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We discuss and analyze the properties of Casimir forces acting between nonreciprocal objects in thermal
equilibrium. By starting from the fluctuation-dissipation theorem and splitting the force into those arising from
individual sources, we show that if all temperatures are equal, the resulting force is reciprocal and is derivable
as the gradient of a Casimir (free) energy. While the expression for the free energy is identical to the one
for reciprocal objects, there are several distinct features: To leading order in reflections, the free energy can
be decomposed as the sum of two terms, the first corresponding to two reciprocal objects, and the second
corresponding to two antireciprocal objects. The first term is negative and typically yields attraction, while the
second can have either sign. For the case of two objects that are each other’s mirror images, the second term is
positive and yields repulsion. The sum of terms can lead to overall repulsive forces, in agreement with previous
observations. Stable configurations, ruled out for reciprocal cases, appear possible for nonreciprocal objects.
We show that for three objects, a three-body free energy exists, indicating that previously found persistent heat
currents in situations of three objects cannot be used to produce persistent torques.
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I. INTRODUCTION

Steady currents are commonly associated with the lack
of thermal equilibrium. The existence of steady currents in-
dicates the absence of detailed balance [1], which can have
important consequences, such as violation of the fluctuation-
dissipation theorem [2], the presence of activity [3-5], lasing
without inversion, [6] and the increase of power extraction in
photocells [7].

Recently it was shown that nonreciprocal materials can
support steady heat currents in a system that is at ther-
mal equilibrium [8,9] by breaking detailed balance. Ex-
amples of nonreciprocal materials include ferrimagnetic
compounds, magnetized plasmas, and space-time modulated
media, among others [10]. Besides heat currents, fluctuation
of charges and electric currents inside nonreciprocal bodies
produce Casimir forces that differ from those produced by
reciprocal systems [11]. Nonreciprocal systems have been
shown to produce new features absent in their reciprocal
counterparts, such as novel lateral forces [12—14], repulsive
forces [15,16], recoil forces [17], nontrivial optical torques
[18,19], lateral thermal-fluctuations-induced forces [9,20-22],
and heat transfer with unique properties [8,23-25]. Further-
more, some theorems restricting the properties of forces are
based on the assumption that the systems are reciprocal
[26,27], indicating the possibility of finding other novel ef-
fects in nonreciprocal systems.

In this paper, we study the nature of Casimir forces pro-
duced by systems that break detailed balance at thermal
equilibrium. We achieve this by analyzing the properties of
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forces produced by nonreciprocal materials and test whether
they are also restricted by standard force theorems. We show
that these forces are conservative, forbidding the steady pro-
duction of mechanical work at equilibrium and therefore
preventing them from being used as a way to increase power
extraction in photocells or other heat-engine like devices.
Moreover, the conservative property of the equilibrium force
puts into question the results presented in Ref. [22] on a
lateral force in translationally invariant setups, as well as the
experimental proposal for using forces to measure equilibrium
persistent heat currents in translation invariant geometries
proposed in Ref. [9]. As was recently shown, steady work
extraction in nonreciprocal heat engines requires at least two
different temperatures [12,28]. Furthermore, we show that
nonreciprocity may in principle allow for stable configura-
tions, as the Laplacian of the free energy can be positive, in
violation of Earnshaw’s theorem, which reciprocal systems
must fulfill [26]. This comes together with the possibility
of repulsion for nonreciprocal objects [11]. Specifically, to
leading order in reflections, the free energy is the sum of two
terms, corresponding to two reciprocal and two antireciprocal
objects, respectively. For two objects that are each other’s
mirror images, the latter can be shown to yield a positive free
energy and a repulsive force. Repulsive Casimir forces are
known to exist for bodies immersed in a dielectric [29], or
for systems out of equilibrium [30-33].

II. CASIMIR FREE ENERGY

A. System and setup

We consider the situation depicted in Fig. 1, which com-
prises a collection of bodies immersed in vacuum. The system

©2022 American Physical Society


https://orcid.org/0000-0003-3185-5936
https://orcid.org/0000-0002-6530-5468
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.115106&domain=pdf&date_stamp=2022-09-06
https://doi.org/10.1103/PhysRevB.106.115106

DAVID GELBWASER-KLIMOVSKY et al.

PHYSICAL REVIEW B 106, 115106 (2022)

——.
-~ =~
~.--—_—"

-
Rd
~,
\,~
[y

’
’
/
\‘
N

\\~~-____’,¢
FIG. 1. We consider multiple objects surrounded by vacuum,
where all the objects and their surroundings are assumed to be at
the same temperature 7. We study the properties of the total force on
object 1.

is at thermal equilibrium, i.e., all bodies as well as the sur-
roundings are at the same temperature 7 .

The objects are described by their classical scattering
operators T = T;;(r, r’) [34,35], which are 3 x 3 matrices
depending on two spatial arguments r and r’. T denotes the
operator for object 1, and T is the operator for the remaining
objects. This notation allows us to treat the case of two objects
as well as that of several objects.

For reciprocal bodies, microreversibility constrains T =
TT, where [T;;(r,r)]" = T;;(x',r) is the transpose, corre-
sponding to switching spatial arguments and matrix indices.
Here we consider objects that are allowed to be nonreciprocal
[10,36], so that in general, T £ T7.

B. Derivation of Casimir free energy from fluctuation
dissipation theorem

As mentioned above, the systems depicted in Fig. 1, may
break time-reversal symmetry and also detailed balance [8].
It is thus not obvious how equilibrium Casimir forces can be
computed [11] and what their properties are. We thus start by
showing that Casimir forces among nonreciprocal or recipro-
cal bodies at thermal equilibrium are gradients of a potential
energy, whose form is identical to the known case of recipro-
cal media [34]. This is in stark contrast with nonreciprocal
forces [37] and forces on active nonreciprocal mechanical
systems [38] where the lack of thermal equilibrium allows the
presence of nonconservative active forces.

We therefore start from the corresponding expressions
found for nonequilibrium forces [12,35], but then take all tem-
peratures equal. This derivation is thus based on the assuming
validity of the fluctuation dissipation theorem locally in each
nonreciprocal system, which in turn is based on the existence
of a Boltzmann distribution [39].

The force on 1 is thus written as a sum of three forces,
corresponding to the sources in the different objects and the
environment [35],

FQ =F" +F" +F (1

env*

F(il) is the force due to fluctuations sourced in objects 1, and
reads

ho[e 1 1
F = —/ da)|:—hw + —}
T Jo et —1 2

X ReTr{V(l + GoTl)G()ijlGo

Ti— TII tlesw! gt
X [T — TIm [GO]TI}GOWMGOTI }, 2)
where Wi | = G ! WI'](GO’]TI is the multiple scattering oper-
ator and Gy, is the free Green’s function. Note that, in contrast
to the formulas for nonequilibrium Casimir forces [35], we in-
clude here the zero-point term: F(ll) is the “self-force”, which
is produced by the fluctuating charges in object 1 itself,

ho[® 1 1
F = —/ dw[ﬁw— + —]
T Jo ek — 1 2

X ReTr{V(l + Go TG W, 1Go

T, - ’]I‘IT T Al
x | =5t~ Tm (GoIT] [GW, 1. )

The self-force is zero for an isolated symmetric object, but po-
tentially nonzero in the presence of other objects. The sources
in the environment yield the force component F(1) " which is
found to be

h [ 1 1
FO — _/ dw[m— + -}
T Jo et — 1 2

x ReTr{V(1 + GOTI)GOWI,l(l + GoT7)Im [Gy]
x (1+ T/GH)HW, GiT/). )

For reciprocal objects, the existence of a Casimir free en-
ergy for equilibrium systems is well established [34,40—42].
So, if T; = T] for all i, Eqs. (2), (3), and (4) must sum
up to an expression that is the gradient of the known free
energy [34]. Here we show this for nonreciprocal objects.
These pose additional challenges, because the operators to be
traced do not enjoy the same symmetries as for reciprocal
cases. For example, the term T;Im [(Gyo]?l“lT is, for reciprocal
cases, equal to the complex conjugate of T, Tm [G]T;. This
property directly implies that heat transfer between reciprocal
objects is symmetric [35]. Because this property is absent for
nonreciprocal objects, the corresponding heat transfer is not
necessarily symmetric [43]. It is thus not obvious a priori
whether Egs. (2), (3), and (4) sum up to a gradient force for
nonreciprocal cases.

After some algebraic manipulations detailed in the Ap-
pendix, we find that the force is [44]

h [ 1 1
Ry = Vo, [ d‘*’[—l + z]
ekl —

x Im Tr[log(1 — GoT1GoTy)l, ©)

which is the derivative of a function with respect to the posi-
tion of the object 1. This implies that the force is conservative.
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The function inside the derivative is the free energy F,

no[* 1 1
F = —/ dwl:—hw + —:|
T Jo eflT — 1 2
x Im Tr[log(1 — GoT1G(Ty)l- (6)

The conservative nature of the force rules out the possi-
bility of building an engine at thermal equilibrium, as may
be expected from thermodynamics: Extraction of mechanical
work from a system at a single temperature is prohibited.
In contrast, as shown in [12], for specific geometries nonre-
ciprocity plays a key role for building a heat engine operating
with bodies at different temperatures.

In a translationally invariant setup, such as the nonrecipro-
cal plate considered in [9], the free energy will be independent
of the invariant coordinate. This implies that the force on
objects in the vicinity of this plate is zero.

Notably, the force in Eq. (5) and the free energy in Eq. (6)
are of identical form to the corresponding expressions for
reciprocal objects [34,35]. Nevertheless, as we shall see, their
properties can be quite different for the nonreciprocal case.

C. Free energy as a Matsubara sum and large distance
expansion

To make contact with typical formulations of equilibrium
Casimir forces, we rewrite Eq. (6) in terms of a Matsubara
sum. We start by extending the integration range of Eq. (6) to
negative frequencies

I/ e A
F=-— dw coth Lﬂ
4ir J_o 2

x Tr{log[l — G¢TG(T;1}- @)
Because the free Green’s function and the T operator are
causal response functions, the trace is an analytic function in

the upper complex plane [39] and the integral is performed via
the residue theorem,

o0
F = kgT Z Tr{log[1 — GoT,G,T;l}, (®)
n=0
where we sum over Matsubara frequencies w — ick, = 2%”

The term with n = 0 is counted only half in the sum [34],
because the corresponding pole sits on the real frequency axis.
We will later investigate the so called one reflection ap-
proximation, where the log is expanded and the free energy
is
[o.¢]
F~ —kgT ZTr{GOTIGOT;}. )
n=0

This approximation becomes exact if the separation between
objects is large compared to their size, as studied below for
two spherical particles.

III. PROPERTIES FOR TWO OBJECTS

In this section, we analyze the properties of the free energy
and the resulting forces for two objects. We use notation
T; = Th.

A. Force reciprocity

Even though we consider nonreciprocal materials, the gen-
erated Casimir equilibrium forces are reciprocal in the sense
that they obey Newton’s third law. The scenario here is thus
different from cases were nonreciprocal forces or interactions
are found [37]. This can be demonstrated by noticing that

— Vo, Trllog(1 — GoTG(T,)]

1

= TI'|:] _ GOTIGOTZ GQ(VT] T]V)GOTZ], (10)
where we have used that Vo, T; = VT; — T,V and that we
can pass the derivative through the free Green’s function, as
shown in Egs. (A5) and (A6). Here V refers to the derivative
acting to the right on the first argument of the subsequent
expression. Applying VT, = V, + T,V to the last term and
using the cyclic property of the trace we get that Eq. (10) is
equal to

1
—Tr| —————GT1Vp,Go TG, T
r[l—GoTzGoTl 0l1Vo,Gol2b 1}

= Vo, Trllog(1 — GoT2GoTH)]. (11)

Combining (10) and (11), one obtains that the forces are
reciprocal, that is F;) = —F{) independently of the bodies’
reciprocity. This is in agreement with the expectation that
nonreciprocal forces require exchange of momentum with the
environment, and can thus occur only in situations outside
thermal equilibrium [32,45].

Generally, the statement of existence of a two-body poten-
tial already requires force reciprocity: For two objects in free
space, the free energy must be invariant under simultaneous
translation of both objects. Hence it must be a function of
O, — O,, and the forces derived from it must be reciprocal.
We will below address the case of three bodies.

B. Only one non reciprocal object

Assume that object 1 is nonreciprocal while object 2 is
reciprocal. In this case, using that Tr[Q] = Tr[Q7] for any
operator O, and using the cyclic property of the trace, we
obtain

TI'{G()TlG()Tz} = Tr{GoTITGoTz},
or, rewriting
Tr{Go(T; — T{)GoT,} = 0. (12)

We can thus write the contribution from the leading reflection,
Eq. (9), as

1 oo
F= =gl UGG+ 1)) (3

This means that the nonreciprocal part, represented by T; —
TIT , does not contribute at one reflection to the free energy, if
only a single object is nonreciprocal. For the limit of Eq. (9),
the free energy will thus share all properties that are known for
two reciprocal objects (see below). However, nonreciprocal
properties enter at higher reflections, where the trace can be
nonzero because it may contain an even power of the asym-
metric (nonreciprocal) operator T at higher orders.
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C. Two distinct terms

At one reflection, we can furthermore show that the force
for two nonreciprocal objects is the sum of two distinct terms.
We therefore write the scattering operators in terms of recip-
rocal and antireciprocal parts

AP =Y 21T = L £ TH.

The last equality follows because T; is real for imaginary
frequency, since it is a real function of time 7. For imaginary
frequency, AE” is thus Hermitian, and Agf) is anti-Hermitian.
Noting from Eq. (12) that there is no cross term between AIH
and Af“ , the result for one reflection can be written

F =—ksT Y _Tr{GoTGo T}
n=0

[o.¢]
= —ksT Y [Tr{GoA [V GoAS"}
n=0

+ Tr{GoA W Go AL (14)

We see that, to leading order in the reflection expansion, the
free energy is the sum of a free energy for two reciprocal
objects and a free energy for two purely antireciprocal objects.
We shall discuss their properties below.

D. Energy sign and force direction

The one-reflection approximation of Eq. (9) allows the
determination of the sign of F. Starting with two reciprocal
objects, it is useful to note, based on basic considerations of
statistical physics, that T, evaluated at imaginary frequencies
is a non-negative symmetric operator for nonmagnetic objects
in vacuum [27,39]. GyT,Gy is thus non-negative and sym-
metric as well (because Gy is symmetric and real). Because
the product of two symmetric non-negative operators has a
non-negative trace, we thus have

Tr{GoT,Go T} = 0. (15)

The free energy is thus a sum of nonpositive terms, so that, for
two reciprocal objects in leading order of scattering events,

F 0. (16)

This implies that, if the magnitude of F decreases with the
objects separation d, the force has to be attractive. This state-
ment of attraction is in agreement with previous studies of
forces between reciprocal bodies [27,34]. Below, we will also
consider the case of two bodies, which are each other’s mir-
ror images, in which case the force for reciprocal objects is
attractive [27].

For the nonreciprocal case, the T operators are not sym-
metric, and Eq. (15) does not hold. It is thus possible to obtain
repulsive forces (even at small separations) with nonreciprocal
media, as exemplified below and seen in [11].

E. Anti reciprocal opposites repel

This statement can be strengthened by considering two
objects that are each other’s mirror images. We follow [27] to
write Ty = JT;J " with a unitary operator J that transforms

between the original space and the mirror space. We also use
the remarkable property [27] that GyJ is a positive operator.
We thus write GoJ = CTC = BB' without specifying C or
B. The two terms in (14) are thus found to be

Tr{GoA P GoAT?) = Tr{GoA P GoJ A T T)
= Tr{CA”BBTAPCT)
= +Tr{(CAPB)CAMB)}.  (17)
Because
Tr{(CAPB)(CA™B)} > 0, (18)

we have thus shown that to leading order in reflections, for two
objects that are mirror images of each other the free energy is
the sum of a negative term due to the reciprocal parts of the
objects, and a positive term due to the antireciprocal part of
the objects.

Furthermore, we may also use that [27] 9,GoJ is a nega-
tive operator, i.e., 3,God = —D'D, with another unspecified
operator D, and where a is the distance between the mirror
images [27] along the mirror axis. Using this result in the same
manner as above, we find that, for the term composed of two
purely antireciprocal objects,

3. F < 0. (19)

This means that the corresponding force is repulsive. We have
thus shown that nonreciprocal contributions for mirror images
lead to repulsive terms in the force.

Such repulsion and attraction between different types of
objects is somewhat reminiscent of critical Casimir forces
[46].

F. Stability

Stability has been ruled out for equilibrium situations in-
volving reciprocal objects [26]. We repeat this calculation
here, again resorting to the simpler case of the leading order
in scattering events. We then investigate this question for
nonreciprocal objects. We have for the Laplacian of the free
energy

Vo, F(O1, 0y) = —ksT Y Tr{Go(Vy, T1)GoT2}. (20)
n=0

Weuse Vo, T; = VT, — TV, and obtain three terms,

Vo, F(O1, 0y)

= —ksT Y Tr(Go[V>T; — 2VT,V + T, VZ]IGoTo}.
n=0
(21

We use that, up to a § function in space, V2Gy = ’Z_'z%GO for
imaginary frequency [26]. This together with Eq. (15) shows
that the last term is negative (including the overall minus
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sign). For the first term we use that the operator V2 can be
moved past the free Green’s function, with the same conclu-
sion. The middle term appearing in Eq. (21) is

TI'{G()VTlv(G()Tz} = —Tr{VT]VTG()TQG()} g O, (22)

where V7 represents the derivative acting to the left on the
second argument of the previous expression. By partial inte-
gration, we then have V = —V7 . To establish the inequality,
we have used that the trace of the product of the symmetric
non-negative operators VTV’ and G T,G, must be non-
negative. The Laplacian of the free energy with respect to
the position of either of the particles is thus nonpositive for
reciprocal objects [26], and stability is ruled out.

For nonreciprocal objects, we cannot rely on the above ar-
guments, so the Laplacian cannot be proven to be nonpositive.
We will indeed provide a counterexample below, showing that
the Laplacian can be positive and stable configurations with
nonreciprocal systems appear possible in principle.

IV. THREE BODIES

Equation (6) shows that the force acting on body 2 in
the presence of several other objects is the gradient of a
free energy. Together with the statements of Sec. IIT A, the
existence of a two-body potential for two objects is shown.
However, to our knowledge, this statement does not imply
that an N body potential exists for N > 2 objects. The case
of three or more objects is especially interesting, since the
persistent heat current discussed in Ref. [8] requires three
or more objects. It is thus worthwhile to test whether for
three bodies, a three-body potential exists. We do this here to
leading order in scattering reflections. We therefore introduce
Tos, the composite operator for objects 2 and 3. The force
acting on object 1 is then

h =) 1 1
Flled) — —V(91 _/ da)|:hm— + _:|
7w Jo et —1 2

x Im Tr{log[1 — GoT1G(Tal}. 23)

We perform two series expansions. The first expands the log,
log[1 — GoT1GoTp3] = —GoT1GoToz + - - . (24)

The second expands the composite operator Tos,
Ty =To + Tz + ToGoTs + TsGeTr + -+ (25)

With this expansion, we obtain the force acting on object 1, to
leading order in scattering operators

(1) _ g(leq) (1,eq)
Feq = F2 + F3

+V hfood |: ! +1:|
— w| — + —
Oln 0 g’\'szT—l 2

x ImTr{GoT1Go(T2Go T3 + T3GoT2)},  (26)

where Fgl’;)q) is the two-body force in the absence of object

3(2). We thus can write

F{) = —Vo, 7, (27)

where
Fi=Fu+Fiz+Fn
ro[*® 1 1
]
T Jo ekt — 1 2
x Im TI‘{G()Tl Go(T2GOT3 + T3G()T2)}. (28)
Here Fj, is the two-body free energy in absence of object
3. Fu3 can be added because it drops out when taking the
derivative V,.
The force on object 2 is found similarly,
F2 = Vo, P, (29)
with
Fr=Fo+Fi3+Fn
ho[ 1 1
]
T Jo el — 1 2

x Im TI'{G()TQG()(T]G()T3 + T3GoT1)}. (30)

The same can be done for object 3. Using the cyclic property
of the trace, we can see that the forces are found as gradients
of the same free energy, i.e.,

Fz=F=F =F(O, 0, 03) €19}
and the force on object i is
F{) = =V, F(0y, 0, 03). (32)

This demonstrates that, to leading order, a three-body poten-
tial F(Oq, O,, O3) exists.

V. EXPLICIT EXAMPLES

In this section we discuss specific examples of the free
energy for nonreciprocal objects.

A. Toy model with frequency independent permittivity

A simple toy model allows to illustrate many of the above
general findings, and to demonstrate the existence of positive
Laplacian and repulsive forces.

We start by considering two polarizable particles with sep-
aration d, which is large compared to the particles’ sizes.
To allow for analytic results, we assume that the particles’
polarizability tensors are frequency-independent and have the
following nonreciprocal form, with oy (units of volume) and
b; (dimensionless) real,

1 0 0
o = 0 1 —bi . (33)
0 b 1

This toy model, apart from frequency dependence, is of sim-
ilar form to the response found for materials in the presence
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FIG. 2. Free energy of particle 2 as function of its position relative to particle 1 for a toy material. Both particles have same frequency-
dependent polarizabilities, see Eq. (38) and [24], and the magnetic field points into the x direction. Left-Bottom: Free energy in the xy plane.
Top left: Free energy as function of y for x = z = 0. Bottom right: Free energy as function of x for y = z = 0. Top right: Free energy as function
of the angle ¢ for z = 0 and radius 0.47A7 (dashed circle in bottom-left figure). At this separation, the free energy reaches a minimum along
the x axis, but it shows a maximum along ¢. Here w, = 2 x 108 Hz, w, = 2.46 x 10" Hz, wg = 1 Hz, and T = 300K.

of an external magnetic field pointing in x direction and with
magnitude proportional to b;. We will thus refer to b also as a
magnetic field in the following.

Taking one particle at the origin and the second at position
d(cos ¢ sinf, sin ¢ sinf, cos )" we find for d > k’Z—cT

. kBTOl(Z)
~ 32d672
— 2cos[2¢]sin[61)].

X [—12 — 5b1b2 - 3b1b2(COS[29]

(34)

For b; = 0 this agrees with literature [34] and the free energy
is negative, so the force is attractive. Notably, there exists no
term linear in b;, in agreement with Eq. (14): A term linear in
b; would result from a product of reciprocal and antireciprocal
parts of «;, and is thus ruled out.

The contribution from antireciprocal parts o;; — ! corre-
sponds to terms quadratic in b. Indeed, these can be positive
or negative (we will discuss the mirror symmetric case below).
The free energy as a sum of both terms can indeed be positive,
for example, for 0 = 7 /2, ¢ = 0 and b,b, > 3.

For short separation, d < k’Z—CT, we find
_ _heos [—23 — 8byby — Tbyby(cos[26]
~ 64d’7’ R
— 2cos[2¢]sin[017)]. (35)

This limit shares the same general properties as the limit
studied in Eq. (34). Here, for example, for 6 =7 /2, ¢ =0
and b b, > %, the free energy is positive, and the force is re-
pulsive. Recall that this is impossible for reciprocal particles.

Continuing the example of 6 = 7 /2, ¢ = 0, the free en-
ergy is positive for short distance and negative at large
distance for % < b1b, < 3, which indicates the presence of a
free energy minimum along the radial coordinate. Including
displacements orthogonal to the radial direction, this point
may be a minimum or a saddle point.

Exploring this numerically, we find that the Laplacian at
this point is positive, but, for the given choice of system, these
are indeed saddle points. Below we discuss an example of a
frequency dependent permittivity.
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Finally, we consider the case 6 = 0 and ¢ = 2 ,1.e., where
the two particles are displaced along the z axis. They are
then mirror images of each other, if we choose b = b, = —b;,
meaning the magnetic field has to point in opposite directions.
The free energy is then, for d >

k 7
kT
12 + 80 36
F= i L RPN (36)
obeying the properties found in Eq. (19). Similarly, for d <
kh—”T, we find
B
Fo % a5, 37)
64d773

Notably, if the particles are displaced along the x axis
(0 =m/2 and ¢ = 0), mirror images are obtained without
switching the direction of magnetic field, and the resulting
antireciprocal part of free energy is positive in that case as
well.

B. Frequency-dependent permittivity

Turning to a more realistic case, we consider a frequency-
dependent permittivity of the form of a standard magneto-
optical material. For a dc magnetic field pointing along the
x direction [47] it has the following form:

e 0 0
—ies |, (38)
0 iEf €4

w(14+9r) o’

1 _ ) P
where € = 1 (w+iv: 2 —w3’ €= - o(wtio)’

and €f =

wng
describes relaxatlon effects; the nonreciprocity (5 # 0) due
to the magnetic field is encoded via the cyclotron frequency
wp. We assume that both particles have the same permittivity,
which we use to calculate the polarizability [24]. The param-
eters used are given in the caption of Fig. 2.

The numerical results are presented in Figs. 2 and 3 for a
toy material. The parameters were chosen to make the effect
easier to see in the plots. Further investigation is required to
determine the presence of saddle points and the positivity of
the Laplacian in realistic materials. Notably, the discussion
of frequency independent cases is applicable to a large extent
here as well. We see that repulsion is possible, and the free
energy, as a function of particle distance can have a minimum
as before. Also, here, these minima in the radial direction are
saddle points in full 3D space. As a result while we showed
in Sec. III that Earnshaw’s theorem cannot be relied on for
nonreciprocal media, this does not necessarily establish the
existence of a minimum. Figure 3 shows numerical results
for the Laplacian of the free energy, displaying, as in the
case of the frequency independent polarizability, it is positive
around the saddle point.

The quest for minima in this situation requires further in-
vestigation that could include the case of bodies with different
permittivities or several bodies.

[8]. Here, w), is the plasma frequency and w,

0.5F

Laplacian [hc/A%]

0.3t 1 125X10°
100 X103
0.1F
: ] 75X10°
>
0 50 X103
25X10°

-0.5 -0.3 -0.1 0.1 0.3 0.5
x[A1]

FIG. 3. Laplacian of the free energy of particle 2 as function of
its position relative to particle 1. Only the positive regions are shown
and they include the position of the minima in the radial direction
(z=0,x=047r7, and y = 0), seen in Fig. 2. Same parameters as
Fig. 2.

VI. SUMMARY

Casimir forces acting between nonreciprocal materials in
thermal equilibrium are conservative and reciprocal. The cor-
responding potential or free energy has a similar mathematical
structure as the known one for reciprocal materials. Despite
that, the properties of the free energy and the forces can
be quite different between the reciprocal and nonrecipro-
cal cases [11,21], which we have discussed in the so-called
one-reflection approximation. In contrast to reciprocal cases,
the free energy can be positive, and it can display minima.
Furthermore, reciprocal and antireciprocal contributions yield
two distinct terms in the free energy, which is thus a sum of
the free energy between two reciprocal objects and the free
energy between two antireciprocal objects. For two objects
that are each other’s mirror images, the second term is positive
and the corresponding force is repulsive. These properties
can be demonstrated in calculations for two nonreciprocal
polarizable particles.

For three objects, we perform an expansion in reflections,
finding that to leading order, a three-body potential exists.
This case is of interest because persistent heat currents have
been found before in situations involving three bodies. Our
calculations—to the given orders—thus show that, despite
existence of mentioned currents, persistent torques are ruled
out.
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APPENDIX: PROOF OF EQ. (5)

To obtain Eq. (5) in the main text we use the following
identities:

TiGOWﬁ = WjGOTi; (A1)
GOV]I‘,‘G()TJ‘G()W,‘]‘ = G()WjGoTiGoTj; (AZ)
GoT:GoT;GoW;; = GoW;; — 1 (A3)
We get
1
po = / da)|: 2}
X [ Re Tr{VG{ W/ G; T}
2i
1
+ RGTI’{V(G()Tl)G()WnT}
i
1
+ ReTr{VGQW“E}
i
1
— ERe Tr{VG{ W, }]. (A4)

Taking the adjoint of the first term and using the cyclic
properties of the trace we get

1
—ERe Tr{GoVT,Go Wy, }. (AS)

i

We use that V,Go(r — r') = —V,.G(r — ). Furthermore,
every operator product in the trace corresponds to the integral
over a joint coordinate. We may thus use integration by parts
(neglecting boundary terms), and we get for the above term,

1
—?RCTI‘{VGQTlG()WH} (A6)

l
and the first two terms of Eq. (A4) cancel.

Next we calculate the adjoint of the last term of Eq. (A4)
and using a similar procedure as to pass from Eq. (AS) to

Eq (A6) we get

-1 3 -1

7ReTr{VGgW;} = TReTr{VGOWn} (A7)
i i

Using identities (A3) we get

1 1
2—ReTr{VGOW”} = ReTr{VGoT GoT Gy Wi}

1

= ?Re Te{T VG TGy W, Gy}
l
1

= ?Re Tr{VTl GOTTGOW]TGO}
l

1
+ ERe TI'{VOI Tl G()TTGQW”G()},
(A8)
where in the last inequality we have used the identity

T,V=VT, +VyT.
We now apply identities (A3) to (A7) and (A4)

1
—Re Tr{VGOWH 2—}
i

1
= —ReTI‘{VG()TlG()TTGQW”?}. (A9)
1

Putting everything together we get that

[l ]
— | — + —
T Jo e"TTwT—l 2

1
X —ReTr{VolGOT GoTiGoW,1}

el

X —Re TI'{G()W“VOI G()T GOTI}

el
=—— dw
k,;T —1 2

X Z—ReTrVo] log(1 — GoT1G(Ty).

(A10)
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