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Inferring the source properties of a gravitational wave signal has traditionally been very computationally
intensive and time consuming. In recent years, several techniques have been developed that can
significantly reduce the computational cost while delivering rapid and accurate parameter inference.
One of the most powerful of these techniques is the heterodyned likelihood, which uses a reference
waveform to base band the likelihood calculation. Here, an efficient implementation of the heterodyned
likelihood is presented that can be used for a wide range of signal types and for both ground-based and
space-based interferometers. The computational savings relative to direct calculation of the likelihood vary
between two and four orders of magnitude depending on the system. The savings are greatest for low mass
systems such as neutron star binaries. The heterodyning procedure can incorporate marginalization over
calibration uncertainties and the noise power spectrum.

DOI: 10.1103/PhysRevD.104.104054

I. INTRODUCTION

Full parameter inference [1,2] for gravitational wave
signals can be very computationally intensive, with runs on
single systems taking days or weeks using contemporary
hardware. This inefficiency has motivated the development
of novel approaches to speed up the process. Some of these
methods work by speeding up the calculation of waveform
templates using singular value decomposition [3,4] or
reduced-order modeling [5,6]. Other methods speed up
the likelihood evaluation using techniques such as hetero-
dyning [7–10], waveform decomposition and precompu-
tation [8,9,11,12], reduced-order quadrature [13,14], and
variable frequency banding [15]. Hardware-based accel-
eration has also been investigated [16–18], as has machine
learning [19–21].
The heterodyning approach, first introduced in 2010 [7],

and later rebranded under the unfortunate term “relative
binning” [10], has yet to be widely adopted, despite it being
widely applicable, easy to implement, and incredibly fast.
The goal of this paper is to present an efficient imple-
mentation of the heterodyned likelihood using discrete
Legendre polynomial expansions on adaptively spaced
frequency grids. The speed and accuracy of the hetero-
dyning approach is demonstrated, along with a discussion
of how it can be used when marginalizing over calibration
and noise models.

II. THE HETERODYNED LIKELIHOOD

The idea behind the heterodyned likelihood is very
simple [7]. To match the signal well enough to give a
decent likelihood, the phase and amplitude evolution of the

waveform template has to closely match that of the signal.
Thus, if h̄ðfÞ ¼ ĀðfÞeiΦ̄ðfÞ is a reference template with
high likelihood and hðfÞ ¼ AðfÞeiΦðfÞ is another template
with high likelihood, the ratio ζðfÞ ¼ hðfÞ=h̄ðfÞ will be a
slowly varying function. For signals made up of multiple
harmonics, the same reason applies harmonic by harmonic.
The terms that appear in the log likelihood,

lnL ¼ ðdjhÞ − 1

2
ðhjhÞ; ð1Þ

where d is the data and ðajbÞ denotes the noise weighted
inner product, can be factored into slowly varying and
rapidly varying components,

ðdjhÞ ¼ 2

Z
dðfÞh�ðfÞ þ d�ðfÞhðfÞ

SðfÞ df

¼ 2

Z
ðκðfÞζ�ðfÞ þ κ�ðfÞζðfÞÞdf; ð2Þ

where κðfÞ ¼ dðfÞh̄�ðfÞ=SðfÞ is rapidly varying, and ζðfÞ
is slowly varying. Similarly,

ðhjhÞ ¼ 2

Z
hðfÞh�ðfÞ þ h�ðfÞhðfÞ

SðfÞ df

¼ 4

Z
dfjζðfÞj2σðfÞdf; ð3Þ

where σ2ðfÞ ¼ jh̄ðfÞj2=SðfÞ is rapidly varying, and jζðfÞj2
is slowly varying [the rapid variation of σðfÞ is due
to spectral lines]. The heterodyning procedure uses a
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low-order polynomial expansion of the slow terms to
dramatically decrease the computational cost of computing
the likelihood. The accuracy of the approximation can be
improved by writing the likelihood as

lnL ¼ ln L̄ − ðr̄jΔhÞ − 1

2
ðΔhjΔhÞ; ð4Þ

where ln L̄ is the likelihood computed using the reference
waveform, r̄ ¼ d − h̄ is the reference residual, and
Δh ¼ h̄ − h. Since the terms involving Δh are generally
small, the fractional error introduced by approximating the
integrals results in a smaller absolute error than approxi-
mating the full integrals ðdjhÞ and ðhjhÞ. The slow varying
term is now ΔζðfÞ ¼ ΔhðfÞ=h̄ðfÞ ¼ 1 − ζðfÞ.

A. Legendre expansion

In practice, the integrals become sums over frequency
that can be efficiently computed using an expansion in
discrete Legendre polynomials Pnk, where n denotes the
polynomial order and k ¼ 0; 1;…; N denotes the frequency
bin. The Pnk satisfy the orthogonality condition,

PnkPmk ¼ δnmαnN; ð5Þ

where αnN is a normalization factor [22], and we have used
the Einstein summation convention. The first few Pnk have
the forms

P0k ¼ 1;

P1k ¼ 1 −
2k
N

;

P2k ¼ 1 −
6k
N

þ 6kðk − 1Þ
NðN − 1Þ : ð6Þ

Note that the shapes of the polynomials depends on the
number of frequency bins, N þ 1. The higher-order poly-
nomials can be generated efficiently using a recursion
relation [22].
A function gk ¼ gðfkÞ can be expanded,

gk ¼ γnPnk; ð7Þ

where n ¼ 0; 1; ::N, and

γn ¼
Pnkgk
αnN

: ð8Þ

In this way, a term in the likelihood such as ðdjhÞ can be
written as

ðdjhÞ ¼ 2αnNðκRnζRn þ κInζ
I
nÞ; ð9Þ

where, for example, fκRn ; κIng denote the expansion coef-
ficients of the real and imaginary parts of κðfÞ. The

expression (9) is exact, it is simply a rewriting of the
original sum. As it stands, (9) actually represents an
increase in the computational cost from OðNÞ to OðN2Þ
[though there are fast Chebyshev–Legendre transforms [23]
that reduce the cost to OðNðlogNÞ2= log logNÞ]. The
savings come by restricting the sum over n in (9) to a
small number of coefficients. This can be done with little
loss of accuracy since the high-order terms in the expansion
of the slowly varying components diminish very quickly
with increasing n.
The sum (9) can be most efficiently approximated by

breaking the full sum into smaller segments. The sum can
be restricted to frequencies where the reference waveform
contributes significantly to the signal to noise. The effi-
ciency is further improved by adaptively determining the
width of the segments such that the slow terms can be
accurately covered by polynomials of some chosen order J.
The coefficients of the fast varying terms have to be
computed at the full frequency resolution, but this can
be done once and the results stored. Thus, the cost of the
heterodyned likelihood comes down to computing the
coefficients of the slow components in each frequency
band. This cost scales as J2Q, where Q are the number of
bands. The number of waveform evaluations for the slow
terms scales as M ¼ JQ. While increasing J allows us to
use wider bands for a given error tolerance, the increase in
bandwidth scales slower than the polynomial order J,
making it more efficient to use low polynomial order
and more bands.
We denote the slow varying terms such as ζðfÞ, ΔζðfÞ

generically as sðfÞ. Because sðfÞ is slowly varying, it does
not need to be sampled at each of the N þ 1 frequency bins
in a given frequency band. Instead, it can be sampled on a
much sparser grid of values, sðfjÞ, where j ∈ ½0; J� and J is
the highest order used in the polynomial expansion. The
discrete Legendre polynomials will not be orthogonal on
this sparse subgrid, so the usual expression for the
expansion coefficients (8) cannot be used. Instead, we
can start with the defining relation

sðfjÞ ¼ snPnðfjÞ≡ snYnj; ð10Þ

where the polynomial expansion is restricted to n ∈ ½0; J�.
The ðJ þ 1Þ × ðJ þ 1Þ matrix Ynj ¼ PnðfjÞ contains the
subsampled values of the discrete Legendre polynomials.
We can then solve for the expansion coefficients,

sn ¼ Y−1
nj sðfjÞ: ð11Þ

The frequency samples fj do not have to be evenly spaced,
but the matrix Ynj can become ill conditioned if the spacing
of any two bins exceeds ∼2N=J. To ensure optimal
accuracy, it is best to space the subsamples uniformly
across each frequency band. The matrix inverses for each
frequency band can be computed once and stored for later
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use. If greater accuracy is desired, the number of samples in
each frequency band used in the fit (10) can be increased
while keeping the polynomial order fixed, with the solution
for the coefficients found using a singular value decom-
position rather than the simple matrix inverse (11).

B. Frequency spacing

The goal is to resolve the slow varying functionΔζðfÞ to
sufficient accuracy using the smallest number of frequency
samples. The first thing to consider is how far from the
reference waveform any template is likely to be. For
Gaussian posterior distributions, we know that twice the
log likelihood is chi-squared distributed with D degrees of
freedom, where D is the number of parameters in the
model. This scaling holds remarkable well even when the
posterior distributions are non-Gaussian. Thus, to account
for any waveforms that will contribute to the posterior
distribution, we need to cover deviations from the reference
likelihood of order a few times the standard deviation

ffiffiffiffi
D

p
.

As a proxy, we can use the chi-squared χ2 ¼ ðΔhjΔhÞ as a
measure of the deviation from the reference waveform, and
so long as the frequency grid accurately covers departures
as large as χ2 ∼ 20 → 50, the parameter estimation will be
reliable.
By perturbing any one source parameter by a suitable

amount, it is possible to arrive at the desired chi-
squared value, but the perturbation in each parameter will
lead to a different behavior for the ΔζðfÞ. One way to
cover all possibilities is to consider perturbations along
the eigendirections, v⃗i, of the Fisher information matrix
Γij ¼ ð∂θi h̄j∂θj h̄Þ, such that Δθ⃗i ¼ αiv⃗i (no sum on the i).
(Strictly speaking, Γij should only be called the Fisher
matrix if h̄ is computed at the maximum likelihood point.
More properly, Γij is the signal space metric evaluated at
the reference waveform.) In principle, setting αi ¼ β=

ffiffiffiffi
λi

p
,

where λi is the eigenvalue corresponding to the v⃗i eigen-
vector, should yield χ2 ¼ β2, but the Fisher matrix is often
ill conditioned, and the β’s need to be iteratively adjusted to
give the desired chi-square value. Figure 1 shows the real
and imaginary parts of Δζ for the black hole binary
GW150914 [24] evaluated at the LIGO Hanford detector
and using the IMRPhenomD waveform model [25]. The
parameters were perturbed along each eigendirection of the
Fisher matrix and scaled to give χ2 ¼ 50. We see that
functions vary most rapidly at low frequencies and near
merger (at around 200–300 Hz).
The frequency spacing can then be determined by

considering a linear fit to the Δζ for perturbations along
each eigenvector direction and in each detector. Starting
with a frequency spacing of one frequency bin, the spacing
is steadily incremented until the difference between Δζ and
the linear fit across the interval deviates by more than some
specified tolerance. Figure 2 shows the frequency spacings
for various error tolerances and chi-square values. We see

that the samples are concentrated at low frequencies. To
keep the number of samples to a minimum, we can use a
relative rather than absolute error tolerance. Since the
contribution to the likelihood in each frequency band scales
as σ2ðfÞ ¼ jh̄ðfÞj2=SðfÞ, we can achieve a desired relative
error tolerance by scaling the absolute error tolerance by
½σ2�=σ2ðfÞ where the square brackets denotes the aver-
age value.
The frequency bandwidths for higher-order polynomial

fits are derived from the reference linear fit by finding the
smallest frequency spacing in a given region and multi-
plying that number by the polynomial order J. This results
in slightly more samples than for the linear fit as the wider
frequency bands are less able to accommodate to the ideal
source-adaptive frequency spacing. Note that the envelop-
ing procedure leads to slightly more samples being used
even at linear (J ¼ 1) order. Figure 3 compares the
frequency spacing for GW150914 at linear and quadratic
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FIG. 1. Real and imaginary parts of the heterodyned waveform
differences, Δζ ¼ ðh̄ − hÞ=h̄, with h displaced along successive
eigendirections of the Fisher information matrix, with the
differences scaled such that χ2 ¼ ðΔhjΔhÞ ¼ 50.
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FIG. 2. Source-adaptive frequency spacing of the waveform
samples for GW150914 using various choices of linear error
tolerance and chi-squared offset. The spacings used a relative
error tolerance, save for the one labeled “abs”, which used an
absolute error tolerance.
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polynomial order to the reference linear spacing. There are
32 samples at linear order and 34 at quadratic order, as
compared to 22 for the reference spacing.
The frequency spacing adjusts to account for the

characteristics of each system. Figure 4 compares the
frequency grids for three systems of decreasing total mass.
In each case, the minimum frequency was set at 8 Hz, and
maximum frequency was set at 1024 Hz. The time span
analyzed increases with decreasing mass: 4 sec for black
hole binary GW150914, 8 sec for black hole binary
GW151012, and 128 sec for the binary neutron star binary
GW170817 [26]. The number of frequency samples in the
heterodyned likelihood were 34 for GW150914, 52 for
GW151012, and just 22 for GW170817. The small number
of samples for the neutron star binary GW170817 relative
to the two black hole binaries is due to the fact that
GW170817 entered the band at 22 Hz and exited the band
prior to merger. The savings in waveform evaluations using
the heterodyned likelihood relative to the direct likelihood

for the three systems are a factor of 120 for GW150914,
156 for GW151012, and 5900 for GW170817.
Figure 5 shows the difference, Δ lnL, between the full

and heterodyned likelihood calculation and a function of
the likelihood for the samples collected during a Markov
chain Monte Carlo (MCMC) run on the GW170817 data.
The absolute value of the error never exceeds 0.1, and the
average absolute error is just 1.6 × 10−2.
Smaller linear error tolerances result in more frequency

samples in the heterodyne and a reduction in error in the
likelihood. Figure 6 shows how the error in the likelihood
and the number of samples in the heterodyne scale with the
linear error tolerance. The error in the likelihood is
measured by the average of the absolute value of the
difference between the full and heterodyned likelihood,
jΔ lnLj, for accepted samples in a MCMC run. The error
decreases as the tolerance is reduced from 0.1 to 0.001, but
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FIG. 3. Source-adaptive frequency spacing of the waveform
samples for GW150914 at linear and quadratic order. The
reference spacing is also shown.

FIG. 5. Difference between the full and heterodyned likelihood
for neutron star binary GW170817. In both cases, the heterodyne
used second-order Legendre polynomials with a linear fit
tolerance of 0.01 and a chi-squared value of ðΔhjΔhÞ ¼ 50.
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FIG. 4. Comparison of the source-adaptive frequency spacing
for the black hole binaries GW150914 and GW151012 and the
binary neutron star binary GW170817. The heterodyne used
second-order Legendre polynomials with a linear fit tolerance of
0.01 and a chi-squared value of ðΔhjΔhÞ ¼ 50.
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FIG. 6. The upper panel shows the average of the absolute value
of the difference between the full likelihood and the heterodyned
likelihood as a function of the linear error tolerance for
GW150914 at linear, quadratic, and cubic orders. The lower
panel shows the number of frequency sample used in the
heterodyne as a function of the linear error tolerance.
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then asymptotes or even increases. The reason for this
behavior can be traced to the error introduced in estimating
the Legendre expansion of the slow terms using (8). As the
error tolerance is decreased, the number of frequency bands
grows as the error tolerance to the power of ∼−0.35,
leading to an increase in the number of error contributions.
The errors in (8) grow with polynomial order, as does the
overall cost of computing the heterodyned likelihood. The
sweet spot is to use a quadratic (J ¼ 2) fit with an error
tolerance between 0.01 and 0.001. While illustrated here
for just one system, a similar behavior was found to hold
across the mass spectrum.
In considering what an acceptable error tolerance for

Δ lnL might be, recall that one standard deviation in the
likelihood is σlnL ≃ ðD=2Þ1=2. For the IMRPhenomD wave-
formmodel [25] used here,D ¼ 11 and σlnL ≃ 2.3. The finite
sampling that occurs in any numerical approach to Bayesian
inferencewill introduce uncertainties of at least a few percent
of the posterior distribution, so demanding that jΔ lnLj <
0.1 should be sufficient for most applications. Interestingly,
while the heterodyning procedure was designed to work for
waveforms that are “close” to the reference waveform, it
continues to work for waveforms that are far from the
reference. This is illustrated in Fig. 7, where the error in
the likelihood is shown as a function for the likelihood for
both accepted and proposed points in a MCMC run.
Somewhat surprisingly, the heterodyne is accurate all the

way down to zero relative log likelihood. This means that
the heterodyned likelihood can not only be used for
parameter estimation but can also be used for computing
the model evidence using methods such as thermodynamic
integration [27]. Thermodynamic integration requires us to
compute the integral

I ¼
Z

1

0

hlnLiβdβ ¼
Z

0

−∞
βhlnLiβd ln β: ð12Þ

Here, hlnLiβ is the average log likelihood for chains
with inverse temperature β. Figure 8 shows the average
log likelihood as a function of inverse temperature using
the full and heterodyned likelihood. The lower panel
of the figure shows the difference in the integrand. The
evidence computed using the heterodyned likelihood agrees
with the value computed using the full likelihood to
within ΔI ¼ 0.1.
The heterodyning approach is widely applicable. For

example, it can handle the very high signal-to-noise (SNR)
systems that are expected to be detected by the Laser
Interferometer Space Antenna (LISA). The high SNR
demands a smaller linear error tolerance, but the savings
are still very large. For example, typical LISA sources with
masses in the 105 → 107 M⊙ range, such as those shown in

-50

0

50

100

150

200

250

300

<
ln

L>

Full Likelihood
Heterodyned Likelihood

-0.2

0

0.2

0.001 0.01 0.1 1

<
ln

L>

FIG. 8. The upper panel shows the average log likelihood as a
function of the inverse temperature of the chains, β, for the full
likelihood and the heterodyned likelihood for GW150914 using
the same settings as Fig. 7. The lower panel shows the difference
in the thermodynamic integrands.
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FIG. 9. Frequency spacing for two massive black hole binaries
taken from the second LISA Data Challenge training data set.
Despite the difference in total mass, both system required roughly
200 frequency samples in the heterodyne. The detector frame
masses of the black holes (in units of solar mass) are given in the
figure legend. The heterodyne used second-order Legendre
polynomials with a linear fit tolerance of 10−5 and a chi-squared
value of ðΔhjΔhÞ ¼ 50.

FIG. 7. Difference between the full and heterodyned likelihood
for GW150914 for proposed and accepted parameter values. The
heterodyne used second-order Legendre polynomials with a
linear fit tolerance of 0.001 and a chi-squared value of
ðΔhjΔhÞ ¼ 50.
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Fig. 9, can be accurately covered by frequency grids with
just a few hundred points. This is far fewer than the ∼106
samples that are required when computing the regular
likelihood for these sources.
The accuracy of the heterodyned likelihood, even for

LISA sources with signal-to-noise ratios in the thousands,
such as the system shown in Fig. 10, is impressive: absolute
errors of order 0.02 and fractional errors of order 10−8.

C. Noise marginalization

To produce parameter estimates that are robust against
instrument calibration uncertainties and finite sample
uncertainties in the on-source noise spectral estimates, it
is desirable to marginalize over the calibration model and
noise model. This poses a challenge for rapid parameter
estimation techniques that rely on precomputing quantities
at full cadence. For the heterodyned likelihood, calibration
uncertainties pose no problem as they introduce small
changes in the amplitude and phase evolution that can be
incorporated in the slow terms and thus have minimal
impact on the computational cost. In contrast, changes in
the noise model are generally not smooth due to the
presence of sharp spectral lines. Figure 11 shows the
median and 90% credible band for the on-source power
spectrum model in the LIGO Hanford detector using 8 sec
of data surrounding the black binary hole merger
GW151012. Here, the spectral model is a fixed dimension
variant of the BayesLine model [28] used by the
QuickCBC [9] parameter estimation pipeline.
The variations in the power spectrum look small

when viewed on a logarithmic scale, and it is tempting
to try and incorporate these variations by writing

κðfÞ ¼ dðfÞh̄�ðfÞ=S̄ðfÞ for the fast term and ζðfÞ ¼
S̄ðfÞhðfÞ=ðSðfÞh̄ðfÞÞ for the slow term, where S̄ðfÞ is
some reference model for the power spectral density (PSD).
Figure 12 compares the ratio of a fair draw from the power
spectrum to the median of the spectral model. The spectral
lines lead to sharp features in the ratio that prevent it from
being incorporated into the slow varying terms in the
heterodyned likelihood. One way of handling the lines
would be to excise the region around each line and calculate
the likelihood directly in those regions and use the
heterodyne for the remainder. A simpler approach is to
use “blocked Gibbs” sampling, whereby the MCMC
sampler alternates between updating the source parameters
and the noise model parameters, with each noise model
update followed by a recomputation of the Legendre
polynomial expansion of the slow terms. This latter
approach is relatively inexpensive since the reference
waveform does not have to be recomputed, just the
Legendre expansion. Typically, the cost of the recompu-
tation is several times less than a standard likelihood

FIG. 10. Difference between the full and heterodyned like-
lihood for a simulated LISA black hole binary with detector
frame masses m1 ¼ 1.02 × 106 M⊙, m2 ¼ 7.97 × 105 M⊙. A
parallel tempered MCMC was used with four cold chains and
12 hot chains, geometrically spaced in temperature by a factor of
1.3. The signal to noise of the system was very high:
SNR ¼ 1292. The heterodyne used second-order Legendre
polynomials with a linear fit tolerance of 10−5 and a chi-squared
value of ðΔhjΔhÞ ¼ 50.
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FIG. 11. Power spectral density estimates for the LIGO
Hanford detector using 4 sec of data surrounding the binary
merger GW151012. The light blue band indicates the 90%
credible region, while the solid dark blue lines indicates the
median.
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FIG. 12. The ratio of a fair draw from the power spectrum
model and the reference power spectrum model for the LIGO
Hanford detector using 8 sec of data surrounding GW151012.
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evaluation. Moreover, if using multiple chains in a parallel
tempered setup, it is sufficient to limit the noise model
updates to the cold chain and to share the update with the
hot chains. In this way, noise marginalization can be
incorporated at little additional cost.
Figure 13 compares the posterior distributions for the

masses and distance of binary merger GW151012 with and
without noise marginalization. Marginalizing over the noise
model slightly inflates the widths of the posterior distribu-
tions and slightly shifts the peaks. Similar small shifts were
found for other systems in the LIGO-Virgo catalog [29,30],
suggesting that noise marginalization is probably less
impactful than waveform uncertainties or calibration uncer-
tainties (a similar conclusion was reached in Ref. [31]).
The heterodyne procedure can also be applied to data

with nonstationary noise that is locally stationary [32,33].
Locally stationary data can be whitened and made sta-
tionary by transforming to the discrete wavelet domain, and
dividing each wavelet pixel by the square root of the
dynamic, or evolutionary spectrum, Sðf; tÞ. This procedure
decorrelates the noise in both time and frequency [34]. The
rescaled white/stationary data can then be transformed to
the frequency domain and used in the heterodyned like-
lihood. The steps are illustrated in Eq. (13),

dðtÞ⟶
DFT

dðt; fÞ ⟶
decorr

dðt; fÞffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðf; tÞp →

FT
d̃wðfÞ: ð13Þ

The waveform template h̃ðfÞ can be dynamically whitened
using the time-frequency mapping,

tðfÞ ¼ 1

2π

dΦ̄ðfÞ
df

; ð14Þ

and defining SðfÞ ¼ Sðf; tðfÞÞ. There will be a different
time-frequency mapping for each harmonic. Using this
procedure, nonstationary gravitational wave data can be
analyzed just as quickly as stationary data.

III. SUMMARY

The heterodyned likelihood [7] can be used to
dramatically speed up gravitational wave parameter
inference without sacrificing accuracy. The heterodyning
procedure can be efficiently implemented using discrete
Legendre polynomial expansions and a dynamic spacing
of the frequency samples. The method can be applied
to any waveform model and detector configuration,
with the largest savings in computational cost occurring
for low mass systems. The savings decrease as the
number of harmonics in the waveform model increase,
since each harmonic has to be be treated separately. The
heterodyning approach can incorporate marginalization
over calibration uncertainties and variations in the
noise model.
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FIG. 13. Posterior distributions for GW151012 with (variable)
and without (fixed) marginalization over the power spectral
density. Marginalizing over the PSD slightly inflates the spread
in the posterior distributions.
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