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ABSTRACT

We investigate a spin-boson inspired model of electron transfer, where the diabatic coupling is given by a position-dependent phase,
¢™*. We consider both equilibrium and nonequilibrium initial conditions. We show that, for this model, all equilibrium results are
completely invariant to the sign of W (to infinite order). However, the nonequilibrium results do depend on the sign of W, suggest-
ing that photo-induced electron transfer dynamics with spin-orbit coupling can exhibit electronic spin polarization (at least for some

time).

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086554

I. INTRODUCTION

Quantum-mechanical models of electron transfer have proven
extremely successful in describing key features of electronic tran-
sitions in systems such as biomolecules and solar cells. One of
the simplest models that has been effective in such applications is
the spin-boson model, where a two-state system (representing two
electronic states) is coupled to a thermal bath (represented by a
collection of harmonic oscillator modes).! In the most basic for-
mulation, one assumes that the two states are coupled together via
a constant coupling (V), an assumption known as the Condon
approximation. If the set of modes in the thermal bath is indexed
by «, the Hamiltonian of such a system is of the form

H=H,+V, (1.1)

A

V= VID{2| + VF2)(1), (1.2)

(E1+Zc(1) ) (E2+Zc xa)|2 (2| + Hp, (1.3)

52
g - ;2’;‘“ + %mawiﬁi. (1.4)

Effectively, the spin-boson model corresponds to two parabolic
potential surfaces shifted spatially and in energy relative to one
another, resulting in a single minimal-energy crossing point. Within
the context of chemical physics, the spin-boson problem has proved
itself useful as a model because (i) the Hamiltonian is simple enough
such that one can solve for the dynamics at many different levels
of theory and (ii) there are so many time scales of interest (temper-
ature, driving force, diabatic coupling, reorganization energy, and
the nuclear relaxation time) that one can explore many different
dynamical regimes.” For instance, one dynamical regime is the case
where the coupling V is large, termed the adiabatic limit. In this
limit, the system evolves as if on a single electronic potential sur-
face; one can invoke standard classical transition state theory (TST)
to approximate the rate of reaction and use the Born-Oppenheimer
approximation to obtain a reasonable picture of nuclear dynamics.’
A second regime is the case where V is small (the nonadiabatic
limit) and the electronic dynamics become slow enough that the sys-
tem dynamics cannot be described using the Born-Oppenheimer
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approximation. The usual approach is to apply Fermi’s golden
rule and make the high temperature approximation, recovering
what is often called Marcus theory.* Yet, another regime, closely
related to the nonadiabatic regime, is the solvent-controlled regime
where nuclear motion can slow down or damp electronic transi-
tions by trapping transitions with strong friction. Semiclassically,
one often differentiates the above regimes through the framework
of Landau-Zener transitions and many condensed phase problems
occur in the damped and overdamped regimes; to that end, several
authors have explored the interplay between electronic transitions
and diffusive nuclear motion.””’

Extensions of the spin-boson model Hamiltonian have been
proposed and analyzed as well. For instance, several researchers have
explored how Marcus theory is altered in the presence of position-
dependent diabatic couplings (breaking the so-called “Condon”
approximation). Perhaps the most famous example of such a model
is due to Medvedev and Stuchebrukhov,® who studied systems where
all nuclear vibrational modes could be disentangled into two groups:
modes that displace the diabat and modes that modulate the diabatic
coupling. In such a regime, a simple rate expression can be derived.
These expressions were effectively generalized by Jang and Newton,’
who calculated the consequences of non-Condon effects for a variety
of different circumstances.

Below, our focus will be slightly different from the papers
mentioned above insofar as our aim will be to model the effect of
spin-orbit coupling on nonadiabatic electron transfer, a subject that
has recently been reviewed by Lykhin et al.'’ and Marian et al.'’
In order to treat systems with spins as rigorously as possible, we
will not force the diabatic coupling to be real-valued. Instead, we
will explore the implications of the fact that the 1.-$ spin-orbit
coupling operator'”'” is complex-valued. The result is that a spin-
conserving process between two electronic states (say, with spin up)
evolves according to a spin-dependent Hamiltonian H, while the
dynamics of the corresponding process (say, with spin down) evolve
according to a spin-dependent Hamiltonian H*. Thus, if we find
differences between H and H * dynamics, we will effectively find dif-
ferences between spin up and spin down coupled nuclear-electron
transfer dynamics. A brief justification of this model is provided in
Subsection 1 of the Appendix.

Although all results below will focus exclusively on quantum
dynamics (and not address semiclassical dynamics), it is helpful
to analyze the differences in H vs H* dynamics in a semiclassical
context. When nuclei are propagated classically along an eigen-
surface corresponding to a complex-valued Hamiltonian, a novel
so-called Berry force'" '© emerges from the fact that no consistent
phase can be chosen for the electronic adiabats. This force is of the
form

F{"” = ihR x (Vg x D) (1.5)

and is equivalent to the force on a classical charged particle moving
through a magnetic field. Here, R is the nuclear velocity, Vr repre-
sents a gradient taken with respect to nuclear coordinates, and Dy,
is the derivative coupling, or Berry connection, from surface # to
itself. From Eq. (1.5), it follows that, even though the eigenvalues
of H and H” are identical, in a semiclassical context, the coupled
nuclear-electronic dynamics are different because the Berry forces
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on each adiabatic state are equal and opposite (and could potentially
lead to different, spin-dependent electron transfer dynamics in the
absence of a magnetic field),

FY (H) = -F{V (H). (1.6)

For a more nuanced interpretation of Berry force, see Subsection 5
of the Appendix.

Now, formally, the Berry force in Eq. (1.5) is meaningful only
in the limit of adiabatic nuclear motion; in such a case, one can
make a simple analogy to dynamics in a magnetic field. Interestingly,
recent dynamical scattering simulations have demonstrated that
strong Berry-like forces can also appear in the nonadiabatic limit
for systems with a few degrees of freedom and accessible conical
intersections. In particular, for gas phase dynamics around a coni-
cal intersection, a Berry force can dictate which outgoing channel is
populated.'” To our knowledge, however, the implications of Berry
force have not been analyzed in the context of Marcus theory and
nonadiabatic electron transfer; there is also a fairly small literature
on how Landau-Zener and WKB theory'® changes in the presence
of complex-valued diabatic couplings in multiple dimensions.'””’
More generally, there have been few if any calculations question-
ing: can the differences between H and H* (and the corresponding
Berry force effects) lead to different, spin-dependent electron trans-
fer dynamics in the presence of nuclear friction? The present article
will take a first step in this direction by using the spin-boson
model.

Turning back to the quantum-mechanical description of the
nonadiabatic problem at hand, we will make the standard approx-
imation that the diabatic coupling is small so that one can use
first-order perturbation theory and employ the Fermi Golden Rule
(FGR) ansatz to calculate equilibrium rates,

14 1»V>‘25(Ez,v’ - Eiy). (1.7)

k= %”Zuz,v’

In Eq. (1.7), V can be a function of the nuclear bath coordinates
{xa}. This expression gives the rate of population decay from an
initial vibronic state |1,v) to a set of final states {|2,v')}. Here, 1
and 2 index electronic states and v and v index vibrational states.
Now, if we assume that (i) the unperturbed Hamiltonian [Ho in
Eq. (1.3)] is real and (ii) the initial state |1, v) is a stationary state of
the unperturbed Hamiltonian Hy, it follows then that (2,v'|V|1,v)*
= 2V|VFLY), des [2VIVILY[ = [ V]V L)
words, to first order in V or V¥, the rate of electronic relaxation
for H must equal the rate of relaxation for H*. Put bluntly, if the
dynamics are initiated from quasi-equilibrated starting conditions,
no spin-dependent (Berry force) effect can arise to first order in
perturbation theory.

With this background in mind, it becomes clear that if such
spin effects are to arise, they must enter either from from higher
orders in perturbation theory or from nonequilibrium starting con-
ditions. With regard to the former, we note that higher order effects
can and do have important dynamical consequences. For instance,
the famous Zusman result’ is a higher order effect beyond FGR,
demonstrating that, with enough friction, electron transfer rates can

In other
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be dominated by solvent relaxation even for small diabatic cou-
plings. Thus, in the future, we expect that an interesting research
direction will be probing if/how Berry force effects emerge at second
or higher order in the perturbation.

For the present article, our focus will be on the latter possi-
bility, i.e., the possibility that H vs H* (Berry force) effects may
arise from nonequilibrium initial starting conditions. Such condi-
tions are relevant to many electron transfer processes, which occur
before equilibration or a steady-state can be reached. This scenario
is true particularly in the study of photo-induced electron transfer,
where the timescale of light-induced electronic excitation is much
faster than that of nuclear vibrational relaxation.”’ Intuitively, we
might expect that the phases of wavepackets take on greater signifi-
cance for a complex-valued Hamiltonian, and thus, coherences may
play a role in amplifying Berry force effects. In order to understand
the short-time behavior of relaxation in such systems, equilibrium
methods are not sufficient. Fortunately, nonequilibrium systems can
be physically modeled through a nonequilibrium formulation of
Fermi’s Golden Rule,”” a brief review of which will be provided in
Sec. I1.

At this point, all that remains is to introduce the spin-boson-
like complex-valued Hamiltonian that we will study to explore
electron transfer with spin. After investigating several different pos-
sibilities, we have settled on the following exponential spin-orbit
coupling (ESOC) [with Hy as in Eq. (1.3)]:

A

V= ve e Moy (g 4+ Ve B etepa) (1 (1.8)

A rough physical picture for how such a complex-valued,
position-dependent coupling arises can be found in Sec. V. The
interstate coupling in Eq. (1.8) remains bounded for all displace-
ment of the system (ie., V| does not diverge even when |xq
— 00), making this ESOC model particularly amenable to theoret-
ical investigation. More precisely, we will be able to apply FGR and
NEFGR (non-equilibrium FGR) techniques to this Hamiltonian and
gain a basic insight into how Berry force does or does not mani-
fest in molecular electron transfer rates. Note that a change in the
sign of the W, parameters corresponds to a change in the spin and
this aspect will be discussed often. Again, see Subsection 1 of the
Appendix.

Finally, as a motivation for the present research, it is worthwhile
to put the present results in the context of the larger phenomenon
of chiral induced spin selectivity (CISS).””** Over the last 15 years,
a host of experiments have shown that the electronic current run-
ning through a chiral molecule is often quite spin polarized.”” At
the moment, there is no uniformly agreed upon explanation for
this phenomenon, given the very small magnitude of the spin-orbit
coupling and Zeeman effects within simple organic molecules.”® **
Over the last two years, several research groups”  have explored if
and how CISS might arise from nuclear-electronic interactions, i.e.,
the entanglement between electronic transitions, spin-dependent
Berry forces, and nuclear motion. Indeed, the goal of Ref. 17 was to
show that Berry forces can lead to strongly spin-dependent nuclear
motion even for systems with small spin-orbit coupling. In this
work, we will further show that such H vs H* dynamical (Berry
force) effects can also survive friction for some period of time
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(which is consistent with recent calculations of spin polarization
emerging at a molecular junction under bias’® in the presence of
electronic friction as caused by the production of electron-hole
pairs). Although not indicative of any causation, this finding of
robust spin effects is consistent with observations of the CISS effect
at ambient temperatures for a wide range of molecular and solid state
environments.

An outline of this paper is as follows. In Sec. I1, we briefly review
standard nonequilibrium Fermi’s golden rule theory; in Sec. III,
we formally solve for the spin-boson dynamics [with Eq. (1.8)]. In
Sec. IV, we present our numerical results (both transient and long
time). In Sec. V, we interpret and discuss our findings as far as
spin-dependent electron transfer dynamics. For all calculations that
follow, we use units such that# = 1.

Il. A BRIEF REVIEW OF EQUILIBRIUM
AND NONEQUILIBRIUM FERMI'S GOLDEN
RULE (NEFGR)

Often, one is interested in the scenario whereby a vibronic sys-
tem is initialized on electronic state |1) and one interrogates the
probability of reaching electronic state |2) at time ¢. Let p(0) be the
initial density matrix, and we imagine partitioning the Hamiltonian
as H = Hy + V, where H, is the unperturbed Hamiltonian and Vis
the perturbation; see Eq. (1.1).

According to standard practice, we transform to the interaction
picture, perturbatively time-evolve the density matrix to first-order,
and finally trace over the vibrational bath states {v'} in the |2) elec-
tronic state. The resulting expression, which provides the two-state
population as a function of time, can be conveniently expressed
using a time autocorrelation function C(t',#") of the interaction
potential operator V;(t) = ety =it

t t . "o
Py(t) = [V fo dr’ fo dt" I ETEN D oy ¢,
C(t', ") = Tra[p(0) V(£ V()]

(2.1)

where Trp denotes a trace over the bath states.

At this juncture, according to a standard FGR calculation, one
makes the approximation that the bath vibrational modes begin in
thermal equilibrium. Thus, if the vibrational states for state 1 are
labeled {|v)}, the initial density matrix is as follows:

p0) = e L w1

Z- Tr[e_ﬁH ]

(2.2)

Note that Hp acts only on the vibrational components of any eigen-
state, and ), denotes a sum over all vibrational eigenstates of the
bath. If one plugs Eq. (2.2) into Eq. (2.1), one finds that the correla-
tion function reduces to a function dependent on only the difference
t' — ", and the final result in the energy domain is Eq. (1.7). Note
that evaluating either Eq. (1.7) or Eq. (2.1) can be difficult, although
the task is made much easier when we assume that the bath is
harmonic.

Now, in order to generalize the FGR approach above to
nonequilibrium initial conditions in a tractable manner, the usual
prescription”>”” is to start with the equilibrium state above and then
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shift the eigenstates of each mode in space by a certain distance away
from equilibrium. Mathematically, we can capture these initial con-
ditions by applying to each bath eigenstate the following unitary
translation operator:

0, = o i ZadaPa (2.3)

This operation produces the nonequilibrium density matrix we will
use as the initial state for subsequent calculations,

. 1 —iSdede g iSdofe
Preq(0) = 226 e v (Lvle T (2.4)
v

Equation (2.4) represents a mixed state where each eigenstate has
been shifted in space along each mode a by a distance d,. From here,
following Refs. 37 and 22, one can plug Eq. (2.4) into Eq. (2.1) and
use the same manipulations as in a typical FGR calculation to obtain
a nonequilibrium expression. Within this class of nonequilibrium
initial conditions, one can model photophysical and photochemical
experiments, for which it is reasonable to assume that the bath was
originally thermalized in the ground electronic state before an elec-
tronic transition is driven. Thereafter, system dynamics are launched
along an excited electronic state. See Fig. 1.

Finally, let us address the question of convergence. For per-
turbative results (based on equilibrium or nonequilibrium initial
conditions) to be valid, it is generally sufficient that the dynam-
ics induced by the perturbation correspond to the slowest time
scale of the system being analyzed. For spin-boson and spin-boson-
like problems, this condition requires that the nuclear dynamics
not be significantly affected by the slow population leakage from
one electronic state to the other, a condition which is dictated by
the size of the perturbation and the frequencies of the bath. The

hv

FIG. 1. A fast photoexcitation is modeled as changing the electronic state without
perturbing the bath coordinates. This transformation has the effect of placing the
initial bath state out of equilibrium on the excited surface while preserving the
(canonical) vibrational density matrix in the Franck—Condon region.

ARTICLE scitation.org/journalljcp

validity of the NEFGR is not directly dictated by the size of the shift d
in Eq. (2.4).%8

lll. THEORY

Having reviewed the FGR/NEFGR formalisms, we will now
apply the methods to the Hamiltonian with the coupling in Eq. (1.8).

A. Equilibrium dynamics

We begin with equilibrium. We will now demonstrate that the
rate dynamics show no dependence on the sign of the terms { W, } if
the initial state of the bath is a mixed state of vibrational eigenstates
on either diabat. In other words, if the initial bath subspace density
matrix is diagonal, there will be no Berry force effects in the popu-
lation dynamics. Note that this statement is very strong and applies
to many initial conditions; after all, thermal equilibrium is just one
special case of a diagonal bath density matrix.

To derive our result, we begin by applying a polaron transfor-
mation to the ESOC Hamiltonian, which is the typical approach
in working with the standard spin-boson problem. The unitary
operator that carries out the transformation is as follows:

U = o Z (M PR) )b

(3.1)
@)
NOJ:
* Maw?

In this new so-called polaron representation, the diagonal elec-
tronic energies are decoupled from the boson bath; all coupling to
the boson bath is captured purely in the interstate coupling. The
exact form of the Hamiltonian is as follows:

UHUT = % = B 1)(1] + E2)(2] + V1)) + V T]2)(1] + Hp, (3.2)

f) - Veizu ’\wf’a*Wwﬁm
Aa = AP (Y,
. L 202
E=E-> -maws(A)",
j = Lj gzmw( )

where Vis a constant that differs from V by a complex phase factor.
The terms A, are the distances between the minima of states 1 and 2
along the alpha mode coordinates. Furthermore, we note that under
the polaron transformation, eigenstates of either diabat are trans-
formed to eigenstates of Hp. In other words, the transformed initial
density matrix is

p(0) = Syl (3.3)

In Egs. (3.2) and (3.3), we have added a superscript tilde over the
energy E; and the density matrix p and used stylized 7 and V so as
to signify that these are quantities calculated after the initial polaron
transformation.

Next, we introduce the unitary operator

A2
B Hexp(i( B, lmawﬁxf) arctan( Wy /Aamawe) ) (3.4)

2y 2 Wy
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which propagates each individual mode forward in time by an
amount

—(1/wa) arctan( Wy [Aamawe).

We note that, as far as each mode (x4, p a) is concerned, R is a func-

22
tion of the harmonic oscillator Hamiltonian, éim + %mwf,x,z Thus,
R preserves the eigenstates of Hp, merely multiplying them by a

phase factor. Transforming # under this operator leads to the (final)
transformed Hamiltonian

G = RHR T = B + B2) (2] + € F )1
= =k 2 er (2
—i%Tapa A
ve < PR+ Hs, (3.5)

W32

— 2 o
Ta=\[Aa+ —55.
V miw?

At the same time, the initial density matrix is unchanged through
this transformation,

RpOR ' =p(0) = ey (36)

Further details of this transformation (conjugation by R) are given
in Subsection 2 of the Appendix.

In the end, the signs of the W, terms completely disappear
when we transform both (i) the Hamiltonian and (ii) the equilibrium
initial state. Taking Eqgs. (3.5) and (3.6) together, we find that (to any
order) all vibronic dynamics depend only on the magnitudes of the
terms Wy, not on their signs: in fact, the form of 4 suggests that
the system has a dressed reorganization energy that can be expressed
as a sum of dressed single-mode reorganization energies,

ES =SB, (37)
o
1 1 w2
EYD =~ T2 = ~mawi)l + 2 (3.8)
. 2 2 2my
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The dressed reorganization energy E s composed of two
distinct components: The first is the standard reorganization energy,

which we will henceforth refer to as E,
1
ED =% 3 M@ A2, (3.9)
o

The second is a term arising from geometric phase effects, which we

will term Efg ),

we

. 3.10
Yo (3.10)

Eﬁg) _ Z

o

On the one hand, if one were to spectroscopically character-
ize the reorganization energy of a vibronic system with spin-orbit
effects by measuring fluctuations in the energy gap, one would mea-
sure ESS). On the other hand, if one were to conduct a series of
experiments for a particular electron transfer system to construct a
plot of AG vs rate, one would observe a shift in the peak correspond-

ing to E{ In other words, Efg) arises only when there is nuclear
motion of interest. With this physical interpretation in mind, we

will term ES*) the total reorganization energy, E® the static reor-

ganization energy, and Efg) the geometric reorganization energy.
See Fig. 2.

Three key features of the Hamiltonian were necessary for the
above proof: The first is that the bath modes were purely harmonic.
The second is that the modes maintained their respective frequen-
cies when there was a change in the electronic state. Third and
finally, we relied on the fact that the initial state was a mixed state
of vibrational eigenstates of one of the two system diabats [which
allowed us to write Eq. (3.6)]. As mentioned in the Introduction,
this state of affairs suggests that more distinct electron transfer rate
effects may well emerge with either anharmonic bath models and/or
nonequilibrium starting conditions.

T T
| |
I—
pe ~
7 | N
| | N
| | \
| |
| | \
_EUeD _p® \
\
| |
| | \
i
! (9)
| | Ey
| |
AG

(s)

FIG. 2. Left: This schematic shows the relationship between the driving force AG, the static reorganization energy E;"’, and the vertical electronic excitation energy hw.
Right: Expected inverted regime electron transfer rate curves highlighting the difference between the static reorganization energy E,(S) (dashed) and the total reorganization
energy E,(tot) (solid). For the Hamiltonian in Eq. (1.8), the high temperature equilibrium electron transfer rate is given by Eq. (3.14) with s(t) = 0, where E,("") > E,(s).
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B. Nonequilibrium dynamics

In order to treat the nonequilibrium case using the formal-
ism from above, the only change we must make is to modify the
initial density matrix. We will use the density matrix defined in
Eq. (2.4). As shown in Subsection 3 of the Appendix, the resulting
autocorrelation function is

1 _Bi. iZdaba iZAapa () +Wok (£)
c(t',t") = ETrB[e P s

—iS Ao () + Wk (1) —iZdupe
xe @ AN ] (3.11)

_ e—Za(XfﬁWi)[2".1*-1—(na+1)e_’“’“(‘”‘") _n‘xem}a(f”—f,)]

x eXe (X“f'w“)(ewar” ! )Er(iaﬂwa ) (‘3"”‘“” —eat’ )Ea ,

(3.12)

= MaWy — Wy b MaWq
PSS VR CECTU R L/ S R
o o 2 a TR o o 2

Substituting this expression into the integral in Eq. (2.1), we
obtain a general first-order population expression,

t t i ” 7
Pz(t) ~ |V|2.[0 dt"[o d" e—z(Ez_El)(, -

% 6_2“ (Xi+Wﬁ)[2na+l—(n,x+l )e_"w“('”_t’)—nae"“’“('”_t,)]

% ez‘* (X“—iwa)(ef’“"’” — ¢t )Ef(LnWa)(e'“a"' —geat! )Ea
(3.13)

Here, P,(t) describes the gradual development of population
in state |2) starting with P,(0) = 0. One can take the time derivative
of the equation above and obtain a time-dependent rate of transi-
tion from the |1) state to the |2) state. The formal (time-dependent)
rate constant is given in Eq. (A24). In the high temperature Marko-
vian limit, the rate expression can be explicitly evaluated (see
Subsection 4 of the Appendix), producing a time-dependent golden
rule rate expression of the form

k(t) =

2 o (tot) 2
VP (_(AG +EM) 4 5(1)) ) G.14)

\/ArnE D kT 4B ks T

s(t) = D da[ Mawida cos(wat) — Wawa sin(wat)], (3.15)

where EX* is the total reorganization energy that arises due to

the combined effects of EES) and Efg ) Note that Eq. (3.14) for the
time-dependent rate constant has a form that is very similar to that
of a classical Marcus theory time-independent rate expression. In
this high temperature limit, the dressed reorganization energy E("")
and dephasing function s(t) are enough to fully characterize the
nonequilibrium rate dynamics. These parameters are, in turn, char-

acterized by the bath density of modes, as well as the shift parameters
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TABLE I. The key parameters that define the rate of nonequilibrium relaxation.

Parameter Physical meaning

s(t) Dephasing function for nonequilibrium fluctuations

da Shift of initial bath states away from equilibrium

Wa Spatial frequency of the phase oscillations of the
interstate coupling

Ao Physical shift between diabatic potential wells

A& do, and W,. The physical meaning of each of these terms is
summarized in Table I and Fig. 3 as a reminder to the reader.

Let us now focus on the dephasing function s(¢) in Eq. (3.15).
This function contains all information regarding the transient
behavior of the system, serving to capture the fluctuations in the
interstate energy gap as the nuclear geometry evolves. Note, in par-
ticular, that the second term in s(t) changes when any single W,
changes sign, clearly indicating a spin-dependent rate effect. Addi-
tionally, in the case that the number of modes in the bath is very
large, s(t) tends to 0 as f grows large, implying that the system tends
to equilibrium dynamics. Therefore, s(¢), indeed, contains infor-
mation about the dephasing of the bath. As the bath dephases and
returns to equilibrium, we expect, based on the result from Sec. ITT A,
that all Berry force effects should be damped out.

Before concluding this section and presenting our results, let
us note that, in order to simulate photoexcitation in a two-state sys-
tem, one can simply set dy = —Aq for all « (see Fig. 3), and such a
choice will manifest itself directly in the dynamics of the dephasing
function in Eq. (3.15). Note, however, that the present model can
also be applied to systems where the final acceptor state is not the
same as the ground state, such as multistate models and/or intersys-
tem crossings. In such cases, to retain full generality, one must not
assume dy = —Aq.

FIG. 3. The physical meaning of the terms A, and d,.

J. Chem. Phys. 156, 174113 (2022); doi: 10.1063/5.0086554
Published under an exclusive license by AIP Publishing

156, 174113-6



The Journal
of Chemical Physics

IV. RESULTS

A. Photoexcitation dynamics in a continuum bath
model

In a typical analysis of a spin-boson system (i.e., in the
Condon approximation), one assumes that the system-bath inter-
action can be characterized by a spectral density. Working from
such an approximation, one can compute the reorganization energy,
which fully characterizes relaxation dynamics. However, in the
model we have investigated thus far, a single spectral density is
insufficient to characterize the system-bath interaction; the sys-
tem exchanges energy through both the system-bath coupling and
spin-orbit effects so that we must fix two sets of parameters, Ay
and W,.

To make such a parameterization as simple as possible, we
will assume a density of modes p(w) = (qw/wé) exp(-w/wc). wc
describes a cutoff frequency for the bath and # is a normalization
factor that ensures that integration over the density function returns
the correct number of modes in the bath. For the diabats, we will
then further assume that the mass-weighted shifts between the two
surfaces are uniform across all modes, i.e., )La\/m_a = A for all . Sim-
ilarly, we set Wo/\/mq equal to a constant W for all a. Note that W
can be positive or negative. For the bath displacement parameters
da, we set the mass-weighted displacements da+/m, equal to —«A. As
discussed earlier, x = 1 corresponds to relaxation of a photoexcited
system.

In order to characterize the dynamics, we need to compute the
reorganization energy and the dephasing function. We begin with
the reorganization energy. The total reorganization energy is the
sum over all modes of the single-mode reorganization energies,

2 oo
Wa _ %f dwp(w) (')’ + W?)
« 0

(tot) 1 2,2
E = meaw Ay +
r - 2 a’ta 2m

= 3wt + ng. (4.1)

Below, it will sometimes be helpful to switch variables from (A, W)
to (E°V, 9),

(tot) (tot)
A= Er 5 cos, W= 2E, sin 6. (4.2)
3nwe n

Next, we calculate the dephasing function s(¢),

s(t) = Zdu[mawila cos(wat) — Wawq sin(wat)]

= —K/(;mda),r)(w)(wz/l2 cos(wt) — wAW sin(wt))

o 611/\2wzc(wét4 - 6wit + 1)
) (@2 +1)"
. 20\ Waoc(wet’ - 3wct)
(w22 + 1)3 .

(4.3)
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In terms of Efmt) and 6, the dephasing function (plotted in Fig. 4) is

KEStat)
(WA 4 1)

2
+ \/Zsin29(wsct5 —2wet’ - 3a)ct):|. (4.4)

In Fig. 5, we show rate constants and population yields that
were calculated for a photogenerated (x = 1) distribution using the
high temperature expression, Eq. (3.14). We fix the static reor-

s(t) =

+ cos wct” — bwet™ +
1 20)(wet* - 6wet” +1

ganization energy Efs) and add in some amount of geometric
reorganization energy (E® = zmr;)’ the ratio is quantified by 6 in
Eq. (4.2).

In Fig. 5(a), we plot the population for short and long times
for different values of 0. At long times, as expected, we see that the
dynamics for +6 gradually approach the same equilibrium rate as
time progresses. Here, we emphasize that the disagreement between
the full NEFGR expression and the high temperature expression
for 6 = +0.5 is not the result of any interesting dynamical effect
that depends on 6. Instead, a simple numerical calculation shows
that the full perturbational and high temperature expressions dif-
fer simply because of tunneling effects (whose importance depends
on the total value of the reorganization energy E{*). Note that
EStot)(G:O.S) _ ESmt)(e:—oAs) + E£tot)(9:0).

The more interesting behavior occurs at short times-while the
bath still has yet to decohere and where the population curves can
depend sensitively on +0 (i.e., +W). To see these dynamics clearly,
we zoom in within panels (b) and (¢) of Fig. 5. Here, we find tran-
sient populations for 6 = —0.5 that are 50% larger than those of
0 = 0.5. In general, Berry force effects are larger when we calculate
populations with the full (rather than the high temperature) expres-
sion, but overall, the high temperature expression clearly reflects the
correct qualitative physics (especially if we compare only 8 with —0
data).

—f=-0.5
0.02 1 —60=0.5
6=0
0 -
&
-0.02 r
-0.04 r
-0.06 . . . .
0 1 2 3 4 5

Time (W'Ct) (a.u.)

FIG. 4. The dephasing function in Eq. (4.4) is plotted for x = 1 and three values of
0. Note that as time passes, the dephasing function decays to 0, which represents
the decay of the photoexcited system to equilibrium dynamics.
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E® =0.822 eV, AG = -0.637 eV, T=300 K
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e () = -0.5, Full Expression a
= == ¢ =-0.5, High Temperature Expression
04+ 6 =0, Full Expression I
= == :§ =0, High Temperature Expression
cC> 0 = 0.5, Full Expression
'E 03 0 = 0.5, High Temperature Expression
g
o
?) 0.2 FIG. 5. (a) A comparison between the
© dynamics computed numerically using
n the full Fermi golden rule expression and
those derived from the high tempera-
0.1 ture expression for 6 = 0,0.5, -0.5. We
— - plot the population on state 2 (P;) as
| a function of time. wc is taken to be
0.001 a.u. For long times, the popula-
| 0 tions and rate expressions all converge
| o 1 2 3 4 5 6 7 8 9 10 to the equilibrium data so that P,(6
—_—— e ——— I\Tinge (wAb) (a.u.) =0.5) = P,(0 = -0.5). At short times,
Full Expression: Population C High Temperature Population however, as emphasized in (b)-(e),
c 0.08 c 00 the dynamics for +0, i.e., £W, can be
S S C . ot
F 0.06 b F 0.06 very different and exhibit strong Berry
3 3 for.ce effectsl. Note that results compu’ged
© 0.04 S 0.04 using the high temperature expression
~ ~ qualitatively capture features of those
©0.02 ©0.02 computed with the full FGR expression,
% g especially at short times, tracking well
— [ — the relative timing and magnitude of the
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 transient rate Spikesl
Time (wct) (a.u.) Time (wct) (a.u.)
10X 10 Full Expression: Rate 10 10" High Temperature Rate
Q@ d 8] e
= g
& 5 5 5f
2 M §
o — o
- ——
0 (\/j S ) ) - 0 J ) . ) )
0 0.5 1 15 2 2.5 0 0.5 1 1.5 2 2.5

Time (wct) (a.u.)

Finally, in panels (d) and (e) of Fig. 5, we plot the deriva-
tive of the population data, i.e., the instantaneous rates. Here,
we can clearly see differences in the features of the early time
dynamics, including the magnitude and the relative timing of
the populations spikes. Again, we find that the high temperature
approximation is a reasonably good approximation for the full per-
turbational early time dynamics (and computationally cheaper to
evaluate).

Finally, and most importantly, we would like to ask whether
any rate differences between systems with opposite signs (W)
can persist for a significant period of time. In order to probe this
question for a wide variety of 0 values (while avoiding excessive com-
putational expense), we will use the high temperature expression
above. We can roughly quantify dynamical differences by focusing
on rate dynamics at the time 1/wc, i.e., the characteristic dephasing

Time (th) (a.u.)

time of the bath. For this dataset, we will fix the total reorganiza-

tion energy E{'; if we were to fix E&) as before, the variation in

E) would be very large and make it difficult to isolate effects aris-
ing from the geometric component. (Moreover, as noted above in

Fig. 5, the quantitative accuracy of the high temperature approxima-
(tot)

»~ and whether one can safely

tion depends on the total value of E
ignore tunneling; by fixing E{), we can thus reasonably assume

a cancellation of error and compare the effect of exchanging E®

with ESS) J)
Our results are plotted in Fig. 6. We consider two related
quantities. First, we plot the spin polarization at time 1/wc,

ky — k-

> 4.
ki + k- (45)
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FIG. 6. Left: comparison of the spin polarization [see Eq. (4.5)] at time 1/w¢ after initiation of dynamics for a range of values of , 6, and temperature. Depending on the
fraction of geometric vs standard reorganization energy, one can find a great deal of spin polarization if one starts far from equilibrium (large «) and if the temperature
is not too large. Right: comparison of the rate dynamics at time 1/wc relative to the final equilibrium rate (following bath dephasing) for a range of values of «, 6, and
temperature. Berry forces can have large effects, with relative transient rates ~10° possible between different { W, } and {—W, } values (leading to spin polarization on the

order of unity). Parameters: All plots have E(*”

=0.822 eV and AG = —0.637 eV. The upper plots were generated using a temperature of 300 K and the lower plots were

generated for photoexcitations, i.e., ¥ = 1. All data were generated in the high temperature approximation [see Egs. (3.14) and (4 .4)].

where k(t) is as defined in Eq. (3.14) and k_ is related to k through
achange in sign on the { W, } terms. As shown in Fig. 6, the polariza-
tion can become quite large, reaching nearly 60% in photoexcitation
processes in the 200-400 K range. Note the antisymmetry in the
polarization plot across the line 6 =0. This antisymmetry arises
naturally because changing the sign of 6 corresponds to chang-
ing the signs on the {W,} terms (which results in opposite spin
polarization).
Second, in Fig. 6, we also plot

ks
— (4.6)
keq

in order to quantify the absolute magnitude of the effect of the { W, }
terms. We find that the nonequilibrium rates with W # 0 can be very
different from the rates with W = 0, sometimes by as much as a fac-
tor of 1000 for systems prepared far from equilibrium. Interestingly,

the rate at time 1/wc is never significantly faster than the equilib-
rium rate; but there are certain regimes in which the transfer rate is
much slower. This result suggests that the spin polarization observed
is a result not of favoring one electronic spin, but rather disfavoring
the other. Finally, we observe that as the temperature of the sys-
tem is raised, polarization effects due to spin-orbit effects gradually
disappear, reflecting the fact that geometric phase effects are highly
dependent on bath coherences.

Although the high temperature expression is useful, it cannot
provide a complete picture of the system behavior at low to interme-
diate temperatures. In Fig. 7, we plot the transient spin polarization
as a function of temperature for 6 = —0.5 using the full NEFGR
expression (not the high temperature expression). We find a more
nuanced picture; the spin polarization does not increase monoton-
ically as one lowers the temperature, but rather has a maximum at
some intermediate temperature. Interestingly, such non-monotonic
temperature dependence also has been observed (experimentally
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FIG. 7. A visualization of the temperature dependence of the transient rate polar-
ization (polarization at time 1/wc¢) for 6 = —0.5. Note that the polarization attains
a maximum at an intermediate temperature and approaches a fixed limit as the
temperature approaches 0. (Although the high temperature expression correctly
captures the asymptotic behavior, the decrease in polarization at lower temper-
atures can only be observed using the full NEFGR expression.) Parameters:

E® =0.822 6V, AG = —0.637 eV, and 6 = —0.5.

and theoretically) by Das and co-workers in the context of spin
polarization arising from conduction through DNA base pairs.*’

V. DISCUSSION

From the results presented above, it is clear that Berry forces
can survive nuclear friction and that spin-dependent electron trans-
fer dynamics are, indeed, possible. Although spin-orbit coupling
effects (i.e., the effects of the sign of W) vanish in equilibrium and
contribute only a small amount to the total reorganization energy,
these effects can be quite important for systems prepared far from
equilibrium. At the same time, however, the present work only
scratches the surface of how electronic spin ties into electron transfer
and opens up a slew of questions.

First, what is the most reasonable Hamiltonian that one
should use when describing spin-dependent electron transfer? In the
present article, we have simply assumed an exponential complex-
valued diabatic coupling that changes according to e’=«"«* Where
does such a term come from? In principle, we expect an interstate
coupling in the electronic Hamiltonian to be of the form

a(%) +ib(%) = (%)), .1)

where a(X) is a standard, real-valued diabatic coupling and ib(x)
is the purely imaginary-valued spin-orbit coupling, as calculated
in Subsection 1 of the Appendix. Thus, the phase d(£) must orig-
inate from a competition between different effects (e.g., the ratio
between a position-dependent spin-orbit coupling and a position
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independent diabatic coupling or the ratio between a position-
dependent diabatic coupling and a position independent spin-orbit
coupling). If one assumes that c(%) is a constant and one expands
d(x) ~ 3 Wak as a Taylor series, one recovers the ESOC Hamil-
tonian in Eq. (1.8). At present, our group is expending a great
deal of effort running ab initio calculations searching for systems
where |W| will be large and/or meaningful. One must wonder how
large can |W| be, in practice (especially if SOC is small), and is it
reasonable to make the exponentiation in Eq. (5.1) over the rel-
evant volume of configuration space where two diabatic curves
cross?

Questions about the validity of the ESOC model can be
addressed in the future by investigating alternative forms for the
interstate coupling, for instance, the more common Linear Vibronic
Coupling (LVC) type model.”*"*" In the LVC model, the interstate
coupling is taken to be linear in position for all bath modes, i.e.,
V = ¥, caful1)(2] + c%]2)(1]. The LVC model is standard for inves-
tigating dynamics of systems around conical intersections, but this
model must also break down at some point because the off-diagonal
couplings grow to infinity away from the origin. Nevertheless, if
one works with an LVC (or an LVC-like model), a second ques-
tion one can ask is what dynamics do we observe when a conical
intersection is broken by a small amount of spin-orbit coupling?
Note that, within an LVC model, adding spin-orbit coupling will
be completely different from adding a real-valued constant cou-
pling (of equal magnitude); a real-valued coupling would shift the
LVC conical intersection, whereas an imaginary spin-orbit cou-
pling would remove the conical intersection entirely (and lead to
a large W). While such a removal might also not seem entirely
realistic,”” " this scenario makes clear that electron transfer effects
may emerge that are wholly unique to strongly spin-dependent
systems.

A third question relates to the displaced harmonic oscillator
model for nuclear motion. Above, the equivalence of equilibrium
dynamics for H and H* arose almost accidentally and is clearly tied
to the ESOC Hamiltonian. Although first-order FGR rates may be
identical for H and H* for all rate processes [see Eq. (1.7)], there
is no reason to expect (in general) that these equilibrium rates will
be the same at second or higher order. For example, in Fig. 8, we
plot dynamics for one single anharmonic mode, where dynamics
are initialized in the lowest eigenstate of the upper diabat. Clearly,
the dynamics show a small (but nonzero) spin-dependence. In gen-
eral, will these differences be small (because they show up only
at higher orders of perturbation theory) or will these differences
be significant (because they can add together for many anhar-
monic modes)? One must also be very curious about the dynam-
ics of a model with Duschinskii rotations*>—do such rotations
(which introduce stronger directionality on the bath reorganization)
amplify the effects of spin-dependent nuclear forces? One signifi-
cant challenge will be to quantify the magnitude of spin-dependence
for equilibrium dynamics in systems beyond the displaced oscillator
approximation.

Finally, the goal of this research direction is to identify real-
istic systems that will display strong Berry force effects. Obviously,
one would like to work with ab initio electronic structure Hamil-
tonians and run dynamics, but such a course of study is expensive.
Even if, for a moment, we commit to studying model Hamiltonians,
it is not wholly clear how to best map model dynamics to the real
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FIG. 8. The Morse potential surfaces are parameterized such that they exhibit the
same force constant in the harmonic approximation and the coupling between the
surfaces is taken to be of the form Ve™*|1)(2| + V*e~*|2)(1|. The dynamics
are initialized in the lowest eigenstate of the upper well. Note that the population
dynamics for opposite signs on W exhibit good agreement at very short time, but
soon diverge, suggesting that higher order effects may be of great significance in
anharmonic systems.

world. For instance, even though the standard spin-boson model has
been used very successfully to model electron transfer over the years,
it is clear that a more complicated parameter space of models will be
necessary to discern Berry force effects. After all, within the ansatz
of a two level system, Berry force arises by breaking the Condon
approximation, and so we must require not one, but two spectral
densities; one of these spectral densities mediates energy exchange
between the electronic and vibrational systems (as in the standard
spin-boson model) and the other characterizes how the vibrational
states mediate the spin-orbit coupling between electronic states. Do
these interactions proceed with the same natural set of vibrational
states? How should these spectra be tuned to one another in order
to maximize spin-related electron transfer effects? Can we disen-
tangle these effects in a meaningful way? Finally, if we return to
the question of electronic structure, one must ponder how best to
map a realistic system to the model Hamiltonians discussed above:
in particular, will we necessarily find that, within floppy molecular
structures, metal ions with large spin-orbit couplings always experi-
ence bigger Berry force effects during an electronic transition or are
the dynamics more complicated? For instance, some recent exper-
iments suggest that the CISS effect can be sensitive to an ion with
strong spin-orbit coupling,*® while other experiments suggest that
spin-orbit coupling in a substrate is not important to the over-
all CISS signal.”” If we can broadly answer such questions, we will
clearly gain a great deal of intuition as far as rationally designing
viable molecules and pathways with exciting new chemistry and ide-
ally gain the capacity to separate metal ions with large spin-orbit
coupling from those with small spin-orbit coupling.

VI. CONCLUSIONS

In conclusion, we have investigated a complex-valued spin-
boson-like model Hamiltonian using nonequilibrium Fermi golden
rule theory in order to provide a fundamental insight into how
spin-orbit coupling might influence condensed phase electron
transfer. Our investigations have shown that Berry force effects
can survive nuclear friction for some (measurable) period of time,
before the effect dissipates. The exact details of how long such an
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effect survives are complicated and sensitively depend on the exact
nuclear motion—the ESOC model presented here is simple to treat
theoretically, but difficult to map to an ab intio Hamiltonian. Fur-
ther research will be necessary to better quantify the effect and
gain intuition as to exactly how big these Berry forces can be (and
when) and if/how nuclear vibrations either correlate with or cause
a CISS effect.”® Moreover, in the future, if we wish to run predic-
tive simulations of realistic molecules with ab initio potentials, it
will be necessary to develop efficient and inexpensive semiclassical
algorithms'”*>*" for treating nuclear curve-crossing dynamics in the
presence of spin—orbit coupling.
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APPENDIX: DETAILS PERTAINING TO THE ESOC
MODEL

In this appendix, we briefly discuss the connection between
electronic spin and complex Hamiltonians and then proceed to
derive some of the necessary equations presented above for the
nonequilibrium golden rule calculations.

1. Spin-dependence due to the L - § operator

Consider a molecular system with two electronic states labeled
|1) and |2) at a fixed geometry. In adding a spin-orbit effect, we must
consider spin states [1,1), |2,1),|1,1), and |2, ). In principle, we can
write the Hamiltonian as a sum

H=Hy+¢L-§, (A1)

where Hy is spin-independent and £ is the strength of the spin—orbit
interaction. Since Hy is spin-independent, it can only couple states
of identical spin. Therefore, in the spin-state basis, we can write Hop
as follows:

EE 0 V 0 I1,1)

. lo E o Vv 1,

Ho = ! L (A2)
V 0 E 0 2,1)
0V 0 E 12,1)

Now, we construct the L - § matrix. We note that if [1) and |2)
are molecular orbitals in an appropriate representation, they do not
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couple to themselves through any of the three component angular
momentum operators. Thus, we can write the L - § matrix as follows:

0 0 (ULz2)  (1Le—iky[2)
e 0 0 (ULe+iLy2)  —(1]L:[2)
(2Lf1)  (2Le-iLy[1) 0 0
QLe+ily|1)  —(1]L[2) 0 0
(A3)

Noting that the angular momentum component operators are purely
imaginary, we can write the matrix more concisely,

0 0 «a B [1,1)

. . o o - - ,

L.§= po Lo (Ad)
« B 0 0 [2,1)
B —at 0 0 12,4)

Note that « is purely imaginary, whereas  has a real component,
so the upper right block is anti-Hermitian and traceless. Therefore,
this 2 x 2 matrix is diagonalizable and has purely imaginary eigen-
values o' and &’* = —a’. The lower left block is just the conjugate
transpose of the (anti-Hermitian) upper right block, and so is diago-
nalized by the same change of basis. Furthermore, the eigenvalues of
the lower left block are conjugate to the eigenvalues of the upper
right block. Note that a change of spin basis does not affect Ho,
which is the block diagonal. We can now write down the total fixed-
geometry Hamiltonian in the new spin basis [recall that £ is defined
in Eq. (A1)],

EE 0 V 0
. lo E o Vv
H =
V 0 E 0
0V 0 E
0 0 &d 0 1,1')
0 0 0 o L)
+ " ¢ /) . (A5)
£ 0 0 0 2,1')
Ed 0 0 2>l,>

Therefore, at any nuclear geometry, the four-dimensional Hilbert
space above (for spin-electronic wavefunctions with two spatial
orbitals) can always be partitioned into two distinct subspaces, each
with a distinct Hamiltonian H and H* corresponding to one spin or
the other opposite spin.

In this article, we have made the assumption that that such a
partition will be valid and unchanged for all nuclear geometries. This
strong assumption allows us to assume that we can entirely ignore all
spin-flip processes.
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2. Evaluation of Eq. (3.5)

To evaluate Eq. (3.5), we begin with the polaronic Hamiltonian
in (3.2), restated here as

H = E1){(1] + E2[2)(2| + V|1)(2| + VT]2)(1| + H3,

C,gl) _ ng)

Maw?

V = Velza)‘mpa"'wzxxa R /101 _

We will use R as defined in Eq. (3.4) to perform a uni-
tary transformation on the polaronic Hamiltonian. We need to
compute RART. R obviously commutes with Hp. Thus, all we
need to compute is Re'ZWedthaba g 1, Using the fact that (for any
operator M)

etheM e—th _ eM(t), (A6)

it follows that

ReSeWubethduy 1 _ T o/ Woka(D+haba(1) (A7)

t=arctan (W,, /Xu ) [0

- MaWe — Wy
Ao = A , Wy = ———.
¢ * 2 ¢ \2Ma Wy

Keeping in mind that ¢ = arctan(Wa /Xa) [wq, we find
(W () + A (1))
= Xa(aefiw“t - aTeiw“t) + iWa(aefiw“t + aTeiw“t) (A8)

- (A= iWa)(Aa +iWa)aT

R+W2 Vi W

(A9)

(A10)

Therefore, we conclude that
RAR ' = E1[1)(1] + E22)(2] + V=T |1) (2|
+ Ve Tl ) (1] 4 Hj. (A1)

3. Derivation of Eq. (3.13)

In order to derive Eq. (3.13), we will work in the polaron rep-
resentation of the ESOC Hamiltonian, as described above. We write
the Hamiltonian as

H=H,+V, (A12)

Hy = Ei|1){1] + E2|2){2| + H3, (A13)
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V = VeZdabt Wk ) () 4y ekbet ek gy (] (A14)

Beginning with the density matrix p(0) in (2.4), we would like
to approximate

1 _ifit —iXdaba _gp,
ZE e e )

viov

22V p(n)2.v) =

v/

iXdapu i,
X (1,v|el“ " e'2,v') (A15)
1 iXdapa
= 2w )
—iH —iXdupu _gf;
x (2e e i 511, v) (Al6)

1 iYdape f; _if1t —i2dapa _Bi)
_ :rrB[(ue’a )2l e T 1) ﬁ“B]

Z
(A17)
Sdopu | . ~iSdupe g
- Sl T ey ale e )
(A18)

Using the definitions Hy and V from above, we expand
exp(—iHt) to first order in a Dyson series as follows (I is the identity

operator):
~ 2|I—1f dt' 'y,

- _iv f dt' e i(E,—E) )t zHBt T Aapa+Waxae—1HEt

< | —lHt lI:Igt"l)

(A19)

Now, we substitute this expression for (2|e™™!|1) (as well as

the Hermitian transpose (1|e'Ht|2>) into Eq. (A18). Recognizing that
z! TrB[exp( ﬁHB)A] (A) for an operator A, we find that (in
the end) the population becomes a double integral with a time
correlation function that must be evaluated,

t t . "o
Z(Z,Vl|p(t)|2,vl) ~ |V‘2/ dt, f dt//efl(Ez*El)(t —t )C(tl, t”),
v 0 0
(A20)

O 1) = (Db B YA (MR i),
(A21)

In order to evaluate the time correlation function in the inte-
grand, it is a relatively straightforward application of two operator
identities,

A B _ A+B+1 [AB]
e€e =¢

) e
(¢h) =2t
These relations are valid for operators A and B that are linear in the

position and momentum operators, which is the case for the product
operator in the expectation value above.
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As before, we use the following reduced forms for the coupling
and shift coordinates:

- MaWn = MaWe v Wa
Aa = A , de =d, , Wo = ——.
o o > o o 2 a —Zmawa

We apply the first identity repeatedly to obtain

T (i Vi () (Y

L (12472 (") _grinat =)

c(t',t'" =
xe 2

[ B ) )
(A22)
Finally, we apply the second identity to obtain the desired result
(1) = e—Za(Xi+Wi)[Zna+1—(n,,+1)e_i’”“(t,,_")—naei"’“(t”_t,)]

Za(ia—iw,x)(e*’”"'” e wal ) (/\ +iW, )( "”"""—e’“’”"/ )Ea

X e .
(A23)

4. The high temperature rate: Derivation of Eq. (3.14)

To get a time-dependent rate expression, we take the
time derivative of the double integral describing the two-state
population,

|V| / dt f dt” —i(Ey—E, )(t”—t')c(t/,t/l)
- vl f dtue—z(Ez—El)(t—t’)C(t/,t)
0
t . "
+|V|2/ dt’' e B0 oy 47, (A24)
0

We begin by focusing on the first integral in Eq. (A24),

|V|2ftdt" LGS AGED!
0

6_2" (Xi#—Wﬁ)[2n,1+1—(na+l)e_[”“('”_l) —n“e“"”‘(t”_')]

S i () (-

_ |V|2ftdt" (BB (1)
0

% 6_2“ (Xi#—Wﬁ)[Zn‘,ﬁ-1—(n“+l)e7"""‘<[”’t) —nqe“”"‘([’L')]

o (Xa—iwa)e"”"‘ (e_’”“(‘”_‘) —l)r}a—(iaﬁW‘,)e’“"“ (e’“""(‘”_‘) —I)E,,

(A26)

X e

0 _ o= » v
_ |V|2/ d_l_e—t(Ez—El)‘re—Za(Ai+Wﬁ)[2na+l—(n,x+l)e “aT _pae et |
—t

% ez"‘ (X,,—iW,,)ef"”’”‘t (ef""”"r—l)aa—(iﬂﬂwu)e‘”"’(e"“""—l)a,-

(A27)

In the high temperature limit, the second term in the integral
decays quickly and we can use small-7 approximations. Therefore,
we can approximate the integral as
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0 ) ) - .
|V|2/ dTeﬂ(ErEl)re—za(A§+Wﬁ)[2na+1—(nu+1)e 0at_pear]
—t

< e—Za(X,,—iwa)ef"“"*t(iwa‘r)a,+(Iq+iwa)e‘“’”"(iwa‘r)am

(A28)

0 . T2, w2 —iwg T iwg T
2 —i(E,—Ey )T _— AS+W ) 2ng+1—(ng+1)e "o —ng e
— |V| f dTe ( 2 l) e sz( « u)[ « ( o ) o ]
—t

< e*ZHZiquu[iu cos(Wat) =W o sin(wut)]f. (A29)

We apply the same approximations to the second integral in
Eq. (A24),

¢ ) - — _ )
|V|2f dr e—z(Ez—El)‘r % efza(AiJrWi)[ZnaJrlf(nbﬁl)e OaT_p et
0

% e—ZaZiwaaq[Xa c0s(Wet) =W o sin(wat)]‘r. (A30)

Putting it all together and letting the bounds of the integral tend
to infinity (invoking the Markovian approximation), we obtain the
time-dependent rate expression

k(t) = |V|zf dr e~ (EErts(t)r

% 6_2“ (Xi-%—Wi)[Zn“+1—(n,,,+1)ef"‘”""—n,,,e"“”“]
>

(A31)

where s(t) = ¥, 20ada[da cos(wat) — W sin(wat)]. This is just
the Franck-Condon rate expression with a time fluctuation on
the energy gap; in the high temperature limit, we make the
approximations that $ and 7 are small as follows:

k(t) = |V‘2[wdTe—i(Ez—El+s(t))1

x & S oW [eoth(Bua/2) (1-cos(wam)) +isin(war)] (7 39)
o |V‘2‘[°°d_l_e—i(E27El+s(t))r

« e—z:;i+W§)[(2/ﬁwa) (@7*/2)) viar] (A33)
_ |V\2f°°dr e—i(Ez—E,H(t))re—Ef“') [ /B+ir] (A34)
= |V} f_ Zdr o BB EL D 4s(0)7 BT B (A35)

In Eq. (A34), E s substituted for > wa(AZ + W2E). The
expression in Eq. (A35) is the Fourier transform of a Gaussian and
readily evaluated to produce the following rate expression:

2 _ (tot) 2
KE) = VP ((E2 Ey +s(t) + E&)

N SE kT

_ooavP (MG () + B
N7 e

where Eftm) describes a total reorganization energy due to the com-
bined effects of the system-bath coupling and interstate coupling
phase.

) (A36)

), (A37)
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5. On the interpretation of Berry force

In the introduction above, we loosely referred to “Berry force
effects” as being those differences that arise when simulating nuclear
dynamics with Hamiltonian H vs Hamiltonian H *. This definition
is not unique and not very precise. First, not all differences between
H and H* dynamics can be attributed to Berry forces. The Berry
forces in Eq. (1.5) is a pseudo-magnetic field that arises in multi-
dimensional systems, whereas dynamical differences between H and
H™ can arise even in one nuclear dimension; in fact, H and H*
can yield different electronic dynamics without any nuclear motion
at all. Second, one can find chemical circumstances where Berry
forces appear even with real-valued Hamiltonians (H = H*). For
instance, a non-adiabatic Berry curvature effect is known to emerge
in the context of singlet-triplet crossings with real Hamiltonians.”’
In short, it is clear that Berry force effects are not exactly equiv-
alent to the differences between H and H* dynamics. Moreover,
as a practical matter, the literature does not always differentiate
between Berry forces and Berry phases and this can lead to a great
deal of confusion. For example, theorists have long been interested
in modeling the nuclear consequences of Berry phase around real-
valued conical intersections'"”* °' without considering Berry forces
atall.

Nevertheless, despite these differences and the general linguis-
tic confusion, the fact remains that, as far as purely adiabatic dynam-
ics are concerned, the Berry force is precisely the difference between
semiclassical dynamics (i) along an eigenvalue of H and (ii) along
an eigenvalue of H*. For this reason, we have not sought to pre-
cisely differentiate (i) “Berry force effects” from (ii) those nuclear
dynamics differences that arise between Hamiltonian H vs Hamilto-
nian H*. Hopefully, in the future, more sophisticated semiclassical
models® of nuclear-electronic spin dynamics will eventually allow
for such a distinction. It will also be helpful in the future to relate
differences in Berry force to differences in Landau-Zener transitions
for complex-valued Hamiltonians.
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