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The detection rate for compact binary mergers has grown as the sensitivity of the global network of
ground based gravitational wave detectors has improved, now reaching the stage where robust automation
of the analyses is essential. Automated low-latency algorithms have been developed that send out alerts
when candidate signals are detected. The alerts include sky maps to facilitate electromagnetic follow-up
observations, along with probabilities that the system might contain a neutron star, and hence be more
likely to generate an electromagnetic counterpart. Data quality issues, such as loud noise transients
(glitches), can adversely affect the low-latency algorithms, causing false alarms and throwing off parameter
estimation. Here a new analysis method is presented that is robust against glitches, and capable of
producing fully Bayesian parameter inference, including sky maps and mass estimates, in a matter of
minutes. Key elements of the method are wavelet-based de-noising, penalized maximization of the
likelihood during the initial search, rapid sky localization using precomputed inner products, and
heterodyned likelihoods for full Bayesian inference.
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I. INTRODUCTION

What started with a trickle in 2015 [1] has now turned
into a veritable deluge [2,3] of gravitational wave signals
detected by the LIGO and Virgo instruments. Keeping
up with the ever increasing event rate is challenging.
While the searches for gravitational wave signals are now
highly automated and capable of producing near-real-
time alerts [4–8], full parameter inference [9,10] has
lagged behind. This is in part due to the large computa-
tional cost of fully Bayesian parameter inference, and in
part due to the challenge of working with data that needs
to be carefully calibrated [11,12] and cleaned of various
noise contaminants [13–16].
The instrument noise in the LIGO and Virgo data is, for

the most part, well described as locally stationary and
Gaussian [17]. Short duration signals, such as high mass
binary black holes, are in the sensitive band of the detector
for a second or less, and the odds of the signal encountering
a noise transient is low. However, for longer duration
signals, such as low mass black hole binaries or systems
that include a neutron star, the signals are in the sensitive
band of the detectors for tens of seconds or even minutes,
and it is likely that the signal will encounter a noise
transient. As the low-frequency sensitivity of the detectors
improve, low mass systems are virtually guaranteed to
encounter noise transients. The LIGO/Virgo analyses have
been fortified against noise transients using a combination
of vetoes [18], glitch-robust search statistics [19], gating
[20], and glitch subtraction [16]. Gating of glitches is used

in the online searches, while glitch subtraction is performed
prior to off-line parameter estimation.
Here a proof of concept for a robust end-to-end

low-latency Bayesian parameter estimation algorithm—
QuickCBC—is presented. The QuickCBC algorithm
reads in calibrated strain data, performs robust on-source
spectral estimation, executes a rapid search for compact
binary coalescence (CBC) signals, uses wavelet de-noising
to subtract any glitches from the search residuals, and
produces low-latency sky maps and initial parameter
estimates, followed by full Bayesian parameter estimation.
For binary black holes the entire process takes just minutes
on a laptop; for binary neutron stars, initial sky maps and
mass estimates are ready in minutes, and full results are
ready in less than an hour. The QuickCBC code is open
source ([21]), and can be used to analyze public LIGO/
Virgo data hosted by the Gravitational Wave Open Science
Center ([22]). For testing purposes the algorithm was run in
real time during the LIGO/Virgo O3 observing run,
automatically generating results for triggers sent to the
Gravitational-Wave Candidate Event Database.
Existing algorithms can perform most of the individual

steps in the QuickCBC algorithm. For example, the PyCBC

search algorithm [20] performs low-latency searches for
CBC signals that incorporate glitch mitigation via a chi-
squared test [19] and automatic gating of loud glitches [20].
The BayesWave algorithm [16,23,24], produces on-
source spectral estimates and performs glitch subtraction
[3,25,26]. The BayesStar algorithm [27] produces
low-latency sky maps to help guide the search for
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electromagnetic counterparts to binary mergers, and
several rapid parameter estimation algorithms have been
developed [28–32]. What is novel is that QuickCBC is a
fully automated, end-to-end analysis algorithm that is
robust against glitches, and able to produce reliable results
in a matter of minutes. Many of the methods used by
QuickCBC, such as wavelet de-noising [33], banded
likelihoods for glitch rejection, and heterodyned likeli-
hoods for rapid inference [34,35], are new to LIGO/Virgo
data analysis.
Core elements of the QuickCBC algorithm have been

merged with the BayesWave algorithm [36]. The key
difference between the implementations is that the
BayesWave variant [36] jointly marginalizes over the
CBC signal parameters, a model for the power spectral
density (PSD) and a wavelet-based model for noise
transients. The QuickCBC algorithm uses a fixed PSD
and a point estimate for any noise transients. The other key
difference is speed: QuickCBC can be provide results with
a latency of minutes, while the more refined BayesWave
+CBC analysis [36] takes hours.

II. OVERVIEW OF THE QUICKCBC ALGORITHM

The QuickCBC algorithm works with short snippets of
LIGO/Virgo data, typically 4 to 8 seconds in length when
searching for binary black holes and 16 to 32 seconds in
length when searching for binary neutron stars. The run-
time scales roughly linearly with the data volume. The
workflow is illustrated in Fig. 1.
The first step is to produce estimates for the power

spectral density in each detector. On-source spectral
estimation, where the short segment of data to be
searched is also used to estimate the PSD, can be thrown
off by the presence of loud signals or loud glitches. To
avoid such biases, QuickCBC uses an iterative approach
that combines a running median estimate for the spectrum
with spectral line identification and wavelet de-noising
[33]. The de-noising removes signals and glitches, so
only the spectral estimate from the first stage of the
analysis is passed to the second stage. The second stage
performs a rapid network coherent search for CBC
signals using a parallel tempered Markov chain
Monte Carlo (PTMCMC) algorithm [37] with a banded
likelihood that is analytically maximized over amplitude,
phase, and arrival time. Only the intrinsic parameters of
the signal—masses and spins—are explored by the
PTMCMC. The banded likelihood automatically identi-
fies and rejects frequency bands that are impacted by
noise transients. The removal is done separately for each
time delay, resulting in a robust time-frequency glitch
rejection method that can detect signals in the presence of
glitches. The third stage subtracts the best-fit CBC
waveform from the data, and performs a second round
of spectral estimation and wavelet de-noising. The de-
noising produces a glitch model that is subtracted from

the original data, while preserving any gravitational wave
signals. The cleaned data and updated spectral estimates
are used in the subsequent stages of the analysis. The
fourth stage refines the estimates of the intrinsic param-
eters using a standard nonmaximized and nonbanded
likelihood function. Consequently, the amplitude, phase,
and arrival time at each detector also have to be explored
by the PTMCMC. The refined estimates for the intrinsic
parameters are then passed to the fifth stage of the

FIG. 1. Workflow diagram for the QuickCBC algorithm. The
time domain data, dðtÞ, is read in, windowed, and Fourier
transform to produce d̃ðfÞ. An initial on-source PSD estimate
SðfÞ is produced using wavelet de-noising to remove glitch and
signal power. Next the data is searched using a glitch-robust
likelihood function that maximizes over extrinsic parameters and
returns initial estimates for the intrinsic parameters η⃗. The PSD
estimation is then repeated on the residual d − hðη⃗Þ, and wavelet
de-noising is used to fit and remove any glitches g̃ðfÞ that might
be present in the data. The de-glitched data, d̃ðfÞ − g̃ðfÞ, is used
to precompute various inner products for the projected network
likelihood, allowing for a rapid mapping of the extrinsic
parameters ξ⃗; such as the sky position and luminosity distance.
The initial estimates for the full set of parameters θ⃗ ¼ fη⃗; ξ⃗g
are used along with the de-glitched data and refined PSD estimate
to initialize the heterodyned likelihood function that is used
by the PTMCMC algorithm to rapidly produce full posterior
distribution.
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analysis, which uses a PTMCMC algorithm with an
algebraic likelihood function to map out the extrinsic
parameters of the source—sky location, luminosity dis-
tance, inclination, and polarization angles—while hold-
ing the intrinsic parameters fixed. Since the extrinsic
parameters only impact the projection of the waveform
onto the detectors, the inner products in the likelihood can
be precomputed, resulting in an algebraic likelihood
function that can be evaluated in a fraction of a micro-
second [38]. With the first five stages complete the
algorithm will have produced a full three-dimensional
sky map [Right Ascension (RA), Declination (DEC), and
luminosity distance], along with estimates for the com-
ponent masses and spins, all in about the time it has taken
you to read this paragraph. The precise run-time will
depend on the duration and bandwidth of the signal and
the speed and number of computations cores. For binary
black hole systems at current LIGO/Virgo sensitivity it is
usually sufficient to use 4 seconds of data sampled at
2048 Hz. For neutron star-black hole systems it is enough
to use 8 to 16 seconds of data sampled at 2048 Hz, while
for binary neutron star systems we need 16 to 32 seconds
of data sampled at 4096 Hz. For a binary black hole
system, running on a 2016 MacBook Pro laptop with a
2.9 GHz quad-core processor, it takes ∼60 seconds for
the PSD estimation and intrinsic parameter search,
and an additional ∼30 seconds to complete the extrinsic
parameter search and produce sky maps. The cost of the
intrinsic parameter search scales linearly with the data
duration, while the cost of the extrinsic parameter search
scales linearly with the sample rate. Thus, the intrinsic
parameter search for neutron star-black hole binaries
takes either two to four times longer than for binary
black holes, but the time needed to produce a sky map is
the same. Sky maps can be produced in very low latency
by skipping the intrinsic search and instead using the
intrinsic parameters provided by the search pipelines (as
is done by BayesStar [27]). The run-time to produce a
sky map with QuickCBC is comparable to, or a little
faster than, BayesStar. The main difference is that the
QuickCBC maps are fully Bayesian, while BayesStar
maps are only approximately so.
The final stage of the algorithm refines the initial

parameter estimates using a PTMCMC algorithm and a
fast heterodyned likelihood function [34,35]. The hetero-
dyned likelihood offers significant speed advantages,
especially for long duration signals such as binary neutron
star inspirals. The run-time for the final PTMCMC stage
scales linearly with the sample rate and is independent of
the observation time. On the same laptop computer
described earlier, the PTMCMC stage takes four minutes
for black hole binaries and neutron star-black hole binaries,
and eight minutes for neutron star binaries. These run-times
are several orders of magnitude faster than the hours or
days it takes for LALinference [9,10] to produce results.

A. Spectral estimation and wavelet de-noising

The QuickCBC algorithm is designed to work with short
stretches of data, typically between Tobs ¼ 4 and Tobs ¼ 32
seconds in duration. Traditional spectral estimation tech-
niques, such as Welch averaging, can not be used on short
data segments like these. The advantages of working with
short data segments are speed and robustness against non-
stationary drifts in the power spectrum. The disadvantages are
low spectral resolution and possible biases due to the
presence of loud signals or glitches. To guard against such
biases an iterative wavelet de-noising approach is used to
remove non-Gaussian features from the data.
The iterative spectral estimation procedure proceeds as

follows: a Tukey window is applied to the data to limit
spectral leakage. A FFT is then used to produce a periodo-
gram, SpðfÞ. A running median of width Δf is used to
smooth the periodogram. The width of the smoothing
window Δf is chosen to strike a balance between following
the slope of the spectrum (small Δf’s follow the slope)
and ignoring sharp spectral lines (large Δf’s are robust
against lines). More accurately, it is the number of Fourier
samples in the smoothing window that is critical, so for
longer observation times smaller windows can be used.
For the shortest four second segments the default width is
Δf ¼ 16 Hz. The smoothed spectral estimate SsðfÞ is used
to identify spectral lines, which are found by taking the ratio
RðfÞ ¼ SpðfÞ=SsðfÞ, with lines defined as regions where
this ratio exceeds R� ¼ 10. The full spectral estimate is then
given by

SðfÞ ¼
�
SsðfÞ; for RðfÞ ≤ R�
SpðfÞ; for RðfÞ > R�

: ð1Þ

The initial spectral estimate is used to whiten the data:
d̃ðfÞ → d̃wðfÞ ¼ d̃ðfÞ= ffiffiffiffiffiffiffiffiffi

SðfÞp
. The whitened data is wave-

let transformed using an over-complete collection of Morlet-
Gabor continuous wavelets (see the top panel of Fig. 2). A
wavelet de-noising procedure [33] is then used to remove any
non-Gaussian features from the data. Wavelet de-noising is
basically a time-frequency thresholding technique. For sta-
tionary Gaussian noise, the wavelet power spectrum, Snm,
should follow a chi-squared distribution with two degrees of
freedom.Wavelet pixels with power above a certain threshold
are identified, then an inverse wavelet transform of these
pixels is used to produce a whitened time domain
reconstruction of the excess power. The reconstructed feature
is recolored using the smooth component of the power
spectrum, SsðfÞ, and subtracted from the original time
domain data. The thresholding procedure starts by identifying
pixels with Snm > S0. Then surrounding pixels with
Sn�1m�1 > S1 are also flagged, with the goal of identifying
clusters of excess power. The standard threshold values are
S0 ¼ 10 and S1 ¼ 6. The power spectral estimation is
repeated using the de-noised data. The updated power
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spectrum is then used to whiten the original data, and the
wavelet de-noising procedure is repeated. The entire pro-
cedure is iterated until the signal-to-noise of the non-
Gaussian excess plateaus. This typically takes just one or
two iterations, but data with very loud glitches may require as
many as five or six iterations for the procedure to converge.
Figure 2 illustrates the spectral estimation and de-noising

procedure using four seconds of data surrounding
GW150914. The initial spectral estimate used to whiten
the data (top panel) overestimates the height of the
spectrum through the band between ∼40 Hz → 120 Hz
due to the loud gravitational wave signal. The data in the
middle panel is whitened using the updated spectrum found
after the initial round of wavelet de-noising. More features
are now visible in the mid-band frequencies. In this
example the procedure converged after two iterations.
The lower panel shows the de-noised data that was used
to produce the final spectral estimate. Figure 3 shows the
whitened time domain reconstruction of the feature that
was removed by the de-noising process. In this instance the
feature is the gravitational wave signal from a binary black
hole merger. It would be a bad idea to use the wavelet de-
noised data from the spectral estimation procedure for
subsequent stages in the analysis! Instead, just the spectral
estimate is used.
The final stage of the QuickCBC spectral estimation

procedure is to fit a fixed dimension version of the
BayesWave transdimensional spectral model [23,24] to
the glitch-subtracted data. The spectral model includes a

smooth component described by a cubic spline, and line
features described by a Lorentzian line model. The running
median is used to initialize the spline model. The spacing of
the spline points is determined by comparing two running
averages of the running median, one with a window twice
as wide as the other. The usual choice is to use a 4 Hz and
an 8 Hz window. The spline control points are spaced more
closely in regions where the two averages diverge, and
spaced further apart in regions where the two averages
converge. The minimum spacing of the spline control
points is set at 4 Hz and the maximum spacing is set at
32 Hz. The threshold on the ratio of the two averages is set
at 20%. The Lorentzian line model is initialized using the
outliers from the running median to set the initial location,
amplitude, and width of the lines. A simple fixed dimension
Markov chain Monte Carlo is then used to refine the model
parameters. To control unphysical oscillations in the spline
model, a prior is used that penalizes points with large
second derivatives. Figure 4 compares the QuickCBC
spectral estimate to the estimate from the BayesWave
algorithm [23,24]. The QuickCBC estimate agrees very
well with the BayesWave estimate. The key difference is
that the QuickCBC estimate is produced in seconds, while
the more refined BayesWave estimate takes tens of
minutes or longer to produce.

B. Parallel tempered Markov chain Monte Carlo

The QuickCBC algorithm uses a PTMCMC algorithm
[37,39,40] for both the initial search, the fast sky mapping,
and the full parameter inference. The implementation varies
slightly between the different stages, mostly in terms of the
likelihood function used, but the central engine is the same.
The PTMCMC algorithm uses a collection of chains that

explore likelihoods that are scaled by “inverse

FIG. 2. Time-frequency maps illustrating the spectral estima-
tion and de-noising procedure applied to four seconds of LIGO
Hanford data surrounding GPS time 1126259462. The initial
spectral estimation and whitening (upper panel) is impacted by
the loud signal from GW150914. Wavelet de-noising is used to
remove the excess power, then the spectral estimation is repeated.
The original data is re-whitened (middle panel) ready for the next
iteration. The process is iterated until the excess SNR plateaus.
The bottom panel shows the de-noised data used to produce the
final spectral estimate.
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FIG. 3. The non-Gaussian feature removed by wavelet de-
noising during the iterative spectral estimation procedure applied
to four seconds of LIGO Hanford data centered on GPS time
1126259462. In this instance the non-Gaussian feature is the
gravitational wave signal from the binary black hole merger
GW150914.
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temperatures” βi: lnLðβi; θ⃗Þ ¼ βi lnLðθ⃗Þ. Chains with
βi ¼ 1 explore the target posterior, while chains with βi >
1 range more widely, and help chains to escape from local
maxima. Chains with βi < 1 can be used to help lock on to
weak signals. The temperature ladder is set so that there are
multiple “cold” chains: βi ¼ 1 for i ¼ ½1; Nc� that interact
with Nh “hot” chains on a geometrically spaced temper-
ature ladder βk ¼ αk for k ¼ ½1; Nh�. The choice of incre-
ment α and the number of hot chains are tunable
parameters. Setting α too large will result in poor exchange
between chains. Setting α too small will require a prohibi-
tive number of chains to reach the desired maximum
temperature. A good rule-of-thumb for the maximum
temperature is that the effective signal-to-noise ratio for
the hottest chain, SNRNh

¼ SNR
ffiffiffiffiffiffiffi
βNk

p
should be of order

4–5. For typical LIGO/Virgo signals with SNR ∼ 10 → 20
we need βNk

∼ 1=4 → 1=16. Using a spacing of α ¼ 0.8
requires of order Nh ∼ 6 → 12 hot chains to reach the
desired maximum temperature. These rule-of-thumb set-
tings for the PTMCMC temperature ladder have been found
to work in practice, but the efficiency could be improved
by using dynamic temperature spacing [40]. When loud
signals (SNR > 30) are detected, it may be necessary to
start a new analysis with additional chains to have a high
enough maximum temperature.
Each chain is updated using a mixture of proposal

distributions. The standard mix includes draws from the
prior distribution, jumps along eigenvectors of the Fisher
information matrix, differential evolution, Gaussian jumps
along each intrinsic parameter direction, and a dedicated
extrinsic parameter proposal that draws new sky locations
that maintain the time delay between a randomly selected
pair of detectors, while analytically adjusting the other

extrinsic parameters to keep the detector frame waveforms
unchanged. The extrinsic proposal is described in detail in
Sec. IVa of Ref. [16].
The Fisher information matrix proposal is based on a

quadratic expansion of the log likelihood:

Γijðθ⃗Þ ¼ −∂i∂j lnL;

¼ 4
X
ab

Z Aab
;i A

ab
;j þA2

abΦab
;i Φab

;j

SaðfÞ df: ð2Þ

Here the derivatives are taken with respect to the waveform
parameters θi centered on some reference value θ⃗. The sum
is over the detectors, a, in the network, and the harmonics,
b, of the gravitational wave signal:

haðfÞ ¼
X
b

AabðfÞeiΦabðfÞ: ð3Þ

The reference value θ⃗ is updated to the current value of the
chain every few hundred iterations and the Fisher matrix is
recomputed at the new location. The Fisher matrix proposal
employs the eigenvectors vðkÞ and eigenvalues λk, found by
solving the linear system

Γijv
j
ðkÞ ¼ λkviðkÞ: ð4Þ

Jumps from the current location x to candidate location y
are proposed by first randomly selecting an eigen-direction
p, and setting

y ¼ xþ γffiffiffiffiffi
λp

p vðpÞ; ð5Þ

where γ ∼N ð0; 1Þ is a zero mean, unit variance Gaussian
deviate. The proposal densities for this jump cancel in the
Metropolis-Hastings ratio since the Fisher matrix is held
fixed (aside from occasional infrequent updates). Jumping
along eigen-directions is more robust that drawing from the
full Fisher matrix, as the matrices are often poorly con-
ditioned. The poor conditioning typically only impacts one
or two eigen-directions, and still allows for good accep-
tance of jumps along the other eigen-directions. Small
Gaussian jumps along individual parameter directions are
included in the proposal mix to help cover directions that
might not be explored well by the Fisher matrix jumps.
Differential evolution (DE) proposals [41] are particu-

larly good at exploring degenerate directions in parameter
space—the very same directions that cause the Fisher
matrix to become ill-conditioned. The variant of differential
evolution used by QuickCBC works as follows: a history
array of past samples, z is collected for each temperature
level (with multiple copies for the cold chains). The array
is initialized with draws from the prior. Samples are added
to the history array after every ∼10 iterations. A counter j
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FIG. 4. A comparison of power spectral density estimates using
four seconds of LIGO Hanford data surrounding GW150914
centered on GPS time 1126259462. The low-latency QuickCBC
algorithm produces a good approximation to the reference
BayesWave estimate. A Welch average using 2048 seconds
of data surrounding the event is shown for comparison.
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keeps track of how many samples have been added.
The new sample added is added to the array at index
jðmodNHÞ. That is, when j reachesNH the first entry in the
array gets replaced and so on. The DE proposal is made as
follows: two samples, k, l, are drawn from the history array
and used to propose a new location:

y ¼ xþ γðzk − zlÞ: ð6Þ

Here γ is drawn from a Gaussian of width 2.38=
ffiffiffiffiffiffi
2d

p
for

90% of the DE updates, where d is the number of
parameters, and is set to γ ¼ 1 for the rest. The proposal
is symmetric, so the proposal densities cancel in the
Metropolis-Hastings ratio. The Gaussian DE jumps are
good for exploring local correlations, while the γ ¼ 1 DE
jumps allow the chains to move between discrete modes of
the posterior.
The QuickCBC sampler is currently limited to using

waveform templates that describe nonprecessing, quasi-
circular binaries. These templates can be parametrized in
terms of four intrinsic parameters and seven extrinsic
parameters. The intrinsic parameters are the individual
mass m1, m2 and the aligned dimensionless spins χ1, χ2.
Here χ ¼ χ⃗ · L̂, where χ⃗ ¼ S⃗=m2 is the dimensionless spin
vector and L̂ is a unit vector aligned with the orbital angular
momentum. The seven extrinsic parameters are the sky
location RA, DEC ¼ ðα; βÞ, luminosity distance DL,
polarization and inclination ðψ ; ιÞ, and merger time and
merger phase ðtc;ϕcÞ.
The QuickCBC sampler uses the modified collection of

parameters η⃗ → flnM; lnM; χ1; χ2g and ξ⃗ → fα; sin β;
lnDL;ψ ; cos ι;ϕc; tc; g, where M ¼ m1 þm2 is the total
mass and M ¼ ðm1m2Þ3=5=M1=5 is the chirp mass. The
priors are taken to be uniform in all the parameters save
for M, M, DL. For the masses the priors are uniform
in m1, m2, which can be enforced using the Jacobian factor
JM ¼ Mm1m2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 4m1m2

p
. For the distance, the prior

is taken to be uniform in luminosity distance volume, which
can be enforced using the Jacobian factor JD ¼ D3

L. Some
waveform models, such as the IMRPhenomD model
[42,43] used to produce the plots in this paper, are only
considered to be reliable for a subset of mass ratios
and spins. To account for this, the prior ranges for the
IMRPhenomD analyses are restricted such that m1=m2 <
18 and jχj < χmax ¼ 0.85. The default prior on the spins is
uniform in the aligned spin component. To facilitate
comparison with the IMRPhenomPv2 precessing model
[44], which uses a uniform-in-direction spin prior, a second
spin prior option can be selected that is uniform in the
aligned spin component for isotopically distributed spins,
namely, pðχÞ ¼ lnðχmax=jχjÞ=ð2χmaxÞ.

C. Glitch-robust coherent search

The QuickCBC algorithm can be used to search for
CBC signals in segments of LIGO/Virgo data. The standard
usage is to follow-up triggers from template-bank based
CBC search pipelines, but any valid Global Positioning
System (GPS) time will do. QuickCBC executes a sto-
chastic search using a PTMCMC algorithm and a glitch-
robust maximized likelihood function. The search is limited
to the dominant waveform harmonic for nonprecessing,
quasi-circular binaries. As such, the search may fail to
detect systems with significant contributions from higher
modes, strongly precessing systems, or highly eccentric
systems. Extending the search to include higher modes is
straightforward. Including precession and eccentricity is far
more challenging.
The dominant waveform harmonic for nonprecessing,

quasi-circular binaries has polarization states related:
h×ðfÞ ¼ iϵhþðfÞ where

ϵ ¼ −
2 cos ι

ð1þ cos2 ιÞ : ð7Þ

The detector response can be written as:

haðθ⃗; fÞ ¼ hþðη⃗; fÞ
D�
DL

ðFaþ þ iϵFa
×Þe2πifΔtaeiϕc ; ð8Þ

where a labels the detector, Faþðα; β;ψÞ and Fa
×ðα; β;ψÞ are

the antenna response patterns, Δta is the arrival time
relative to the geocenter time, ϕc is the merger phase,
and DL is the luminosity distance. The reference geocenter
waveform hþðη⃗; fÞ is generated using an arbitrary fiducial
luminosity distance D�, with merger time and phase set
equal to zero. As such, the reference waveform only
depends on the four intrinsic parameters η⃗. Defining

Fa ¼
D�
DL

ðFaþ2 þ ϵ2Fa
×
2Þ1=2 ð9Þ

and

λa ¼ atanðϵFa
×=FaþÞ þ ϕc; ð10Þ

the response can be written as

haðθ⃗; fÞ ¼ hþðη⃗; fÞFaeiλae2πifΔta : ð11Þ

We see that the waveforms in each detector are identical up
to an overall amplitude scaling, time shift, and phase shift.
Denoting the data in detector a as daðfÞ, the Gaussian log
likelihood is given by

lnLa ¼ ðdajhaÞ −
1

2
ðhajhaÞ −

1

2
ðdajdaÞ: ð12Þ

Here ðxjyÞ denotes the noise-weighted inner product
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ðxjyÞ ¼ 2

Z
x�yþ y�x

SðfÞ df; ð13Þ

where SðfÞ is the power spectral density of the noise. The
network log likelihood is found by summing the individual
contributions: lnL ¼ P

a lnLa.

1. Maximized likelihood

During the search stage, the power spectral density is
held fixed and the ðdajdaÞ term is a constant that can be
ignored. Standard tricks are used to maximize over the
amplitude, phase, and arrival time of the waveforms.
Writing the signal in terms of unit normalized sine
and cosine quadratures, ðha;sjha;sÞ ¼ ðha;cjha;cÞ ¼ 1,
ðha;sjha;cÞ ¼ 0:

haðfÞ ¼ Aaðha;sðfÞ sinϕa þ ha;cðfÞ cosϕaÞ; ð14Þ

and the log likelihood (dropping the ðdajdaÞ constant term)
becomes

lnLa ¼ Aaρaðta; η⃗Þ cosðϕa − φaðta; η⃗ÞÞ −
1

2
A2
a; ð15Þ

where η⃗ are the intrinsic parameters of the source, and
ρaðta; η⃗Þ ¼ jzaðta; η⃗Þj, φaðta; η⃗Þ ¼ argfzaðta; η⃗Þg, where

zaðta; η⃗Þ ¼ 4

Z
daðfÞh�a;cðf; η⃗Þ

SnðfÞ
e2πifta : ð16Þ

The likelihood is maximized with respect to amplitude and
phase by setting Aa ¼ ρa and ϕa ¼ φa:

lnLa;maxðta; η⃗Þ ¼
1

2
ρ2aðta; η⃗Þ: ð17Þ

The complex SNR time series zaðta; η⃗Þ can be computed
using an inverse fast Fourier transform. The likelihood can
then be maximized with respect to the time offset ta by
sorting the resulting time series ρaðta; η⃗Þ. The network
likelihood,

lnLmaxðftig; η⃗Þ ¼
1

2

X
a

ρ2aðta; η⃗Þ; ð18Þ

can be maximized with respect to the arrival times in each
detector, ftig, subject to the constraint that the time
differences Δtij ¼ jti − tjj are less than the light travel
times between the detector sites. The maximization is done
pair-wise between detectors, starting with a reference
detector. For networks with three or more detectors the
pair-wise approach can yield collections of time delays that
do not correspond to any physical sky location. Similarly,
the relative phases may not correspond to any physical sky
location, inclination, or polarization angle. In most cases

this is not a problem as the extrinsic parameters get refined
in the subsequent sky-mapping stage of the analysis.
When glitches are present in the data, the log likelihood

times series in each detector, lnLa;maxðta; η⃗Þ, may have
multiple distinct maxima. Some of these maxima will be
associated with glitches and some will be associated with
the signal. To account for this possibility, all maxima that
are at least 50 ms apart are recored for each detector before
applying the network time delay restriction. The algorithm
can return multiple solutions, each with different arrival
times, amplitudes, and phases. A glitch rejection step is
then applied to each candidate solution before arriving at a
unique maximum likelihood solution.

2. Banded glitch rejection

CBC searches use variants of the ρ search statistic,
defined for data d and templates h as

ρ ¼ ðdjhÞ
ðhjhÞ1=2 : ð19Þ

When a glitch is present in the data, d ¼ nþ g, the
template can ring-off against the glitch. Usually this occurs
across a narrow band of frequencies. Looking at how ρ
accumulates with frequency can be used to detect glitches.
Rather than steadily accumulating, ρ gets a big boost in the
frequency band where the signal crosses a glitch. Motivated
by these considerations, a chi-squared test for glitch
rejection has been incorporated into CBC searches [19].
The statistic uses frequency bands on varying width, with
the width chosen so that the template has equal SNR ¼ffiffiffiffiffiffiffiffiffiffiffiðhjhÞp

in each band.
Here we introduce a variant of this approach with fixed-

width frequency bands. Defining the ρ̄ statistic:

ρ̄ðf;ΔfÞ ¼ ðd − hjhÞmaxϕ0

ðhjhÞ1=2 ; ð20Þ

where the noise-weighted inner products are computed
across a frequency band of width Δf, centered at
frequency f. The inner product of the residual, d − h,
and the template, h, is analytically maximized with respect
to the overall phase in that band using sine/cosine quad-
ratures. In pure Gaussian noise, d ¼ n, we have

E½ρ̄� ¼ 1 − SNR; Var½ρ̄� ¼ 1: ð21Þ

When the template matches a signal in the data, d ¼ nþ h,
we have

E½ρ̄� ¼ 1; Var½ρ̄� ¼ 1: ð22Þ

When a glitch is present in the data, d ¼ nþ g the template
rings-off against a glitch and ρ̄ðf;ΔfÞ becomes large
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and positive. Frequency bands where ρ̄ðf;ΔfÞ > 4 are
excluded from the likelihood calculation. The amplitude
and phase maximization are repeated for the full template
with any glitch-impacted bands removed. The banded
glitch rejection is applied to the collection of candidate
solutions from the original likelihood maximization step.
The solution with the largest banded likelihood is returned
and used by the PTMCMC search algorithm. Figure 5
shows the banded ρ̄ statistic applied to data surrounding the
binary neutron star merger GW170817. We see that the ρ̄
statistic successfully identifies the frequency band where
the template encounters a loud noise transient in the LIGO
Livingston detector.

D. Glitch removal

The PTMCMC search using the banded maximum like-
lihood function returns an initial estimate for the extrinsic
parameters of the signal, along with the arrival times,
amplitudes, and phases in each detector. This solution is
then used to subtract the CBC signal from the data. The
residual is then processed through the same spectral estima-
tion procedure that was applied to the original data. Figure 6
shows the reconstructed glitchmodel for residual in the LIGO
Livingston detector roughly a second before the merger of
binary neutron star GW170817.
Figure 7 shows time-frequency maps of the LIGO

Livingston data surrounding the GW170817 event. The
upper panel shows the time-frequency track for the point
estimate of the signal that was subtracted from the data
prior to the second round of spectral estimation and wavelet
de-noising. The lower panel shows the whitened data after
the noise transient has been removed. All subsequent stages
of the analysis are performed using the glitch-sub-
tracted data.

E. Low-latency sky mapping

The search phase delivers an estimate for the intrinsic
parameters, in addition to the amplitudes, phases, and
arrival times in each detector. The next step is to find
extrinsic parameters that are consistent with the waveforms
seen in each detector. With three or more detectors the
problem of solving for the extrinsic parameters ξ⃗ given
the relative amplitudes, arrival times, and phases is over-
constrained, and often ill-posed due to noise. Rather than
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FIG. 5. The banded ρ̄ statistic as a function of central frequency
for a template with chirp mass M ¼ 1.197 M⊙, total mass
M ¼ 2.8 M⊙, and merger time tc ¼ 1187008882.4486 GPS
seconds. The ρ̄ statistic successfully identifies the frequency
bands where the signal track crosses a loud noise transient in the
LIGO Livingston detector.
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FIG. 6. The whitened glitch model in LIGO Livingston data
centered at GPS time 1187008882. The glitch reconstruction was
performed after a low-latency point estimate for the GW170817
signal, which is coincident with the glitch, was subtracted from
the data.

FIG. 7. Time-frequency maps of the LIGO Livingston data
centered at GPS time 1187008882. The upper panel shows the
raw whitened data. The black line indicates the reconstructed
time-frequency track for GW170817 found using the banded
maximum likelihood. The best-fit signal is subtracted from the
data, then wavelet de-noising is used to identify any noise
transients in the data. The noise transients are removed from
the original data in preparation for more refined parameter
estimation (lower panel).
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trying to solve the problem analytically, we once again
resort to a Monte Carlo approach, this time aided by an
extremely cheap-to-compute likelihood function.
When the intrinsic parameters η⃗ are held fixed, the

response in each detector can be found by applying
projections to a reference geocenter waveform that amount
to amplitude rescalings, phase shifts, and time shifts [see
Eq. (11)]. Taking a reference waveform ĥþ, scaled to unity
at some reference distance Da, the log likelihood can be
written as

lnL¼
X
a

FaDa

DL
ðe−iλaCðtaÞþeiλaC�ðtaÞÞ−

F2
aD2

a

2D2
L
; ð23Þ

where

CaðtaÞ ¼
Z

daĥ
�
þ

SnðfÞ
e2πiftadf; ð24Þ

can be evaluated using an FFT. In order to have sufficient
time resolution (typically a tenth of a millisecond or less),
it is necessary to zero-pad the frequency series prior to
performing the FFT. Nonetheless, the computational cost is
small. Putting everything together we have

lnLðξ⃗; θ⃗Þ¼
X
a

2FajCaðtaÞjcosðλa−argfCaðtaÞgÞ−
F2
aD2

a

2D2
L
:

ð25Þ

The quantities Da and CaðtaÞ can be precomputed and
stored for any choice of intrinsic parameters η⃗. The like-
lihood for any set of extrinsic parameters can then be found
at the cost of a few multiplications and a cosine, allowing
for millions of likelihood evaluations per second. Similar
techniques can be used to accelerate the calculation of the
extrinsic Fisher matrix, ΓE

ij ¼ ð∂ξihj∂ξjhÞ:

ΓE
ij ¼

X
a

½ðFa;iFa;j þ F2
aλa;iλa;jÞH0a

þ δitcð2πF2
aλ;ita;jλ;jta;iÞH1a

þ δitcδjtcð4π2F2
ata;ita;jÞH2a�; ð26Þ

where Hka ¼ ðfkhþjhþÞa. The inner products Hka are
computed once and stored. The luminosity distance can
be extracted from the reference waveform by rescaling the
response function such that Fa → ðDa=DLÞFa, with Da
scaled such that H0a ¼ 1. The derivatives of arrival time at
each detector, ta;i, are nonvanishing for fα; β; tcg. The
phase derivatives are nonvanishing for fα; β;ψ ; ι;ϕcg:

λa;i ¼ δiϕc
þ ðFaþðϵFa

×Þ;i − Fa
þ;iðϵFa

×ÞÞ
F2
a

; ð27Þ

while the derivatives of the re-scaled antenna pattern are
nonvanishing for fα; β;ψ ; ι; DLg:

Fa;i ¼ −
Fa

DL
δiDL

þ ðFaþFa
þ;i þ ðϵFa

×ÞðϵFa
×Þ;iÞ

Fa
: ð28Þ

A PTMCMC algorithm is used to explore the extrinsic
parameters. The initial “burn-in” phase can be accelerated
by randomly trying out sky locations until one is found that
yields the correct time delays between the detectors to
within some predefined tolerance. However the likelihood
evaluation is so fast that such acceleration is not necessary,
and the chains can simply be initialized at some random
draw from the prior distribution. During the burn-in phase
the extrinsic PTMCMC uses the same number of chains
and the same temperature ladder as the intrinsic PTMCMC
from the coherent search. Each chain inherits the intrinsic
parameters from the search phase. A mixture of proposal
distributions are employed: jumps along eigenvectors of the
extrinsic Fisher matrix ΓE

ij, small Gaussian jumps along
each extrinsic parameter direction, and deterministic jumps
along sky rings that preserve the time delay between a
randomly selected pair of detectors [16]. Samples from the
chains with unit inverse temperatures are used to produce
low-latency sky maps such as the example shown in Fig. 8.

F. CBC parameter estimation

The rapid coherent search and low-latency sky mapping
yield a good starting solution for a Bayesian exploration
of source parameters. The inference is performed using the
PTMCMC sampler Fisher matrix proposals, differential
evolution, deterministic sky ring jumps in the extrinsic
parameters and small Gaussian jumps along each parameter
direction. The analysis is sped up by using a heterodyned
likelihood function [34,35].
The heterodyned likelihood uses a reference waveform

h̄, in this case the maximum likelihood solution from the
search, to rewrite the log likelihood as

FIG. 8. Low-latency sky map for GW170817. The blue star
indicates the location of the electromagnetic counterpart to the
binary neutron star (BNS) merger.
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lnLa ¼ ðr̄ajh̄aÞ þ
1

2
ðh̄ajh̄aÞ − ðr̄ajΔh̄aÞ −

1

2
ðΔh̄ajΔh̄aÞ;

ð29Þ

where r̄a ¼ da − h̄a and Δha ¼ h̄a − ha. The ðr̄ajh̄aÞ and
ðh̄ajh̄aÞ terms in the likelihood can be computed once and
stored. The ðΔhajΔhaÞ term can be written as

4

Z
ΔhΔh�

SðfÞ df¼4

Z
Ā2þA2−2ĀAcosΔΦ

SðfÞ df; ð30Þ

where we have used h ¼ AðfÞeiΦðfÞ, h̄ ¼ ĀðfÞeiΦ̄ðfÞ, and
ΔΦðfÞ ¼ Φ̄ðfÞ −ΦðfÞ. The phase difference between the
reference waveform h̄ and waveforms drawn from the
posterior distribution h will always be small, so using a
reference waveform effectively heterodynes the numerator
of Eq. (30), rendering it a slowly varying function of
frequency. The ðr̄ajΔhaÞ in the likelihood can be written as

ðr̄ajΔhaÞ ¼ 4

Z
ðℜr̄wℜΔhw þ ℑr̄wℑΔhwÞdf; ð31Þ

where

r̄w ¼ r̄e−iΦ̄ðfÞS1=2s ðfÞ
SðfÞ ð32Þ

is the whitened reference residual heterodyned by the
reference phase and

Δhw ¼ ðĀðfÞ −AðfÞe−iΔΦðfÞÞ
S1=2s ðfÞ

ð33Þ

is the heterodyned difference in the waveforms, whitened
by the smooth component of the amplitude spectral density.
The integrands in (30) and (31) can be written as products
of a slowly varying function sðfÞ and a rapidly varying
function rðfÞ. In Eq. (30) the numerator is a slowly varying
function, while the inverse of the full power spectral density
is a rapidly varying function due to the spectral lines. In
Eq. (31) the real and imaginary parts of Δhw are slowly
varying while the real and imaginary parts of the hetero-
dyned residual r̄w are rapidly varying. The integrals (in
practice sums over frequency) can be evaluated accurately
and rapidly using a Legendre polynomial expansion. The
sum over frequency is broken up into bands of width Δf
and the discrete Legendre polynomial expansions of the
rapidly varying function rðfÞ are computed once and stored
for each frequency band. Each frequency band covers
M ¼ TobsΔf frequencies, and the number of bands is
K ¼ 2fring=Δf, where fring is the ringdown frequency of
the reference waveform. The discrete values of the rapidly
varying function in each band can be expanded in a sum of
discrete Legendre polynomials:

rk ¼
XM
l¼0

ρlPlðkÞ; ð34Þ

where PlðkÞ are the discrete Legendre polynomials of
order l [45] and the expansion coefficients are given by

ρl ¼ αl
XM
k¼0

PlðkÞrk; ð35Þ

where αl is a normalization constant. The contribution to
the inner products from each frequency band are given by

XM
k¼0

skrk ≃
X1
l¼0

α−1l ρlσl; ð36Þ

where σl are the expansion coefficients for the slowly
varying function sðfÞ and the sum has been restricted to
just the first two terms in the Legendre expansion, which is
usually sufficient when using short frequency bands,
Δf ≤ 4 Hz. For the slowly varying function sðfÞ the
required expansion coefficients in the k < K frequency
band are given by σ0 ¼ ðsððkþ 1ÞΔfÞ þ sðkΔfÞÞ=2 and
σ1 ¼ ðsððkþ 1ÞΔfÞ − sðkΔfÞÞ=2. The sum (36) includes
the first and last bins in each frequency band, so there is a
double counting of the contributions from these bins, which
can be corrected for by subtracting the sum over the K − 2
repeated values. The heterodyning procedure speeds up the
likelihood calculations by a factor of ∼M, with the largest
speed up being for low mass, long duration signals such as
those from binary neutron star mergers.

G. Examples from GWTC-2

To illustrate the performance of the sampler, two
examples were chosen from the second Gravitational
Wave Transient Catalog, GWTC-2 [3]. The first example,
GW190924_021846, was chosen as it was one of the
signals flagged for glitch removal. The second example,
GW190719_215514, was chosen as it has among the
lowest signal-to-noise ratios, and thus posed more of a
challenge for the initial search.
The prior ranges on the masses were set between 0.25 M⊙

and 150 M⊙. The priors on the aligned spin components
were chosen to correspond to a uniform distribution of spin
directions and magnitudes in an effort to mimic the priors
used in the reference LIGO/Virgo analyses which use the
IMRPhenomPv2 precessing spin model [44]. The analyses
shown here used the IMRPhenomD phenomenological
model [43], which describes the dominant l ¼ jmj ¼ 2
mode of a quasi-circular, spin-aligned binary system. To stay
within the domain of validity of this model the maximum
spin magnitude was set to χmax ¼ 0.85 and the maximum
mass ratio was set to m1=m2 < 18.
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Figure 9 illustrates the output of the search phase and
glitch removal for GW190924_021846. A moderately loud
glitch that intersects the time-frequency track of the signal
was identified and removed from the data.

Figure 10 compares the output of the full QuickCBC
analysis using the internally de-noised with the publicly
released LALinference samples available from the gravita-
tional wave open science center website. The LALinference

used a BayesWave PSD and glitch model. The results
show good agreement, the main difference being that the
QuickCBC analysis took a few minutes while the
LALinference analysis took a few days.
Figure 11 compares the QuickCBC and LALinference

analyses for the low signal-to-noise ratio event
GW190719_215514. The weakness of the signal posed
no obstacle to the QuickCBC analysis, with the search
phase locking onto the signal after a few hundred iterations.
The posterior distributions from the two samplers are again
in good agreement.

III. SUMMARY

The QuickCBC analysis pipeline is an end-to-end,
open-source tool for gravitational wave data analysis. Its
key features are speed and robustness against
noise transients. The main limitation of the pipeline is
that it currently only works with the IMRPhenomD
waveform model. A near-term development goal is to
expand the range of waveform models, starting with
the IMRPhenomHM model [46], which includes contri-
butions from higher modes, and the IMRPhenomD_
NRTidal model [47], which includes tidal effects for
binary neutron star mergers. A longer term goal is to add
precessing spin models.

FIG. 9. Time-frequency maps of LIGO Livingston data cen-
tered at GPS time 1253326744. The black line indicates the
reconstructed time-frequency track for GW190924_021846. The
upper panel shows the raw whitened data, while the lower panel
shows the whitened data after wavelet de-noising.

FIG. 10. A comparison of parameter inference for GW190924_
021846 showing the preferred LALinference IMRPhenomPv2
samples and the QuickCBC IMRPhenomD samples.

FIG. 11. A comparison of parameter inference for
GW190719_215514 showing the preferred LALinference IMRPhe-
nomPv2 samples and the QuickCBC IMRPhenomD samples.
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Possible uses for the QuickCBC pipeline for researchers
outside the LIGO/Virgo Collaboration are as a platform to
develop novel analyses that can be applied to the publicly
released data. Within the LIGO/Virgo Collaboration the
pipeline could be used to generate low-latency sky maps,
and to provide estimates for how likely it is that the system
will result in the disruption of a neutron star, and thus a good
candidate for producing an electromagnetic counterpart.
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