QuiltNet: Efficient Deep Learning Inference on Multi-Chip
Accelerators Using Model Partitioning

Jongho Park*, HyukJun Kwon*, Seowoo Kim*, Junyoung Lee*
Minho Ha¥, Euicheol Lim%, Mohsen Imani, Yeseong Kim*
DGIST* SK Hynix* UC Irvine'

{psyractal1123, durwjsdnehd3523, dusk2box, lolcy3205, yeseongkim}@dgist.ac.kr*
{minho1.ha, euicheol.lim}@sk.com®, m.imani@uci.edu’

Abstract

We have seen many successful deployments of deep learning accel-
erator designs on different platforms and technologies, e.g., FPGA,
ASIC, and Processing In-Memory platforms. However, the size of
the deep learning models keeps increasing, making computations a
burden on the accelerators. A naive approach to resolve this issue is
to design larger accelerators; however, it is not scalable due to high
resource requirements, e.g., power consumption and off-chip mem-
ory sizes. A promising solution is to utilize multiple accelerators
and use them as needed, similar to conventional multiprocessing.
For example, for smaller networks, we may use a single accelera-
tor, while we may use multiple accelerators with proper network
partitioning for larger networks. However, partitioning DNN mod-
els into multiple parts leads to large communication overheads
due to inter-layer communications. In this paper, we propose a
scalable solution to accelerate DNN models on multiple devices
by devising a new model partitioning technique. Our technique
transforms a DNN model into layer-wise partitioned models using
an autoencoder. Since the autoencoder encodes a tensor output into
a smaller dimension, we can split the neural network model into
multiple pieces while significantly reducing the communication
overhead to pipeline them. Our evaluation results conducted on
state-of-the-art deep learning models show that the proposed tech-
nique significantly improves performance and energy efficiency.
Our solution increases performance and energy efficiency by up to
30.5% and 28.4% with minimal accuracy loss as compared to run-
ning the same model on pipelined multi-block accelerators without
the autoencoder.

Keywords

Deep learning acceleration, DNN partitioning, Scalable DNN accel-
eration

ACM Reference Format:

Jongho Park*, HyukJun Kwon*, Seowoo Kim*, Junyoung Lee* and Minho
Ha¥, Euicheol Lim®, Mohsen Imani, Yeseong Kim*. 2022. QuiltNet: Efficient
Deep Learning Inference on Multi-Chip Accelerators Using Model Parti-
tioning. In Proceedings of the 59th ACM/IEEE Design Automation Conference
(DAC) (DAC °22), July 10-14, 2022, San Francisco, CA, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3489517.3530589

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC °22, July 10-14, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9142-9/22/07...$15.00
https://doi.org/10.1145/3489517.3530589

1159

1 Introduction

With the advance of various deep learning accelerators, deep learn-
ing technology, also known as Deep Neural Networks (DNN), has
become an essential component of current computer systems. For
example, recent mobile systems equip application-specific inte-
grated chip (ASIC) processors, called neural processing units, that
perform deep learning inference with trained models for improved
performance. State-of-the-art GPUs also employ specialized com-
putation units for DNN inference, e.g., NVIDIA TensorRT [1], to
serve efficient inference procedures enhanced by several model
optimizations. Many deep learning acceleration techniques have
also been studied on FPGA platforms [2]. Some support inference
with various standardized DNN models, e.g., TensorFlow, PyTorch,
Caffe, and ONNX, which are usually trained on high-end GPUs
and/or ASIC platforms such as Google TPU [3].

To provide a better quality of service, recent deep learning mod-
els employ more complex and deeper (i.e., an increased number of
layers) model structures at the cost of computation and resource
usage. This significantly affects the efficiency and capability of the
deep learning accelerators. For example, ResNet, which is a state-of-
the-art model structure utilized as a base form of many advanced
learning models for image recognition, can be configured with more
than a hundred layers, e.g., 151 layers having 11.3 billion FLOPs, to
provide high quality. This trend inevitably leads to the degradation
of the performance and energy efficiency of existing accelerators.
Furthermore, many accelerators utilize a large-sized off-chip mem-
ory, which is the key technical concern in a system’s design due to
its high energy consumption and slow communication speed [4].

For these reasons, it is necessary to scale the accelerator designs
to achieve desired performance. Scaling a single chip is not often
straightforward due to the limited area and power requirements.
An alternative solution is to utilize multiple chips to accelerate a
single but complex DNN model. However, it poses another techni-
cal challenge — “how do we partition the deep learning computa-
tion workload into multiple pieces?” At heart, the DNN workload
consists of different layer-wise computations, e.g., matrix multipli-
cation, where a layer transfers tensors, i.e., multi-rank arrays, to its
next layers as inputs and outputs. It implies that, when deploying
multiple chips to process different parts of a DNN model, multiple
chips essentially need to communicate tensors.

Unfortunately, the size of processed tensors is not small since
modern deep learning models employ a large size of convolution
channel depths and feature maps. In this case, transfer rates for
communicating data across different chips would not keep up with
the memory bandwidth and/or computation power. Furthermore,
direct peer-to-peer communication between heterogeneous chips
is not often feasible in practice. For example, memory data would
need to be transferred through the host system where multiple

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

accelerators are equipped; to avoid such communication overhead,
the system needs specialized interfaces such as NVLink [5].

A promising solution is reducing the amount of data transferred
across accelerators to avoid the bottleneck in the interconnect
between accelerators or between the accelerator and CPU. One
possible approach to this end is to utilize existing compression
techniques [6]. However, it needs to change the underlying hard-
ware/software architecture to add specialized accelerator blocks for
the compression algorithms.

In this paper, we propose a learning-driven technique that ef-
fectively partitions a DNN model with a reduced amount of com-
munication costs to deploy them on multi-chip accelerators. The
proposed technique, called QuiltNet, takes a state-of-the-art DNN
model structure as the input and inserts new data projection layers
between two adjacent layers of the input model, i.e., at the location
desired to be partitioned. The data projection layers are divided
into two parts, the encoder and decoder, which are responsible for
mapping (compressing) the original tensor into a smaller dimension
and reverting them to the original size, respectively. Our technique
learns the encoder and decoder with a given training dataset so that
it extracts the learning features with tensors whose size is smaller
than the output of the previous layer. Once trained, we can split the
model into different parts, one producing reduced tensor outputs
and the other one receiving them to make them proceed to the rest
of the model, which can be accelerated on different chips. We utilize
the autoencoder [7] structure to build the data projection layers.
Since the autoencoder is composed of either typical fully-connected
layers or convolution layers, which the state-of-the-art accelera-
tors already support, it does not need any changes in off-the-shelf
hardware to utilize our proposed technique.

To summarize, our main contributions are as follows:

e We propose QuiltNet, which is a deep learning model par-
titioning technique to reduce the inter-block communi-
cation costs for multi-chip accelerators. Unlike the existing
compression-based data reduction, it needs no hardware
changes to accelerate the data encoding/decoding procedure
since it is integrated as a part of learning process.

We show how to interpose the data projection layers,
which encode and decode the transferred tensors between
layers. Our proposed technique automatically learns the way
to extract small enough knowledge without losing generality
for the target model.

We also present cost-effective methods to decide where to
place the data projection layers based on the performance
modeling and accuracy-efficiency tradeoff profiling.
Through a comprehensive study for state-of-the-art deep
learning models, we show that the proposed model parti-
tioning technique can significantly reduce the inter-block
communication overhead by two or three orders of mag-
nitude with very minimal accuracy loss.

In the experimental results evaluated on Xilinx U200 FPGA,
we show that the proposed method improves the perfor-
mance and energy efficiency of the multi-chip accelerator
by up to 30.5% and 28.4% with minimal accuracy loss.

2 Related Work

As the size of the model and processed data grow, the need for
acceleration increases. One way to enable the acceleration is to
parallelize the computation and data of the given models with
partitioning. Krizhevsky introduced a One Weird Trick [8], which
reached data parallelism by configuring convolution layers, and

1160

Jongho Park, HyukJun Kwon, Seowoo Kim, Junyoung Lee, Minho Ha, Mohsen Imani, Yeseong Kim

model parallelism by configuring fully connected layers. With these
techniques, we can assign different workers to train each part of
the partitioned model and data examples.

One Weird Trick inspired many earlier studies, which focus on
how to partition tensors to minimize the communication costs. For
example, Hypar [9] partitioned the tensors in the neural network
model, and optimized them by searching for a partition that mini-
mizes the cost. The work shown in [10] proposes a technique, called
Tofu, which partitions a dataflow graph of operation tensors and
uses a recursive search algorithm to reduce the communication
cost. AccPar [11] is one of those studies, which can optimize tensor
partitioning in various situations, enabling parallelism on heteroge-
neous accelerators. Other research tried to achieve parallelism by
developing hardware devices dedicated to the deep learning. One
of those approaches is Simba [12], a deep learning multi-chip infer-
ence accelerator. To maximize system throughput, the architecture
is focused on optimizing work partitioning and data partitioning
to minimize inter-chip communication.

The prior work focused on systematical techniques which effi-
ciently partition a given deep learning model without any model
changes. In contrast, our work is an orthogonal approach in that
the proposed technique tunes a given model structure with instru-
mentation for the inter-layer communication cost. Our technique
fundamentally minimizes the amount of data transfers required
to partition, making multi-chip acceleration more effective when
combined with the prior techniques.

3 QuiltNet Technique

3.1 QuiltNet Design

The proposed technique enables efficient DNN model partition-
ing by instrumenting learning-driven data projection layers into
an original given model. The data projection layer encodes an
intermediately-computed tensor into a smaller dimension and de-
codes them back, making it a suitable place to partition as it mini-
mizes data communication between different accelerator blocks.

Figure 1 illustrates the overview of the proposed QuiltNet frame-
work. The proposed framework takes a deep learning model, either
trained or untrained, as an input. It then interposes data projection
layers in a form of the autoencoder network [7, 13] at the partition-
ing location (@). Since the data projection layers are untrained at
the beginning of this stage, we need to learn their weights with a
training dataset given as another input.

There are two different learning procedures depending on the
training status of the original networks. If the networks are un-
trained, we simply train the entire model instrumented with the
data projection layers by following the standard learning procedure
(®). However, in many practices, a high-quality model trained
with a full-fledged dataset would be already available on the shelf,
e.g., ResNet-156 trained with ImageNet 10K, where the model de-
ployment targets application-specific data, similar to the transfer
learning [14]. In this case, we need to train the interposed autoen-
coder part with a target dataset of a limited size, while utilizing
knowledge given in the original model as much as possible. The
second learning procedure handles this case with two steps (@).

A typical technical concern for training the autoencoder is how
to guarantee the generality of the trained networks, i.e., how to
avoid the overfitting issue and make the model correctly behave
with data patterns not usually shown in the training dataset. To ad-
dress this challenge, we employ data augmentation techniques [15]
(@). The data augmentation engine creates diverse variants for

QuiltNet: Efficient Deep Learning Inference on Multi-Chip Accelerators Using Model Partitioning

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

Full-fledged [WACLILL)

Autoencoder
Interposition

Accelerator 1

Weight
Freezing

Weight
Unfreezing

Neural Networks

Training
Data

Data

Original Neural Networks Application-Specific

Augmentation

Deployment

N/
Encoded
Tensor
AP P ANN

Multi-chip Accelerator

Training
Data

Accelerator 2

Figure 1: QuiltNet Overview

B Baseline M Instrumented ‘ ‘ -e-Baseline -=Instrumented ‘

100 2
§ 95 15
3 90 2
5 g1
g 85
< 0.5
80
A N & & o
@w\“’ & & 0 5 10 15 20
S
S Epochs
(a) Accuracy (b) Loss

Figure 2: Comparison between the baseline and instrumented
models

given input data, e.g., skewing, cropping, etc for image data, so
that the autoencoder could learn more general patterns for future
inputs. It would also potentially improve the prediction quality.
Once trained, we can split the model into two different parts for
the multi-chip acceleration'. In this example (@), the first part of
the model ends with the encoding layer; the second part takes the
encoded tensor T as the input of the decoding layer and proceeds
with Ty to the next layer which originally exists in the given model.
Since the two parts of the model only need to communicate the
encoded tensor Te which is smaller than the original tensor Ty, it
[Tp|=Tql
[Te| -

can reduce the communication overhead by the degree of

In the rest of the paper, we denote this reduction degree as R.
Feasibility of autoencoder interposition Since the data projec-
tion layers intentionally create an information bottleneck in the
entire model, it would degrade the accuracy of the prediction model.
To show the feasibility of the autoencoder interposition, we conduct
a preliminary study on simple but practical datasets which could
be learned with an appropriate quality only with fully-connected
networks. In this study, we build a baseline model that has two
hidden layers of 512 neurons. Between the hidden layers, we insert
an autoencoder structure, which produces a single floating-point
value, resulting in a very extreme reduction rate of 512x.

Figure 2a compares the prediction quality between the baseline
model and instrumented model for four different datasets [16]. The
results show that the autoencoder interposition can create negli-
gible accuracy loss. On average, the instrumented model degrades
the accuracy only by 0.05% as compared to the baseline. We also
observed that the instrumented model may take larger training
epochs to be sufficiently converged. Figure 2b shows how the cat-
egorical cross-entropy loss is changed over the training epochs

!We can also apply multiple autoencoders to partition the model into multiple acceler-
ators of more than two. We discuss this with detailed evaluation results in Section 4.5.

1161

for the MNIST dataset. The results present that, although the au-
toencoder interposition would incur longer training time, the loss
eventually converges to the same level that the baseline achieves.

In fact, the feasibility of the information compaction has been
observed in other earlier research. For example, the work in [17]
showed a concept of hierarchical inference for various machine
learning models in Internet of Things networks. In their work, each
IoT device computes an aggregated representation of input data
instead of sending the raw large data to the cloud for learning
applications. Our experimental results for the autoencoder instru-
mentation agree with this finding, i.e., the tensors intermediately
produced in the learning model can be hugely compacted without
sacrificing quality; rather the autoencoder plays a role of regulariza-
tion, potentially addressing overfitting issues. Motivated by this ob-
servation, we design the QuiltNet framework to enable multi-chip
acceleration with significantly reduced communication overheads.

3.2 Autoencoder Interposition

The QuiltNet framework first instruments the data projection lay-
ers at the desired place for model partitioning. As mentioned in
Section 3.1, the data projection layers project the original tensor
into a smaller dimension using an autoencoder structure. A typ-
ical 1D autoencoder is composed of two dense (fully-connected)
layers, one of each performing the encoding and decoding, respec-
tively. An issue with this structure is that it could not maintain
spatial information. Considering that the data projection layers
would be inserted at any location, e.g., between convolution layers
whose positional information are also important in the tensor, the
fully-connected layer can not be always used.

For such cases, the proposed framework utilizes the 2D convo-
lution autoencoder, which reduces the number of channels while
using the same feature map size. It should be noted that some ad-
vanced autoencoder structures would utilize deeper layers more
than two for higher quality; however, such modification does not
provide better results in our evaluation. Thus, our data projection
layers use one layer for each of the encoder and decoder. Please
note that our proposed technique is completely learning-driven in
that we compact the information only using the existing layers of
typical deep learning computation; it does not need any changes in
the well-established accelerator designs.

Figure 3a shows how we could instrument the state-of-the-art
ResNet structure [18] with the 2D convolution autoencoder. The
ResNet structure consists of multiple stages, each of which has
different channel depths. We could insert the autoencoder at any
place, e.g., at the end of a stage, to assimilate the tensor with a
reduced channel depth. Some modern deep learning models may

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

Stage 1 Stage 2 Stage 3 Data Partitioning Layer | Stage 4

Max Pool
1D Block x2
1D Block x3
1D Block x5
1D Block x2

Avg Pool

Flatten

Fully Connected

Skip connection

(b) UNet
Figure 3: Autoencoder interposition

have complex skip connections, requiring the use of multiple au-
toencoders to completely partition the model into two pieces. As
an example, Figure 3b shows the autoencoder interposition for the
UNet structure [19], a fully convolutional network (FCN) that is
widely used for image segmentation tasks. The UNet structure has
multiple skip connections, which link the corresponding convolu-
tion layers between the contracting path and expansive path. In
this case, we insert the autoencoder for each skip connection so
that the model is completely divided into two pieces.

3.3 Transferring Knowledge from Pretrained
Model

Since the data projection layers, i.e., the autoencoders, are inte-
grated with the original neural network model, we can learn their
weights with standard backpropagation process when the model
needs to be trained from scratch. However, in practice, the model
pretrained with a rich dataset is often already available while the
model is fine-tuned through transfer learning with a specific dataset
for the target application. When retraining the model with the
specific dataset, the autoencoder part poses particular challenges
since an untrained autoencoder initially produces random outputs,
making it hard to utilize the trained weight values of the next lay-
ers. Furthermore, it is widely observed that continual learning on
multiple tasks would abruptly lose the knowledge of the previ-
ously learned task when the tasks are sufficiently different. This
phenomenon is known as catastrophic forgetting. In our case, the
untrained autoencoder makes the weights of the rest of the layers
meaningless, i.e., mistakenly considering the previous rich datasets
are completely different from the target dataset.

We address the issue by devising a model retraining technique
called weight freezing. The underlying reason for the catastrophic
forgetting is that the autoencoder does not produce any useful
information at the beginning of the learning. Thus, the weight
freezing technique performs the training in two phases: (i) in the
first phase, we only update the weights of the autoencoders while
keeping (freezing) the weights of the other layers, i.e., the pretrained
weights. This phase continues until the loss sufficiently converges
so that the autoencoders have high enough quality. (ii) Then, during
the second phase, we perform fine-tuning by retraining the weights
of all layers. Since the autoencoders now produce meaningful in-
formation compatible with the pretrained weights, we can proceed
the training while mitigating the catastrophic forgetting issue.

1162

Jongho Park, HyukJun Kwon, Seowoo Kim, Junyoung Lee, Minho Ha, Mohsen Imani, Yeseong Kim

--ResNet --UNet -eEfficientNet
m 400
o
-
2%
e
3 0%
< 1 1.1 1.2 13 1.4 1.5 1.6
Normalized Performance
(a) Accuracy Loss for Entire Model Training

40%
230%
A 20%
v
S 10%

0% &
1 1.1 1.2 1.3 1.4 1.5 1.6

Normalized Performance
(b) Loss Drop of AutoEncoder-Only Training
Figure 4: Accuracy and loss relationship for normalized per-
formance over different data reduction rates

Data augmentation A key challenge of training the autoencoder
is how to make it insensitive enough to the inputs by avoiding
overfitting the training data. We employ the data augmentation
technique [15], which is widely used for training general-enough
models; in our case, it also greatly helps overcome the overfitting
issue of the autoencoder. The data augmentation technique creates
variants of the training data samples, which enables the autoencoder
to correctly handle diverse inputs. As a result, it improves the
generality of the model including the data projection layers as well
as the prediction accuracy based on the enriched dataset.

3.4 Interposition Decision

The QuiltNet efficiency is dependent on where/how to place the
data projection layers in the given model. There exist two decision
parameters: (i) the position of the data projection layers and (ii)
the data reduction rate. The followings describe how our proposed
framework identifies the two parameters.

Position: The optimal positions of data projection layers are where
the split models take the same amount of time to execute their in-
put tensor. To automate the decision process, we exploit a neural
network performance modeling method shown in Paleo [20] to es-
timate the execution times of split models on each accelerator. The
estimated execution time is the sum of the communication time and
computation time. The communication time between accelerators
is linear to the size of the transferred tensor for a given bandwidth,
and the computation time is expressed with a first-order function to
the number of flops. In our experimental setup, the bandwidth from
host to FPGA is measured by 9.2GB/s, while the opposite is 11.7GB/s.
For the computation, the model in practice may not be split with the
same amount of execution time between each other. Thus, QuiltNet
tries to identify the split models whose execution times are as simi-
lar as possible. That is, it finds the partition having the minimum

value of fo:l it |execj — exec;| among all possible cases, where k

is the number of partitions, exec; (= comp; + comm;) is the total ex-
ecution time on i accelerator, and exec;s = max; ;< exec;. This
method automatically identifies the layer to place the autoencoders,
e.g., between stage 3 and 4 for ResNet50.

Data reduction rate: Once the position is determined, we identify
the data reduction rate. An increase in the tensor reduction rate

improves efficiency while reducing the model accuracy. Although

QuiltNet: Efficient Deep Learning Inference on Multi-Chip Accelerators Using Model Partitioning

the decision is upon deployment requirements, the QuiltNet frame-
work can guide the decision process by providing the trade-off
relationships. As an example, Figure 4(a) shows the trade-off rela-
tionships between the accuracy loss and normalized performance
for the three models over different data reduction rates. The result
shows that there usually exists a sweet spot for the data reduc-
tion rate, which leads to high efficiency with negligible accuracy
loss. For example, the accuracy loss is only 0.4% with R = 64 for
ResNet50; but it significantly increases beyond this data reduction
rate without having many performance improvements. Thus, we
would select such rates to balance the accuracy loss and efficiency.

A potential issue is that computing the accurate trade-off rela-
tionship requires multiple entire model training trials, which result
in high training costs to test various reduction rate candidates. We
address this issue by training only the autoencoder parts and exam-
ining the loss changes. Let us assume that the model is split into
two partitions, fyr (x) and fyr(x”), where x is the input tensor (an
image) for the model and x’ is the transferred tensor whose size is
reduced by the data projection layers. In general, the goal of the
autoencoder is to produce a transformed tensor similar to the given
input tensor. In our case, as long as the data projection layers with
a certain reduction rate are capable of creating fyr (x) ~ x’, we can
expect that it will effectively compress the transferred tensors.

Thus, we can only train the autoencoder with fyr (x) to exam-
ine how it behaves over various reduction rates at a high level.
Figure 4(b) shows that observing the loss drop of the autoencoder-
only training is an appropriate, cost-effective proxy to examine the
accuracy loss changes. It means that, even if we do not identify
the accurate trade-off relationship shown in Figure 4(a), we can
select the appropriate data reduction rate based on the results of
Figure 4(b). In practice, training the autoencoder has much less
training costs as compared to the entire model training. For exam-
ple, we observe that the autoencoder-only training is 76.9% faster
than the entire model training for ResNet50.

4 Evaluation

4.1 Experimental Setup

We implemented the QuiltNet software framework using PyTorch.
The proposed QuiltNet could be deployed in various multi-chip
environments; to evaluate the inference efficiency on real systems,
we built a representative infrastructure by utilizing Xilinx Vitis
platform, which runs the split deep learning models on Alveo U200
FPGA boards. The infrastructure runs the given model in a pipelined
fashion, i.e., different boards run simultaneously to process tensors
for different inputs sequentially given. We instrumented the Vi-
tis library to profile the runtime and power consumption of the
FPGA boards as well as the tensor sizes communicated. The host
system runs on Intel Xeon 4215R processor with 32GB RDIMM
PC4-21300R, connected with the FPGA board with PCle 3.0. We ap-
ply the PartNet technique to three types of DNN models, ResNet50,
UNet, and EfficientNet. The automated interposition decision pro-
cess of QuiltNet inserted a data projection layer after the stage 3
for ResNet50, for UNet as described in Section 3.2, and after the
stage 5 for EfficientNet; we explore other choices in Section 4.5. For
training datasets, we utilize ImageNet (ILSVRC 2012).

4.2 Efficiency

We first evaluate the efficiency of the proposed QuiltNet when the
models are split into two parts and executed on different accel-
erator boards. Figure 5 shows the improvements of QuiltNet in

1163

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

B Performance Improvement B Energy Saving ‘

—~ 40%
g
=
=
EZO%
]
3
2
2 0%
£ & ®© W N I 1N © © ® O N
= © N In o J o ® & 10 0+A o ©
@I o & b & % 0w oo o WoWon
e uon on o4 e x W x x
 x « o
ResNet UNet EfficientNet

Figure 5: Energy saving and performance improvements

‘ B Communication B Computation
100%
c
S 75%
o
2 50%
©
5 25%
ono
T T O O N F NN OO F N W N T
o w8 d0da g i = oo
B T I~ - IR~ T TR SRR R TR [
e n o o0 w4 e x n WD X £
~ © € & T e T
o o o
ResNet UNet EfficientNet

Figure 6: Latency breakdown comparison

performance and energy efficiency as compared to the baseline im-
plementation, which runs on multiple accelerators communicating
original-sized tensors without using the data projection layer. We
show the results over different data reduction rates, R. Our result
shows that QuiltNet achieves high efficiency even with moderate
data reduction rates, e.g., 20.8% (19.2%) with R = 64 for ResNet,
30.5% (28.4%) with R = 7.5 for UNet, and 21.4% (17.5%) with R = 8
for EfficientNet in terms of performance (energy efficiency), where
the data reduction rates are decided by the method described in
Section 3.4 (0.8% accuracy loss on average.) We can also expect
larger benefits with higher data compression rates. For example, for
UNet, when using R = 120, which reduces the tensor dimension by
up to 1, QuiltNet provides 34.9% performance improvement with
32.9% energy saving.

4.3 Computation and Communication Tradeoff

To better illustrate where the benefit comes from, we measured the
latency for the computation and communication. Figure 6 shows
the breakdown results for the same setting. The results show that
the proposed method effectively reduces the communication costs
by projecting the communicated tensors into a low dimension.
QuiltNet makes the computation costs dominant over the commu-
nication, resulting in much higher utilization for the deep learning
accelerators. Note that the computation costs include the time to
process the inserted autoencoders as extra overheads; however, in
our evaluation, the overheads are very negligible, e.g., less than
0.4% of the total computation latency for all the tested cases.

4.4 Accuracy

Training from Scratch: When given training data are large
enough, the QuiltNet model could be trained from scratch. Ta-
ble 1 shows the validation error of ResNet50-Quilt for the ImageNet
dataset. We use R = 64 which shows the best accuracy-efficiency
tradeoff as discussed in Section 3.4. The result shows ResNet50-Quilt
64x trained from scratch lost only 1.69% and 0.97% for Top-1 and
Top-5 error respectively, as compared to the pretrained ResNet50.

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

Table 1: ResNet trained from scratch for ImageNet

Top-1 error ‘ Top-5 error
23.85% 7.13%
25.54% 8.10%

Original ResNet50
ResNet50-Quilt (from scratch)

Table 2: Impact of weight freezing on model accuracy

ResNet50 UNet EfficientNet

-Quilt 64x | -Quilt 120x | -Quilt 64x
wo/ Weight Freezing 95.22% 88.55% 88.59%
w/ Weight Freezing 95.62% 92.66% 90.52%

‘ —w/ freezing —wo/ Freezing ‘

__100%
8
> 80%
o
o
3 60%
Q
]

20%

0 50 100 150 200 250
Epoch

Figure 7: Impact of weight freezing for UNet

Retraining for Transfer Learning: To achieve high classifica-
tion accuracies when retraining models for transfer learning, it
is essential to train models utilizing the pretrained weights with-
out catastrophic forgetting as discussed in Section 3.1. QuiltNet
addressed this issue using the technique called the weight freezing.
We simulate the transfer learning scenarios by using the model pre-
trained with ImageNet and retrained with Cifar-10 [21] to insert the
autoencoder. Table 2 shows the impact of the weight freezing tech-
nique. We observe that for all the models, the weight freezing helps
QuiltNet address the catastrophic forgetting issue. For example, the
weight freezing allows training UNet with 4.1% higher accuracy.
Figure 7 shows the accuracy changes over training epochs for UNet.
We observe that the weight freezing starts training the autoencoder
carefully at the beginning of the training epoch. Consequently, the
autoencoder has produced useful information by mitigating cata-
strophic forgetting through the weight freezing. Once trained, it
unfreezes the weights of other layers and eventually achieves more
accurate results at the end of training.

4.5 Interposition Exploration

Different acceleration environments would require different autoen-
coder interposition policies for optimal performance. For example,
when deploying heterogeneous accelerators, we may need to split
the networks with different sizes of computational workloads. In
addition, we may operate multiple accelerators (more than two),
requiring the insertion of multiple autoencoders. Table 3 shows
the exploration results for ResNet50 trained with Cifar-10. The
results show that QuiltNet can provide a relatively low accuracy
loss regardless of different inserted positions when using a single
autoencoder with R = 64. Even in the worst case, the accuracy
loss is 0.47% when inserting the autoencoder between stage 3 and
4. We also tested the case (Multi-AE) that inserts three autoen-
coders for every stage, splitting the model into four pieces. For this
case, QuiltNet also creates an accurate model, resulting in 1.44x
performance improvement.

5 Conclusion

In this paper, we proposed QuiltNet, which enables significant
reduction in accelerator-to-accelerator communication costs for

1164

Jongho Park, HyukJun Kwon, Seowoo Kim, Junyoung Lee, Minho Ha, Mohsen Imani, Yeseong Kim

Table 3: Interposition exploration

Accuracy ‘ Normalized Perf.
Original ResNet wo/ autoencoder 96.05% 1.00
R =064 Between stage 1 & 2 95.91% 1.22
Between stage 2 & 3 95.62% 1.26
Between stage 3 & 4 95.58% 1.31
Multi-AE 95.46% 1.44

scalable deep learning process. The proposed solution intelligently
divides the deep learning model into multiple pieces while adding
data projection layers that reduce the amount of communicated
data. We show how to train and place the inserted data projection
layer while balancing the efficiency-accuracy tradeoff. The experi-
mental results show that the proposed technique significantly saves
performance and energy efficiency by up to 30.5% and 28.4% with
minimal accuracy loss.

6 Acknowledgement

This work was supported in part by SK hynix. This work also
supported by the National Research Foundation (NRF) of Korea
(NRF-2018R1A5A1060031). This work was also partially supported
by Semiconductor Research Corporation (SRC) Task No. 2988.001.

References

[1] Szymon Migacz. Nvidia 8-bit inference width tensorrt. In GPU Technology
Conference, volume 10, 2017.

[2] Yunji Chen, et al. Diannao family: energy-efficient hardware accelerators for
machine learning. Communications of the ACM, 59(11):105-112, 2016.

[3] Norman P Jouppi, et al. In-datacenter performance analysis of a tensor processing

unit. In Proceedings of the 44th annual international symposium on computer

architecture, pages 1-12, 2017.

Ahmad Shawahna, et al. Fpga-based accelerators of deep learning networks for

learning and classification: A review. IEEE Access, 7:7823-7859, 2018.

Denis Foley et al. Ultra-performance pascal gpu and nvlink interconnect. IEEE

Micro, 37(2):7-17, 2017.

Anastasia Koloskova, et al. Decentralized deep learning with arbitrary commu-

nication compression. arXiv preprint arXiv:1907.09356, 2019.

Ganggang Dong, et al. A review of the autoencoder and its variants: A compara-

tive perspective from target recognition in synthetic-aperture radar images. IEEE

Geoscience and Remote Sensing Magazine, 6(3):44-68, 2018.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks.

CoRR, abs/1404.5997, 2014.

Linghao Song, et al. Hypar: Towards hybrid parallelism for deep learning acceler-

ator array. In 2019 IEEE International Symposium on High Performance Computer

Architecture (HPCA), pages 56-68, 2019.

Minjie Wang, et al. Supporting very large models using automatic dataflow graph

partitioning. In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys

’19, New York, NY, USA, 2019. Association for Computing Machinery.

Linghao Song, et al. Accpar: Tensor partitioning for heterogeneous deep learning

accelerators. In 2020 IEEE International Symposium on High Performance Computer

Architecture (HPCA), pages 342-355, 2020.

Yakun Sophia Shao, et al. Simba: Scaling deep-learning inference with multi-

chip-module-based architecture. In Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO °52, page 14-27, New York,

NY, USA, 2019. Association for Computing Machinery.

Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In

Proceedings of ICML workshop on unsupervised and transfer learning, pages 37-49.

JMLR Workshop and Conference Proceedings, 2012.

Chuangi Tan, et al. A survey on deep transfer learning. In International conference

on artificial neural networks, pages 270-279. Springer, 2018.

Luis Perez et al. The effectiveness of data augmentation in image classification

using deep learning. arXiv preprint arXiv:1712.04621, 2017.

Uci machine learning repository. https://archive.ics.uci.edu/.

Anthony Thomas, et al. Hierarchical and distributed machine learning inference

beyond the edge. In 2019 IEEE 16th International Conference on Networking,

Sensing and Control (ICNSC), pages 18-23. IEEE, 2019.

Kaiming He, et al. Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 770-778,

2016.

Olaf Ronneberger, et al. U-net: Convolutional networks for biomedical image

segmentation. In International Conference on Medical image computing and

computer-assisted intervention, pages 234-241. Springer, 2015.

Hang Qi, et al. Paleo: A performance model for deep neural networks. In

Proceedings of the International Conference on Learning Representations, 2017.

Alex Krizhevsky, et al. Learning multiple layers of features from tiny images.

2009.

[}

[4]

[5

—

I6

o

[7

—

(8]

[9

—

[10]

[11]

[12]

(13]

[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]

