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Abstract. Many dynamical systems described by nonlinear ODEs are unsta-
ble. Their associated solutions do not converge towards an equilibrium point,

but rather converge towards some invariant subset of the state space called an
attractor set. For a given ODE, in general, the existence, shape and structure

of the attractor sets of the ODE are unknown. Fortunately, the sublevel sets

of Lyapunov functions can provide bounds on the attractor sets of ODEs. In
this paper we propose a new Lyapunov characterization of attractor sets that

is well suited to the problem of finding the minimal attractor set. We show our

Lyapunov characterization is non-conservative even when restricted to Sum-
of-Squares (SOS) Lyapunov functions. Given these results, we propose a SOS

programming problem based on determinant maximization that yields an SOS

Lyapunov function whose 1-sublevel set has minimal volume, is an attractor set
itself, and provides an optimal outer approximation of the minimal attractor

set of the ODE. Several numerical examples are presented including the Lorenz

attractor and Van-der-Pol oscillator.

1. Introduction. In this paper we consider nonlinear Ordinary Differential
Equations (ODEs) of the form

ẋ(t) = f(x(t)), x(0) = x0. (1)

where f : Rn → Rn is the vector field and x0 ∈ Rn is the initial condition. We
denote the solution map (which exists and is continuous on x ∈ X ⊂ Rn when f is
Lipschitz continuous and X is compact and invariant under f) of the ODE (1) by

2020 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Nonlinear systems, Lyapunov theory, attractor sets, sum-of-squares

programming, chaos theory.
The authors of this manuscript were supported by NSF grant NSD CMMI-1931270.
We would like to thank the reviewers of this paper for their valuable comments and suggestions.
∗ Corresponding author: Morgan Jones.

1

http://dx.doi.org/10.3934/jcd.2022019
mailto:morgan.jones@sheffield.ac.uk
mailto:mpeet@asu.edu


2 MORGAN JONES AND MATTHEW M. PEET

ϕf : X × [0,∞) → Rn where

d

dt
ϕf (x, t) = f(ϕf (x, t)) for all x ∈ X and t ≥ 0,

ϕf (x, 0) = x for all x ∈ X.

An ODE is asymptotically stable about some equilibrium point, x∗, if there exists
some neighbourhood of the equilibrium, N (x∗), such that limt→∞ ϕf (x, t) = x∗ for
any x ∈ N (x∗). Attractor sets generalize the notion of asymptotic stability, but
where solutions tend towards a compact invariant subset of Rn (rather than being
restricted to tend towards a single equilibrium point). Specifically, a compact set
A ⊂ Rn is said to be an attractor set of the ODE (1) if for all x ∈ A there exists ε > 0
such that limt→∞ infy∈A ||y − ϕf (z, t)||2 = 0 for all z ∈ {y ∈ Rn : ||x − y||2 < ε},
and x ∈ A implies ϕf (x, t) ∈ A for all t ≥ 0. An attractor set is said to be minimal
if there does not exists any other attractor sets contained within it.

Attractor sets provide information about the long term behavior of dynamical
systems. The computation of attractor is used for design of secure private com-
munications [9, 36], the computation of Unstable Periodic Orbits (UPOs) [19], and
risk quantification of financial systems [11]. Furthermore, identification of minimal
attractor sets can be used to bound the domain of strange attractors and “non-
determinism” in chaos theory [21].

It is well known that the sublevel sets of Lyapunov functions yield attractor
sets [23]. A Lyapunov function of an ODE is any function that is positive and
decreases along the solution map of the ODE. In [22, 35] quadratic Lyapunov func-
tions were used to estimate bounds for Lorenz attractor. In [12] attractor sets are
indirectly approximated by searching for Sum-of-Squares (SOS) Lyapunov functions
that provide bounds for sup(x,t)∈Ω×[0,∞) Φ(ϕf (x, t)), where Ω ⊂ Rn, Φ : Rn → R,
and ϕf is the solution map to some ODE (1). In [17] attractor sets approximated by
using SOS to search for Lyapunov functions outside some handpicked set D ⊂ Rn

that is known to contain the attractor set. In [30, 34] an alternative SOS based
method was proposed for attractor set approximation. Impressively, the method
proposed in [30] was shown to provide an arbitrarily close approximation of an at-
tractor set with respect to the Lebesgue measure. However, the methods in [30, 34]
do not yield Lyapunov functions and hence any approximation found cannot be
shown to also be an attractor set.

The problem of computing attractor sets is related to the problem of certifying the
asymptotic stability of equilibrium points of an ODE (1); since certifying A∗ = {0}
is an attractor set of an ODE (1) is equivalent to showing the asymptotic stability
of the ODE (1) about 0 ∈ Rn. The use of SOS Lyapunov functions to certify the
asymptotic stability of equilibrium points of an ODE (1) has been well treated in
the literature [37, 4, 8, 33, 5, 15, 1].

SOS programming provides a computationally tractable method for searching for
SOS Lyapunov functions and hence computing attractor sets of ODEs. However,
it is currently unknown how conservative it is to restrict the search of Lyapunov
functions to SOS polynomials. The goal of this paper is then to: 1) Propose a
Lyapunov characterization of attractor sets that is well suited to the problem of
approximating the minimal attractor. 2) Show that for a given ODE with, suffi-
ciently smooth vector field, there exists a sequence of SOS Lyapunov functions that
yield optimal outer set approximations of attractor sets of the ODE. Note that, an
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optimal outer set approximation of a set A∗ ⊂ Rn is any set A ⊂ Rn such that
A∗ ⊆ A and D(A∗, A) is minimal, where D is some set metric.

Specifically, given an ODE (1), we propose a new Lyapunov characterization of
attractor sets. We show that if V : Rn → R satisfies,

∇V (x)T f(x) ≤ −(V (x)− 1) for all x ∈ Ω, (2)

{x ∈ Ω : V (x) ≤ 1} ⊆ Ω◦, (3)

{x ∈ Ω : V (x) ≤ 1} ̸= ∅, (4)

where Ω ⊂ Rn is some compact set and Ω◦ is the interior of Ω, then the 1-sublevel set
of V is an attractor set of the ODE (1). To approximate the minimal attractor set of
an ODE we then propose a sequence of d-degree optimization problem, each solved
by a d-degree Sum-of-Square (SOS) polynomial function that satisfies Eqs. (2), (3)
and (4), and has minimal 1-sublevel set. We show in Corollary 12 that the sequence
of d-degree solutions to the optimization problem yield a sequence of 1-sublevel sets
that each contain the minimal attractor of the ODE (1), are themselves attractor
sets, and converge to the minimal attractor of the ODE (1) with respect to the
volume metric.

Our proposed optimization problem for optimal outer set approximations of mini-
mal attractors is solved by finding the SOS polynomial Lyapunov function with min-
imal 1-sublevel set volume. Unfortunately, there is no known closed expression for
the volume of a sublevel set of a polynomial [20]; making our optimization problem
hard to solve. For SOS polynomials, V = zd(x)

TPzd(x) where P > 0, rather than
minimizing the sublevel set volume of V directly there exist several heuristics based
on maximizing the eigenvalues of P . For instance in [10] an optimization problem
was proposed with Trace(P ) objective function. Alternatively, log det(P ) functions
have also been used as a metric for volume of {x ∈ Rn : zd(x)

TPzd(x) ≤ 1}, first
being proposed in [25] and subsequently being used in the works of [2, 17, 16]. In
this paper we also take a similar determinant maximizing approach and maximize
(det(P ))

1
n which is equivalent to maximizing log det(P ) but can be implemented on

a larger array of SDP solvers [24].
In order to establish the convergence of our proposed method for optimal outer

approximations of minimal attractor sets we propose a new converse Lyapunov
theorem. Specifically, given an attractor set we show that there exists a sequence of
SOS Lyapunov functions each satisfying Eqs. (2), (3), and (4), and whose 1-sublevel
sets converge to the attractor set with respect to the volume metric.

Other important converse Lyapunov results concerning smooth Lyapunov func-
tions include [23, 31]; where it is shown that asymptotically stable nonlinear sys-
tems with sufficiently smooth vector fields admit smooth (but not necessarily SOS)
Lyapunov functions that can certify the stability of the systems. In terms of SOS
converse Lyapunov theory we mention [27] that showed that if the system’s solutions
converge locally to an equilibrium point at an exponential rate then there always
exists a SOS Lyapunov function that can certify this local exponential stability.
However, for asymptotically stable systems whose solutions converge to an equilib-
rium point at a sub-exponential rate there may not exist SOS Lyapunov functions
that can certify this stability, as shown by the counterexample presented in [3].

Before proceeding, we note that there is no contradiction with the counterexam-
ple found in [3] and our proposed converse Lyapunov theorem (stated in Theorem 8).
Although SOS Lyapunov functions cannot be used to certify the stability of equi-
librium points in general (as proven by the counterexample from [3]), Theorem 8
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shows that SOS Lyapunov functions can be used to certify that arbitrarily small
neighborhoods of equilibrium points are attractor sets. Hence SOS Lyapunov func-
tions can certify the “stability” of arbitrarily small neighborhoods of equilibrium
points.

The rest of the paper is organized as follows. Notation is introduced in Section 2.
Attractor sets are defined in terms of solution maps of ODEs in Section 3. A
Lyapunov type theorem is proposed in Section 4 that provides sufficient conditions
for a set to be an attractor set. In Section 5, given an ODE, it is shown that there
exists a sequence of SOS Lyapunov functions that yield a sequence of sublevel sets
that converge to the minimal attractor set of the ODE. An SOS based algorithm for
minimal attractor set approximation is then proposed in Section 6 and numerical
examples are shown in Section 7. Finally our conclusion is given in Section 8.

2. Notation.

2.1. Set metric notation. For A ⊂ Rn we denote the indicator function by

1A : Rn → R, where 1A(x) =

{
1 if x ∈ A

0 otherwise.
For B ⊆ Rn, µ(B) :=

∫
Rn 1B(x)dx

is the Lebesgue measure of B. For sets A,B ⊂ Rn, we denote the volume metric
as DV (A,B), where DV (A,B) := µ((A/B)∪ (B/A)). We note that DV is a metric
(Defn. 19), as shown in Lem. 20 (found in Appendix 8). For notation on the distance
between a point and a set please see Section 2.2.

2.2. Euclidean space notation. We denote the power set of Rn, the set of all
subsets of Rn, as P (Rn) = {X : X ⊂ Rn}. For two sets A,B ∈ Rn we denote
A/B = {x ∈ A : x /∈ B}. We denote the distance between a point x ∈ Rn and a set

A ⊂ Rn byD(x,A) := infy∈A{||x−y||2}. For x ∈ Rn we denote ||x||p = (
∑n

i=1 x
p
i )

1
p .

For η > 0 and y ∈ Rn we denote the set B(y, η) = {x ∈ Rn : ||x − y||2 < η}. For
η > 0 and a set A ⊂ Rn we denote B(A, η) = ∪x∈AB(x, η). Let us denote bounded
subsets of Rn by B := {B ⊂ Rn : µ(B) < ∞}. If M is a subspace of a vector
space X we denote equivalence relation ∼M for x, y ∈ X by x ∼M y if x− y ∈ M .
We denote quotient space by X (mod M) := {{y ∈ X : y ∼M x} : x ∈ X}. For
a set X ⊂ Rn we say x ∈ X is an interior point of X if there exists ε > 0 such
that {y ∈ Rn : ||x − y|| < ε} ⊂ X. We denote the set of all interior points of
X by X◦. The point x ∈ X is a limit point of X if for all ε > 0 there exists
z ∈ {y ∈ Rn/{x} : ||x − y|| < ε} such that z ∈ X; we denote the set of all limit
points of X, called the closure of X, as (X)cl. We say a set X ⊂ Rn is closed if
X = (X)cl. We say a set X ⊂ Rn is compact if it is closed and bounded. We denote
the set of n× n symmetric matrices with strictly positive eigenvalues as S++

n .

2.3. Function continuity and smoothness notation. Let C(Ω,Θ) be the set
of continuous functions with domain Ω ⊂ Rn and image Θ ⊂ Rm. We denote
the set of locally and uniformly Lipschitz continuous functions on Θ1 and Θ2 by
LocLip(Θ1,Θ2) and Lip(Θ1,Θ2) respectively. For α ∈ Nn we denote the partial

derivative Dαf(x) := Πn
i=1

∂αif
∂x

αi
i

(x) where by convention if α = [0, .., 0]T we denote

Dαf(x) := f(x). We denote the set of i’th continuously differentiable functions by
Ci(Ω,Θ) := {f ∈ C(Ω,Θ) : Dαf ∈ C(Ω,Θ) for all α ∈ Nn such that

∑n
j=1 αj ≤

i}. For V ∈ C1(Rn ×R,R) we denote ∇V := ( ∂V
∂x1

, ...., ∂V
∂xn

)T . We say f : Ω → R is

such that f ∈ L1(Ω,R) if ||f ||L1(Ω,R) :=
∫
Ω
|f(x)|dx < ∞.



A CONVERSE SUM OF SQUARES LYAPUNOV FUNCTION 5

2.4. Polynomial notation. We denote the space of polynomials p : Ω → Θ by
P(Ω,Θ) and polynomials with degree at most d ∈ N by Pd(Ω,Θ). We say p ∈
P2d(Rn,R) is Sum-of-Squares (SOS) if for k ∈ {1, ...k} ⊂ N there exists pi ∈
Pd(Rn,R) such that p(x) =

∑k
i=1(pi(x))

2. We denote
∑d

SOS to be the set of SOS
polynomials of at most degree d ∈ N and the set of all SOS polynomials as

∑
SOS .

We denote Zd : Rn × R → RNd as the vector of monomials of degree d ∈ N or less,
where Nd :=

(
d+n
d

)
.

3. Attractor sets are defined using solution maps of nonlinear ODEs.
Consider a nonlinear Ordinary Differential Equation (ODE) of the form

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn, t ∈ [0,∞), (5)

where f : Rn → Rn is the vector field and x0 ∈ Rn is the initial condition.
Given X ⊂ Rn, I ⊂ [0,∞), and an ODE (5) we say any function ϕf : X×I → Rn

satisfying

∂ϕf (x, t)

∂t
= f(ϕf (x, t)) for (x, t) ∈ X × I, (6)

ϕf (x, 0) = x for x ∈ X,

ϕf (ϕf (x, t), s) = ϕf (x, t+ s) for x ∈ X t, s ∈ I with t+ s ∈ I,

is a solution map of the ODE (5) over X × I. For simplicity throughout the paper
we will assume there exists a unique solution map to the ODE (5) over all (x, t) ∈
Rn× [0,∞). Note that the uniqueness and existence of a solution map sufficient for
the purposes of this paper, such as for initial conditions inside some invariant set
(like the Basin of Attraction of an attractor set given in Eq. (9)) and for all t ≥ 0,
can be shown to hold under minor smoothness assumption on f , see [18].

An important property of solution maps, we next recall in Lem. 1, is that they
inherit the smoothness of their associated vector field. This smoothness property
of solution maps is used in the proof of Prop. 5.

Lemma 1 (Smoothness of the solution map. Page 149 [13]). Consider
f ∈ C1(Rn,Rn). Then if ϕf is a solution map (satisfying Eq. (6)) then ϕf ∈
C1(Rn × R,R).

3.1. Attractor sets of nonlinear ODEs. A stable compact attractor set of the
ODE (5) is defined as follows.

Definition 2. We say that A ⊂ Rn is a stable compact attractor set of the
ODE (5), defined by f : Rn → Rn, if

1. A is compact and nonempty (A ̸= ∅).
2. A is a forward invariant set. That is if ϕf is a solution map of the ODE (5)

we have that,

ϕf (x, t) ∈ A for all x ∈ A and t ≥ 0. (7)

3. For each element of A there is a neighbourhood of initial conditions for which
the solution map asymptotically tends towards A. That is, for all x ∈ A there
exists δ > 0 such that for any ε > 0 there exists T ≥ 0 for which

D(ϕf (y, t), A) < ε for all y ∈ B(x, δ) and t ≥ T. (8)

4. For all ε > 0 there exists δ > 0 such that if x ∈ B(A, δ) we have that
D(A, ϕf (x, t)) < ε for all t ≥ 0.
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Furthermore, we say A is a minimal attractor set if there does not exist any
other attractor set, B, such that B ⊂ A, that is there exists x ∈ A such that x /∈ B
(B is strictly contained in A).

For simplicity we will often refer to stable compact attractor sets as attractor
sets (leaving out the words stable and compact).

Note, in the case where A ⊂ Rn is a single point, that is A = {x∗}, the condition
given in Eq. (8) reduces to the classical conditions of asymptotic stability of the
equilibrium point x∗ ∈ Rn. That is, the condition given in Eq. (8) reduces to
requiring the existence of δ > 0 such that limt→∞ ||ϕf (x, t) − x∗||2 = 0 for all
x ∈ B(x∗, δ), along with the following stability condition: for all ε > 0 there exists
a δ > 0 such that for all t > 0 we have that ϕf (B(δ, x∗), t) ⊂ B(x∗, ε).

Each attractor set of the ODE (5) has an associated set of initial conditions
for which solution maps initialized at these initial conditions converge towards the
attractor set as t → ∞. We call this set the basin of attraction of the attractor set
and define it next.

Definition 3. Given an attractor set A ⊂ Rn of the ODE (5) (defined by f : Rn →
Rn) we define the basin of attraction of A as

BOAf(A) :=
{
x ∈ Rn : lim

t→∞
D(A, ϕf(x, t)) = 0

}
. (9)

In the special case when the minimal attractor set is a single point the attrac-
tor set is commonly referred to as an equilibrium point and its associated basin of
attraction is referred to as the region of attraction. However, although this special
case is important for stability analysis, in general attractor sets can take more com-
plicated structures such as limit cycles and in dimensions three and above (chaotic)
“strange attractors”.

4. A Lyapunov approach to finding and certifying minimal attractor sets.
In this section, we propose a new Lyapunov characterization of attractor sets. To
explain the motivation for this new characterization, consider a typical Lyapunov
characterization of attractor sets, as given in [7]

Theorem 4 (Page 143 in [6]). Consider f ∈ C1(Rn,Rn). A non-empty compact
set A ⊂ Rn is an attractor set (Defn. 2) of the ODE (5), defined by vector field f ,
if and only if there exists V ∈ C(Rn,R) and Ω ⊂ Rn such that

A ⊆ Ω◦. (10)

V (x) = 0 if x ∈ A and V (x) > 0 if x ∈ Ω/A. (11)

V (ϕf (x, t)) < V (x) for all x ∈ Ω/A (12)

and t ∈ {s ∈ (0,∞) : ϕf (x, q) ∈ Ω for all q ∈ [0, s]}.

Theorem 4 defines a method for certifying that a set A ⊂ Rn is an attractor set
by searching for a Lyapunov function valid for A – an optimization problem with
decision variable V . However, this formulation is not well-suited to the problem
of finding minimal attractor sets - a bilinear problem wherein both the attractor
set A and Lyapunov function V are (unknown) decision variables. To resolve this
problem, we propose Prop. 5, wherein the proposed attractor set is defined as the
1-sublevel set of some function and hence there is only a single decision variable.
This decision variable can be thought of as a perturbed Lyapunov function. That
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is if V is a Lyapunov function satisfying ∇V (x)T f(x) < −V (x) then the perturbed

Lyapunov function Ṽ (x) = V (x) + 1 satisfies Eq. (13) from Prop. 5.
This perturbed Lyapunov function is no longer required to be zero over the

attractor set (as in Eq. (11)) making it more suitable to be searched for using
polynomial optimization, since the only polynomial, p, that is zero over an open set
is the zero polynomial p ≡ 0. Thus there may not exist a polynomial that satisfies
Eqs. (10), (11) and (12) from Theorem 4. On the other-hand, later in Section 6,
we will show that our proposed perturbed Lyapunov formulation, given in Prop 5,
allows us to combine the problems of certification and volume minimization of the
attractor set using SOS programming and determinant maximization.

Proposition 5. Consider f ∈ C1(Rn,Rn). Suppose there exists V ∈ C1(Rn, [0,∞))
such that

∇V (x)T f(x) ≤ −(V (x)− 1) for all x ∈ Ω, (13)

{x ∈ Ω : V (x) ≤ 1} ⊆ Ω◦, (14)

{x ∈ Ω : V (x) ≤ 1} ̸= ∅, (15)

where Ω ⊂ Rn is a compact set. Then {x ∈ Ω : V (x) ≤ 1} is an attractor set
(Defn. 2) to the ODE (5) defined by f .

Note that the Lyapunov function V in Prop. 5 is not required to be positive
semidefinite. However, later in Section 6 we will include a positivity constraint on
V – allowing us to minimize the volume of the 1-sublevel set.

Proof of Proposition 5. Suppose there exists V that satisfies Eqs. (13), (14), and

(15). We will now construct a compact set A ⊂ Rn and a function Ṽ ∈ C1(Rn,R)
that satisfies Eqs. (10), (11) and (12) from Theorem 4, hence showing A is an
attractor set. Let A := {x ∈ Ω : V (x) ≤ 1}. We first show that A is compact. Since
V is continuous it follows that A := {x ∈ Ω : V (x) ≤ 1} is closed by Lemma 15.
Moreover, A is bounded since A ⊆ Ω◦ and Ω is bounded. Since A ⊂ Rn is closed
and bounded it follows that A is a compact set.

Now, consider ρ ∈ C∞(Rn,R) defined as

ρ(x) :=

{
e

−1

(1−x)2 if x > 1

0 otherwise
.

Define Ṽ ∈ C1(Rn,R) as

Ṽ (x) := ρ(V (x)),

where V satisfies Eqs. (13), (14), and (15).
Now, clearly Eq. (10) is trivially satisfied by A := {x ∈ Ω : V (x) ≤ 1} using

Eq. (14). Also, Ṽ satisfies Eq. (11) since if x ∈ A then V (x) ≤ 1 and hence

Ṽ (x) = ρ(V (x)) = 0. On the other hand if x ∈ Ω/A then V (x) > 1 and hence

Ṽ (x) = ρ(V (x)) > 0. Finally, we next show Ṽ satisfies Eq. (12). If x ∈ Ω/A then
V (x) > 1 and hence,

∇Ṽ (x)T f(x) = ρ′(V (x))∇V (x)T f(x) (16)

=
−2

(1− V (x))3
ρ(V (x))∇V (x)T f(x)

≤ −2

(1− V (x))3
ρ(V (x))(1− V (x)) < 0.



8 MORGAN JONES AND MATTHEW M. PEET

Eq. (16) implies d
dt Ṽ (ϕf (x, t)) < 0 for all x ∈ Ω/A and t ∈ {s ∈ (0,∞) : ϕf (x, q) ∈

Ω for all q ∈ [0, s]}. Note that if t ∈ {s ∈ (0,∞) : ϕf (x, q) ∈ Ω for all q ∈ [0, s]} then
ϕf (x, s) ∈ Ω for all s ∈ [0, t] and hence d

dt Ṽ (ϕf (x, s)) < 0 for all x ∈ Ω/A and s ∈
[0, t]. Thus

∫ t

0
Ṽ (ϕf (x, s))ds < 0 and hence by the fundamental theorem of calculus

it follows that Ṽ satisfies Eq. (12).
Therefore A = {x ∈ Ω : V (x) ≤ 1} is an attractor set by Thm. 4.

If V and Ω satisfy Eqs. (13), (14), and (15) (as in Prop. 5) and {x ∈ Ω : V (x) ≤
1 + a} ⊆ Ω◦ for some a ≥ 0, then we next show that {x ∈ Ω : V (x) ≤ 1 + a} is a
subset of the basin of attraction of the attractor set {x ∈ Ω : V (x) ≤ 1}.

Corollary 6. Consider f ∈ LocLip(Rn,Rn). Suppose there exists
V ∈ C1(Rn, [0,∞)) and a compact set Ω ⊂ Rn satisfying Eqs. (13), (14), and (15)
(as in Prop. 5). Then, for any a > 0 such that {x ∈ Ω : V (x) ≤ 1 + a} ⊆ Ω◦ it
follows that {x ∈ Ω : V (x) ≤ 1 + a} ⊆ BOAf ({x ∈ Ω : V (x) ≤ 1}).

Proof. Throughout this proof we will use the following notation: Sa := {x ∈ Ω :
V (x) ≤ 1 + a} where a ≥ 0.

Proof Sa ⊆ Ω◦ is an invariant set: We now prove that if Sa ⊆ Ω◦, where
a ≥ 0, then Sa is an invariant set. To see this, suppose for contradiction that there
exists y ∈ Sa and T ≥ 0 such that ϕf (y, T ) /∈ Sa. That is V (ϕf (y, 0)) ≤ 1 + a and
V (ϕf (y, T )) > 1+a. Now, since V (ϕf (y, ·)) is continuous (since V is continuous, ϕf

is continuous by Lem. 1, and the composition of continuous functions is continuous)
it follows by the intermediate value theorem that there exists 0 ≤ s1 < s2 ≤ T such
that V (ϕf (y, s1)) = 1+a and V (ϕf (y, t))> 1+a for all t ∈ (s1, s2]. Thus ϕf (y, s1) ∈
Sa ⊆ Ω◦ but ϕf (y, t) /∈ Sa for all t ∈ (s1, s2]. Since Ω

◦ is open and ϕf (y, s1) ∈ Sa ⊆
Ω◦ there exists ε > 0 such that B(ϕf (y, s1), ε) ⊂ Ω◦. Again, using the continuity of
V (ϕf (y, ·)) there exists δ > 0 such that ϕf (y, s1 + s) ∈ B(ϕf (y, s1), ε) ⊆ Ω◦ for all
s ∈ [0, δ]. Therefore, V (ϕf (y, t)) > 1+ a and ϕf (y, t) ∈ Ω◦ for all t ∈ (s1, s3], where
s3 := min{s2, s1 + δ}. Applying the mean value theorem there exists s1 < c < s3
such that

d

dt
V (ϕf (y, c)) =

V (ϕf (y, s3))− V (ϕf (y, s1))

s3 − s1
>

1 + a− 1− a

s3 − s1
= 0. (17)

On the other hand since ϕf (y, t) ∈ Ω◦ for all t ∈ (s1, s3] it follows that ϕf (y, c) ∈ Ω◦

and therefore Eq. (13) can be applied to give

d

dt
V (ϕf (y, c)) ≤ 1− V (ϕf (y, c)) < 1− 1− a = −a, (18)

using the fact that c ∈ (s1, s3) and V (ϕf (y, t)) > 1 + a for all t ∈ (s1, s3].
Now Eqs. (17) and (18) contradict each other proving Sa is invariant.
Proof Sa ⊆ BOAf (S0): Since, Sa ⊂ Ω◦ is invariant it follows that for any x ∈ Sa

we have that ϕf (x, t) ∈ Ω◦ for all t ≥ 0. Thus, by Eq. (13) we have that

d

dt
V (ϕf (x, t)) ≤ −(V (ϕf (x, t))− 1) for all t ∈ [0,∞).

Now using Gronwall’s inequality (Lem. 16) and the fact x ∈ Sa we have that

V (ϕf (x, t))− 1 ≤ e−t(V (x)− 1) ≤ ae−t for all t ∈ [0,∞).

Therefore, it now follows for any η > 0 that

ϕf (x, t) ∈ Sη for all t ≥ ln

(
a

η

)
. (19)
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For any ε > 0 we will now construct η > 0 such that Sη ⊆ B(S0, ε) (recalling the
notation B(S0, ε) is defined in Sec 2.2) implying that if ϕf (x, t) ∈ Sη for all t ≥ T
then D(S0, ϕf (x, t)) < ε for all t ≥ T .

First note that if Ω/B(S0, ε) = ∅ then Ω ⊆ B(S0, ε) and we can trivially take
η = a. Then by Eq. (19) we have that ϕf (x, t) ∈ Sa ⊆ Ω◦ ⊆ B(S0, ε) for all t ≥ 0.
Thus, D(ϕf (x, t), S0) < ε for all t ≥ 0.

Let us now consider the case Ω/B(S0, ε) ̸= ∅. Let η ∈ (0, b) where
b = min{infz∈Ω/B(S0,ε) V (z) − 1, a

2}, where infz∈Ω/B(S0,ε) V (z) exists since
Ω/B(S0, ε) is compact and V is continuous. Note that b > 0 since a > 0 and
infz∈Ω/B(S0,ε) V (z)−1 > 0 (because Ω/B(S0, ε) is compact so by the extreme value
theorem there exists z∗ ∈ Ω/B(S0, ε) such that V (z∗) = infz∈Ω/B(S0,ε) V (z) and
since z∗ /∈ S0 it follows that V (z∗) > 1).

We now claim that Sη ⊆ B(S0, ε). First we note that Sη ⊆ Ω◦ since Sη ⊂ Sa

and Sa ⊂ Ω◦. Now suppose for contradiction that Sη ⊈ B(S0, ε). Then there exists
w ∈ Sη ⊆ Ω such that w /∈ B(S0, ε) implying w ∈ Ω/B(S0, ε). Now, V (w) ≤ η+1 <
infz∈Ω/B(S0,ε){V (z)} ≤ V (w) implying 0 < 0, providing a contradiction.

Therefore we have shown that for any x ∈ Sa and ε > 0 there exists T ≥ 0 such
that D(ϕf (x, t), S0) < ε implying x ∈ BOAf (S0) and hence Sa ⊆ BOAf (S0).

In Prop. 5 we have shown that if a function V satisfies Eqs. (13), (14) and (15)
then the 1-sublevel set of V is an attractor set of the ODE defined by f . In the
next section we now prove that these Lyapunov characterizations of attractor sets
are not conservative, even when V is restricted to be an SOS polynomial.

5. Converse Lyapunov functions for attractor set characterization. In the
previous section, we have shown that if there exists a function V which satisfies
Eqs. (13), (14) and (15), then the set {x ∈ Ω : V (x) ≤ 1} is an attractor set of the
ODE defined by f ∈ LocLip(Rn,Rn). In this section, we show that for any attractor
set A ⊂ Rn and any ϵ > 0, there exists an SOS function V which satisfies Eq. (13)
and for which A ⊂ {x ∈ Ω : V (x) ≤ 1} and DV (A, {x ∈ Ω : V (x) ≤ 1}) ≤ ϵ.
This implies that the Lyapunov characterization of attractor sets in Section 4 is
not conservative and furthermore, these conditions remain tight even when the
Lyapunov functions are constrained to be SOS. In Section 6, we will use this result
to propose a sequence of SOS programming problems whose limit yields an attractor
set which is arbitrarily close to the minimal attractor set.

To begin, we quote a result on existence of smooth converse Lyapunov function
from [31].

Corollary 7 (Cor. 2 in [31]). Consider f ∈ LocLip(Rn,Rn). The set A ⊂ Rn is
an attractor set to the ODE (5) if and only if there exists V ∈ C∞(BOAf (A),R)
such that

1. V (x) ≥ 0 for all x ∈ BOAf (A) and V (x) = 0 if and only if x ∈ A.
2. ∇V (x)T f(x) ≤ −V (x) for all x ∈ BOAf (A).

Next, in Thm. 8 we use Cor. 7 to show that for any given attractor set A ⊂
Rn there exists a sequence of Sum-of-Squares (SOS) polynomials, each satisfying
Eqs. (13) and (14), each of whose 1-sublevel sets contain A, and whose 1-sublevel
sets converge to A (with respect to the volume metric). Note that in order to show
our SOS approximation, P , satisfies Eq. (14) we show P (x) > 1 + α for all x ∈ ∂Ω
for some α > 0.
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To construct such an SOS function required in the proof of Thm. 8, we approxi-
mate the square root of the converse Lyapunov function V (from Cor. 7), perturbed
by a positive constant, by a polynomial function. We then square this polynomial
approximation to get an SOS approximation. Note that we perturb V by a positive
constant γ > 0 since the image of V includes {0}. Hence, without this pertur-
bation, it follows that the square root of V may not be differentiable, making it
challenging to approximate it by a polynomial. To overcome this problem, rather
than approximating

√
V (x) we approximate

√
V (x) + γ.

Theorem 8. For f ∈ LocLip(Rn,Rn), suppose A ⊂ Rn is an attractor set of the
ODE (5) defined by f and let Ω be any compact set such that A ⊆ Ω◦ and Ω ⊂
BOAf (A). Then there exists a sequence of polynomials, {Pd}d∈N ⊂

∑
SOS(Rn,R)

with Pd ∈
∑d

SOS(Rn,R) for all d ∈ N, a positive definite scalar α > 0 and an
integer N ∈ N such that

1. ∇Pd(x)
T f(x) < −(Pd(x)− 1) for all x ∈ Ω and d ≥ N .

2. Pd(x) > 1 + α for all x ∈ ∂Ω and d ≥ N .
3. A ⊆ {x ∈ Ω : Pd(x) ≤ 1} for all d ≥ N .
4. limd→∞ DV (A, {x ∈ Ω : Pd(x) ≤ 1}) = 0 (recalling DV denotes the volume

metric defined in Sec. 2.1).

Proof. Let us suppose A ⊂ Rn is an attractor set to the ODE (5). By Cor. 7 there
exists W ∈ C∞(BOAf (A),R) such that

1. W (x) ≥ 0 for all x ∈ BOAf (A) and W (x) = 0 if and only if x ∈ A.
2. ∇W (x)T f(x) ≤ −W (x) for all x ∈ BOAf (A).

We next split the remainder of the proof of Theorem 8 into the following parts.
In Part 1 we perturb W by a positive constant γ > 0, defining J(x) := W (x) = γ,

and approximate H(x) :=
√
J(x) by a d-degree polynomial function, Rd. In Part

2 we show that for a suitable correction term, σ > 0, that the SOS polynomial,
Gd(x) := (Rd(x)− σ)2, can be made arbitrarily close to J and satisfies a Lyapunov
type inequality similar to Eq. (13). Finally, in Part 3, we show that the SOS function

Pd(x) :=
Gd(x)

γ satisfies the statement of Theorem 8 .

Part 1 of the proof: Let γ > 0 and consider J(x) := W (x) + γ. It trivially
follows that since A ⊆ Ω ⊂ BOAf (A) we have

∇J(x)T f(x) ≤ −(J(x)− γ) for all x ∈ BOAf (A). (20)

A = {x ∈ Ω : J(x) ≤ γ}. (21)

Since W (x) ≥ 0 it follows that J(x) ≥ γ > 0. Therefore H(x) := +
√

J(x) is dif-
ferentiable. That is H ∈ C1(Rn,R), since the function g(x) :=

√
x is differentiable

over (0,∞) and J maps onto (γ,∞) ⊂ (0,∞). Using the fact H is differentiable
and applying the chain rule we find that

||∇H(x)||2 = ||∇
√
W (x) + γ||2 =

1

2
√

W (x) + γ
||∇W (x)||2

≤ 1

2
√
γ
||∇W (x)||2 ≤ C

2
√
γ

for all x ∈ Ω, (22)

where C := supx∈Ω ||∇W (x)||2. Note that the first inequality in Eq. (22) follows
since W (x) ≥ 0 for all x ∈ Ω implies 1√

W (x)+γ
≤ 1√

γ for all x ∈ Ω.
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Moreover, applying the chain rule, the inequality in Eq. (20), and the fact that
1

2
√

J(x)
≥ 0 for all x ∈ Ω we find that,

∇H(x)T f(x) = ∇
√

J(x)
T
f(x) =

1

2
√

J(x)
∇J(x)

T
f(x)

≤ −1

2
√
J(x)

(J(x)− γ) for all x ∈ Ω.

It now follows that H satisfies

2H(x)∇H(x)T f(x) ≤ −(H2(x)− γ) for all x ∈ Ω. (23)

We next approximate H by a polynomial. Because in Part 2 of the proof we use
this polynomial approximation of H to construct an SOS polynomial approximation
of H(x)2 := J(x), we require specific error bounds in our polynomial approximation
of H.

Let,

γ >
M1C

2
> 0, (24)

where M1 := supx∈Ω ||f(x)||2 and recalling C := supx∈Ω ||∇W (x)||2. Note that γ
from Eq. (24) is a constant that only depends on the problems data (f and Ω).

Also let,

ε > 0, (25)

0 < α <
1

γ
min
x∈∂Ω

W (x) (26)

0 < θ < min

{
ε, (µ(Ω) + 1)(min

x∈∂Ω
W (x)− γα)

}
(27)

0 < δ < min

{ √
γ −M1M3

M1M2 +M1M3 +M2
,

√
γ

M2

}
, (28)

0 < σ < min

{
2(
√
γ − (M1M2 +M1M3 +M2)δ −M1M3)

(2M1 + 1)δ2 + 2(1 +M1)δ + 1
, (29)

2(
√
γ−M2δ)

(δ + 1)2
,

√
θ√

2(µ(Ω)+1)(δ+1)
,

θ

4M2(δ+1)(µ(Ω)+1)

}
,

recalling M1 := supx∈Ω ||f(x)||2 ≥ 0 and where M2 := supx∈Ω |H(x)| ≥ 0, and
M3 := supx∈Ω ||∇H(x)||2 ≥ 0. Note that α > 0 since γ > 0 and minδ∈∂Ω W (x) > 0
(since A ⊆ Ω◦ implies A ∩ ∂Ω = ∅ and W (x) = 0 iff x ∈ A). Also note that
θ > 0 since ε > 0 and minx∈∂Ω W (x) − γα by Eq. (26). Moreover, δ > 0 since
γ > M1C

2 (by Eq. (24)) and M3 ≤ C
2
√
γ (by Eq. (22)) implying that

√
γ−M1M3 > 0.

Furthermore, σ > 0 since δ <
√
γ−M1M3

M1M2+M1M3+M2
implying 2(

√
γ− (M1M2+M1M3+

M2)δ −M1M3) > 0 and δ <
√
γ

M2
implying 2(

√
γ −M2δ) > 0.

Now, by Theorem 17 there exists polynomials {Rd}d∈N ⊂ P(Rn,R) and N ∈ N
such that

|H(x)−Rd(x)| < δσ for all d ≥ N. (30)

||∇H(x)−∇Rd(x)||2 < δσ for all d ≥ N. (31)
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Part 2 of the proof: In this part of the proof we show that there exists γ > 0,
α > 0, N ∈ N, and {Gd}d∈N ⊂

∑
SOS such that

∇Gd(x)
T f(x) < −(Gd(x)− γ) for all x ∈ Ω and d > N. (32)

Gd(x) ≤ J(x) for all x ∈ Ω and d ≥ N. (33)

Gd(x) ≥ γ(1 + α) for all x ∈ ∂Ω and d ≥ N (34)

lim
d→∞

||Gd − J ||L1(Ω,R) = 0. (35)

Before we proceed we note that showing Eq. (35) is equivalent to showing that
there exists {Gd}d∈N ⊂

∑
SOS such that for any ε > 0 there exists N ∈ N for which

the following holds

||Gd − J ||L1(Ω,R) < ε for all d ≥ N. (36)

Now, since Rd ∈ P(Rn,R) (defined by Eqs (30) and (31)) it follows that Gd(x) :=
(Rd(x)− σ)2 is a SOS polynomial, that is Gd ∈

∑
SOS for all d ∈ N.

We next show that Gd satisfies Eq. (32). Recalling γ > M1C
2 (by Eq. (24)),

M1 := supx∈Ω ||f(x)||2 and C := supx∈Ω ||∇W (x)||2, it follows that

∇Gd(x)
T f(x) + (Gd(x)− γ)

= (∇(Rd(x)− σ)2)T f(x) + ((Rd(x)− σ)2 − γ)

= 2(Rd(x)− σ)∇Rd(x)
T f(x) + (R2

d(x)− γ)− 2σRd(x) + σ2

≤ 2Rd(x)∇Rd(x)
Tf(x)− 2H(x)∇H(x)Tf(x) + (R2

d(x)−H2(x))

− 2σRd(x) + σ2 − 2σ∇Rd(x)
T f(x)

= 2(Rd(x)−H(x))∇Rd(x)
Tf(x) + 2H(x)∇(Rd −H)(x)Tf(x)

+ (Rd(x)−H(x))(Rd(x) +H(x)) + 2σ(H(x)−Rd(x))

− 2σ∇(Rd −H)(x)T f(x)− 2σ∇H(x)T f(x)− 2σH(x) + σ2

≤ 2|Rd(x)−H(x)|||∇Rd(x)||2||f(x)||2
+ 2H(x)||∇Rd(x)−∇H(x)||2||f(x)||2
+ |Rd(x)−H(x)|(|Rd(x)|+H(x)) + 2σ|H(x)−Rd(x)|
+ 2σ||∇(Rd −H)(x)||2||f(x)||2 + 2σ||∇H(x)||2||f(x)||2 − 2σ

√
γ + σ2

≤ 2δσM1(||∇(Rd −H)(x)||2 + ||∇H(x)||2) + 2M1M2δσ

+δσ(|Rd(x)−H(x)|+H(x) +M2)+2δσ2+2M1δσ
2+2M1M3σ − 2σ

√
γ + σ2

≤ 2M1δ
2σ2 + 2M1M3δσ + 2M1M2δσ + δ2σ2 + 2M2δσ

+ 2δσ2 + 2M1δσ
2 + 2M1M3σ − 2

√
γσ + σ2

= σ

(
((2M1 + 1)δ2+2(1 +M1)δ+1)σ+2((M1M2 +M1M3 +M2)δ+M1M3−

√
γ)

)
< 0 for all x ∈ Ω and d ≥ N. (37)

Where all the equalities in Eq. (37) follow from rearranging terms or adding and
subtracting terms. The first inequality in Eq. (37) follows by applying the inequality
in Eq. (23). The second inequality in Eq. (37) follows by the triangle inequality and
the Cauchy Swarz in inequality. The third and fourth inequalities in Eq. (37) follows
by Eqs. (30) and (31). Finally, the last inequality (the fifth inequality) in Eq. (37)
follows by Eq. (29).
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We now show Gd satisfies Eq. (33).

Gd(x)− J(x) = (Rd(x)− σ)2 −H(x)2

= Rd(x)
2 − 2σRd(x) + σ2 −H(x)2

= (Rd(x)−H(x))(Rd(x) +H(x)) + 2σ(H(x)−Rd(x))− 2σH(x) + σ2

≤ δσ(δσ + 2M2) + 2δσ2 − 2σ
√
γ + σ2

= σ

(
(δ2 + 2δ + 1)σ + 2M2δ − 2

√
γ

)
(38)

< 0 for all x ∈ Ω and d ≥ N.

Where the first inequality in Eq. (38) follows using Eq. (30) and the fact H(x) ≥ √
γ

for all x ∈ Ω. The second inequality in Eq. (38) follows by Eq. (29)
(
σ <

2
√
γ−2M2δ

(δ+1)2

)
.

We now show Gd satisfies Eq. (34).

J(x)−Gd(x) = J(x)− (Rd(x)− σ)2

= H(x)2 −Rd(x)
2 + 2σRd(x)− σ2

= (H(x)−Rd(x))(H(x) +Rd(x)) + 2σ(Rd(x)−H(x)) + 2σH(x)− σ2

≤ δσ(2M2 + δσ) + 2δσ2 + 2σM2 − σ2

= (δ2 + 2δ − 1)σ2 + 2M2(δ + 1)σ

≤ (δ2 + 2δ + 1)σ2 + 2M2(δ + 1)σ

<
θ

µ(Ω) + 1
for all x ∈ Ω and d ≥ N. (39)

Where the first inequality in Eq. (39) follows using Eq. (30). The second inequality
in Eq. (39) follows by σ > 0 and −1 < 1. The third inequality in Eq. (39) follows

by Eq. (29) (σ <
√
θ√

2(µ(Ω)+1)(δ+1)
and σ < θ

4M2(δ+1)(µ(Ω)+1) ). Now by rearranging

Eq. (39) and using the fact that J(x) := W (x) + γ we have that,

Gd(x) > J(x)− θ

µ(Ω) + 1
(40)

= W (x) + γ − θ

µ(Ω) + 1

= γ +
(µ(Ω) + 1)(minx∈∂Ω W (x))− θ

µ(Ω) + 1

> γ(1 + α) for all x ∈ ∂Ω and d ≥ N.

Where the first inequality in Eq. (40) follows by Eq. (39) and the second inequality
follows by Eq. (27). Hence Eq. (40) shows Eq. (34) holds.

We now show Gd satisfies Eq. (35) by showing Gd satisfies Eq. (36). By Eqs. (38)
and (39) and the fact that θ < ε (Eq. (27)), it follows that

|Gd(x)− J(x)| < ε

µ(Ω) + 1
for all x ∈ Ω and d ≥ N, (41)

and thus

||Gd − J ||L1(Ω,R) ≤ sup
x∈Ω

|Gd(x)− J(x)|µ(Ω) < ε and d ≥ N.

Therefore Eq. (35) holds.
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Part 3 of the proof: Let Pd(x) := Gd(x)
γ . Recall that γ > 0 from Eq. (24)

is a constant that only depends on the problems data (f and Ω) and not d ∈ N.
Therefore, limd→∞ Pd = 1

γ limd→∞ Gd. Moreover, it follows that {Pd}d∈N ⊂
∑

SOS

since {Gd}d∈N ⊂
∑

SOS and γ > 0 (by Eq. (24)). Furthermore, it follows by
Eqs. (32), (33), (34), and (35) that

∇Pd(x)
T f(x) < −(Pd(x)− 1) for all x ∈ Ω and d ≥ N, (42)

Pd(x) ≤ J̃(x) for all x ∈ Ω and d ≥ N, (43)

Pd(x) > 1 + α for all x ∈ ∂Ω and d ≥ N (44)

lim
d→∞

||Pd − J̃ ||L1(Ω,R) = 0, (45)

where J̃(x) = J(x)
γ .

We now argue that Theorem 8 is proven. Eq. (21) implies that A = {x ∈ Ω :

J̃(x) ≤ 1}. Then Eq. (43) implies that A ⊆ {x ∈ Ω : Pd(x) ≤ 1} for all d ≥ N .
Moreover, Eqs. (43) and (45) together with Theorem 22 (found in Appendix 8)

imply that limd→∞ DV ({x ∈ Ω : J̃(x) ≤ 1}, {x ∈ Ω : Pd(x) ≤ 1}) = 0, implying

limd→∞ DV (A, {x ∈ Ω : Pd(x) ≤ 1}) = 0 (since A = {x ∈ Ω : J̃(x) ≤ 1}).

Remark 9. Theorem 8 shows that for any attractor set, A, there exists an SOS
polynomial, P , that satisfies the Lyapunov conditions(Eqs. (13), (14) and (15)) of
Prop. 5 and that has a 1-sublevel set arbitrarily close to the attractor set with respect
to the volume metric. Note that P satisfies Eq. (13) directly from the statement of
Theorem 8. Also note that P satisfies Eq. (14) since by Theorem 8 we have that
P (x) > 1 for all δΩ. Also note that Eq. (15) since by Theorem 8 we have that
A ⊆ {x ∈ Ω : P (x) ≤ 1} and since A ̸= ∅ it follows that {x ∈ Ω : P (x) ≤ 1} ̸= ∅.

Theorem 8 shows that the Lyapunov characterization of attractor sets proposed
in Section 4 is not conservative and that this non conservatism is retained even if
the Lyapunov functions are constrained to be SOS. However, in order to apply the
results of Sections 4 and 5 to compute outer approximations of minimal attractors,
we require an algorithm which can enforce the Lyapunov inequality conditions of
Prop. 5 while minimizing the volume of the 1-sublevel set of the Lyapunov function.
In the following section propose such an algorithm based on convex optimization
and SOS programming.

6. A family of SOS problems for minimal attractor set approximation.
In Section 4, we proposed a Lyapunov characterization of attractor sets for a given
ODE defined by a vector field f . In Section 5, we showed that this characterization
is not conservative even if the Lyapunov functions are constrained to be SOS. Given
these two results, we may now formulate a polynomial optimization characterization
of the minimal attractor set A∗ ⊂ Ω of a given ODE defined by a vector field, f .
The following optimization problem enforces the Lyapunov conditions of Prop.5
while minimizing the distance between the minimal attractor A∗ and the 1-sublevel
set of the Lyapunov function:

inf
J∈F

DV (A
∗, {x ∈ Ω : J(x) ≤ 1}) (46)

such that ∇J(x)T f(x) ≤ −(J(x)− 1) for all x ∈ Ω,

{x ∈ Ω : J(x) ≤ 1} ⊆ Ω◦,

{x ∈ Ω : J(x) ≤ 1} ̸= ∅,
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where F is some set of functions which we may take to be the set of SOS polynomials.
In Subsection 6.2, we will propose a SOS programming approach to solving Op-

timization Problem (46). Specifically, in Subsection 6.2, we propose a sequence of
quasi-SOS programming problems, each involving volume minimization, and whose
limit yields the minimal attractor set of the ODE defined by f . However, the SOS
constraints in Subsection 6.2 do not enforce {x ∈ Ω : J(x) ≤ 1} ̸= ∅ - thus reducing
the computational complexity of the algorithm. We show that it is not necesary to
enforce this constraint because as we will show next in Subsection 6.1, by selecting
Ω sufficiently large and enforcing ∇J(x)T f(x) ≤ −(J(x)−1) for all x ∈ Ω it follows
that J automatically satisfies {x ∈ Ω : J(x) ≤ 1} ̸= ∅. Moreover, unlike Opt. (46),
the objective function of our proposed quasi-SOS programming problem will not in-
volve the unknown set A∗. This is because, as we will next show in Subsection 6.1,
for sufficiently large Ω and J such that ∇J(x)T f(x) ≤ −(J(x) − 1) for all x ∈ Ω
it follows A∗ ⊆ {x ∈ Ω : J(x) ≤ 1} (the 1-sublevel set of J contains the mini-
mal attractor set). We later use result in Subsection 6.2 to eliminate A∗ from the
objective function.

Note in addition, we will show in Subsection 6.4 that if sublevel set volume is
minimized and Ω is sufficiently large, then we may likewise eliminate the constraint
{x ∈ Ω : J(x) ≤ 1} ⊆ Ω◦– thus further reducing computational complexity of the
SOS programming problem.

6.1. A reduced form of optimization problem (46). In Prop. 5 we have pro-
posed a Lyapunov characterization of attractor sets. We have shown that if V
satisfies Eqs. (13), (14) and (15) then the 1-sublevel set of V is an attractor set of
the ODE defined by the vector field f . In Eq. (46) we have proposed an optimization
problem that searches over functions J that satisfy Eqs. (13), (14) and (15) while
minimizing the distance between the 1-sublevel set of J and the minimal attractor
set of the ODE defined by f .

Later, in Subsection 6.2 we will propose an SOS programming problem for solving
Opt. (46) that searches for a J that satisfies Eqs. (13) and (14) while minimizing
the volume of the 1-sublevel set of J , but does not directly enforce Eq. (15) - instead
choosing Ω to be sufficiently large. Fortunately, as we will show next in Lemma 10
that if Ω is chosen sufficiently large such that A ⊆ Ω, for some attractor set A of the
ODE, then any continuous V satisfying Eq. (13) automatically satisfies Eq. (15).
Lemma 10 then shows that if Ω contains the minimal attractor and V satisfies
Eqs. (13) and (14), then the 1-sublevel set of V is an attractor set.

Lemma 10. Consider f ∈ C1(Rn,Rn). Suppose there exists an attractor set
(Defn. 2) A ⊂ Rn of the ODE (5) defined by f , V ∈ C1(Rn, [0,∞)), and a compact
set Ω ⊂ Rn such that

∇V (x)T f(x) ≤ −(V (x)− 1) for all x ∈ Ω, (47)

A ⊆ Ω, (48)

then {x ∈ Ω : V (x) ≤ 1} ̸= ∅.

Proof. In order to prove {x ∈ Ω : V (x) ≤ 1} ̸= ∅ we show that A∩{x ∈ Ω : V (x) ≤
1} ̸= ∅.

Suppose for contradiction that A ∩ {x ∈ Ω : V (x) ≤ 1} = ∅. Then V (y) > 1
for all y ∈ A. Since A ⊆ Ω (by Eq. (48)) is an attractor set it is an invariant set.
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Therefore, ϕf (y, t) ∈ A ⊆ Ω for all t ≥ 0 and thus by Eq. (47) it follows that

d

dt
V (ϕf (y, t)) ≤ −(V (ϕf (y, t))− 1) for all (y, t) ∈ A× [0,∞).

Then, using Gronwall’s inequality (Lem. 16) we have that

V (ϕf (y, t))− 1 ≤ e−t(V (y)− 1) for all (y, t) ∈ A× [0,∞). (49)

Let c := inft≥0{V (ϕf (y, t)) − 1}. We will now argue that c > 0. Using the
fact that ϕf (y, t) ∈ A for all t ≥ 0 it follows that c = inft≥0{V (ϕf (y, t)) − 1} ≥
infz∈A{V (z)− 1}. Then, since V is continuous and A is compact it follows by the
extreme value theorem that there exists z∗ ∈ A such that V (z∗)−1 = infz∈A{V (z)−
1} ≥ c. Since we have assumed A∩{x ∈ Ω : V (x) ≤ 1} = ∅ it follows that if z∗ ∈ A
then z∗ /∈ {x ∈ Ω : V (x) ≤ 1} and hence c ≥ V (z∗)− 1 > 0.

Now, by Eq. (49) and since c > 0 it follows that 0 < cet ≤ V (y)− 1 for all t ≥ 0
and y ∈ A implying that V is unbounded over A, contradicting the continuity of V .
Therefore it follows that A ∩ {x ∈ Ω : V (x) ≤ 1} ̸= ∅ and hence {x ∈ Ω : V (x) ≤
1} ̸= ∅.

Later in Subsection 6.2 we will propose an optimization problem that has an
objective function independent of the unknown set A∗ (unlike Opt. 46). In order
to formulate this optimization problem we require A∗ ⊆ {x ∈ Ω : V (x) ≤ 1}. Next,
we show that if Ω contains a neighborhood of the minimal attractor, A∗, and V
satisfies Eqs. (13), then the 1-sublevel set of V contains the minimal attractor set.

Lemma 11. Consider f ∈ C1(Rn,Rn). Suppose A∗ ⊂ Rn is the minimal attractor
set (Defn. 2) of the ODE (5) defined by f , V ∈ C1(Rn, [0,∞)), σ > 0, and a
compact set Ω ⊂ Rn such that

∇V (x)T f(x) ≤ −(V (x)− 1) for all x ∈ Ω, (50)

B(A∗, σ) ⊆ Ω, (51)

then A∗ ⊆ {x ∈ Ω : V (x) ≤ 1}.

Proof. To show A∗ ⊆ {x ∈ Ω : V (x) ≤ 1} we will show A∗ ∩ {x ∈ Ω : V (x) ≤ 1} is
an attractor set. Then if A∗ ⊈ {x ∈ Ω : V (x) ≤ 1} it follows that A∗ ∩ {x ∈ Ω :
V (x) ≤ 1} ⊂ A∗, that is there exists an attractor set that is a strict subset of A∗,
contradicting the fact that A∗ is the minimal attractor set.

To show A∗ ∩ {x ∈ Ω : V (x) ≤ 1} is an attractor set we will split the remainder
of the proof into three parts, showing A∗ ∩ {x ∈ Ω : V (x) ≤ 1} satisfies the three
properties of attractor sets in Defn. 2.

Proof A∗ ∩ {x ∈ Ω : V (x) ≤ 1} is nonempty and compact: By the proof of

Lemma 10 it follows that A∗ ∩ {x ∈ Ω : V (x) ≤ 1} ̸= ∅. Moreover, since A∗ is
compact and Ω is compact, implying {x ∈ Ω : V (x) ≤ 1} ⊆ Ω is compact, it follows
{x ∈ Ω : V (x) ≤ 1} is compact.

Proof A∗ ∩ {x ∈ Ω : V (x) ≤ 1} is invariant: Let y ∈ A∗ ∩ {x ∈ Ω : V (x) ≤ 1}
then y ∈ A∗ and y ∈ {x ∈ Ω : V (x) ≤ 1}. Since A∗ is an attractor set it is invariant
and therefore ϕf (y, t) ∈ A∗ for all t ≥ 0. In order to prove A∗ ∩ {x ∈ Ω : V (x) ≤ 1}
is invariant we must also show ϕf (y, t) ∈ {x ∈ Ω : V (x) ≤ 1} for all t ≥ 0. For
contradiction suppose there exists T > 0 such that ϕf (y, t) /∈ {x ∈ Ω : V (x) ≤ 1}.
That is, V (ϕf (y, T )) > 1.
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Using the fact A∗ is invariant and applying the Granwall Bellman Lemma to
Eq. (50) we get,

V (ϕf (y, t))− 1 ≤ e−t(V (y)− 1) for all (y, t) ∈ A∗ × [0,∞).

Hence, if V (ϕf (y, T )) > 1 we get that that 0 < V (ϕf (y, T )) − 1 ≤ eT (V (y) − 1)
implying V (y) > 1 contradicting the fact that y ∈ {x ∈ Ω : V (x) ≤ 1}. Thus we
have shown that if y ∈ A∗ ∩{x ∈ Ω : V (x) ≤ 1} then ϕf (x, t) ∈ A∗ for all t ≥ 0 and
ϕf (x, t) ∈ {x ∈ Ω : V (x) ≤ 1} implying ϕf (x, t) ∈ A∗ ∩ {x ∈ Ω : V (x) ≤ 1} for all
t ≥ 0, proving A∗ ∩ {x ∈ Ω : V (x) ≤ 1} is an invariant set.

Proof A∗ ∩ {x ∈ Ω : V (x) ≤ 1} has an attracting neighborhood: We now

show that for all y ∈ A∗ ∩ {x ∈ Ω : V (x) ≤ 1} there exists δ > 0 such that for any
ε > 0 there exists T ≥ 0 for which

D(ϕf (z, t), A
∗∩{x ∈ Ω : V (x) ≤ 1}) < ε (52)

for all z ∈ B(y, δ) and t ≥ T.

Let y ∈ A∗ ∩ {x ∈ Ω : V (x) ≤ 1} then y ∈ A∗. Since A∗ is an attractor set there
exists δ > 0 such that for any 0 < ε < σ there exists T1 ≥ 0 for which

D(ϕf (z, t), A
∗) < ε for all z ∈ B(y, δ) and t ≥ T1. (53)

Since 0 < ε < σ and D(ϕf (z, t), A
∗) < ε for all (z, t) ∈ B(y, δ)× [T1,∞), it follows

by Eq. (51) that

ϕf (z, t) ∈ Ω for all (z, t) ∈ B(y, δ)× [T1,∞). (54)

Next, we will consider the cases Ω/B({x ∈ Ω : V (x) ≤ 1}, ε) = ∅ and Ω/B({x ∈
Ω : V (x) ≤ 1}, ε) ̸= ∅ separately showing Eq. (52) holds for each case.

In the case Ω/B({x ∈ Ω : V (x) ≤ 1}, ε) = ∅ we get that Ω ⊆ B({x ∈ Ω : V (x) ≤
1}, ε), and hence using this fact together with Eq. (54) it follows that,

D(ϕf (z, t), {x ∈ Ω :V (x) ≤ 1}) < ε (55)

for all (z, t) ∈ B(y, δ)× [T1,∞).

Now, Eqs. (53) and (55) imply

D(ϕf (z, t), A
∗ ∩ {x ∈ Ω : V (x) ≤ 1}) (56)

≤ max{D(ϕf (z, t), A
∗), D(ϕf (z, t), {x ∈ Ω : V (x) ≤ 1})} < ε

for all (z, t) ∈ B(y, δ)× [T1,∞).

Thus Eq. (56) shows Eq. (52) in the case Ω/B({x ∈ Ω : V (x) ≤ 1}, ε) = ∅.
Next let us consider the case Ω/B({x ∈ Ω : V (x) ≤ 1}, ε) ̸= ∅. By Eqs. (50)

and (54), Gronwall’s inequality (Lem. 16), and the semi-group property of solution
maps (Eq. (6)) we have that

V (ϕf (z, T1 + t))− 1 ≤ e−t(V (ϕf (z, T1))− 1) ≤ ae−t (57)

for all (z, t) ∈ B(y, δ)× [0,∞),

where a := supz∈B(y,δ) |V (ϕf (z, T1)) − 1| ≥ 0. Hence, it now follows for any η > 0
that

ϕf (z, t+ T1) ∈ {x ∈ Ω : V (x) ≤ 1 + η} (58)

for all z ∈ B(y, δ) and t ≥ max

{
0, ln

(
a

η

)}
.
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Let T2 := T1 + max
{
0, ln

(
a
η

)}
. We now construct η > 0 such that {x ∈ Ω :

V (x) ≤ 1 + η} ⊆ B({x ∈ Ω : V (x) ≤ 1}, ε). Then since ϕf (y, t) ∈ {x ∈ Ω : V (x) ≤
1+η} for all t ≥ T2 (by Eq. (58)), it follows that D({x ∈ Ω : V (x) ≤ 1}, ϕf (y, t)) < ε
for all t ≥ T2.

Let η ∈ (0, b) where b := infz∈Ω/B({x∈Ω:V (x)≤1},ε)(V (z) − 1), where
infz∈Ω/B({x∈Ω:V (x)≤1},ε) V (z) exists since Ω/B({x ∈ Ω : V (x) ≤ 1}, ε) is compact
and V is continuous. Note that b > 0 since infz∈Ω/B({x∈Ω:V (x)≤1},ε) V (z) − 1 >
0 (because Ω/B({x ∈ Ω : V (x) ≤ 1}, ε) is compact so by the extreme value
theorem there exists z∗ ∈ Ω/B({x ∈ Ω : V (x) ≤ 1}, ε) such that V (z∗) =
infz∈Ω/B({x∈Ω:V (x)≤1},ε) V (z) and since z∗ /∈ {x ∈ Ω : V (x) ≤ 1} it follows that
V (z∗) > 1).

We now claim that {x ∈ Ω : V (x) ≤ 1 + η} ⊆ B({x ∈ Ω : V (x) ≤ 1}, ε).
Suppose for contradiction that {x ∈ Ω : V (x) ≤ 1 + η} ⊈ B({x ∈ Ω : V (x) ≤ 1}, ε).
Then there exists w ∈ {x ∈ Ω : V (x) ≤ 1 + η} ⊆ Ω such that w /∈ B({x ∈ Ω :
V (x) ≤ 1}, ε) implying w ∈ Ω/B({x ∈ Ω : V (x) ≤ 1}, ε). Now, V (w) ≤ η + 1 <
infz∈Ω/B({x∈Ω:V (x)≤1},ε){V (z)} ≤ V (w) implying 0 < 0, providing a contradiction.

Therefore, taking t ≥ T2 it follows from Eq. (58) that ϕf (z, t) ∈ {x ∈ Ω : V (x) ≤
1 + η} ⊆ B({x ∈ Ω : V (x) ≤ 1}, ε) for all (z, t) ∈ B(y, δ)× [T2,∞) implying,

D(ϕf (z, t), {x ∈ Ω :V (x) ≤ 1}) < ε (59)

for all (z, t) ∈ B(y, δ)× [T2,∞).

Now, Eqs. (53) and (59) it follows that

D(ϕf (z, t), A
∗ ∩ {x ∈ Ω : V (x) ≤ 1}) (60)

≤ max{D(ϕf (z, t), A
∗), D(ϕf (z, t), {x ∈ Ω : V (x) ≤ 1})} < ε

for all (z, t) ∈ B(y, δ)× [T2,∞).

Therefore Eqs. (56) and (60) prove Eq. (52).

We now propose an SOS optimization problem for enforcing the constraints of
Optimization Problem (46).

6.2. An SOS representation of the Lyapunov inequality constraint. Sup-
pose A∗ ⊂ Rn is the minimal attractor of some ODE (5) (defined by the vector field
f : Rn → Rn) and Ω ⊂ BOAf (A

∗) is some compact set such that B(A∗, σ) ⊆ Ω◦,
for some σ > 0. Let us consider the problem of approximating the minimal attractor
A∗ by some set A that can be certified as an attractor set (but not necessarily the
minimal attractor set). One way to approach this problem is by solving Opt. (46),
since any feasible solution, J , to Opt. (46) satisfies the Lyapunov conditions of
Prop. 5, and hence, A := {x ∈ Ω : J(x) ≤ 1} is an attractor set to the ODE defined
by a vector field, f .

We now consider how to enforce the conditions of Opt. (46) using SOS optimiza-
tion. Fortunately it is not necessary to enforce the constraint {x ∈ Ω : J(x) ≤ 1} ̸=
∅ since Lem. 10 shows that J automatically satisfies this constraint when A∗ ⊆ Ω.
We next propose a SOS tightening of the remaining constraints of Opt. (46), taking
Ω to have the form Ω = {x ∈ Rn : gΩ(x) ≥ 0} with ∂Ω = {x ∈ Rn : gΩ(x) = 0}.
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For some α > 0 we now consider the following optimization problem,

inf
J∈

∑d
SOS

DV (A
∗, {x ∈ Ω : J(x) ≤ 1}) (61)

such that J, s0, k0, k1 ∈
d∑

SOS

, p0 ∈ Pd(Rn,R),

where k0(x) = −∇J(x)T f(x)− (J(x)− 1)− s0(x)gΩ(x),

k1(x) = (J(x)− 1− α)− p0(x)gΩ(x).

The problem with solving Opt. (61) in its current form is that evaluating the
objective function requires knowledge of the minimal attractor set, A∗ (which is
unknown). Fortunately, however, we can formulate an optimization problem which
is equivalent to Opt. (61), but with an objective function that does not depend on
the unknown minimal attractor set, A∗.

If B(A∗, σ) ⊆ Ω◦, for some σ > 0 and J is feasible to Opt. (61), then Corollary 12
shows that minimizing DV (A

∗, {x ∈ Ω : J(x) ≤ 1}) is equivalent to minimizing
µ({x ∈ Ω : J(x) ≤ 1}). Roughly speaking, if J is feasible to Opt. (61) then J
satisfies the constraints of Opt. (61). Hence ∇J(x)T f(x) ≤ −(∇J(x)−1) for all x ∈
Ω. Thus if B(A∗, σ) ⊆ Ω◦, where σ > 0 and A∗ is the minimal attractor of the ODE
defined by f , it follows by Lemma 11 that A∗ ⊆ {x ∈ Ω : J(x) ≤ 1}. Hence, by
Lem. 21 we have that DV (A

∗, {x ∈ Ω : J(x) ≤ 1}) = µ({x ∈ Ω : J(x) ≤ 1})−µ(A∗).
Now, µ(A∗) is a constant (since A∗ is not a decision variable). Therefore minimizing
DV (A

∗, {x ∈ Ω : J(x) ≤ 1}) is equivalent to minimizing µ({x ∈ Ω : J(x) ≤ 1}).
For some α > 0, we now consider the following family of d-degree SOS problems,

Jd,α ∈ arg inf
J

µ({x ∈ Ω : J(x) ≤ 1}) (62)

J, s0, k0, k1 ∈
d∑

SOS

, p0 ∈ Pd(Rn,R)

where k0(x) = −∇J(x)T f(x)− (J(x)− 1)− s0(x)gΩ(x)

k1(x) = (J(x)− 1− α)− p0(x)gΩ(x).

We now show that for sufficiently small α > 0 and “large” Ω our quasi-SOS
optimization problem proposed in Opt. (62) is not conservative since for sufficiently
large enough degree its solution yields an arbitrarily close approximation of the
minimal attractor set (in the volume metric). Moreover, each solution to Opt. (62)
yields an attractor set.

Corollary 12. Consider f ∈ P(Rn,R). Suppose A∗ ⊂ Rn is a minimal attractor
set to the ODE (5) defined by f , σ > 0, and Ω ⊂ Rn is some compact set such that
B(A∗, σ) ⊆ Ω and Ω ⊂ BOAf (A

∗), Ω = {x ∈ Rn : gΩ(x) ≥ 0}, and ∂Ω = {x ∈
Rn : gΩ(x) = 0}, where gΩ ∈ P(Rn,R). Suppose {Jd,α}d∈N is such that Jd,α solves
the d-degree optimization problems given in Eq. (62) for α > 0, then:

1. {x ∈ Ω : Jd,α(x) ≤ 1} is an attractor set for each d ∈ N and α > 0.
2. A∗ ⊆ {x ∈ Ω : Jd,α(x) ≤ 1} for each d ∈ N and α > 0.
3. There exists β > 0 such that for any α ∈ (0, β) we have that

limd→∞ DV (A
∗, {x ∈ Ω : Jd,α(x) ≤ 1}) = 0.

Proof. In order to prove Cor. 12 we will now split the remainder of the proof into
three parts showing each of the three statements of Cor. 12.
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Proof {x ∈ Ω : Jd,α(x) ≤ 1} is an attractor set: By Prop. 5 it follows that

{x ∈ Ω : Jd,α(x) ≤ 1} is an attractor set if Jd,α satisfies Eqs. (13), (14) and (15).
Since Jd,α is assumed to feasible to Opt. (62) it follows that Jd,α satisfies the
constraints of Opt. (62) and hence Jd,α trivially satisfies Eq. (13). Moreover by
the constraints of Opt. (62) it follows that Jd,α(x) ≥ 1 + α > 1 for all x ∈ ∂Ω and
hence {x ∈ Ω : Jd,α(x) ≤ 1} ⊆ Ω◦, implying Jd,α satisfies Eq. (14). Finally since
A∗ ⊆ Ω and Jd,α satisfies Eq. (13) it follows by Lem. 10 that Jd,α satisfies Eq. (15).

Proof A∗ ⊆ {x ∈ Ω : Jd,α(x) ≤ 1}: Since Jd,α satisfies the constraints of

Opt. (62) it follows that

∇Jd,α(x)
T f(x) ≤ −(∇Jd,α(x)− 1) for all x ∈ Ω.

Since B(A∗, σ) ⊂ Ω and A∗ is the minimal attractor set of the ODE defined by f
it follows from Lemma 11 that A∗ ⊆ {x ∈ Ω : Jd,α(x) ≤ 1}.

Proof limd→∞ DV (A
∗, {x ∈ Ω : Jd,α(x) ≤ 1}) = 0: We show that there exists

β > 0 such that for any α ∈ (0, β) and ε > 0 there exists N ∈ N such that
DV (A

∗, {x ∈ Ω : Jd,α(x) ≤ 1}) < ε for all d ≥ N .
By Theorem 8 it follows that there exists β > 0 such that for ε > 0 there exists

N1 ∈ N, and Pm ∈
∑m

SOS(Rn,R) such that

∇Pm(x)T f(x) < −(Pm(x)− 1) for all x ∈ Ω and m > N1, (63)

Pm(x) > 1 + β > 1 + α for all x ∈ ∂Ω, α ∈ (0, β), and m > N1, (64)

A∗ ⊆ {x ∈ Ω : Pm(x) ≤ 1} for all m > N1, (65)

DV (A
∗, {x ∈ Ω : Pm(x) ≤ 1}) < ε for all m ≥ N1. (66)

For any α ∈ (0, β), by Eqs. (63) and (64) and Theorem 18 there exists
s0, s1, s2, s3, s4, s5 ∈

∑
SOS for each m > N1 such that −∇Pm(x)T f(x)− (Pm(x)−

1)− s0(x)gΩ(x) = s1(x), and (Pm(x)− 1− α)− s2(x)gΩ(x) = s3(x), and (Pm(x)−
1−α)+s4(x)gΩ(x) = s5(x). Fix m > N1 and let N2 := max{m,max0≤i≤5 deg(si)}.
Then it follows that Pm is feasible to Opt. (62) for degree d ≥ N2 (with p0(x) :=
0.5(s4(x)− s2(x))). Since, Jd,α solves the Opt. (62) and Pm is feasible to Opt. (62)
it follows that,

µ({x ∈ Ω : Jd,α(x) ≤ 1}) ≤µ({x ∈ Ω : Pm(x) ≤ 1}) for all d ≥ N2. (67)

Hence, using Lemma 21 along with the fact that A∗ ⊆ {x ∈ Ω : Jd,α(x) ≤ 1} (by
Lem. 11) and Eqs. (65), (66), and (67), it follows that,

DV (A
∗,{x ∈ Ω : Jd,α(x) ≤ 1}) = µ({x ∈ Ω : Jd,α(x) ≤ 1})− µ(A∗)

≤ µ({x ∈ Ω : Pm(x) ≤ 1})− µ(A∗)

= DV (A
∗, {x ∈ Ω : Pm(x) ≤ 1})

< ε for all d ≥ N2.

6.3. Heuristic volume minimization of sublevel sets of SOS polynomials.
Unfortunately, it is still not possible for us to solve the family of d-degree opti-
mization problems given in Eq. (62) since there is no known convex closed form
analytical expression for the objective function (the volume of a sublevel set of an
SOS polynomial). To make the problem tractable we replace the objective function
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in Eq. (62) with a convex objective function based on the determinant. We next
present two convex candidate objective functions based on the determinant.

Remark 13. The functions f1 : Sn
++ → R and f2 : Sn

++ → R defined as,

f1(P ) = − log det(P ),

f2(P ) = −(det(P ))
1
n ,

are convex.

Heuristically, maximizing det(P ) increases the value of V (x) = zd(x)
TPzd(x)

for all x ∈ Rn. Therefore, for larger det(P ) there will be less y ∈ Rn such that
y ∈ {x ∈ Rn : V (x) ≤ 1}. Hence we would expect µ({x ∈ Rn : V (x) ≤ 1})
to decrease as det(P ) increases. In the 2-degree (quadratic) case this argument
is not heuristic. We next show that maximizing the determinant is equivalent to
minimizing the volume of the sublevel set of a quadratic polynomial.

Lemma 14 ([17]). Consider P ∈ Sn
++. The following holds,

µ({x ∈ Rn : xTPx ≤ 1}) = π
n
2

Γ(n2 + 1)
√
det(P )

,

where Γ is the gamma function.

Lemma 14 shows that maximizing det(P ) minimizes µ({x ∈ Rn : xTPx ≤ 1}).
Thus equivalently, maximizing the convex functions log det(P ) or (det(P ))

1
Nd min-

imizes µ({x ∈ Rn : xTPx ≤ 1}) (since both the functions f1(x) = log(x) and

f2(x) = x
1
n are monotonic functions for x > 0). We next extend this approach

of maximizing the determinant to minimize the volume of a sublevel set of a SOS
polynomial to higher degrees.

Rather than solving Opt. (62) we solve the following family d-degree SOS prob-
lems for some α > 0,

Pd ∈ arg sup
J

(detP )
1

Nd (68)

J, s0, k0, k1 ∈
d∑

SOS

, p0 ∈ Pd(Rn,R)

where, J = zd(x)
TPzd(x), and,

P > 0,

k0(x) = −∇J(x)T f(x)− (J(x)− 1)− s0(x)gΩ(x)

k1(x) = (J(x)− 1− α)− p0(x)gΩ(x).

Note that it is equivalent to solve Opt. (68) with an objective function of form

(detP )
1

Nd or log detP . For implementation purposes we have chosen to use an

objective function of form (detP )
1

Nd since Yalmip [24] allows this formulation of
the problem to be solved by various SDP solves. For an objective function of form
log detP we use SOSTOOLS [28] and SDPT3 [32].

6.4. A further simplification of optimization problem (68). Typically,
through numerical experimentation, we find that if sublevel set volume of {x ∈
Ω : J(x) ≤ 1} is sufficiently minimized and Ω is sufficiently large, then {x ∈ Ω :
J(x) ≤ 1} ⊆ Ω◦ is automatically satisfied. Therefore, it is often unnecessary to
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Figure 1. Graph showing an estimation of the Lorenz attractor
(Example 1) given by the red transparent surface. This surface
is the 1-sublevel set of a solution to the SOS Problem (68). The
grayed shaded surfaces represent the projection of the our Lorenz
attractor estimation on the xy, xz, and yz axes. The black line is
an approximation of the attractor found by simulating a Lorenz
trajectory using Matlab’s ODE45 function.

enforce the constraint (J(x) − 1 − α) − p0(x)gΩ(x) ∈
∑d

SOS in Opt. (68) – thus
further reducing computational complexity of the SOS programming problem.

7. Numerical examples. In this section we will present the results of solving
the Opt. (68) for several dynamical systems. For these examples Opt. (68) was
solved using Yalmip [24]. In Example 1 we approximate a “strange” attractor, in
Example 2 we approximate a limit cycle, and finally in Example 3 we approximate
an equilibrium point.

Example 1 (Numerical Approximation of the Lorenz Attractor). Consider the
following three dimensional second order nonlinear dynamical system (known as
the Lorenz system):

ẋ1(t) = σ(x2(t)− x1(t)), (69)

ẋ2(t) = ρx1(t)− x2(t)− x1(t)x3(t),

ẋ3(t) = x1(t)x2(t)− βx3(t),

where (σ, ρ, β) = (10, 28, 8
3 ). It is well known that for such (σ, ρ, β) the ODE (69)

exhibits a global “chaotic” attractor.
Fig. 1 shows our Lorenz attractor approximation given by the 1-sublevel of the

solution to the SOS Problem (68) for d = 8, α = 0.0001, gΩ(x) = R2−x2
1−x2

2−x2
3,

R = 3, and scaled dynamics given by the ODE (69). For d ≥ 10 the volume of our
Lorenz attractor approximation becomes so small that we are unable store enough
grid-points to sufficiently plot the contour of the 1-sublevel set of our SOS Lyapunov
function.
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Figure 2. Graph showing an estimation of the attractor (given
by the red area) of the ODE (70) in Example 2. This red area
is the 1-sublevel set of a solution to the SOS Problem (68). The
two black lines are simulated solution maps of the ODE (71) using
Matlab’s ODE45 function initialized outside of the limit cycle.

Example 2 (Numerical approximation of the Van der Poll oscillator). Consider
the following two dimensional third order nonlinear dynamical system:

ẋ1(t) = x2(t), (70)

ẋ2(t) = (1− x2
1(t))x2(t)− x1(t).

It is well known that the ODE (5) possess a limit cycle called the Van der Poll
oscillator. Let us denote this limit cycle by A∗ ⊂ Rn. The ODE also possess an
unstable equilibrium point at the origin (which is not an attractor set since the
solution map initialized inside neighborhoods of the origin moves away from the
origin towards the limit cycle). However, ϕf (0, t) = 0 ∈ R2 for all t ≥ 0, where ϕf

is the solution map of the ODE (5). Therefore, 0 /∈ BOAf (A
∗). In order to apply

Theorem 8 we require Ω ⊂ BOAf (A
∗). Hence, we must be careful to construct

Ω = {x ∈ Rn : gΩ(x) ≥ 0} such that 0 /∈ Ω.
Fig. 2 shows our Van der Poll oscillator approximation given by the 1-sublevel of

the solution to the SOS Problem (68) for d = 12, α = 0.0001, g1(x) = −(R2
1 − x2

1 −
x2
2)(R

2
2−x2

2−x2
2), R1 = 0.45, R2 = 1, and scaled dynamics given by the ODE (70).

Example 3. Consider the following two dimensional seventh order nonlinear dy-
namical system:

ẋ1(t) = −2x2(t)(−x4
1(t) + 2x2

1(t)x
2
2(t) + x4

2(t)) (71)

− 2x1(t)(x
2
1(t) + x2

2(t))(x
4
1(t) + 2x2

1(t)x
2
2(t)− x4

2(t)),

ẋ2(t) = 2x1(t)(x
4
1(t) + 2x2

1(t)x
2
2(t)− x4

2(t))

− 2x2(t)(x
2
1(t) + x2

2(t))(−x4
1(t) + 2x2

1(t)x
2
2(t) + x4

2(t)).

It was shown in [3] that A∗ = {0} is a global attractor set of the ODE (71). In
other words, the ODE (71) is globally asymptotically stable about the origin. This
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Figure 3. Graph showing an estimation of the attractor (given
by the red area) of the ODE (71) in Example 3. This red area is
the 1-sublevel set of a solution to the SOS Problem (68). The four
black lines are simulated solution maps initialized at [±1,±1]T of
the ODE (71) using Matlab’s ODE45 function.

stability was shown using the following non-polynomial Lyapunov function:

W (x) =

{
x4
1+x4

2

x2
1+x2

2
if x ̸= 0

0 otherwise
.

Clearly, W is not a SOS polynomial (or even polynomial). It was further shown in [3]
that there exists no polynomial Lyapunov function that can certify the asymptotic
stability of the origin of the ODE (71). However, Theorem 8 implies there does
exist a SOS Lyapunov functions that can certify the stability of an arbitrarily small
neighbourhood of A∗ = {0} with respect the volume metric. Furthermore, we can
heuristically attempt to find these Lyapunov functions by solving the SOS Opt. (68).

Fig. 3 shows our approximation of the ODE (71) given by the 1-sublevel of the
solution to the SOS Problem (68) for d = 10, α = 0.0001, gΩ(x) = R2 − x2

1 − x2
2,

R = 1, and f as in the ODE (71) (scaled by a factor of 1000 to improve SDP solver
performance). Unfortunately, increasing d ∈ N to a greater value than 10 makes
the SDP solver (Mosek) return a numerical error. We believe improvements in SDP
solvers for large scale problems will allow us to solve the SOS Opt. (68) for larger
degrees and improve our estimations of attractor sets. Furthermore, we note that
this lack of convergence as d → ∞ may demonstrate the limitations in our approach
of using matrix determinant maximization to minimize the volume of sublevel sets.

8. Conclusion. We have proposed a new Lyapunov characterization of attractor
sets that is well suited to the problem of finding the minimal attractor set. We
have shown that our proposed Lyapunov characterization of attractor sets is non-
conservative even when restricted to SOS Lyapunov functions. Specifically, given an
attractor set associated with some ODE we have shown that there exists a sequence
of SOS Lyapunov functions that yield a sequence of sublevel sets, each containing
the attractor set, each being an attractor set themselves, and converging to the
attractor set in the volume metric. We have used this theoretical result to design an
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SOS based algorithm for minimal attractor set approximation based on determinant
maximization as a proxy for sublevel set volume minimization. Several numerical
examples demonstrate how our proposed SOS based algorithm can provide tight
approximations of several well known attractor sets such as the Lorenz attractor
and Van-der-Poll oscillator.

Appendix a: Miscellaneous results.

Lemma 15 (Sublevel sets of continuous functions are closed). Suppose f ∈ C(Rn,R)
and Ω is compact set, then the set {x ∈ Ω : f(x) ≤ c}, where c ∈ R, is closed.

Proof. Let {xk}k∈N ⊂ {x ∈ Ω : f(x) ≤ c} be a convergent sequence such that
limk→∞ xk = x∗. To prove {x ∈ Ω : f(x) ≤ c} is closed we must show that
x∗ ∈ {x ∈ Ω : f(x) ≤ c}. Now, since Ω ⊂ Rn is compact it follows that Ω is closed
and thus since {xk}k∈N ⊂ Ω it follows x∗ ∈ Ω. On the other hand, by continuity
it follows that limk→∞ f(xk) = f(x∗). Since f(xk) ≤ c for all k ∈ N it must follow
that f(x∗) ≤ c. Hence, x∗ ∈ {x ∈ Ω : f(x) ≤ c} implying {x ∈ Ω : f(x) ≤ c} is a
closed set.

Lemma 16 (Gronwall’s Inequality [13]). Consider scalars a, b ∈ R and functions
u, β ∈ C1(I,R). Suppose

d

dt
u(t) ≤ β(t)u(t) for all t ∈ (a, b).

Then it follows that

u(t) ≤ u(a) exp

(∫ t

a

β(s)ds

)
for all t ∈ [a, b].

Theorem 17 (Polynomial Approximation [26]). Let E ⊂ Rn be an open set and
f ∈ C1(E,R). For any compact set K ⊆ E and ε > 0 there exists g ∈ P(Rn,R)
such that

sup
x∈K

|Dαf(x)−Dαg(x)| < ε for all |α| ≤ 1.

Theorem 18 (Putinar’s Positivstellesatz [29]). Consider the semialgebriac set X =
{x ∈ Rn : gi(x) ≥ 0 for i = 1, ..., k}. Further suppose {x ∈ Rn : gi(x) ≥ 0} is
compact for some i ∈ {1, .., k}. If the polynomial f : Rn → R satisfies f(x) > 0 for
all x ∈ X, then there exists SOS polynomials {si}i∈{1,..,m} ⊂

∑
SOS such that,

f −
m∑
i=1

sigi ∈
∑
SOS

.

Appendix b: Sublevel set approximation. Recall from Section 2.1 that

DV (A,B) := µ((A/B) ∪ (B/A)), (72)

where µ(A) is the Lebesgue measure of A ⊂ Rn.
The sublevel approximation results presented in this appendix are required in

the proof of Theorem 8.

Definition 19. D : X × X → R is a metric if the following is satisfied for all
x, y ∈ X,
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• D(x, y) ≥ 0,
• D(x, y) = 0 iff x = y,

• D(x, y) = D(y, x),
• D(x, z) ≤ D(x, y) +D(y, z).

Lemma 20 ([16]). Consider the quotient space,

X := B (mod {X ⊂ Rn : X ̸= ∅, µ(X) = 0}),
recalling B := {B ⊂ Rn : µ(B) < ∞} is the set of all bounded sets. Then

DV : X ×X → R, defined in Eq. (72), is a metric.

Lemma 21 ([16]). If A,B ∈ B and B ⊆ A then

DV (A,B) = µ(A/B) = µ(A)− µ(B).

Proposition 22 ([14]). Consider a set Λ ∈ B, a function V ∈ L1(Λ,R), and a
family of functions {Jd ∈ L1(Λ,R) : d ∈ N} that satisfies the following properties:

1. For any d ∈ N we have Jd(x) ≤ V (x) for all x ∈ Λ.
2. limd→∞ ||V − Jd||L1(Λ,R) = 0.

Then for all γ ∈ R

lim
d→∞

DV

(
{x ∈ Λ : V (x) ≤ γ}, {x ∈ Λ : Jd(x) ≤ γ}

)
= 0. (73)
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