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Abstract—Structural variants (SVs) are novel rearrangements

in genomes of organisms and lead to a species’ genomic het-

erogeneity. While rare, SVs represent an increasingly important

class of genetic variation. To detect SVs, DNA fragments from

a test genome are compared to a high-quality reference genome,

where discordant mappings provide evidence of potential SVs.

This process is susceptible to sequencing and mapping errors.

In low-coverage settings, differentiating true SVs from errors is

even more difficult. In this work, we consider SV detection within

extended pedigrees by using a negative binomial framework to

model the expected number of fragments covering any position in

a genome and exploit familial relationships to improve detection

accuracy.

Index Terms—Sparse signal recovery, structural variants, non-

convex optimization, computational genomics, next-generation

sequencing data

I. INTRODUCTION

Structural variants (SVs) are areas within a genome that are
larger than a single nucleotide that can vary between individ-
uals in the same species. SVs are a type of genomic variation,
such as inversions, deletions and duplications; and, although
generally rare, they form an increasingly important class of
variation in human genomes as they have been associated
with particular hereditary diseases and susceptibility to certain
types of cancer [1]–[3]. SV detection is a process that involves
(i) fragmenting candidate DNA, (ii) sequencing and mapping
them to an established reference high-quality genome, and
(iii) analyzing the positions of the mapped fragments [4]–
[8]. However, due to errors in this process, false predictions
may be made and true variants may be missed. Furthermore,
identifying true SVs from sequencing errors is made even
more difficult in low-coverage sequencing settings [9]–[16].
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Fig. 1: Illustration of a structural variant in a genome sequence.
When a fragment from an unknown genome does not map
concordantly to the reference genome, this is considered a
signal for a structural variant. In this illustration, a deletion
(left) occurs when the fragment from the unknown genome
maps to a larger region in the reference.

In this work, we build upon our previous work on using a
negative binomial framework to model the expected number
of fragments covering any position in a genome [17]–[19]
and leverage parent-child-trio relationships to reduce the false-
positive rate of SV predictions for both parents and child.

II. PROBLEM FORMULATION

We now present a general framework for predicting struc-
tural variants (SVs) within sequencing data from two parents
(p1 and p2) and one child (c). For simplicity, we consider all
individuals to be haploid (only one copy of each chromosome).

Statistical model. Consider two unrelated indviduals, p1 and
p2, and their child, c. With I 2 {p1, p2, c}, let the true
signal ~f⇤

I 2 {0, 1}N be a binary-valued vector that indicates
the presence of a structural variant in individual I’s genome
sequence, with (~f⇤

I )j = 1 if a variant is present at location
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j and 0 otherwise. Furthermore, let the vector ~yI 2 RN

correspond to the measurement vector with

~yI ⇠ NegBin(~µI ,~�
2
I ),

where the mean µI and variance �2
I depth of coverage

are determined by the sequencing data of each respec-
tive individual. (Here, the notation ~�2 is to be understood
component-wise.) Consider the stacked measurement signal
~y = [ ~yp1 ; ~yp2 ; ~yc ] 2 R3N and corresponding mean and
variance vectors, ~µ 2 RN and ~�2 2 RN . Specifically, we have
the following expressions for the components of ~µ and ~�2:

(µ)j =
�
A~f⇤�

j
and (�)2j =

�
A~f⇤�

j
+

1

r

�
A~f⇤�2

j
,

where A is a mapping that linearly projects the true signal
~f⇤ = [ ~f⇤

p1
; ~f⇤

p2
; ~f⇤

c ] 2 {0, 1}3N onto the 3N -dimensional
set of observations, and r is the dispersion parameter of the
negative binomial distribution. Under this model, the proba-
bility of observing ~y is given by the following expression:

p(~y) =
3NY

j=1

✓
~yj +

µ2
j

�2
j�µj

� 1

~yj

◆ 
µj

�2
j

! µ2
j

�2
j�µj

 
1� µj

�2
j

!~yj

.

We avoid using the gamma function by letting r 2 Z+.
Furthermore, since �2

j = µj + 1
r µ2

j , we can maximize �2
j

by letting r = 1 to allow for the largest variance in the
measurements. Thus, ignoring constant terms, the negative log-
likelihood function, F (µ,�2), corresponding to the negative
binomial probability above, is given by

F (µ) ⌘
3NX

j=1

(~yj + 1) log (1 + µj)� ~yj log (µj) .

However, knowing that the mean µj = (A~f⇤)j and incor-
porating a small parameter " > 0 to represent sequencing or
mapping error, we obtain our negative log-likelihood objective
function:

F (~f) ⌘
3NX

j=1

(~yj+1) log
⇣
1+(A~f)j+"

⌘
�~yj log

⇣
(A~f)j+"

⌘
.

To apply gradient-based optimization methods to minimize
F (~f), we allow ~f to take on real values instead of being
binary valued and require that

0  ~fp1 , ~fp2 , ~fc  1, (1)

where the inequalities are understood to be component-wise.
While child SVs can be inherited from a parent, that is not

always the case. In previous work, we proposed expressing
the child SV true signal as the following decomposition:

~f⇤
c = ~f⇤

i + ~f⇤
n, (2)

where ~f⇤
i 2 {0, 1}N is the indicator vector of inherited

SVs while ~f⇤
n 2 {0, 1}N is the indicator vector of novel

SVs (or SVs that are not inherited). Note that because a
child SV cannot be both inherited and novel simultaneously,
(~f⇤

i )
> ~f⇤

n = 0.

1 0 00 1 0 0 0 0 0 0

0 0 0 00 1 0 0 0 1 0 0

0 0 00 1 0 0 0 0 0 0

1 0 0 00 0 0 0 0 0 0 0

=
+

=

=
=
=

~fc

~fi

~fn

0 0 0 00 1 0 0 01 0 0 =

1

1

~fp1

~fp2

Fig. 2: The parent SV signal ~fp and the child SV signal ~fc.
The vector of child SVs inherited from the parent is denoted
by ~fi, and the vector of novel SVs is denoted by ~fn. Note that
~fc = ~fi + ~fn.

Familial constraints. Here, we describe the biological con-
straints that the SV signals must satisfy in addtion to those in
(1) and formulate them mathematically. [20]. First, since ~fi

and ~fn also take on 0 or 1 as values, we require that

0  ~fi, ~fn  1.

Second, from (2), we have that

0  ~fi + ~fn  1.

Third, if there is an SV in either parent at location j, then
the child cannot have a novel SV at that location. Similarly,
if there is a novel SV present in the child at location j, that
SV cannot be present in both parents, i.e.,

0  ~fn  1� ~fp1 and 0  ~fn  1� ~fp2 .

Fourth, we assume that if both parents have a variant in the
same location, the child will inherit this variant, meaning

~fp1 + ~fp2 � 1  ~fi.

Similarly, if the neither parent has a variant present, we assume
the child will not have an inherited variant, meaning

~fi  ~fp1 + ~fp2 .

Combining all of these constraints, we define the set S of
all vectors satisfying these constraints by

S =

8
>>>>>>><

>>>>>>>:

2

6664

~fp1

~fp2

~fi
~fn

3

7775
2R4N :

0  ~fi + ~fn  1,

0  ~fn  1� ~fp1 ,

0  ~fn  1� ~fp2 ,

~fp1 + ~fp2 � 1  ~fi  ~fp1 + ~fp2 ,

0  ~fp1 , ~fp2 , ~fi, ~fn  1

9
>>>>>>>=

>>>>>>>;

.
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Parsimonious solutions. Genomes within the same species are
highly similar. Therefore, structural variants are very rare. We
incorporate this biological phenomenon in our mathematical
model by imposing an `1-norm penalty term in our problem
formulation, which is a common technique found in statistical
literature to promote sparsity in the solution [21]–[23]. We
further assume that novel SVs are even rarer. Thus, we
associate a different (larger) regularization parameter with the
novel SVs. Mathematically, we express this penalty term as

pen(~f) =
�
k~fp1k1 + k~fp2k1 + k~fik1

�
+ �k~fnk1,

where � � 1 is a penalty parameter that places greater weight
on ~fn to promote further sparsity.

Optimization approach. Assuming that these SVs are rare,
we express the SV prediction problem as the following sparse
signal constrained optimization problem:

minimize
~f2R4N

 (~f) ⌘ F (~f) + ⌧pen(~f)

subject to ~f 2 S,
(3)

where ~f = [~fp1 ; ~fp2 ; ~fi; ~fn] and ⌧ > 0 is a regularization
parameter that balances the data-fidelity F (~f) term with
the sparsity-promoting penalty term. We solve (3) using the
Sparse Poisson Intensity Reconstruction ALgorithm (SPIRAL)
framework [24] by minimizing a sequence of quadratic models
to the function F (~f). First we first define the second-order
Taylor series approximation F k(~f) to F (~f) at the current
iterate ~fk:

F k(~f) = F (~fk) + (~f � ~fk)>rF (~fk)

+ 1
2 (
~f � ~fk)>r2F (~fk)(~f � ~fk).

(4)

The gradient of F (~f) is given by

rF (~f) =
4NX

j=1

~yj + 1

1 + eT
j A~f + "

AT ej �
~yj

eT
j A~f + "

AT ej , (5)

where ej is the jth column of the 3N ⇥ 3N identity matrix,
A 2 R3N⇥4N is the coverage matrix given by

A =

2

4
(�p1�✏)IN 0 0 0

0 (�p2�✏)IN 0 0
0 0 (�c�✏)IN (�c�✏)IN

3

5 ,

where IN 2 RN⇥N is the N ⇥ N identity matrix, and �p1 ,
�p2 , and �c are the sequencing coverage of the parents and
child, respectively. To further simplify our quadratic model,
we approximate the second-derivative Hessian matrix with a
scalar multiple of the identity matrix ↵kI , where ↵k > 0 (see
[25], [26] for details). We define the quadratic model

eF k(~f) ⌘ F (~fk) + (~f � ~fk)TrF (~fk) +
↵k

2
||~f � ~fk||22. (6)

Now, each quadratic subproblem will be of the form
~fk+1 = arg min

~f2R4N

F k(~f) + ⌧pen(~f)

subject to ~f 2 S.

This constrained quadratic subproblem is equivalent to the
following subproblem:

~fk+1 = arg min
~f2R4N

Q(~f) =
1

2
k~f � ~s kk22 +

⌧

↵k
pen(~f)

subject to ~f 2 S,

(7)

where ~s k = [~s k
p1
;~s k

p2
;~s k

i ;~s k
n ] = ~fk � 1

↵k
rF (~fk) (see [24]

for details). Note that Q(~f) separates into the sum

Q(~f) =
NX

j=1

Qj

�
(~fp1)j , ~fp2)j , (~fi)j , (~fn)j

�
,

where Qj : R4 ! R and

Qj

�
(~fp1)j , (~fp2)j , (~fi)j , (~fn)j

�
=

1

2

⇢�
(~fp1�~s k

p1
)j
�2

+
�
(~fp2�~s k

p2
)j
�2

+
�
(~fi�~s k

i )j
�2

+
�
(~fn�~s k

n )j
�2
�

+
⌧

↵k

⇢
|(~fp1)j |+ |(~fp2)j |+ |(~fi)j |+ �|(~fn)j |

�
.

Note that the bounds for S are component-wise. Therefore,
(7) separates into subproblems of the form

minimize
fp1 ,fp2 ,fi,fn2R

1

2

⇢
(fp1�sp1)

2 + (fp2�sp2)
2

+ (fi�si)
2 + (fn�sn)

2

�

+
⌧

↵k

⇢
|fp1 |+|fp1 |+|fi|+�|fn|

�

subject to 0  fi + fn  1

0  fn  1� fp1 ,

0  fn  1� fp2 ,

fp1 + fp2 � 1  fi  fp1 + fp2

0  fp1 , fp2 , fi, fn  1.

(8)

where {fp1 , fp2 , fi, fn} and {sp1 , sp2 , si, sn} are scalar com-
ponents of the vectors {~fp1 , ~fp2 , ~fi, ~fn} and {~sp1 ,~sp2 ,~si,~sn},
respectively, at the same location.

We solve (8) using an alternating block-coordinate descent
approach, which utilizes alternating steps between child and
parent variables [27]. We start by fixing the parent signals
fp1 and fp2 , and solve the resulting minimization problem for
the child signal, fi and fn. Next, we fix the child signal and
minimize over the parent variables. We continue this method
until the subsequent iterates falls below a specified threshold.
The steps are as follows.
Step 0: Initially, we fix the values for the parent variables by
setting f (0)

p1 = f (0)
p2 = 0.5 for each candidate SV location.
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(a) All Individuals ROC (b) Parent 1 ROC (c) Parent 2 ROC (d) Child ROC

Fig. 3: ROC curves for reconstructions for data drawn from a negative binomial distribution, illustrating the true positive rate
versus the false positive rate with 5% novel variants where ⌧ = 0.1 and � = 15. (a) The area under the curve (AUC) for
all the individuals combined for NEBULA is 0.9236 while the AUC for SPIRAL is 0.8382. (b) The AUC for Parent 1 for
NEBULA is 0.9341 while the AUC for SPIRAL is 0.7993. (c) The AUC for Parent 2 for NEBULA is 0.9263 while the AUC
for SPIRAL is 0.8037. (d) The AUC for the child for both NEBULA and SPIRAL are 0.9107.

Step 1: Suppose we have obtained f (j�1)
p1 and f (j�1)

p2 from
the previous iteration. The child variables f (j)

i and f (j)
n are

obtained by solving the following:

minimize
fi,fn2R

1

2
(fi � ci)

2 +
1

2
(fn � cn)

2

subject to 0  fn, fi  1, 0  fi + fn  1,

0  fn  1� f (j�1)
p1

, 0  fn  1� f (j�1)
p2

,

f (j�1)
p1

+ f (j�1)
p2

� 1  fi  f (j�1)
p1

+ f (j�1)
p2

,

where ci = si � ⌧
↵j

and cn = sn � �⌧
↵j

.

Step 2: Suppose we have obtained f (j)
i and f (j)

n from the
previous step. We obtain the solution for the current iteration
f (j)

p1 and f (j)
p2 are obtained by solving the following:

minimize
fp1 ,fp22R

1

2
(fp1 � cp1)

2 +
1

2
(fp2 � cp2)

2

subject to 0  fp1  1� f (j)
n , 0  fp2  1� f (j)

n ,

fp1 + fp2 � 1  f (j)
i  fp1 + fp2 ,

0  fp1 , fp2  1,

where cp1 = sp1 � ⌧
↵j

and cp2 = sp2 � ⌧
↵j

.
We note that both steps have closed form solutions, which

can be obtained by projecting the unconstrained solution to
the corresponding feasible set (see [27] for details).

III. RESULTS
We implemented our proposed method for variant detection

called NEgative Binomial Optimization Using `1 Penalty Al-
gorithms (NEBULA) and compared its results to the SPIRAL
method. Similar to previously published methods, we observed
the variant predictions in a two-parent/one-child model [20].
Our method used a sparsity promoting parameter ⌧ . This
method has a second regularization parameter, �, which was
chosen to promote further sparsity within the novel variants,
fn. The methods were terminated if the relative difference
between consecutive iterates ||~f k+1 � ~f k||2/||~f k||2  10�8.

We studied the performance on data we simulated that
match our assumptions. We simulated the true signal for the

parents and child by creating the vector, ~f of size 106 and
selecting 500 locations to be true variants for the parents and
child. We control the number of novel SVs in the child by
by first selecting 500 locations at random to be the true SVs
in the parent. For the child signal, we made the assumption
that if both parents have a SV at a particular location, the
child does as well. However, if only one parent has a SV at a
particular location, the child has a 50% chance of inherting that
SV [27]. The novel variants in the child are chosen randomly
from locations where the parents do not have a SV. We created
our observed signals by sampling from a negative binomial
distribution (Fig. 3) and a Poisson distribution (Fig. 4) based
upon a given coverage and error.

Analysis. Compared to our work in the one-parent/one-child
model [28], we noticed a significant improvement with the
AUCs for NEBULA over those for SPIRAL. Also, both
NEBULA and SPIRAL produced higher AUCs when the data
are drawn from a Poisson distribution than those drawn from
a negative binomial distribution. Moreover, when considering
the algorithms and the individuals we found both parents will
have relatively the same level of reconstruction accuracy (i.e.,
Parents 1 and 2 have similar AUC values). Finally, we found
that for the Parent 1 and Parent 2, the AUCs for NEBULA
where higher than those from the existing SPIRAL method.

IV. CONCLUSIONS

We propose a method which builds on our previously de-
veloped negative binomial optimization method, which recon-
structs signals arising from the negative binomial distribution
rather than the Poisson distribution. This method aims to detect
both inherited and novel variants within a child’s genome when
genomic information from both parents is available. Overall,
our proposed method improves upon our previous work for
predicting structural variants.
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(a) All Individuals ROC (b) Parent 1 ROC (c) Parent 2 ROC (d) Child ROC

Fig. 4: ROC curves for reconstructions for data drawn from a negative binomial distribution, illustrating the true positive rate
versus the false positive rate with 5% novel variants where ⌧ = 0.1 and � = 15. (a) The area under the curve (AUC) for
all the individuals combined for NEBULA is 0.9886 while the AUC for SPIRAL is 0.9046. (b) The AUC for Parent 1 for
NEBULA is 0.9904 while the AUC for SPIRAL is 0.8708. (c) The AUC for Parent 2 for NEBULA is 0.9903 while the AUC
for SPIRAL is 0.8571. (d) The AUC for the child for for NEBULA is 0.9852 while the AUC for SPIRAL 0.9848.
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