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Abstract—Structural variants (SVs) are novel rearrangements
in genomes of organisms and lead to a species’ genomic het-
erogeneity. While rare, SVs represent an increasingly important
class of genetic variation. To detect SVs, DNA fragments from
a test genome are compared to a high-quality reference genome,
where discordant mappings provide evidence of potential SVs.
This process is susceptible to sequencing and mapping errors.
In low-coverage settings, differentiating true SVs from errors is
even more difficult. In this work, we consider SV detection within
extended pedigrees by using a negative binomial framework to
model the expected number of fragments covering any position in
a genome and exploit familial relationships to improve detection
accuracy.

Index Terms—Sparse signal recovery, structural variants, non-
convex optimization, computational genomics, next-generation
sequencing data

I. INTRODUCTION

Structural variants (SVs) are areas within a genome that are
larger than a single nucleotide that can vary between individ-
uals in the same species. SVs are a type of genomic variation,
such as inversions, deletions and duplications; and, although
generally rare, they form an increasingly important class of
variation in human genomes as they have been associated
with particular hereditary diseases and susceptibility to certain
types of cancer [1]-[3]. SV detection is a process that involves
(i) fragmenting candidate DNA, (ii) sequencing and mapping
them to an established reference high-quality genome, and
(iii) analyzing the positions of the mapped fragments [4]-
[8]. However, due to errors in this process, false predictions
may be made and true variants may be missed. Furthermore,
identifying true SVs from sequencing errors is made even
more difficult in low-coverage sequencing settings [9]-[16].
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Fig. 1: Ilustration of a structural variant in a genome sequence.
When a fragment from an unknown genome does not map
concordantly to the reference genome, this is considered a
signal for a structural variant. In this illustration, a deletion
(left) occurs when the fragment from the unknown genome
maps to a larger region in the reference.

In this work, we build upon our previous work on using a
negative binomial framework to model the expected number
of fragments covering any position in a genome [17]-[19]
and leverage parent-child-trio relationships to reduce the false-
positive rate of SV predictions for both parents and child.

II. PROBLEM FORMULATION

We now present a general framework for predicting struc-
tural variants (SVs) within sequencing data from two parents
(p1 and p2) and one child (c). For simplicity, we consider all
individuals to be haploid (only one copy of each chromosome).

Statistical model. Consider two unrelated indviduals, p; and
pe, and their child, c¢. With I € {pi,po,c}, let the true
signal f7 € {0,1}" be a binary-valued vector that indicates
the presence of a structural variant in individual I’s genome
sequence, with ( ﬁ*)] = 1 if a variant is present at location
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j and O otherwise. Furthermore, let the vector ;7 € RY
correspond to the measurement vector with

?71 ~ NegBin(ﬂh 5?)7

where the mean p; and variance o? depth of coverage

are determined by the sequencing data of each respec-
tive individual. (Here, the notation & is to be understood
component-wise.) Consider the stacked measurement signal
T= 19 5 Upo ; U] € RN and corresponding mean and
variance vectors, ji € RV and 62 € R". Specifically, we have
the following expressions for the components of ji and &

(w); = (AF), (0 = (AF), + - (A7),

where A is a_mapping that linearly projects the true signal
F=1F 5 fr s fi1€{0,1}*N onto the 3N-dimensional
set of observations, and r is the dispersion parameter of the
negative binomial distribution. Under this model, the proba-
bility of observing % is given by the following expression:

and

2

2 J =
3N -~ M e Yi
. Uit N (7 1
i =T1(" 777 ()7 (o)
i— Yj J J

Jj=1

We avoid using the gamma function by letting » € ZT.
Further'more, since O'J2~ = p; + %u?, we can rpaximi;e O'JQ»
by letting » = 1 to allow for the largest variance in the
measurements. Thus, ignoring constant terms, the negative log-
likelihood function, F'(u,0?), corresponding to the negative

binomial probability above, is given by

3N
F(p) = (5 + 1log (1+ ) — g/ log () -
j=1
However, knowing that the mean p; = (A f*)j and incor-

porating a small parameter ¢ > 0 to represent sequencing or
mapping error, we obtain our negative log-likelihood objective
function:

:ZN: (g;+1)log <1+(Af) -I-E) yjlog ((Af)j—l—a).

To apply gradient-based optimization methods to minimize
F(f), we allow f to take on real values instead of being
binary valued and require that

0< fous fomr fr < 1, (1)

where the inequalities are understood to be component-wise.

While child SVs can be inherited from a parent, that is not
always the case. In previous work, we proposed expressing
the child SV true signal as the following decomposition:

fe=F+ 1 )
where f* € {0, 1} is the indicator vector of inherited
SVs while f* € {0,1}" is the indicator vector of novel

SVs (or SVs that are not inherited). Note that because a
child SV cannot be both inherited and novel simultaneously,

(F)Tfr =0

XOOOODDOA

lo]1]ofolofoo[1][o]ofo]0]=

XA

o[1]oJo]oJo]o]oJo]1]o]0]=

XOOOODDOL

[o[1][ofo]1[ofo[1[o]o]of0]= f.

. - —
1; [o[1]o[o[olo[o[1]olo[0]0]= f;
+

[o[ofofo[1]olo[o[ofo]0f0]= f,

fp]

fpz

1
X

Fig. 2: The parent SV signal f;) and the child SV signal f;
The _vector of child SVs inherited from the parent is denoted
by f;, and the vector of novel SVs is denoted by f,. Note that

fC:fi+f;L'

Familial constraints. Here, we describe the biological con-
straints that the SV signals must satisfy in addtion to those in
(1) and formulate them mathematically. [20]. First, since ﬁ
and ﬁl also take on O or 1 as values, we require that

0< fi, fu<l.
Second, from (2), we have that
0< fi+fn <l

Third, if there is an SV in either parent at location j, then
the child cannot have a novel SV at that location. Similarly,
if there is a novel SV present in the child at location j, that
SV cannot be present in both parents, i.e.,

0<fn<l—f, and 0<f, <1—Ff,.

Fourth, we assume that if both parents have a variant in the
same location, the child will inherit this variant, meaning

f;m +fp2 -1 S fz

Similarly, if the neither parent has a variant present, we assume
the child will not have an inherited variant, meaning

Fi < Fou + Foa-

Combining all of these constraints, we define the set S of
all vectors satisfying these constraints by

0< fi+fu <1,
s 0< fu<1—fp,

S= J;? ER™W L 0< fr, <1— fp,
f_:n fpl +fp2_1§fi§fp1+fpz7

0 S fpwfpwfiafn S 1
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Parsimonious solutions. Genomes within the same species are
highly similar. Therefore, structural variants are very rare. We
incorporate this biological phenomenon in our mathematical
model by imposing an ¢;-norm penalty term in our problem
formulation, which is a common technique found in statistical
literature to promote sparsity in the solution [21]-[23]. We
further assume that novel SVs are even rarer. Thus, we
associate a different (larger) regularization parameter with the
novel SVs. Mathematically, we express this penalty term as

pen(f) = (Ifpull + 1 Foull + 11 Fill) + L Fullrs

where v > 1 is a penalty parameter that places greater weight
on f, to promote further sparsity.

Optimization approach. Assuming that these SVs are rare,
we express the SV prediction problem as the following sparse
signal constrained optimization problem:

minimize ¥ (f) = F(f) + rpen(f)
femraN 3)
subject to fe S,
where f = [ﬁ,l;f;;f;;ﬁl] and 7 > 0 is a regularization

parameter that balances the data-fidelity F'( f) term with
the sparsity-promoting penalty term. We solve (3) using the
Sparse Poisson Intensity Reconstruction ALgorithm (SPIRAL)
framework [24] by minimizing a sequence of quadratic models
to the function F'( f) First we first define the second-order
Taylor series approximation F*(f) to F(f) at the current
iterate f_k:

—

FEP) = B+ (- f*) VE(f") @
+3(F = TR - ).
The gradient of F'( ﬂ s given by
4N
F) = _ G+l ,_LAT 4
B ;1+6].TAf+e ‘ eJTAf+E %

where e; is the 4 column of the 3N x 3N identity matrix,
A € R3NX4N 5 the coverage matrix given by

(Apy, —€)In 0 0 0
A= 0 (Ap, —€) Iy 0 0 ,
0 0 (/\0—6)11\[ ()\C—G)IN

where Iy € RYXY is the N x N identity matrix, and \,,,
Ap,» and A, are the sequencing coverage of the parents and
child, respectively. To further simplify our quadratic model,
we approximate the second-derivative Hessian matrix with a
scalar multiple of the identity matrix o/, where o, > 0 (see
[25], [26] for details). We define the quadratic model

~ - g, =
FH(f) = B+ (F = PYTVEG) + I = M3 ©)
Now, each quadratic subproblem will be of the form

f_kJrl = arg min Fk(f) + Tpen(f)

f‘eR4N

subject to fe S.

This constrained quadratic subproblem is equivalent to the
following subproblem:

—

. = e 5 T
f = argmin - Q(f) = ||f—8’“||§+07kpen( )

feRzLN

subject to fes,

N =

)

where 5% = [§F;5F 3 _’Zk, gk = f* - 1 VE(f*) (see [24]

for details). Note that Q(f) separates into the sum

{ |<ﬁ1>j|+|<f;2)j+|<ﬁ->j|+w|<ﬁ>j}.

675

Note that the bounds for S are component-wise. Therefore,
(7) separates into subproblems of the form

minimize

1
For fon o fir fr €R 2{(fp1_8p1) (fpz sz)
p1oJporJirn

#(ims0? + (famsa)?}
b {415 11
k

®)
subjectto 0 < f; + f, <1
ngn § 17fp17
ngnél_fpw

fp1+fp2 -1 sz Sfpl +fp2
0 S fplvfpzafivfn S 1.

where {f,,, fp, fi, fn} and {sp,, Sp,, Si, s} are scalar com-
ponents of the vectors {f;1 , f;,z,f:, fn)} and {5p1, 8ps» 5iy Sn ts
respectively, at the same location.

We solve (8) using an alternating block-coordinate descent
approach, which utilizes alternating steps between child and
parent variables [27]. We start by fixing the parent signals
fp, and fp,, and solve the resulting minimization problem for
the child signal, f; and f,. Next, we fix the child signal and
minimize over the parent variables. We continue this method
until the subsequent iterates falls below a specified threshold.
The steps are as follows.

Step 0: Initially, we fix the values for the parent variables by
setting fé?) = f},S) = 0.5 for each candidate SV location.
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Fig. 3: ROC curves for reconstructions for data drawn from a negative binomial distribution, illustrating the true positive rate
versus the false positive rate with 5% novel variants where 7 = 0.1 and v = 15. (a) The area under the curve (AUC) for
all the individuals combined for NEBULA is 0.9236 while the AUC for SPIRAL is 0.8382. (b) The AUC for Parent 1 for
NEBULA is 0.9341 while the AUC for SPIRAL is 0.7993. (¢) The AUC for Parent 2 for NEBULA is 0.9263 while the AUC
for SPIRAL is 0.8037. (d) The AUC for the child for both NEBULA and SPIRAL are 0.9107.

Step 1: Suppose we have obtained pr 1 and f,,(,j -b from
the previous iteration. The child variables fi(J ) and fn(J ) are
obtained by solving the following:

L 1 9 1 2
minimize 5 (fi =)™+ 5 (fu —cn)
subject to 0< fn, fi <1, 0< fi+fn <1,
0< fu<1—fU M 0<f<1—f07Y,
fp(j—1)+f(3 1) —1< <f(] 1)+f(] 1)
1 )
where ¢; = s; — - and ¢, = s, — 1"

Step 2: Suppose we have obtained fi(j ) and fT(Lj ) from the
previous step. We obtain the solution for the current iteration
ISZ) and f,Sg) are obtained by solving the following:

L. 1 9 1 )
minimize — — + = o
fpl;prER 2(fp1 Cpl) 2(fp2 C[]z)
subject to 0< fp, <1-— f7(lj), 0<f, <1- f'r(Lj)7

fpl +f;02 -1< fz(J) < f;vl +fp2’
0 S fplafpz S 17

where ¢, = s,, — = and ¢, = 55, — =

We note that both steps have closed form solutions, which
can be obtained by projecting the unconstrained solution to
the corresponding feasible set (see [27] for details).

III. RESULTS

We implemented our proposed method for variant detection
called NEgative Binomial Optimization Using ¢; Penalty Al-
gorithms (NEBULA) and compared its results to the SPIRAL
method. Similar to previously published methods, we observed
the variant predictions in a two-parent/one-child model [20].
Our method used a sparsity promoting parameter 7. This
method has a second regularization parameter, v, which was
chosen to promote further sparsity within the novel variants,
fn. The methods were terminated if the relative difference
between consecutive iterates || f ¥ — &[5 /|| f ¥l < 1078.

We studied the performance on data we simulated that
match our assumptions. We simulated the true signal for the

parents and child by creating the vector, f of size 10° and
selecting 500 locations to be true variants for the parents and
child. We control the number of novel SVs in the child by
by first selecting 500 locations at random to be the true SVs
in the parent. For the child signal, we made the assumption
that if both parents have a SV at a particular location, the
child does as well. However, if only one parent has a SV at a
particular location, the child has a 50% chance of inherting that
SV [27]. The novel variants in the child are chosen randomly
from locations where the parents do not have a SV. We created
our observed signals by sampling from a negative binomial
distribution (Fig. 3) and a Poisson distribution (Fig. 4) based
upon a given coverage and error.

Analysis. Compared to our work in the one-parent/one-child
model [28], we noticed a significant improvement with the
AUCs for NEBULA over those for SPIRAL. Also, both
NEBULA and SPIRAL produced higher AUCs when the data
are drawn from a Poisson distribution than those drawn from
a negative binomial distribution. Moreover, when considering
the algorithms and the individuals we found both parents will
have relatively the same level of reconstruction accuracy (i.e.,
Parents 1 and 2 have similar AUC values). Finally, we found
that for the Parent 1 and Parent 2, the AUCs for NEBULA
where higher than those from the existing SPIRAL method.

IV. CONCLUSIONS

We propose a method which builds on our previously de-
veloped negative binomial optimization method, which recon-
structs signals arising from the negative binomial distribution
rather than the Poisson distribution. This method aims to detect
both inherited and novel variants within a child’s genome when
genomic information from both parents is available. Overall,
our proposed method improves upon our previous work for
predicting structural variants.
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Fig. 4: ROC curves for reconstructions for data drawn from a negative binomial distribution, illustrating the true positive rate
versus the false positive rate with 5% novel variants where 7 = 0.1 and v = 15. (a) The area under the curve (AUC) for
all the individuals combined for NEBULA is 0.9886 while the AUC for SPIRAL is 0.9046. (b) The AUC for Parent 1 for
NEBULA is 0.9904 while the AUC for SPIRAL is 0.8708. (¢c) The AUC for Parent 2 for NEBULA is 0.9903 while the AUC
for SPIRAL is 0.8571. (d) The AUC for the child for for NEBULA is 0.9852 while the AUC for SPIRAL 0.9848.
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