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REVIEW

Cell cycle control of kinetochore assembly
Qianhua Dong and Fei Li

Department of Biology, New York University, New York, NY, USA

ABSTRACT
The kinetochore is a large proteinaceous structure assembled on the centromeres of chromo-
somes. The complex machinery links chromosomes to the mitotic spindle and is essential for 
accurate chromosome segregation during cell division. The kinetochore is composed of two 
submodules: the inner and outer kinetochore. The inner kinetochore is assembled on centromeric 
chromatin and persists with centromeres throughout the cell cycle. The outer kinetochore 
attaches microtubules to the inner kinetochore, and assembles only during mitosis. The review 
focuses on recent advances in our understanding of the mechanisms governing the proper 
assembly of the outer kinetochore during mitosis and highlights open questions for future 
investigation.
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Introduction

Genetic information must be precisely transmitted 
to the next generation during cell division. To 
achieve this end, each chromosome must be dupli-
cated and equally segregated into daughter cells 
during each cell cycle. Accurate chromosome seg-
regation during mitosis relies on a large protein 
complex, the kinetochore, a term coined by Lester 
Whyland Sharp in 1934 [1]. The disc-shaped 
structure, which contains more than 100 protein 
subunits in human cells, assembles on a specialized 
chromatin domain known as the centromere. The 
kinetochore links chromosomes to microtubule 
polymers and plays a key role in controlling chro-
mosome movements. It also serves as a hub for the 
signaling molecules required to control accurate 
chromosome segregation [2,3]. Under the electron 
microscope, the kinetochore appears as a two- 
domain structure at metaphase, consisting of the 
inner kinetochore and the outer kinetochore. The 
inner kinetochore is built on the centromeric 
chromatin and serves as a structural platform for 
outer kinetochore assembly. The inner kineto-
chore constitutively associates with centromeres. 
The outer kinetochore interacts with microtubules 
and plays an essential role in generating and sen-
sing microtubule attachments [2,4,5]. When cells 
enter mitosis, the outer kinetochore is quickly 

assembled on the platform of the inner kineto-
chore proteins. At the end of mitosis, the outer 
kinetochore is rapidly disassembled [6–8]. The 
kinetochore thus is a dynamic structure and tightly 
regulated over the course of the cell cycle. 
However, the molecular mechanisms underlying 
cell cycle-dependent kinetochore assembly are 
still not well understood. This review focuses on 
recent progress on our understanding of how the 
kinetochore assembly is cell cycle regulated. Due 
to space limitations, we limit our discussion to 
kinetochore assembly in mitosis. We refer readers 
interested in the reorganization of the kinetochore 
during error correction and meiosis to excellent 
reviews on these topics [3,9,10].

Centromeres

Centromeres are a specific chromatin structure 
that is physically linked to the spindle via kineto-
chores during cell division. It was first defined by 
Walther Flemming in 1882 as the primary con-
strictions on chromosomes [11]. The identity of 
centromeres has not been revealed until recently. 
Most eukaryotes have large ‘regional centromeres’, 
which usually consist of AT-rich DNA repeats. 
The size and sequence of regional centromeres 
vary significantly across species, spanning from 
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several kilobases to multiple megabases [12,13]. 
However, the underlying DNA sequence in cen-
tromeres is neither necessary nor sufficient for the 
centromere formation. Neocentromeres are new 
centromeres that are ectopically formed at non- 
centromeric regions when the native centromere is 
inactivated. Neocentromeres can arise both natu-
rally and by experimental manipulation (for 
review, see [14,15]), providing strong evidence 
that centromere formation is an epigenetic event. 
Recent studies revealed that the regional centro-
mere is epigenetically defined by a conserved cen-
tromeric specific histone H3 variant, CENP-A. 
CENP-A replaces its canonical counterpart and 
forms specific CENP-A nucleosomes with histone 
H4, H2A, and H2B, which are interspersed with 
canonical histone H3-containing nucleosomes in 
centromeres [16–21]. Mislocalized CENP-A 
recruits kinetochore proteins to non-centromeric 
regions, leading to chromosome missegregation 
defects in a variety of organisms (for review, see 
[22]). The histone fold domain of CENP-A con-
tains the conserved CENP-A targeting domain 
(CATD), which is necessary and sufficient for cen-
tromeric localization of CENP-A in vertebrates 
[23,24].

Loading of CENP-A to centromeres is mediated 
by the conserved histone chaperone HJURP/Scm3 
in a cell cycle-dependent manner [25–32]. In 
metazoans, loading of new CENP-A is restricted 
in the G1 phase of the cell cycle. The recruitment 
of HJURP to centromeres is mediated by the 
Mis18 complex, which is composed of Mis18α, 
Mis18β, and Mis18BP1. The cyclin-dependent 
kinases 1 and 2 (Cdk1/2) phosphorylate HJURP 
and Mis18BP1 during S and G2-phase, inhibiting 
premature CENP-A loading during this time [33– 
35]. On the other hand, the Polo-like kinase 1 
(PLK1) phosphorylates the Mis18 complex during 
G1 to promote the deposition of new CENP-A to 
centromeres [36].

Transcription of CENP-A is also cell cycle regu-
lated to ensure that optimal level of CENP-A is 
generated (for review, see [22]). In fission yeast, 
the temporal control of CENP-ACnp1 transcription 
is mediated by the MBF (MluI box-binding fac-
tors) complex, which consists of Res1, Res2, 
Cdc10, Nrm1, and Yox1. The periodic transcrip-
tion of CENP-ACnp1 is lost in MBF mutants, 

resulting in the higher level of CENP-ACnp1 and 
chromosome segregation defects [37]. A recent 
study has also shown that the Cdk5 regulatory 
subunit-associated protein 2 (Cdk5rap2) acts as 
a positive transcriptional regulator of CENP-A in 
human cells [38]. Regional centromeres are typi-
cally buried in a large pericentric heterochromatin, 
a condensed and transcriptionally inert chromatin 
domain lacking CENP-A [39,40]. 
Heterochromatin, which is epigenetically defined 
by histone H3 lysine 9 (H3K9) methylation, con-
tributes to the formation of regional centromeres 
[41–48].

On the other hand, the ‘point’ centromere in the 
budding yeast Saccharomyces cerevisiae is geneti-
cally determined by a 125-bp DNA sequence, 
which contains three centromere-determining ele-
ments (CDEI, CDEII, and CDEIII) [49–51]. The 
budding yeast centromeres also contain a CENP-A 
homolog, Cse4. CENP-ACse4 is important for kine-
tochore assembly and chromosome segregation 
[52–54] and can functionally replace the human 
CENP-A [55]. The deposition of CENP-ACse4 to 
centromeres is facilitated by the centromere DNA- 
binding complex, CBF3 [54,56,57]. In addition, 
some species in worms, plants, and insects use 
the whole chromosome as the centromere, which 
is called the ‘holocentric chromosome’ [58].

The inner kinetochore

The inner kinetochore consists of conserved 16 pro-
teins in vertebrates, collectively known as constitu-
tive centromere-associated network (CCAN). 
CCAN was originally identified by affinity purifica-
tion of CENP-A-containing nucleosomes [59]. 
CCAN constitutively binds to the centromere 
throughout the cell cycle and can be divided into 
five subgroups, including CENP-L-N, CENP- 
H-I-K-M, CENP-O-P-Q-R-U, CENP-T-W-S-X, 
and CENP-C (Figure 1). CENP-C is a long disor-
dered protein and forms a dimer through the 
C-terminal Cupin domain [60,61]. It interacts 
directly with the CENP-A nucleosome through the 
central domain and the short CENP-C motif [62– 
65]. CENP-C has multiple contacts with the struc-
ture of CCAN, including CENP-L-N and CENP- 
H-I-K-M, and is required for centromeric localiza-
tion of other CCAN components [60,65–68], and 
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thus serves as a hub for the assembly of the inner 
kinetochore. The CENP-L-N complexes also have 
been shown to directly interact with CENP-A 
nucleosomes [69,70]. However, a recent structural 
study using the full human CCAN complex 
assembled on the CENP-A nucleosome revealed 
that CENP-L-N interacts with the linker DNA but 
not the CENP-A nucleosome [68]. It is possible that 
CENP-L-N has different binding modes depending 
on cellular states. The CENP-L-N subgroup serves 
as a structural keystone of CCAN. CENP- 
H-I-K-M and CENP-O-P-Q-R-U are assembled on 
either side of the CENP-L-N [68,70].

The CENP-T-W-S-X consists of two heterodi-
mers, CENP-T-W and CENP-S-X. Each subunit in 
the CENP-T-W-S-X contains the histone fold 
domain [71,72]. The CENP-T-W in fission yeast 
and vertebrates is essential for viability, but 
CENP-S-X is not [66,73–75]. Structural studies 
revealed that human CENP-T-W-S-X has multiple 
interactions with neighboring CCAN subunits, 
including CENP-H-I-K-M, CENP-L-N, and 

CENP-O-P-Q-R-U [68]. In addition to the histone 
fold domain, CENP-T also contains a conserved 
histone fold extension (HFE) motif at the 
C-terminus and a long unstructured N-terminus. 
The histone fold domain of CENP-T forms 
a dimer with CENP-W, whereas the HFE motif 
interacts with the CENP-H-K-I-M [71,76]. The 
CENP-T-W-S-X also directly binds centromeric 
DNA. The DNA binding activity of the complex 
depends on the histone fold domain of CENP-T 
and CENP-W and is essential for kinetochore for-
mation [71,74]. Chicken CENP-T-W-S-X is 
assembled into a stable heterotetramer in vitro 
and has been proposed to form a nucleosome-like 
structure [71]. This was supported by a recent struc-
tural study using the full human CCAN with α– 
satellite DNA [68]. The CENP-T-W-S-X also 
appears to bind histone H3, not to CENP-A 
[74,77]. It is believed that deposition of CENP-T is 
independent of CENP-A, but the association of 
CENP-T with centromeres is strongly reduced in 
CENP-A knockout cells [74,78–80]. Whole- 
proteome genetic analysis of chicken DT40 cells 
suggested that CENP-T depends on CENP-N for 
its centromeric localization [81]. A recent study also 
showed that RbAp48/RbAp46Mis16 is required for 
the deposition of CENP-T to centromeres in fission 
yeast [82]. Unlike CENP-T-W in vertebrates, 
CENP-TCnn1 in budding yeast is exactly colocalized 
with CENP-ACse4 nucleosomes [83,84], suggesting 
that CENP-T-W-S-X in budding yeast is unlikely to 
form nucleosome-like structure. The centromeric 
localization of CENP-TCnn1 depends on CENP- 
ICtf3 [84].

Although CCAN components localize constitu-
tively at centromeres, the level of individual com-
ponents, the timing of new protein loading at 
centromeres, and physical and functional relation-
ships between different sub-groups can change 
throughout the cell cycle. Thus, the association of 
CCAN components with centromeres can still 
quite dynamic (for review, see [8]). The mechan-
isms underlying the dynamic behavior of CCAN 
during the cell cycle remain poorly understood.

The outer kinetochore

The outer kinetochore is assembled on the plat-
form of inner kinetochore proteins during mitosis 

Figure 1. A schematic of a canonical kinetochore. The main 
structure of the kinetochore consists of constitutive centro-
mere-associated network (CCAN), which includes five sub-
groups (CENP-L-N, CENP-H-I-K-M, CENP-O-P-Q-R-U, CENP- 
T-W-S-X and CENP-C), and the KMN (Knl1, Mis12, and Ndc80 
complexes) network. Kinetochore position is specified by CENP- 
A-containing nucleosomes, upon which CCAN assembles. CCAN 
recruits KMN, which directly binds microtubules, during mitosis. 
Two independent pathways, CENP-C and CENP-T, link KMN to 
CCAN.
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and directly binds to microtubules. The 10-subunit 
outer kinetochores are categorized into three com-
plexes: the Ndc80 complex (Ndc80C), the Mis12 
complex (Mis12C), and the Knl1 complex 
(Knl1C). The three complexes form the KMN 
(Knl1C, Mis12C, and Ndc80C) network [2,85,86] 
(Figure 1). The Ndc80C contains four subunits: 
Ndc80, Nuf2, Spc24, and Spc25, and serves as the 
primary microtubule receptor on the kinetochores. 
The four subunits form two heterodimers: Ndc80- 
Nuf2, and Spc24-Spc25 [87–89]. The Ndc80-Nuf2 
heterodimer contains a globular N-terminal region 
and a C-terminal coiled coil, while the Spc24- 
Spc25 heterodimer contains a globular 
C-terminal region and an N-terminal coiled coil. 
Each pair of proteins interacts via the coiled coil 
regions to form a tetramer, giving an overall 
dumbbell-like shape with a globular domain at 
each end. The Ndc80C binds microtubules via 
the globular N-terminal region of Ndc80-Nuf2, 
known as the MT-binding module containing cal-
ponin-homology (CH) domains [90–92]. The 
globular C-terminal region of Spc24-Spc25 con-
tains RWD (RING finger and WD-repeats) 
domains, which interact with the disordered 
N-terminus of CENP-T [93–96]. The Mis12C con-
sists of Mis12, Nnf1, Nsl1, and Dsn1. The complex 
is roughly rod-shaped, and binds both Ndc80C 
and Knl1C [95,97,98]. The Mis12C also interacts 
with CENP-C and CENP-T and serves as an inter-
action hub between the inner kinetochore and the 
outer kinetochore [97,99,100]. The Knl1C is com-
posed of two subunits, Knl1 and ZWINT. Knl1, 
the largest subunit in the outer kinetochore, con-
tains RWD domains at its C-terminus that directly 
binds the Mis12C [98,101]. ZWINT is involved in 
the spindle assembly checkpoint (SAC), 
a surveillance mechanism that prevents defects in 
chromosome segregation [102,103]. Interestingly, 
the KMN network components are conserved and 
exist in most eukaryotes, whereas the CCAN com-
ponents are highly divergent across species [104].

Pathways linking the inner kinetochore to the 
outer kinetochore

Assembly of the outer kinetochore on the inner 
kinetochore during cell division is a crucial step in 
establishing microtubule attachments to the 

kinetochore. CENP-C and CENP-T are the two 
major pathways that connect the inner kineto-
chore with the outer kinetochore [5,7] (Figure 1). 
Artificial tethering of partial CENP-C and CENP- 
T into a noncentromeric region indicated that 
CENP-C and CENP-T form two parallel pathways 
for the recruitment of the KMN network onto the 
kinetochore [100,105].

CENP-C exists largely as an elongated protein 
that may span >100 nm at the kinetochore [106]. 
The multi-domain protein not only serves as a hub 
for inner kinetochore assembly but also directly 
binds the Mis12C via its N-terminal region. 
CENP-C can recruit one copy of the Ndc80C 
through its interaction with Mis12 
[65,99,100,107,108]. Artificial targeting of the 
N-terminus of CENP-C to a non-centromeric 
locus in human and chicken cells results in recruit-
ment of KMN [100,105,107].

CENP-T binds Ndc80C through its extended 
unstructured N-terminal region. The Ndc80- 
binding domain at CENP-T forms an alpha-helix 
that directly interacts with the Spc24-Spc25 het-
erodimer in Ndc80C [93,94]. The CENP-T 
N-terminal region also directly interacts with 
Mis12C, which in turn binds Ndc80C [96]. 
Artificial tethering of the N-terminus of CENP-T 
in vertebrate cells is sufficient to recruit KMN to 
a non-centromeric locus [105]. Human CENP-T 
has two Ndc80C binding sites, whereas chicken 
CENP-T only has one site. In addition, CENP-T 
can indirectly recruit one copy of Ndc80C through 
its interaction with Mis12C [109,110]. Thus, a total 
of two copies of the Ndc80C exist on each CENP- 
T in chicken cells via either direct binding or 
Mis12C, but three copies for human CENP- 
T. A recent study in chicken cells demonstrated 
that both copies of the Ndc80C on chicken CENP- 
T are required for establishing proper kineto-
chore–microtubule interaction [109]. 
Configuration of two copies of Ndc80C has also 
been suggested for budding yeast CENP-TCnn1 

[84]. Artificial tethering assays using various 
CENP-T mutants in human and chicken cells 
demonstrated that the direct binding of Ndc80C 
to the CENP-T N-terminus is required for the 
CENP-T-Mis12C interaction, suggesting that the 
direct CENP-T-Ndc80C interaction acts upstream 
of Mis12C-recruitment to CENP-T [105,107].
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The choice of different pathways linking the 
inner kinetochore and the outer kinetochore is 
different among different species. In human can-
cer cell lines, both CENP-C and CENP-T genes 
are essential for cell growth and proliferation 
[111], suggesting that both pathways are vital 
for kinetochore assembly. In chicken cells, 
although the N-terminus of CENP-C is essential 
for its interaction with Mis12C, CENP- 
C-Mis12C interaction is dispensable for cell via-
bility while CENP-T is essential [109,110]. In 
fission yeast, deletion of CENP-CCnp3 does not 
result in cell death, but CENP-TCnp20 is indis-
pensable [66], suggesting that the CENP-T path-
way plays a more dominant role in kinetochore 
assembly in these organisms. On the other hand, 
although CENP-TCnn1 and CENP-CMif2 are con-
served in budding yeast, CENP-TCnn1 is not 
essential for cell viability, whereas CENP-CMif2 

is indispensable for chromosome segregation 
[112–114]. Further analysis revealed that, though 
CENP-A recognition by CENP-CMif2 is essential 
for its kinetochore function, its binding to 
Mis12Mtw1 is dispensable [115]. In addition, 
a third pathway mediated by CENP-UAme1 in 
budding yeast is used for recruiting KMN to 
CCAN. CENP-UAme1 has the Mis12Mtw1 com-
plex (Mis12Mtw1C)-binding domain containing 
the first 15 amino acids (aa) in its N-terminus, 
and deletion of the domain causes cell lethality, 
suggesting that the CENP-UAme1 pathway is the 
main pathway for kinetochore assembly in bud-
ding yeast [115,116]. CENP-UAme1 also has 
a homolog in other species, including CENP-U 
in human and chicken and CENP-UMis17 in fis-
sion yeast [94]. Whether CENP-U in these spe-
cies is involved in KMN recruitment needs 
further characterization. Interestingly, in some 
species, such as Drosophila melanogaster and 
Caenorhabditis elegans, the CENP-T pathway is 
lost during evolution, and the CENP-C pathway 
alone is responsible for the assembly of KMN on 
the inner kinetochore [108,117–121]. On the 
other hand, holocentric Lepidoptera (butterflies 
and moths) lacks both CENP-A and CENP-C 
homologs [122]. A recent study showed that 
CENP-T in these insects is sufficient to recruit 
Mis12C and Ndc80C [123]. The diversity of 
inner kinetochore architecture may be explained 

by the coevolution of inner kinetochore proteins 
and rapidly changing centromeric DNA 
sequences [104].

Cell cycle regulation of kinetochore assembly

The inner kinetochore proteins are constitutively 
localized at centromere in all the stages of the cell 
cycle, while the outer kinetochore are only 
assembled at centromeres during mitosis in verte-
brates. Nevertheless, in both fission yeast and bud-
ding yeast, outer kinetochore proteins, such as 
Ndc80, appear to associate with centromeres 
through the different stages of the cell cycle 
[87,124]. However, a recent work by Jiménez- 
Martín et al. demonstrated that the outer kineto-
chore is indeed also reassembled at the onset of 
mitosis in fission yeast, similar to metazoans [125]. 
Fission yeast chromatin is characterized by the 
evolutionarily conserved Rabl chromosome con-
figuration during interphase, in which centro-
meres are clustered underneath the nuclear 
envelope near the spindle pole body (SPB) and 
telomeres are also attached to the nuclear envelope 
[126]. The recent study showed that when Rabl 
configuration is removed, the outer kinetochore 
reassembly was then observed during mitosis, 
indicating that Rabl configuration masks kineto-
chore reassembly in fission yeast [125]. Consistent 
with this, Dong et al. showed that Ndc80 and 
CENP-TCnp20 strongly interact during mitosis but 
not interphase [82]. Similarly, in budding yeast, 
the interaction between Ndc80C and CENP- 
TCnn1 also occurs predominantly in mitosis, sug-
gesting that the outer kinetochore adopts 
a structural change during the stage of the cell 
cycle [94]. These works indicated that outer kine-
tochore disassembly/assembly program during cell 
cycle progression is a conserved phenomenon. 
Recent studies have demonstrated that post- 
translational modifications, such as phosphoryla-
tion, play a crucial role in governing the interac-
tion between CCAN and KMN during mitosis.

Phospho-regulation of outer kinetochore 
assembly through the cell cycle

CENP-T phosphorylation has been well studied 
and found to be conserved among different 
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species. The N-terminus of CENP-T contains the 
Ndc80C-binding domain, which binds the Spc24- 
Spc25 heterodimer in Ndc80C. Phosphorylation of 
the Ndc80C-binding domain in CENP-T by Cdk1 
stabilizes the interaction [93,94]. In human cells, 
Cdk1-mediated phosphorylation at Thr11 and 
Thr85, both of which reside in the conserved 
Cdk1 consensus sequence within the Ndc80C- 
binding domain, promotes the recruitment of 
two copies of Ndc80C to CENP-T [96,107]. 
Chicken CENP-T has one Cdk1 consensus 
sequence in the Ndc80C-binding domain, and 
phosphorylation of Thr72 within the sequence is 
important for recruitment of Ndc80C to CENP-T 
[93]. Budding yeast CENP-TCnn1 also contains 
a conserved Ndc80C binding motif at its 
N-terminus [94]. The N-terminus of CENP-TCnn1 

can be phosphorylated by both Cdk1 and mitotic 
kinase Mps1. However, Cdk1 is not required for 
the interaction of CENP-TCnn1 and Ndc80C. 
Instead, Mps1-mediated Ser74 phosphorylation 
contributes to the interaction [95,127]. The inter-
action between Ndc80C and CENP-TCnn1 in bud-
ding yeast is not essential, while the Ndc80C- 
Mis12Mtw1C interaction is. It has been proposed 
that Mps1 promotes the formation of essential 
Ndc80C-Mis12Mtw1C during S phase and early 
mitosis by inhibiting the Ndc80C and CENP- 
TCnn1 interaction [95].

Cdk1-mediated phosphorylation also plays an 
important role in CENP-T-Mis12C interaction. 
The aa 201–230 region in human CENP-T is cri-
tical for Mis12C recruitment. Thr195 and Ser201 
in this region have been shown to be critical for 
recruitment of Mis12C to CENP-T [96,107]. 
However, in chicken cells, a phospho-null mutant 
of Thr184 (corresponding to human CENP-T 
S201) is viable [110]. In fact, the phospho-null 
mutant of all the Ser/Thr from aa 161 to 216 in 
the Mis12C binding region does not have any 
defect [109]. These data suggest that an additional 
regulatory mechanism controls the CENP- 
T-Mis12C interaction in chicken cells.

In addition, the CENP-C-Mis12C interaction is 
also mediated by mitotic phosphorylation. Dsn1 in 
the Mis12C can auto-inhibit the CENP-C-Mis12C 
interaction via its conserved basic domain by 
masking the CENP-C-binding interface in 
Mis12C [128,129]. Aurora B kinase, which is 

known to be involved in error correction and 
SAC response, phosphorylates the basic domain 
of Dsn1 during mitosis. The phosphorylation 
results in an increased binding affinity between 
CENP-C and Mis12C in vitro and centromeric 
localization of Mis12C in mitotic cells 
[128,130,131].

Hara et al. also showed that Cdk1-mediated 
phosphorylation contributes to the Mis12C- 
Ndc80C interaction [110]. Dsn1 in Mis12C binds 
Ndc80C through its C-terminus, which contains 
a sequence similar to the Ndc80C-binding region 
in the CENP-T N-terminus. The Ndc80C-binding 
region in Dsn1 contains one Cdk1 consensus 
sequence [110,128]. Interestingly, while phosphor-
ylation of CENP-T by Cdk1 stabilizes its interac-
tion with Ndc80C, Cdk1-mediated 
phosphorylation in the Ndc80-binding region of 
Dsn1 decreases its binding affinity with Spc24- 
Spc25, leading to unstable interaction between 
Mis12C and Ndc80C. Thus, Cdk1 phosphorylation 
is a negative regulator of Mis12C-Ndc80C interac-
tion, which may explain why a majority of Ndc80C 
localized to the CENP-T pathway, but less to 
Mis12C on the CENP-C pathway during mitosis 
in chicken DT40 cells [110].

The kinetochore-microtubule attachment is sta-
bilized by the Ska complex, which contains three 
subunits, Ska1, Ska2, and Ska3 [132–134]. During 
mitosis, Ska3 is also phosphorylated by Cdk1. 
Phosphorylated Ska3 binds to Ndc80C which in 
turn recruits the Ska complex to kinetochores. 
Ska3 mutants lacking Cdk1 phosphorylation are 
defective in kinetochore localization [135,136].

Mutually exclusive binding modes establish 
distinct configurations of the outer kinetochore

A recent study in fission yeast revealed that 
phosphorylation-mediated competitive exclu-
sion of different proteins at the N-terminus of 
CENP-T also regulates the recruitment of 
KMN. Fission yeast contains regional centro-
meres, epigenetically defined by CENP-ACnp1 

[137,138]. Dong et al. previously identified 
that Ccp1, a conserved nucleosome assembly 
protein (NAP) domain-containing protein, 
antagonizes the loading of CENP-A in both 
centromere and non-centromeric regions in 
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fission yeast [139]. Interestingly, Ccp1 associ-
ates with centromeres during interphase but 
dissociates from centromeres during mitosis 
[139,140]. The biological significance of this 
cell cycle-regulated association of Ccp1 with 
centromeres is unknown. Dong et al. recently 
revealed that Ccp1 binds to CENP-TCnp20 and 
further showed that CENP-TCnp20 is required 
for Ccp1 centromeric localization [82].

CENP-TCnp20 in fission yeast is essential for 
viability and contains a Ndc80-binding region 
(aa 70–87) at its N-terminus. The Ndc80 bind-
ing region contains a conserved Cdk1 consen-
sus sequence [94]. Ccp1 binds to the first 1–55 
amino acids of CENP-TCnp20, which is imme-
diately adjacent to the Ndc80-binding region. 
The Ccp1-binding motif in CENP-TCnp20 con-
tains four conserved Cdk1 consensus sequences 
and can be phosphorylated by Cdk1 in vitro 
[82]. Phosphorylation of the Ccp1-binding 
motif in CENP-TCnp20 decreases its interaction 
with Ccp1. Consistent with this, in the phos-
phomimetic mutant of the Ccp1 binding motif, 
Ccp1 dissociates from centromeres through all 
stages of the cell cycle. In contrast, Ccp1 

associates with centromeres during both mito-
sis and interphase in the phospho-null mutant 
of the motif. Furthermore, the phospho-null 
mutant of Ccp1-binding motif disrupts the 
positioning of Ndc80C during mitosis and dis-
plays severe chromosome missegregation 
defects, suggesting that occupancy of Ccp1 at 
the Ccp1-binding domain in CENP-T prevents 
the interaction of the adjacent Ndc80-binding 
domain with Ndc80C [82]. Together, this study 
suggests the following model: at the onset of 
mitosis, Cdk1 mediated phosphorylation of 
CENP-TCnp20 at the Ccp1-binding motif ejected 
the Ccp1 and makes the room for the binding 
of Ndc80C to CENP-TCnp20; at the end of 
mitosis, the Ccp1-binding motif is depho-
sphorylated, leading to the recruitment of 
Ccp1 that blocks the binding of Ndc80C to 
CENP-T (Figure 2). Phosphorylation-mediated 
competitive exclusion between Ccp1 and 
Ndc80C represents a new mechanism govern-
ing the cell cycle-dependent kinetochore 
assembly. The principle explains the observa-
tion that Ccp1 dissociates from centromeres 
during mitosis.

Figure 2. Phosphorylation-mediated competitive exclusion between Ccp1 and Ndc80 at the N-terminus of CENP-T regulates 
the recruitment of KMN. The Ccp1-binding domain of CENP-T is localized adjacent to the Ndc80-binding domain at the N-terminal 
region of CENP-T. When cells enter mitosis, the Ccp1-binding domain of CENP-T is phosphorylated by the Cdk1 kinase. 
Phosphorylation of the Ccp1-binding domain dissociates Ccp1 from CENP-T, allowing Ndc80C to bind to the Ndc80-binding domain. 
Ndc80C then directly interacts with microtubules to facilitate chromosome segregation. When cells exit from mitosis, the Ccp1- 
binding domain is dephosphorylated, which recruits Ccp1. Reassociation of Ccp1 with the Ccp1-binding domain blocks the binding 
of Ndc80C to CENP-T during interphase. P: phosphorylation.
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Concluding remarks

The kinetochore plays a fundamental role in 
accurate chromosome segregation during mito-
sis. The large protein machine must be pre-
cisely assembled on centromeric chromatin 
during mitosis to generate a microtubule- 
binding interface that links chromosomes to 
the mitotic spindle. Kinetochore dysfunctions 
can lead to chromosomal instability (CIN) 
and aneuploidy, both of which are common 
characteristics of cancer cells [141–143]. 
However, in spite of recent achievements in 
understanding the components and functions 
of the kinetochore, there remains much to be 
learned about how kinetochore assembly is cell 
cycle regulated. Phosphorylation has been 
heavily studied as regulators of the events lead-
ing to kinetochore assembly. The role of other 
posttranslational modifications in kinetochore 
assembly during mitosis is less well under-
stood. Future studies are needed to address 
this issue. A variety of different strategies 
were adopted by different species to recruit 
KMN to the inner kinetochores. A detailed 
understanding of how CENP-C and CENP-T 
pathways are used and coordinated to recruit 
KMN in these organisms will shed important 
light on the kinetochore’s role in chromosome 
segregation. Phosphorylation-mediated compe-
titive exclusion between Ccp1-Ndc80 provides 
a new insight into the cell cycle-dependent 
kinetochore assembly. Similar to Ccp1, multi-
ple other centromeric proteins in fission yeast, 
including HJURP/Scm3, Mis16, Mis18, Eic1/ 
Mis19/Kis1, and Eic2/Mis20, also display the 
same distribution pattern through the cell 
cycle [26,28,29,144–147]. In addition, Mis18α 
in chicken DT40 cells is localized at centro-
meres during interphase, but is lost during 
mitosis [148]. It will be interesting to know 
whether these centromeric proteins use 
a similar mechanism to regulate kinetochore 
assembly. While much of the focus has been 
on understanding the assembly of kinetochores 
at the onset of mitosis, how kinetochores are 
disassembled at the end of mitosis have 
received less attention. The PP2A (protein 
phosphatase 2A), which is able to 

dephosphorylate CDK1 substrates during ana-
phase, has been implicated in kinetochore dis-
assembly [6]. The molecular basis of PP2A- 
mediated kinetochore disassembly will need to 
be addressed in the future.
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