventional NN and for the original residual neural network the rel-
ative L2 error from our PECANN model is three orders of magnitude lower than the one obtained from our PINN model. 
However, with our lean residual network, it decreases to two orders of magnitude which demonstrates the impact of our 
neural network architecture.

A.2. Three-dimensional Poisson’s equation

We consider the following non-homogeneous three dimensional Poisson’s equation in a cubic domain

∇2u(x, y, z) = f (x, y, z), (x, y, z) ∈ �, (A.7)

subject to the following boundary conditions

u(x, y, z) = g(x, y, z), (x, y, z) ∈ ∂�, (A.8)
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Fig. A.11. Three dimensional Poisson’s equation. Top row: cross section view of the solution at z = 0.2, (a) exact solution, (b) predicted solution from 
PECANN model, (c) absolute point-wise error distribution. Bottom row: plots over line obtained from different methods, (d) straight line connecting point 
(0, 0, 0) to point (1, 1, 1), (e) straight line connecting (0, 0, 0) and (0, 0, 1) points, (f) straight line connecting point (0, 0, 1) to point at (1, 0, 1).

Table A.9
Three dimensional Poisson’s equation: summary of relative L2 norms and L∞ norms for different 
neural network models averaged over 10 independent trials with random initialization with Xavier 
scheme.

Models Relative L2 L∞ N� N∂�

PINN 1.09× 10−1 ± 1.54× 10−2 2.31 × 10−1 ± 4.56× 10−2 256 × 15000 6× 256
PECANN 2.39× 10−3 ± 2.93 × 10−4 6.21× 10−3 ± 1.55 × 10−3 256 × 15000 6× 256

where � = {0 ≤ x, y, z ≤ 1} with its boundary ∂�, f and g are known source functions in � and on ∂�. We manufacture 
a sinusoidal solution of the following form

u(x, y, z) = cos(2πx) cos(π y) cos(π z),∀(x, y, z) ∈ �. (A.9)

We will use the exact solution eq. (A.9) to evaluate the source functions f and g and solve Eq. (A.7). For this purpose, we use 
our lean residual neural network with three hidden layers each with 50 neurons. Our optimizer is Adam [75] with its default 
parameters and 10−2 initial learning rate. We also reduce our learning rate by a factor of 0.95 if the objective does not 
improve after 100 optimization steps. Our network is trained for 15000 epochs with randomly initialized weights according 
to Xavier scheme [51]. We generate N∂� = 6 × 256 number of points on the boundaries ∂� only once before training and 
N� = 256 residual points in the domain � at every optimization step. We present a section view of the predicted solution 
obtained from our PECANN model in Fig. A.11. Since our physics-informed neural network failed to converge as can be seen 
from the error norms in Table A.9, we did not include a section view of its predicted solution. However, we provide plots 
over straight lines drawn between two points within the domain. From Fig. A.11(d)-(f) we observe that our PINN model 
either underpredicted or overpredicted the regions with high gradients and regions close to the boundaries. However, our 
PECANN model successfully learned the underlying solution. From Table A.9 we observe that for the relative L2 error from 
our PECANN model is two orders of magnitude lower than the one obtained from our PINN model which highlights the 
effectiveness of our method over conventional physics-informed neural networks.
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