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Abstract

Optical spectroscopy is a powerful characterization tool with applications ranging from fundamental studies to real-time
process monitoring. However, it can be difficult to apply to complex samples that contain interfering analytes which are
common in processing streams. Multivariate (chemometric) analysis has been examined for providing selectivity and
accuracy to the analysis of optical spectra and expanding its potential applications. Here we will discuss chemometric
modeling with an in-depth comparison to more simplistic analysis approaches and outline how chemometric modeling works
while exploring the limits on modeling accuracy. Understanding the limitations of the chemometric model can provide better
analytical assessment regarding the accuracy and precision of the analytical result. This will be explored in the context of
UV-Vis absorbance of neodymium (Nd”) in the presence of interferents, erbium (Er*") and copper (Cu*") under condi-
tions simulating the liquid—liquid extraction approach used to recycle plutonium (Pu) and uranium (U) in used nuclear fuel
worldwide. The selected chemometric model, partial least squares regression, accurately quantifies Nd>* with a low per-
centage error in the presence of interfering analytes and even under conditions that the training set does not describe.
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Introduction

Optical spectroscopy is a widely applied technique that has
been utilized to support research and process monitoring
for decades.'™ A variety of optical techniques are available
and can provide a level of chemical characterization that
cannot be supplied via many other techniques. Examples
include enabling identification and quantification of chemical
speciation,'® oxidation state,'' and coordination environ-
ment.'>'3 In addition, spectroscopy generally has a simple
experimental se'cupI4 and can be easily converted to pro-
cess-friendly configurations to allow remote measure-
ments.">'® However, the efficacy of all optical approaches
is limited by signal interferences which can hinder accurate
data analysis.'®'7""*2

Numerous data analysis approaches have been devel-
oped to overcome these challenges and expand the effect-
ive utilization of optical spectroscopy for complex sample
analysis. Of greatest interest is chemometric analysis, which

was first introduced in 1972, that applies mathematical and
statistical methods to obtain the maximum relevant system
information by analyzing multiple wavelengths simultan-
eously.”®?* Utilizing multiple wavelengths establishes a
more comprehensive relationship between the spectro-
scopic data and analyte concentration by extracting spectral
changes in the bands of other species due to the changes of
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analyte or matrix concentration.?® Several different meth-
ods for performing chemometric analysis have been
advanced.”?¢?® These methods may not all perform
equally well given the conditions of an experiment or the
type of chemical system or spectroscopy used and some
methods are much more sensitive to outlier data. Partial
least squares (PLS) analysis, which is used for this study, is a
commonly used linear chemometric method that can accur-
ately quantify analyte concentration without requiring pure
component spectra when calculating the regression factor
between analyte concentration and spectral changes.?>*"%
However, the model may have a better correlation between
analyte concentration and spectral changes by including the
pure component spectra for complex systems.

While chemometric modeling has been used to com-
plete the spectral analysis of many systems,'®'""'32% open
questions remain regarding what their limits are in relation
to accurate analysis of complex samples. Herein these limits
are explored in the context of impacts that could be
expected in off-normal processing conditions or unantici-
pated research system changes. Examples include ingrowth
of optically interfering corrosion products, iron (Fe*"), or
analytical targets appearing at higher concentrations than
accounted for in model training sets. Understanding the
limitations of the chemometric model can better assess
the accuracy and precision of the analytical result.

The chemical system for this demonstration is a mixture
of neodymium (Nd*"), erbium (Er*™), and copper (Cu*") in
nitric acid. This system is a simplified, but sufficient optical
facsimile, to the liquid—liquid extraction aqueous phase that
selectively extracts plutonium (Pu) and uranium (U) from
used nuclear fuel (UNF) solutions.?” A separation process
of this nature would have transition metals, with large and
broad optical signatures, arising from facility corrosion as
well as significant quantities of lanthanides, with narrow and
weakly absorbing optical signatures, from the fission that
had occurred in the reactor. The [Nd3+] in the actual used
nuclear fuel is around 8.4mM3*° with a molar absorptivity
around 10M~'em™" at 798 nm. The [Cu®*] in the actual
used nuclear fuel is around 0.42mM3' with molar absorp-
tivity around 85M ™' ecm™' at 778 nm. The [Er*'] is small
compared to other lanthanides produced during fission but
it has a stronger molar absorptivity at about 2.6 M~ cm™'
at 523 nm.

The process extraction efficiencies are dependent on
solution conditions and these solution conditions are his-
torically monitored using grab sample collection. The batch
and off-line nature of grab sample collection makes imme-
diate detection of changes in the solution conditions impos-
sible. Implementing spectroscopic on-line monitoring can
enable real-time or near real-time assessment of system
chemistry, significantly improving system control while
lessening safety concerns about the collection of grab sam-
ples. This is possible because most species present in these
processes (e.g., lanthanides, nitric acid, extractant
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molecules, and actinides) have unique spectral signatures
that can be utilized to quantify their concentration.
Previous work has already demonstrated that ultraviolet—
visible (UV—Vis) and Raman spectroscopy, in combination
with chemometric analysis, can been applied to accurately
quantify lanthanides and actinides in simulated and actual
UNF samples.***3273> However, analyte quantification
under strong baseline effects, which could be due to the
presence of solid particles, the presence of interferents, or
the high radiation background (which can cause the darken-
ing of optical windows and lead to a decrease in the amount
of light transmitted to the detector), has not yet been fully
examined.'®

Of the lanthanides, neodymium was closely examined
here because Nd*" exhibits multiple bands in the visible
region and is observed in UNF reprocessing solutions at
significant concentrations as a fission product.* Neodymium
has also been used as a non-radioactive surrogate for Pu*"
and Pu*" ion, both spectroscopically and chemically.?®
These properties make Nd*>* an ideal candidate for chemo-
metric analysis demonstrations. The high absorption band
of Cu®" at >560nm as a perturbation of the baseline for
the Nd*" bands in that region and is also a common con-
taminant in fuel reprocessing systems.>' These properties
allow Cu®" to test the model’s ability to quantify analytes in
the presence of strong perturbation of the baseline. Erbium
is used as a non-radioactive surrogate for lanthanide metal
fission products and was selected based on the band at
~520nm which overlaps with the Nd*' spectrum and
can be used to test the model capability of quantifying
Nd>* in the presence of interfering bands. By adding both
Cu®" and Er*", significant interferences are present that
could impact quantification of Nd**.

This paper will be used to test the feasibility of utilizing
PLS for accurate quantification of Nd*>* in the presence of
overlapping bands (created by Er*") and a perturbation of
the baseline (created by Cu®™). The results of this paper set
the groundwork for quantification of actinides in the pres-
ence of interferences in the actual UNF solution. This paper
will also discuss model robustness with solution conditions
not captured in the training set.

Experimental
Chemical

All metal, neodymium (Nd**), copper (Cu®*"), erbium
(E*"), and iron (Fe®"), hydrated nitrate salts
(Nd(NO3); - 6H,O, Cu(NO3);-3H,0, Er(NOs);-5H,0,
Fe(NO3)s3-9H,0) were procured (Sigma-Aldrich) as
reagent-grade salts and used as received. Concentrated
nitric acid (HNOs3, ACS reagent grade, 70%) was procured
(Sigma-Aldrich) and diluted to | M HNOs. The | M HNO3;
solution was standardized by titration with NaOH. Stock
metal solutions (0.33 M for Nd**, E**, and Fe** and 0.5 M



Lines et al.

for Cu®") were prepared by dissolving an appropriate
amount of the metal salt in >18MQ - cm deionized water.
The training and validation set sample solutions were later
prepared by pipetting stock metal solutions into I M
HNO:;.

Equipment

Spectra were collected using a UV-Vis spectrometer (CCD
detector, Spectra Solutions Inc.) and associated Spectra
Soft software (version [.3). All UV-Vis spectra were col-
lected in a | cm pathlength cuvette and referenced to deio-
nized water. Acquisition times of 0.5s were utilized in all
measurements. Every five spectra were collected and aver-
aged into one spectrum for modeling. All chemometric
models were generated using the PLS toolbox
(Eigenvector Research) in Matlab software (v.R2019a).

Chemometric Modeling

A PLS chemometric model was used to explore limits of
applicability to complex spectral data. To explore these
limits, a well-developed training set is required for the
robust model development needed to accurately quantify
Nd** in the presence of strong interferent effects. Besides
the single component spectra (spectra that only contain
either Nd**or Er*™ or Cu?*), Nd** samples that contained
either Cu”" or Er*" were also used to train the model to
account for interferent effects. The training set was devel-
oped from the collection of 250 UV—Vis spectra, represent-
ing 25 samples where 10 replicate spectra of each sample
were included in the matrix, see Table SI (Supplemental
Material) for more details. The validation set used to test
the model was tested with solution conditions that the
model had not seen before, i.e., both Cu®" and Er*" pre-
sent. To make this testing more difficult for the model,
samples with both of these metal interferents were not
included in the training set. If both interferents were
present in the training set it is expected that the
model result would improve. It should be noted that all
samples were prepared at the same [HNO;3] to maintain
a constant [NO37] for all samples in the training set.
Any changes of nitric acid concentration will significantly
affect the UV-Vis band of Nd*" and affect the accurate
quantification of Nd®'. However, previous study has
shown that a PLS model can accurately quantify the
[Nd3+] even when the [HNO3] varies so long as the vari-
ation is represented in the training set.**3” This observa-
tion can also be applied to other metal ions. Sample spectra
were referenced to a deionized water spectrum using the
UV-Vis instrumental software before exporting to Matlab
for study.

Preprocessing of UV-Vis spectra was done to minimize
the instrumental noise and allow the model to focus on
data that contained the chemical information.'"?” Raw

175

and post-processed training set spectra are presented in
Fig. SI (Supplemental Material). Spectral preprocessing
included limiting the spectral range modeled to
468-860 nm as well as applying a first derivative followed
by mean center (Fig. SIb). The first derivative can account
for the perturbation of the baseline caused by the high
absorbance band of Cu®*,* while mean centering can
avoid the bias created by samples with higher analyte con-
centrations and allow the training set to better focus on the
difference between samples.”’” Mean centering of the data is
also applied in the concentration matrix to equalize the
weighting of samples used in constructing the model.?”

After preprocessing the training set samples, PLS models
were built and applied to validation sets which include two
data sets that the model was not trained to evaluate.
Samples in validation set A contain Nd**, both interfer-
ences (Cu®*" and Er*™"), have different analyte concentrations
than the training set but within the same concentration
range, and were used to evaluate the model performance
under the normal conditions when the concentration of the
analytes is within the ranges covered by the training set. This
set was is a collection of 70 UV-Vis spectra, seven repre-
sentative samples in which 10 replicate spectra of each
sample were included in the matrix. Validation Set B contains
solution conditions that are not captured in the training set,
including the presence of a new analyte, Fe*", and higher
analyte concentrations than training sets samples. This set
was developed from the collection of 14 samples where 10
replicate spectra of each sample were included for a total of
40 UV—Vis spectra. The analyte concentration in Validation
Sets A and B is presented in Table I.

Results and Discussion
Single Variate Analysis

While the relationship between absorbance and [Nd3+] in
the pure component sample for most selected wavelengths
is linear as expected (Fig. S2, Supplemental Material) con-
sideration of how single variate analysis can be impacted by
the presence of interfering analytes is relevant. Examples of
analyte pure component spectra and multiple component
spectra are shown in Fig. |.

Within the system studied here, the high absorption
band of Cu®>" generates a large perturbation of the baseline
after 560 nm. The absorbance of Nd*" bands at >700nm
has plateaued after the addition of 0.12 M Cu*" (Fig. 2).
Although the [Nd**] is held constant at 0.07 M, the absorb-
ance of Nd*" bands at >700nm increases and reaches
plateau with the addition of Cu*" (Fig. 2a). Although the
effect of Cu>™ on the absorbance of the Nd*" band at
576 nm is less significant compared to the bands at
>700nm, Cu*" has a large effect on the Nd** spectral
signature across a range of wavelengths. A similar effect
was observed when holding Nd*" constant with variable
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Table I. Analyte concentration in both validation set and model performance on validation samples.

Sample no. Val set Nd** (M) Cu*™ (M) Er (M) F3t (M) Nd** (M) (PLS) %Error® Pass/fail®
26 A 0 0 0 0 —0.002 N/A Pass
27 A 0.03 0.12 0.04 0 0.031 5.0 Pass
28 A 0.05 0.17 0.06 0 0.053 6.0 Pass
29 A 0.07 0.22 0.08 0 0.067 37 Fail
30 A 0.03 0.22 0.09 0 0.03 1.0 Fail
31 A 0.07 0.17 0.07 0 0.07 32 Pass
32 A 0.11 0.12 0.05 0 0.11 4 Fail
33 B 0 0 0 0 —0.002 N/A Pass
34 B 0.19 0 0 0 0.18 5.7 Fail
35 B 0.01 0 0 0 0.009 9.0 Pass
36 B 0.19 0.12 0.03 0 0.18 6.9 Fail
37_0° B 0.07 0.12 0.03 0.1 0.075 7.0 Pass
37_1° B 0.07 0.12 0.03 0.1 0.075 7.0 Pass
37.2° B 0.07 0.12 0.03 0.1 0.075 7.1 Fail
37_3° B 0.07 0.12 0.03 0.1 0.074 6.0 Fail
374 B 0.07 0.12 0.03 0.1 0.061 12.4 Fail
38 B 0.03 0.44 0 0 0.025 17.0 Fail
39 B 0.07 0 0.1 0 0.071 1.6 Pass
40 B 0.0l 0.03 0.1 0 0.0095 5.4 Pass
41 B 0.3 0 0 0 0.28 6.4 Fail
Y} B 0.07 0 0.18 0 0.08 18.2 Fail

?Sample 37 was selected to test the model accuracy under the addition of some artificial baseline effect, the detailed discussion of which is included in
Figure S5. _0 (without adding artificial baseline); _| (adding constant), _2 (adding linear slope), _3 (adding curve) and _4 (adding curve).

bCalculated as

|PLS measured [Nd3+] (column 7) — volumetrically measured [Nd3+] (column 3)|

x 100%.

volumetrically measured [Nd”] (column 3)

“Pass refers to sample Q and T2 values that are both within 95% confidence limit of Q and T2 value of training set.
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Figure 1. Representative UV-Vis spectra of pure Nd*"
(sample 4), Cu®" (sample 10), Er*™ (sample 13) and sample
consisting of Nd*", Cu?", and Er** (sample 30). The analyte

sample concentrations can be found in Table | and Table SI.

Er*" (Fig. 2b). This provides an example of how single vari-
ate analysis can be impacted by the presence of interfering
components. Here, a Beer’s law analysis relying on bands
impacted by perturbation of the baseline will provide
inaccurate quantification of Nd** (Fig. 2).
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the absorbance of Nd** bands at 522 nm. The absorbance of 0 M
Cu®" and Er*™ (at 0.07 M Nd*™) was extrapolated from Figure S2.
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To highlight an important note, many modeling
approaches will attempt to produce optical training sets
that capture all possible variants to avoid the negative
impacts of unaccounted for interferents or conditions.
However, cost and time limitations can impair collection
of an expansive training set. Additional, truly unexpected
and unknown interferents can contaminate the process
and, ultimately, the analysis.** The goal here is to explore
the limits of modeling accuracy particularly under these
conditions.

Loadings

The data was treated using PLS analysis, which relates and
captures the major variances in spectroscopic and concen-
tration data into new abstract latent variable (LV) factors.
Having a sufficient number of LVs is important for analyte
quantification since PLS requires enough LVs to capture the
spectral variance of interest in the system. An excess
number of LVs can result in capturing noise in the training
set which will affect the model measurement accuracy on
the unknown (to the model) samples.”” For the Nd**
focused training set, the first LV captures the major vari-
ance in the sample while the second LV captures the next
remaining major variance and so on. A loading matrix is
composed of these abstract factors which constructs a
new coordinate space to represent the range of variance
of the samples. The corresponding score matrix (vide infra)
then consists of the coordinates of those samples in the
new coordinate space.

Loading plots show the spectroscopic variances cap-
tured in each individual LV and the loading plots for the
four LVs are shown in Fig. 3a. The loading of each LV was
normalized to have each LV plotted on a similar scale for
easier comparison to the analyte UV-Vis spectra (Fig. 3b).
Additional LVs are shown in Fig. S3. The first LV mainly
captured Nd** spectral signatures which is expected. The
next three LVs captured the remaining Nd** spectral sig-
natures in addition to some Cu®" and Er*" spectral signa-
tures. The loading plot of the fifth and sixth LVs still
captures some Nd*" spectral signatures, but they capture
less than 1% of the total spectral variances. The loading plot
of the seventh LV primarily captured spectral noise. Models
were limited to four LVs as these captured the vast majority
of variance (99.4%), accounted for the chemical species
present, and avoided overfitting of the model.

Scores

The distribution of the training set samples in the new
coordinate space can be presented by a score plot as a
score matrix contains the sample coordinates in a new
coordinate space. To identify what species is linked to a
particular LV, the relationship between the analyte
concentration and the score of the LV can be observed
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Figure 3. (a) Loading plot of the first four LVs. (b) Nd*T, Cu*™,
and Er*" spectra after first-derivative and normalization (for
Nd3+ normalized to 796 nm; for Cu**: normalized to 678 nm; for
Er’": normalized to 521 nm). A normalized loading plot of the first
LV (normalized to 796 nm, captures 85.1% of the spectral vari-
ance), second LV (normalized to 572 nm, captures 9.64% spectral
variance), third LV (normalized to 521 nm, captures 2.93% spectral
variance), and fourth LV (normalized to 525 nm, captures 1.73%
spectral variance). This preprocessing method is only used for
display purposes.

(Figs. 4 and S4). If a significant change in the score values
of a particular LV occurs with a change in a particular ana-
lyte concentration, this indicates that the LV captures the
spectral variance of the analyte. As shown in Fig. 4a, the
first LV mainly captures the Nd*>* spectral changes because
samples that contain various [Nd*'] have different
score values along the first LV. Samples that do not
contain Nd** (pure Er*" and Cu®*") have similar score
values (Figs. 4a and S4g).

The second LV captures the remaining Nd*" spectral
signature with some Cu”" spectral signature because sam-
ples that contains various [Nd*"] and [Cu®*] have different
score values on the second LV (Figs. 4b and S4a). This may
further be seen in the T1| versus T2 plot (Fig. 4c) where a
positive correlation is seen between the scores of LV | and
scores of LV 2 for samples having a changing, increasing
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Figure 4. (a—b) Score plot of the first two LVs plotted against
analyte concentration. (c) Score plot of LVI versus LV2. The
number in the legend represents the batch number of the samples
and it can refer to Table SI. The circles indicate pure component
samples while the squares indicate two component samples.

[Nd**] (purple circles, green, and orange squares).
Solutions in this figure containing both Cu*" and Nd**
show an even stronger correlation between these score
values. The pink squares representing solutions with
increasing [Nd>*] at constant [Cu>*] have a strong correl-
ation, which is a much more positive change with the score
of LV 2. The green squares representing solutions that have
a constant [Nd*™] but a varying [Cu®"] show a strong
negative correlation between these score values.
Solutions involving only H,O, Cu**, or Er*" remain fairly
localized. Samples containing only Er*" exhibit similar score
values on both the first and second LVs but have different
score values on the third and fourth LVs (Figs. S4i and S4h).
The third and fourth LVs also capture the remaining Nd*>*
and Cu®" behavior (Figs. $4b, S4c, S4e, and S$4f). The fifth
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and sixth LVs capture the remaining Nd*", Cu**, and Er* "
spectral variance, but they capture less than |% of the total
spectral variances, which is of less use for Nd** quantifica-
tion. Although the fifth and sixth latent variables capture
only a small part of the total variation in the overall spectra,
it is apparent from plots of the score values for each LV
versus component concentration that these latent variables
are picking up some subtleties of either solute—solute inter-
actions or solute—solvent interactions (see Figs. S4j and
S4k). LV 5 does show some variability with changes in
[Nd®**] but also shows considerably more variability
in the Nd*"—Cu?" solutions. The variability in the Nd*"—
Cu®* solutions is much more than in the Cu®" solutions
alone indicating some accounting for solute—solute inter-
actions. Latent variable 6 shows very little variability for
changes in [Nd*>*] or [Er**] but indicates considerable vari-
ation in Cu*" alone and even more for the interactions
present in the Nd**— Cu®* solutions. Although LVs 5 and
6 are not significant for the predictive model here they may
be important to track changes in the UNF process.
Interestingly, it appears the seventh LV captures the vari-
ance in the replicate measurement which is not a variance
of interest in this system, so it was not included in this
model (Fig. S4d). But for long-term process monitoring
applications it would be very useful to include the seventh
LV in modeling to keep track of the variations. In general,
the scores plots provide further confirmation that the
model should be limited to four LVs.

Model Performance Evaluation: Normal Condition

After choosing a suitable preprocessing method, and
number of LVs to quantify Nd*" in the presence of inter-
ferents (Cu** and Er*™"), the model performance was eval-
uated by comparing the model-measured [Nd*"] to the
volumetrically prepared Nd®" samples. The statistical
approach utilized in this manuscript is the root mean
square error of cross validation (RMSECV) and prediction
(RMSEP) which can be calculated using Eq. |:

ZL(}?' - )’i)2

m

RMSE(CV or P) = (N

where y; is the model-measured analyte concentration in a
given sample, y; is the prepared analyte concentration of a
given sample, and m is the total number of the samples.4I
Cross validation selectively excluded a set of samples from
the training set and used the remaining samples in the train-
ing set to build a model to quantify analytes in the excluded
samples as an estimate of the model performance of the
unknown samples, the RMSECV.*' The cross-validation
method applied in this manuscript is venetian blinds with
seven splits and each group of 10 replicate spectra of a
sample removed as a contiguous block so all the replicate
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spectra were excluded during cross validation. The RMSEP
evaluates model performance on a validation set (values
unknown to the model).*' The PLS model accurately quan-
tified [Nd®"] even in the presence of strong interference
effects (Fig. 5). The average measured error of [Nd*] on
cross-validation data (RMSECV) (again the training set con-
tains only Nd** as pure samples or mixed with either Cu®"
or Er**) is 0.003 M. This error is one to two orders of
magnitude lower than the [Nd**] range in the training set.

The low RMSECV shows the model should be able to
accurately quantify Nd®>" in an unknown data set even in
the presence of both interferents. This hypothesis was
tested by applying the PLS model to quantify Nd*" in val-
idation set samples (validation set A) which contains Nd**
with both interferents. The RMSEP value is 0.003 M and the
similar values between RMSECV and RMSEP indicate the
model is robust enough to handle some degree of variation
which is expected for an unknown sample.>®> The RMSEP
showed the model is robust enough to accurately quantify
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Figure 5. Measured (using PLS modeling) [Nd**] as a function
of known concentration (volumetrically measured) of Nd>* in the
training set samples (purple diamonds), validation set A (blue tri-
angles) and validation set B (red squares)). The individually labeled
points are samples with relatively high Q and T2 values (see next
section). The composition of those samples is specified in Table I.
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Nd>* in the presence of both interferents even though no
single training set sample included both interferents. With
both interferents present, the percentage error of valid-
ation set A is below 7%. Figure S5 shows the RMSEC,
RMSECYV, and RMSEP out to seven latent variables. The
values come close together at four LVs but the RMSEP
diverges from the other statistics for LVs 5 and 6. If
indeed LVs 5 and 6 account at least in part for solute—
solute interactions this may indicate that these interactions
are present in the validation set and are not fully accounted
for in the training set. A well-constructed training set sig-
nificantly improves the PLS model accuracy on quantifying
Nd** in the unknown sample (validation A) which has a
solution matrix that the model has not encountered before.
The training set included both pure component spectra and
multiple component spectra which helps the model to
follow the Nd*" spectral changes in the presence of the
interferents. The RMSEP increased from 0.003 M to 0.02 M
when the model excludes the multiple component spectra.
Therefore, the model should be able to accurately quantify
species even if it has fewer absorbance bands than Nd**
when using a training set that includes samples that capture
spectral changes of analytes in the presence of interferents
or other physical effects (i.e., changes of temperature or
pH). In summary, the PLS model is capable of accurately
quantifying [Nd3+] despite the presence of overlapping
bands (Er*") and a perturbation of the baseline (Cu®")
included in the validation set A.

Model Performance Evaluation Performance
Evaluation: Unexpected Conditions

It is reasonable to anticipate that actual unknown samples
will have unexpected conditions not covered in the training
set. The common unexpected variances include the analyte
concentration being higher or lower than the estimated
concentration range covered in the training set or the
appearance of new interferents not represented in the
training set.

An additional, independent validation set (validation
set B) was prepared in order to evaluate the model’s ability
to accurately quantify Nd>* under off-normal or unex-
pected conditions. This new validation set includes samples
with concentrations outside the analytes and interference
concentration range covered in the training set. In addition,
a new interferent not found in the training set, Fe*™, was
included as it is a common corrosion product in processing
streams.>' Although Fe*" has no direct effect in the current
wavelength region, it will have significant spectroscopic
interference effect below 450nm which can affect the
quantification of actinides including U and may impact
the solute—solute interactions modeled in the higher spec-
tral region.®' Since the influence of Fe’* on the selected
wavelengths was found to be insignificant, some artificial
baseline effects (constant, liner slope, and curve) was
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added to the collected spectra to provide a better evalu-
ation of the ability of the model to tolerate unanticipated
solution conditions (Fig. S5). The analyte concentrations
of this validation set B is presented in Table I. The
same static training set and the same resulting model
employed to quantify the validation set A was used for
this validation set B.

Two statistical methods are commonly used to evaluate
model performance on unexpected conditions, which are
Q statistics and Hotelling T? statistics (Eqs. 2 and 3),
respectively.**** The included references describe the
equations of Q statistics and Hotelling T? statistics in prin-
cipal component analysis (PCA) model, but it can be applied
to other regression models.**

Q = xi(l —PPT)x| )
r 2

r=> 3)
]

=
Here, x; is a selected validation set sample, tszii is a square
of the score element of the selected sample at a particular
LV, P is the loading matrix, and A; is the total variance
captured in the particular LV. Additional information on
these approaches can be found elsewhere, but, most
importantly, these are powerful indicators for normal or
off-normal conditions.*** Q statistics evaluate the differ-
ence between the actual sample spectra and the model
constructed sample spectra. Therefore, Q statistics can
be used to detect the unexpected spectral variances that
are not covered in the training set, e.g., an unknown finger-
print. Hotelling T? statistics compares the variance in each
sample compared to the total variance captured in the LV.
Therefore, Hotelling T statistics can be used to detect the
unusual variance that is captured within the model, e.g., a
known fingerprint but outside of calibration concentration
range. The Q and Hotelling T2 results of validation set A
and B are shown in Fig. 6.

The model assessed four samples in validation set B with
higher [Nd**] (samples 36 and 41) and [Er*"] (sample 42)
than the training set range ([Nd3+]: 0-0.17 M and [Er*"]:
0-0.09 M). Q and Hotelling T? analysis also successfully
detected the untrained spectral signature accompanied
with Fe*™ samples (especially sample 37_4) (Figs. 6a
and S5). Those four samples were not considered the
same as the population of the training set by both Q and
Hotelling T? statistics at 95% confidence because those
sample solution matrices were significantly different than
the training set (Fig. 6; Table l). Most of the validation set
A samples are within the 95% confidence interval of Q and
T2 which indicates validation set A and training set samples
are similar (Fig. 6; Table I).

Samples with higher [Cu®"] (sample 38, 0.44 M) than the
training set covered (0-0.22 M) were not considered as the
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Figure 6. (a) Q and T? statistic result of the training set samples
(purple diamonds), validation set A (blue triangles), and validation
set B (red squares). (b) A closeup of Q and T? plot at the bottom
left (green box in A). The named points are samples with relatively
high Q and T2 values. The composition of those samples is given in
Table I.

same population as the training set in Q statistics. Because
the associated [Nd*>*] in these samples is low (0.03 M), the
analysis has smaller T? values (Fig. S6). Interestingly, these
two statistical approaches were not able to consider the
Fe* containing samples (sample 37_0) as abnormal within
95% confidence. This might be expected because the
included [Fe*] is low and does not have any significant
absorption band in the Nd3* wavelength region of focus
(Fig. S6). However, after adding artificial baseline effects
(37_2 and 37_3), they were not considered as the same
population as the training set due to its high Q and T?
values. This is likely because those baseline effects cannot
be fully accounted for or minimized by the first derivative
preprocessing method.

Overall, Q and Hotelling T? statistics can be used to flag
some unanticipated conditions in the new unknown sam-
ples which can be an indicator of the need to update the
model to account the changes in the solution, but limita-
tions exist. This suggests that the inclusion of additional
analytical approaches is necessary to alert a system to
off-normal conditions.** While some off-normal conditions
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were not flagged by Q and T2 statistics, the PLS model was
still able to accurately quantify [Nd*"] despite the presence
of new interferents and abnormally high interferent con-
centration (Fig. 5). The RMSEP value is 0.009 M which is
slightly higher than the RMSEP value of the normal valid-
ation set (validation set A, 0.003 M), but it is still one to two
orders of magnitude lower than the concentration range in
the training set. This shows the PLS model is sufficiently
robust enough to handle some variation. The samples that
were flagged by Q and Hotelling T statistics (labelled as
“Fail” in Table I) indicate that their spectral signatures were
unaccounted for by the model. Although the model was still
able to accurately quantify [Nd>'] in those samples, the
results should be approached with hesitation.

The model percent error of validation set B is higher
than the percent error of samples in validation set A. This is
expected as validation set B captured the unanticipated
solution conditions that were not a part of the training
set. The model will break down at a [Nd**] of 0.3 M
given the loss of spectral response linearity (expected
above absorbance values of one). Impressively the model
could still function in this region, although this likely repre-
sents the end of the working range as above these concen-
tration values, saturation of signal begins to have more
notable spectral effects.

Similarly, the ability of the model to function in the face
of high Cu*™ was impressive and likely only possible due to
the broad shape of the band, allowing for straightforward
application of a first derivative which decoupled the impact
of the Cu*" on the analysis. The introduction of species
with sharper interfering bands has a different impact and is
more easily discussed with the Er*" interferent. The model
would be anticipated to fail in the face of a broad band that
also saturated signal, as a simple first derivative would not
be able to account for saturated bands. In addition, model
performance in the presence of increased interferents like
Er** is not necessarily surprising, where additional litera-
ture suggests this challenge could be further exacerbated
before causing model failure.'®* Finally, the addition of arti-
ficial baseline effects of Fe®" containing samples creates dif-
ferent spectral features that are not covered in the training
set and may cause the model to breakdown. Those baseline
effects were minimized or accounted for after preprocessing
by first derivative. Impressively, the model still accurately
quantified Nd®* even with the new interferent peak that
was simulated in sample 37_4 around 650 nm. Overall, this
work demonstrates a well-defined PLS model can exhibit
surprising resilience to off-normal conditions, with failure
points primarily appearing at the actual breakdown of spec-
tral integrity, e.g., at saturation of response.

Conclusion

Spectroscopic on-line monitoring has been proposed to
replace the periodic off-line analysis to characterize the
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chemical composition of UNF reprocessing in real-time.
However, the traditional univariate analysis of these spectra
is impaired by complicated solution matrices. Here, a multi-
variate analysis, PLS, is able to accurately quantify Nd** in
the presence of the interferents Er*™ and Cu®", which,
respectively, have absorption bands that interfere with
Nd** and a perturbation of the baseline. Both types of
spectral changes are common phenomena in processing
streams and can prevent the accurate quantification of
target analytes.

The ability of chemometric modeling, and, in this exam-
ple specifically, PLS regression to handle analysis challenges
such as interferents or perturbation of the baseline was
tested. This was pushed further to explore accuracy of
response in the face of unexpected conditions such as
introducing species not accounted for in the original
model or introducing species at much higher concentra-
tions than included in modeling training sets. Two statistical
approaches, Q and Hotelling T statistics were able to
detect most abnormal samples, but limitations exist and
suggest additional statistics could be valuable in discovering
anomalous conditions. Aside from helping build an under-
standing of model strengths and weaknesses, samples failing
to pass metrics is highly valuable to this study. Indeed, sev-
eral samples were specifically designed to push model
boundaries and were expected to fail. Identifying the role
of metrics in the process monitoring of complex streams is
key to building trust in model outputs or providing oper-
ators avenues to understand potential off-normal condi-
tions. For example, samples labeled as “Fail” in Table |
indicate that those samples are not considered to be in
the same population of training set samples; they are out-
side the 95% confidence interval. Among those failing sam-
ples in Table I, eight of the samples belonged to the
validation set B which had solution conditions that are
not included in the training set. This indicates that the
model is sensitive enough to detect most of the abnormal
samples and can be an indicator of the need to update the
model to account for any changes in the UNF process solu-
tion. Having a more complete training set to describe the
anticipated solution conditions (e.g., potential interferents
and analytes) in the actual UNF processing stream can help
to lower the number of samples that will be considered as
an outlier from the training set. The PLS model was still
able to accurately quantify [Nd*>"] despite the presence of
new interferents and abnormally high analyte and interfer-
ent concentrations, although a discussion of limitations of
model applicability provides context as to where accuracy
could break down. Understanding the limitations of the
chemometric model can provide a better analytical judge-
ment on the accuracy of the analytical result. We suspect
the limitations brought out in this study are largely a func-
tion of mismatches in the composition and complexity of
our training set and that present in the validation set. To
apply the lessons here to process monitoring UNF
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requires examination of modeling statistics as the training
set is refined to reflect UNF solution composition and
conditions. This study shows that attention to modeling
statistics can raise a warning flag if the UNF process
diverges far outside the expected conditions and solution
composition. In general, this demonstrates that the PLS
model can accurately quantify analytes despite the pres-
ence of interference and the unexpected changes of the
solution condition that will be anticipated in the actual
processing stream.
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