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We provide a platform to examine the effect
of inclusion geometry on three-dimensional
metamaterial crystals to tune frequency-dependent
effective properties for control of leading order
dispersive behaviour. The crystal is non-magnetic
and made from all dielectric components. The
design provides novel dispersive properties using
subwavelength resonances controlled by the geometry
of the media. We numerically calculate the effective
tensors of the metamaterial to identify frequency
intervals where the metamaterial exhibits band gaps
as well as intervals of normal dispersion and double
negative dispersion. The frequency intervals can
be explicitly controlled by adjusting the geometry
and placement of the dielectric inclusions within the
period cell of the crystal.

1. Introduction and problem set-up

(@) Introduction

Metamaterials exhibit novel properties not found in
nature. These properties are generated by periodically
patterned composite material crystals. When the period
of the crystal is less than the wavelength of incident
radiation, interesting interactions occur between the
material and the electromagnetic waves. This provides
the opportunity for manipulation of structural geometry
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to obtain novel dispersive properties. One such property is exhibited by the double negative
metamaterial which has frequency-dependent negative effective magnetic permeability and
negative effective dielectric permittivity. Metamaterials with double negative effective properties
have a wide range of applications ranging from biomedical imaging to optical lithography and
data storage. In 1968, the novel properties of materials were studied under the assumption of
negative dielectric constant and negative magnetic permeability [1]. The double negative effective
properties of a periodic array of non-magnetic metallic split-ring resonators at microwave
frequency were studied in [2]. The double negative properties of metamaterials made from arrays
of metallic posts and split-ring resonators were experimentally demonstrated in [3]. Double
negative properties of materials were obtained for metallic resonators with different geometric
structures in [4-9]. Negative refractive properties of metamaterials obtained by employing
dielectric material with large permittivity were studied in [10-12].

The appearance of double negative properties of metamaterials made from high dielectric core
with plasmonic coating at optical frequencies was explored in [13-15]. Metamaterial crystals
with double negative effective properties were obtained using periodic array of unit cells
consisting of two different inclusions in [16,17]. Negative bulk dielectric permeability at infrared
and optical frequencies using special configurations of plasmonic nanoparticles was studied
in [18,19].

The dispersion relation and convergent power series representation for a propagating Bloch
wave in a periodic medium with a single high contrast inclusion were obtained in [20-22].
The leading order terms give the effective dispersion relation of the metamaterial while the
higher order terms give the corrections necessary for the diffraction due to inclusions of finite
size. In the optical frequency regime, convergent power series solutions recovering dispersion
relations were derived for all dielectric constituents that deliver double negative dispersive
properties for transverse electric modes propagating transverse to prismatic rods [17]. For these
configurations, the direction of power flow is opposite to that of phase velocity. Their frequency-
dependent refractive properties were subsequently engineered in the time domain for controlling
the direction of signals [23]. A setting for which the appearance of artificial magnetism for
describing scattering problems for three-dimensional metamaterials using high dielectric constant
inclusions was introduced and rigorously established in [24]. For three-dimensional metallic split-
ring geometries, the rigorous proof of effective magnetic permeability was recently given in [25].
Recently, the rigorous mathematical realization of double negative metallic media using two scale
expansions for microwave frequencies was obtained in [26].

This paper analyses metamaterial crystals constructed using all dielectric materials in the
near infrared-optical regime. Our choice of dielectric constituents is motivated by the work
of [17]. The novelty of this work is that we focus on fully three-dimensional materials and
the results are directly obtained from Maxwell’s equations using power series expansions of
the electromagnetic fields. The wavelength of light propagating through the periodic crystal
is A and the period of the crystal is d. For metamaterials, the crystal is subwavelength, i.e.
the period of the structure is below the wavelength of operation, so 2wd/L <1. We treat a
non-magnetic host dielectric M impregnated with an infinite periodic array of non-magnetic
inclusions with different dielectric properties. Inside any period the host material contains two
types of non-magnetic included phases: one with a high dielectric constant denoted by R and the
other featuring a frequency-dependent dielectric constant denoted by P. The three-dimensional
period cube containing distinct inclusions of P and R is shown in figure 1 and a coated sphere
geometry with core R coated with P is shown in figure 2. The leading order behaviour of the
electromagnetic field inside a metamaterial made from these configurations is propagating plane
waves with polarization given by averaged electric and magnetic fields. The plane waves can
propagate across frequency bands determined explicitly to leading order by a dispersion relation
given in terms of frequency-dependent effective magnetic permeability and permittivity. The
averaged electric field is the usual average of the electric field over the period cell; however,
the averaged H field is based on a geometric average over the period introduced in [24] for
periodic subwavelength high dielectric materials associated with artificial magnetization; see
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Figure 1. Period cell. (Online version in colour.)

Figure 2. Unit cell with a coated spherical inclusion. (Online version in colour.)

(2.8) and (2.9) of §2b. The frequency-dependent effective dielectric permittivity and magnetic
permeability are described by two types of subwavelength resonances: a plasmon resonance
generating frequency-dependent positive or negative effective dielectric properties and an
artificial magnetic resonance generating a frequency-dependent effective magnetic permeability;
see §2c. The plasomnic response of the metamaterial is due to the frequency dependence of
the dielectric inclusion exciting a structural electric resonance of the electromagnetic crystal at
certain frequencies. The structural resonance was calculated through generalized electrostatic
resonances for periodic crystals [16,17,27]. This approach is motivated by the seminal work of
[28,29] that introduces similar resonances to obtain bounds on frequency-independent effective
transport properties. For dilute suspensions such resonances can be found in [30]. The magnetic
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resonances were mathematically identified and explained in the three-dimensional context in [24];
see also [31,32]. Here, we show how to employ these two resonances to rationally design double
negative materials. We numerically calculate the effective properties for metamaterial crystals
made from coated sphere geometries and identify frequency intervals in the optical regime where
the metamaterial exhibits double negative behaviour. Here, the term double negative refers to
simultaneously negative effective magnetic permeability and dielectric permittivity, implying
that the propagation of energy is opposite to the direction of phase velocity. This is demonstrated
in §2d.

(b) Problem set-up

The Maxwell system takes the form

(1.1)

and V-H=0.

Here, E denotes the electric field and H =B/, where B is the magnetic field. The host and
inclusions are non-magnetic and p; := o everywhere in the crystal where g is the free space
value.

We express Maxwell’s equations in terms of relative dielectric permittivity and magnetic
permeability. And the dielectric constant £;(x) of the metamaterial crystal of period length d with
period cell Y4 =(0,d)° is given by ¢, = €0e?

rel» Where € is the dielectric constant in free space and
the relative dielectric permittivity

2
ep,rel(w) =1~ % inP,
d w

— )€
Erel = r,rel

42
1 in M.

in R’ (1-2)

Here, ¢, el and &, represent the dielectric constants of the inclusions P and R, respectively,
and unity is the relative dielectric constant for free space. The material characterized by & rel
is frequency dependent like gold or aluminium for near infrared and optical frequencies. To
illustrate the idea, ¢ re] is represented by a Drude model without damping where w), is the plasma
frequency. The material inside inclusion R is a frequency-independent dielectric material.

We consider periodically modulated waves propagating through the crystal:

E(x,t) = E(x) elikkx=iof) 504 H(x, t) = H(x) e("k};"‘fi’”t), (1.3)

where E(x) and H(x) are periodic, k is the direction of wave propagation and k| =1, k is the
wavenumber, and w is the frequency. Writing

@) =E@) e and  H(x) = H(x) e,
and rescaling y = x/d, we have the problem posed in the unit cell Y = (0, 1)3 given by
V x & =idougH, [H]=0,
VxH= —idwsoefelé', [nx E]1=0,

(1.4)
V. 8oefe1€ =0, [n- aosfelf] =0

and V-H=0,

where the notation [-] indicates transmission conditions across interfaces between materials.
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In this paper, power series expansion of the waves in the small parameter n = dk =2xd/2 is
used to investigate dispersion associated with subwavelength crystals. We expand the electric
field, magnetic field and non-dimensional square frequency as

E(y) = eo(y) ™Y + e1(y)n ™Y + ex(y)? Y 4.
H) = how) €™ + () Y + hy(y)n® &Y 4 ..
and w=wy+wn+wm®+--,

where eg,eq,... and ho, hy, ... are periodic. The expansions are substituted into (1.4) and the
leading order terms eg, ho together with the leading order dispersion relation relating wp to k
are seen to describe plane wave propagation inside the metamaterial. They give the leading
order behaviour for propagating electromagnetic waves inside the subwavelength medium for
2md/) < 1.

2. Main results

(a) Characterization of leading order terms

The asymptotic analysis (see §§3b and 3e) shows that the leading order terms ey and kg are
characterized by solutions to quasi-static electromagnetic problems that can be written in terms
of electrostatic and magnetostatic resonances.

Theorem 2.1. The leading order H field, hy, is continuous and divergence free in Y. Moreover, there is
a periodic potential w and constant vector ¢ such that hg = Vw + con Y \ R with Aw = 0 there. Inside R,
the quasi-static magnetic field hy solves the Helmholtz equation

V xV xhy=¢&hy in R, (2.1)
where &y = €, 1 a)(2) /c2.

The effective magnetic activity is determined by the volume average of the leading order term
ho. This is described with the aid of the geometric average § kg of hg. To describe the geometric
average consider a smooth vector field v defined on Y/R and periodic on the boundary of Y and

introduce
J v-&de,
Tex

with T}, being a curve connecting two points x and x + & on opposite faces of the unit cube
Y and arclength element d¢. Here, I}, can be any such curve lying outside of R. The geometric

average § v exists if
(ﬂ; v) -ékzzj v-ekde
Fk,x

is a unique constant vector independent of the choice of I'y y, k=1,2,3. This is always the case
when V x v=0in Y \ R (see [31]). When V x v=0in Y then § v = [ v.
For hy, one has the following.

Corollary 2.2. The geometric average of hy is ¢, where the constant vector ¢ is defined in theorem 2.1.

The effective magnetic permeability [24,31,32] is defined to be the tensor feg = pefr(wp) relating
the volume average to the geometric average of the hy field given by

et @ ho) = JY ho(y) dy. 2.2)

The explicit formula for e is given in theorem 2.7 and is constructed in §3e.
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The ey field is the quasi-static electric field inside a periodic composite. We can write eg as the
sum of a potential gradient Vx and a constant vector € where y is periodic on Y. We set

1 M
ap(y) = ve (2.3)
Ep,rel (wo) yeP

and we have the following.
Theorem 2.3. The leading order term eq satisfies

Vxe=0 inY,
eg=Vy+e inY (2.4)

and ep=0 1in R,
with &= [ eg dy and the potential x satisfies

V.-(ay(Vx +€)=0 inMUP 25)
and - &l (@O)(VX +8)|yp =1 (Vi +8)]pe '
with

x+e-x=0 inR, (2.6)

where |yp- and |yp+ denote evaluation of quantities on the boundary of P from the inside and outside,
respectively, and x = (x1,x2, x3) in the space.

We note that x depends linearly on & and in the sequel we indicate this by writing x = x¢. The
effective dielectric constant gives the linear map between an imposed constant electric field and
the resulting average dielectric displacement seen by an observer outside the unit period cell and
is denoted by €q¢r = €cfr(wp) given by

GeffJ egdx = J xn - egds, (2.7)
Y Y

where 9Y denotes the boundary of Y and ds is the surface area element. This formula was obtained
earlier in the absence of frequency dependent dielectric inclusions in [24,31,32]. The explicit
formula for eg as a function of wg is given in theorem 2.7 and constructed using generalized
electrostatic resonances in §3e.

(b) Homogenized fields

Theorem 2.4. (1) The plane waves (homogenized H field) Hyyp, (x,t) and the homogenized magnetic
field By, (x) are given by

Hion(5,)= (§ o) 200
(2.8)

and Bhom (%, 1) = promettHpom (x, 1),

where g is the effective magnetic permeability tensor.

(2) The plane waves (homogenized E field) Ej,,(x, t) and the homogenized electric displacement field
Diom(x) are given by

Epom(x,t) = J eodx e(ikkx—iont)
Y (2.9)

and Dyom(x, t) = €0€cttEnom(x, £),

where € is the effective dielectric permittivity tensor.
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The homogenized fields are the plane wave solutions of Maxwell’s equations for the homogeneous
effective media:

8I_Ihom
ot

V X Epom = —IL0Meff ,
V- Do =0, (2.10)
Ehom )

ot

d
V X Hpom = €0€efs

and V - Hpom =0.

The homogenized dispersion relation for the electromagnetic waves travelling through the
metamaterial crystal is given by the following theorem.

Theorem 2.5. For given k and k, the frequencies wq for which plane waves can propagate with
polarization § hy in the direction k at wavelength . =k/2s are the roots of the equation

wz
det |:k2A(wo) + TS ueff(wg)} =0, (2.11)

with A,-]-(wo) = 5ipmkpgmnj[e;f1(wo)]n,,12,,, i,p,mmn,j=1,2,3 where Eipm and Ennj are the symbols for the
Levi-Civita tensors.

An admissible polarization of the (homogenized H field) Hyoy, (x, t) field § hg lies in the null space of the
matrix

2
[k2A(w0) + ffueff(wé)} . (2.12)

Using equation (2.11), we will find crystal geometries having frequency regimes where pqg
and e are both positive, both negative or band gaps for the metamaterial.
Elimination of Epop, 0 Hpom from (2.10) gives the following.

Theorem 2.6. The homogenized fields satisfy the following vector wave equations for a homogeneous
effective medium. Hy,yy, (x, t) satisfies

1 a21—1110711 (x,1)

VX ng}V X Hyom(x, £) = T et 912 , (2.13)
and Ejop (x, t) satisfies
_ 1 3%Epom(x,t)
V X gt V X Epon (%, 1) = _szfeffL- (2.14)

012

(c) Effective property tensors as functions of frequency
Theorem 2.7. (1) The effective magnetic permeability tensor peg is given by
oo
peson) =Y “i"éf;/@ ( I, an) ® (L ¢n) P, (215)
n=1*1€rel ~ “0
where § ¢ =0 and (hy, du), n=1,2,... are the eigenpairs of the following eigenvalue problem:
V X V X ¢p = hnpp inR,
dn=Ve, inY\R (2.16)
and Ap,=0 inY\R

with scalar potentials ¢, periodic on Y and on the boundary of R one has continuity of the normal
components ¢y -n|~ = Ve, -n|T, where | and |~ denote limits from the inside and outside of the
boundary of R and n is the outward directed unit normal to the boundary.
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(2) The effective dielectric permittivity tensor €.y is given by

€cffe - €= (‘9p,rel((’-’0)9P + QM)é e

+ 9Y\R Z (1 + l/«n(gp,rel(wo) - 1))(5171 + bn)2

n=1
+J Vq-Vq+ Sp,rel(wO)J Vq-Vy, (2.17)
M P
where
J VEM + gp,rel(Q’O)J VJM”
an=—¢- M o (2.18)
1—pn+ Sp,rel(wo)ﬂn

and

J Vq . Valin + Eﬁ,rel(wo) JP Vq ! VJI‘*H

by = —=M . (2.19)
" 11—+ é‘p,rel(wO)ﬂn

Here, 0p, Oy, 6y\r are the volumes of P, M and Y \ R, respectively, and v, are the electrostatic
eigenfunctions associated with the eigenvalues 0 <, <1 of the generalized electrostatic resonance
eigenvalue problem [17,27]:

Ay, =0 inY\R,

Hn VY, - ”|3p+ =(un — DV, - ”|3p— (2.20)
and v+ =0,
H”|8R

and v, is continuous in Y \ R, and satisfies periodic boundary conditions on Y. The Y-periodic continuous
function q with square integrable derivatives satisfies Ag=0in Y \ Rand g= —e -x in R.

(d) Simulation

To frame the discussion, if we assume that the material is isotropic, then for this medium, the
dispersion relation is given by

Eo = £r etk €t Mot (2.21)

where €qff, [Leff are constants appearing in the formulae for €. = €effI® and progs = pegl®. Equation
(2.21) shows the existence of &y such that both €. and jiof are negative. As a demonstration, we
considered cases where the metamaterial consists of unit cells in which the plasmonic coating and
high dielectric core are concentric spheres located at the centre of the cube as shown in figure 2.

In numerical computation of effective magnetic permeability, the following equivalent form of
the formula (2.15) is used:

,_ 1 &o
Reit(§0) =13 + 1 % —_— (JR Y X fu dy) ® (JR Y X fu dy) , (2.22)

1 —anéo
where (ay, fu) are the eigenpairs of the following eigenvalue problem:
1
J VO :VOydx + ~ (J x xfdx) - (J x xgdx) =aJ f-gdx, (2.23)
Y 4 \Jr R Y
where g is a vector valued square integrable function such that
g=0 in Y\R and V.g=0.

In equation (2.23), for any function h, @), is constructed as follows:

—A®p=h, inY, J 0, =0, (2.24)
Y
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0.1704 0.1706 0.1708 0.1710 0.1712 0.1714 0.1716 0.1718 0.1720

a)é / wﬁ

Figure 3. The case for R = 0.26, r = 0.156. (Online version in colour.)

where O, is periodic. The numerical solutions of both (2.23) and (2.24) are obtained by applying
the finite-element method (FEM) via FELICITY [33] in MATLAB. In order to accommodate the
divergence free condition for the solution of (2.23), the solution space is discretized using the
lowest order Raviart-Thomas finite elements. The solution space for (2.24) is discretized by using
first-order Lagrange elements.

In order to compute the effective dielectric tensor formula (2.17), we need to compute both the
eigenpairs (Y, tn) and g. The eigenpairs (¥, , itx) are found by solving (2.20) and the periodic
function g is computed by solving the equation

Ag=0, gq|p=—0"x (2.25)

Both problems (2.20) and (2.25) are solved via FELICITY [33] in MATLAB by applying FEM. The
solution spaces are discretized by using first-order Lagrange elements.

For the inclusions, we chose dielectric constant ¢, e =1 and &, =3 x 10%5 for the plasmon
frequency of the plasmonic coating which was assumed to be made of gold. We considered
five different cases where the geometry is given by different radii for the concentric spherical
inclusions. In the first three cases, we identified two intervals for & /&, = a)% Jw?2, where €qf and
e are negative. This corresponds to the wave propagating in the direction opposite to the wave
velocity. This is seen in [23] for transverse magnetic transmission.

The first three cases, shown in figures 3-5, demonstrate the intervals where both effective
magnetic permeability and effective dielectric permittivity exhibit negative behaviour. In these
graphs, R and r denote the radii of the plasmonic and high dielectric inclusions, respectively.

To illustrate other behaviours of effective properties, we identified two frequency intervals,
shown in figure 6, where we observe that the effective magnetic permeability is positive while
the effective dielectric permittivity remains negative. These intervals correspond to band gaps.
Figure 7 illustrates the case of a frequency interval where both effective properties exhibit
positive behaviour and waves propagate along the direction of the phase velocity. In this case,
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Figure 4. The case for R = 0.3, r = 0.12. (Online version in colour.)
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Figure 5. The case for R = 0.45, r = 0.270. (Online version in colour.)
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Figure 6. The case for R = 0.35, r = 0.14. (Online version in colour.)
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Figure 7. The case for R = 0.45, r = 0.18. (Online version in colour.)
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we observe that the effective dielectric permittivity exhibits positive behaviour when & is close
to the plasmon frequency of the gold.
By writing the formula (2.22) as

Z/a)z
'Le“< ) hegY (1/8:) — cn(@B /R (J yxﬁ1dy>®<JRyXf”dy>’ (220

neN

it can be seen that, except for the poles of effective permeability tensor that are very close to 0, the
graph of effective permeability is a horizontal line in all of the cases considered.

Figure 3 illustrates the case where the plasmonic inclusion has radius R=0.26 and
the high dielectric inclusion has radius r=0.156. For this case, we identify two frequency
intervals [0.17033,0.171277] and [0.17128,0.17207] where both effective tensors are negative.
Figure 4 illustrates the case where the plasmonic inclusion has radius R=0.3 and the high
dielectric inclusion has radius r=0.12. Here, we have identified two frequency intervals
[0.117425,0.120897] and [0.121006, 0.1215221] where both effective tensors are negative. Figure 5
illustrates the case where the plasmonic inclusion has radius R =0.45 and the high dielectric
inclusion has radius » = 0.27. For this case, we identify two frequency intervals [0.207610, 0.2105]
and [0.210773,0.21203] where both effective tensors are negative. Figure 6 illustrates the case
where the plasmonic inclusion has radius R = 0.35 and the high dielectric inclusion has radius r =
0.14. For this case, we identify two frequency intervals [0.25797,0.259008] and [0.25910, 0.26041]
where the effective magnetic permeability is positive while the effective dielectric permittivity
is negative. Figure 7 illustrates the case where the plasmonic inclusion has radius R=0.45
and the high dielectric inclusion has radius r=0.18. For this case, we identify a frequency
interval [0.94342, 0.95728] where both the effective magnetic permeability tensor and the effective
dielectric tensor are positive.

3. Proof of results

(a) Leading order terms in power series and metamaterial

We carry out the analysis for the configuration shown in figure 1, noting that a nearly identical
analysis can be carried out for the coated sphere geometry with the obvious modifications.
To expedite the asymptotic analysis, we introduce the non-dimensional square frequency & =
(sr,rela)z)/cz, square plasma frequency &, = (w%emel) /c% and period size p =d/ /gy 1, Where wp
is the plasmon frequency of the inclusion P. The non-dimensional wavenumber is written v =

\/ kz€r,rel~

We now recover the homogenization theorems. Substitution of
E) = eo(y) €Y + ex(y)n Y + ea(yn? Y+
H(y) = ho(y) €Y 4 hy(y)n ™Y 1+ hy(yyn? Y 4 ..

and VE= Vi +VEmn+Ven + -

into (1.4) gives the following.

— InR
t[(V x eg + ink x eg) + n(V x e1 + ink x e1) + -+ -1
=inng(v/E + vEn + - Yo + nhy + ), (3.1)

(Y x ho + ink x ho) + n(V x hy + ink x hy) + - -]
= —itng (V& +VEm + - )eo +ner +---). (3.2)
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— InP

T[(V><eo+inlAc><eo)+n(V><e1+z'nfc><e1)+--~]
=inno(v/E + vEn + - Yo+ nhy + -+,

t[(V x ho + ink x ho) + n(V x hy + ink x k1) + - -+ ]

=—inng ' (VEo + nyEL + )1 — E¥)eo + nex + - --),

where
&

T VmenEr R

— InM

t[(Vxeo—l—inlAcxeo)—f—n(Vxe1+inlAcxe1)+...]
=inno(v/€ + vEn +--)ho +nh1 +---),

t[(V x ho + ink x ho) + n(V x hy + ink x hy) + - -]
= —inng ™ (v/& + V& + - )eo +mer + ).

— On R-M interface
n-(eo +nex+ - ')|E)R* ::Ozn -(eo +ner + - ')|3R+’

”X(30+U31+"')|3R7=”><(90+7761+"')|3R+~

— On P-M interface
2
n[(\/%+n\/§7+~--) —sr}(eo+ne1+---)};,p7
2
=n- (Ve +nvE +-) (eo+ner+)ype,
nX(30+77€1+"')|3p—:nX(30+7lel+"')|3p+-

We also have

— InR
(V -eo +ink - eq) +n(V - e1 + ink - e1) + - - - =0.
— InP
eprell(V - eg + ink - eg) +1(V - eq + ink - e1) +---1=0.
— InM

(V- eo +ink - eg) + n(V - e1 + ink - e1) + - - - =0.
— On R-M interface
n

' ?ei|3R- =n-eilype-

— On P-M interface

1 eprel€ilyp- =1 ei’aP*‘

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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We now collect like order terms with the same powers of 1. We first recover theorem 2.3 by
collecting zeroth-order terms in (3.1), (3.3) and (3.5), to get

7(V xe9)=0inR,
7(V x e9)=0inP (3.16)
and 7(V x e9) =0in M.
From (3.8), (3.10) and (3.15), we have
nx ‘30|aR7 =nx ‘30|aR+'
nx egl,p- =nxel,p. (3.17)
and Eprel(@w) - €| ,p- =1+ €q|,ps -
From (3.11) to (3.14), we have
V-gpreleo=0 inP,

V.ep=0 inM,

(3.18)
V.egp=0 inR
and n-egl,z =0.
Using (3.16), we find
JY IV x eg|? dy =0. (3.19)
So V x eg =01in Y and eg can be written as
eo=Vx+e inY, (3.20)

where x®isa Y-periodic potential with square integrable gradient and € is a complex vector. Since
Iy Vx€=0, we get that [ eg = & Using (3.18) and (3.20), we observe that

J leo|* dy =0, (3.21)
R

and this implies that eg = 0 in R and we have established theorem 2.3.

We show that the transmlssmn problem given by (2.5) and (2 6) follows from the asymptotic
expansions. From eg=Vx® +¢é=0 in R, we discover that x®+e-x=cp in R, where cp is a
constant scalar. We are free to choose the constant co =0 and from continuity of the potential
across the boundary of R we get

(Xé+é'x)|3R+ =0, (322)

and (2.6) follows. The transmission problem given by (2.5) and (2.6) now follows on setting ey =
Vx€+ eand applymg the last equation in (3.17) together with the first two equations in (3.18).
From linearity x& depends linearly on € and we can write e = Zk 1 exek, for scalars e, and

3
x=Y ead", k=123, (3.23)

where the potentials ¢k, k=1,2,3 solve

V- [ap(y)(VoF +8)1=0 in MUP
P P (3.24)
n- gp,rel(wO)(V(b +e )|3p— =n-(V¢" +e )|3p+
and

OF + x¢| g4 =0. (3.25)
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Given v= Zl%:l veek set vg=Vy' +V, where x¥= Zi:l vk, The effective bilinear form

describing the effective property is defined by
€off® -V = JY eL (VxE +8) - (V¥ +9)dy. (3.26)

An integration by parts of (3.26) recovers the equivalent formulation of the effective dielectric
constant given in (2.7).
Now, we recover theorem 2.1. Collecting the zeroth-order terms of 5 from (3.1) to (3.15), we
have
Vxhy=0 inP,

\Y Xh():O il’lM,

(3.27)
V-hy=0 inY
and [ho]=0 on 9P and dR.
Finally, we write (3.2) as
-1
N n
(V +ink) x (h0+nh1+-~)=—i% (\/5+n\/g+“-)(eo+ne1+~-). (3.28)

By applying the differential operator (V + inl%)x to both sides of (3.28) and collecting the zeroth-
order and first-order terms of n, we find that

V x V x h() Zéohg in R. (329)

Since hy is divergence free on Y and V x hp=0 on Y \ R, there is a potential w and a constant
vector ¢ such that hp = Vw + ¢ on Y \ R with Aw =0 there and periodic on the boundary of Y.
Theorem 2.1 now follows.

To see theorem 2.2 note that since hgp = Vw + ¢, where w is periodic on the boundary of Y, then
direct calculation shows § hy = ¢ for any choice of I, k=1,2,3.

(b) Derivation of homogenized fields

We focus now on recovering the homogenized equations (2.10) from the expansions. We collect
terms of the first order in 7 in (3.1), (3.3) and (3.5), and get

t(Vxe)= i\/%noho inR,

©(V x e1 + ik x eg) =i\/Eonghy in P (3.30)
and t(V x e1 + ik x eg) = iy/Enohy  in M.

We integrate the equations in (3.30) over the regions R, P and M, respectively. The summation of
these three integrals gives

TJ ik x eg dy = ing gOJ ho dy. (3.31)
Y Y
Collecting terms of second order in 7 in (3.2) and first order in 5 in (3.4) and (3.6) gives

V x h1 + ik x ho = —irnal(\/gel + \/gez) inR,

©(V x hy + ik x ) = —iep re1(E0)v/Eong "eo in P (3.32)
and ©(V x hy + ik x ho) = —iy/Eyny teg in M.

On setting et =Vl + & i=1,2,3, we have

e =0inR, V-e*=0inY and J e =g i=1,23. (3.33)
Y
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We multiply equations in (3.32) by e*! and then integrate them over the regions R, P and M,
respectively. Adding the integrals together gives

T (J V x Iy e dy +J ik x hg - e* dy) =—ing* goj e® (50, y)eo - €™ dy. (3.34)
Y Y Y

Applying the definition of the effective magnetic permeability (2.2) to the equation (3.31), we

obtain
thx (JY e0> = 1gv/Eoef (j@ h0> . (3.35)

Note that V x eg =01in Y implies V x e* =0in Y. So we can show V - (e*! x k) = 0. Therefore,
an application of lemma 4.5 of [24] to the second term of the left-hand side of (3.34) gives

irJ k x ho-e*ﬂ'dy:irj ho - (k x e*?)
Y Y
=it(k x #ho) 3 (3.36)

A direct calculation gives

J V x hy - e =0. (3.37)
Y
Finally, applying (3.37) and (3.36) in (3.34) gives

it(k x ﬂghg) & =—ing /& JY b (0, y) (VX + &) - e* dy. (3.38)

From linearity, we express the effective dielectric permittivity tensor e as

[ecslij = Jy el (60, y)e* - e dy, (3.39)
and (3.38) and (3.39) give
ny _q1,;
epdy=—-1——¢ kxﬂgh . 3.40
Jy 0dy NG off ( 0) (3.40)

Substituting (3.40) into (3.35) gives

— %k x ee}}lz X 3@]10 = Soll,eff§h(), (3.41)
which then yields
1 a)z 7
Vi X Ggf} Vx X iFh() elkk‘x = Tgﬂeff 3@ h() elkk'x. (342)

Multiplying by e i both sides of (3.42) and noting that Hpom(x,t)= G; h0> elikkx—io)
completes the proof of (2.13).

By expressing § kg in (3.35) and using (3.38), we get

2
s w s
Vi X ;L;f} X L eg k¥ = C—gseff JY eg ek,

Multiplying by e~*! both sides and noting that Epom(x,t) :J ep dx likkx—iont) completes the
Y
proof of (2.14).
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() Derivation of Maxwell’s system for homogenized fields

Using equations (3.35), (3.40), and ng = +/110/€0, c =1/ ,uos%, V& = (w0/¢)/Errel, we find

Vx X (J €o eikk'x> = isowoﬂeff(f{; ho %)
Y
and
Vi X (f# ho %) = —ipgwoees (J eo eikk'x) :
Y

Finally, multiplying by e~ both sides of the above equations and using (2.8) and (2.9) complete
the proof of the first and the third equations in (2.10). The second and the fourth equations of
(2.10) are the direct consequence of applying the divergence operator to Hyom and Epom in (2.8)
and (2.9).

(d) Demonstration of dispersion relation

Using Einstein summation notation and Levi-Civita tensor notations, we have

eome(€0) o = ol | 10| (3.49)
]
and
(kx leabtenk x fio] ) =Epmbymleitol, by o] (3.44)
i )

where i,p,m,n,j=1,2,3. So equation (3.41) is written by components as
0=12kx 83(50)72 X E#;ho + Eomtes(0) jgho

= T EipukpEnnj & 41 (50)],,, Ky [313 holj + o[ Het(60)]; H ho] - (3.45)
]
Equation (3.45) implies that the determinant equation for & at a given wavenumber k can be
written as

det[t%A + & egi(50)] =0 }
(3.46)

and Ajj= 5ipmicpgmnj[€e_f}(50)]np ]A(p/

where i,p,m,n,j=1,2,3. Noting that 2= kzs,,rel, &= (w% / C2)8r,re1 completes the proof.

(e) Effective property tensors and their meaning as explicit functions of &

The effective permittivity (2.2) and its formula (2.15) follows from an eigenfunction expansion of
ho. Here, we use the eignfunctions given in theorem 2.7. These eigenfunctions form an complete
orthonormal system with respect to the inner product (b, w):= [, h-wdy, i.e. (¢;, #j) =3é;. It is
easily seen as in [24] that hy — § I lies in the span of {¢,} and we write hy = 2721 ¢j$j + ¢, where
¢ = § hp and determine the coefficients ¢j- Substitution into (2.1) gives

_ §c- fy 5]
C]' = W. (3.47)
So

© &c- [y dx
hozzokif_ysojd)j—i—c. (3.48)

=1
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Hence

ad Eoc-de)jde'
hodx= _ id 3.49
R S o

_ = & - .
- (E2g sose o) o

j=1
=;1eff<so)j€ho, (3.51)

and the formula for peg(wp) follows noting that peg(wo) = fe(€0)-

Formula (2.17) follows from an eigenfunction expansion of x©. Here, we use the eignfunctions
given by (2.20). The set of these functions form a complete orthonormal set over the space of
continuous functions periodic in Y with zero average and square integrable gradient that are zero
in R, with inner product (v, ¢) = IY/R Vi - Ve dx.

Let
xE=w+r+q, (3.52)
where w satisfies
V. (srdel(wo)(Vw + é)) =0 inY\R; (3.53)
r satisfies
V. <s§’el(w0)(Vr + w;)) =0 inY\R; (3.54)

and g satisfies Ag=0in Y\ R and 4= —e - x in R. The functions w and r admit the eigenfunction
expansion

o0 oo
w= Z apyy,, and r= Z buru,. (3.55)
n=1 n=1

Multiplying (3.53) by Vi, , integrating over Y\R, and using the jump condition 7 -
ep,rel(@0)(Vw + €)[gp- =n - (Vw + &)[sp+, we deduce that

J VJM + Ep,rel ((1)()) J VJ’L”
ay=—o. M P . (3.56)
1—py+ 5p,rel(w0)ﬂn

In a similar way, from (3.54), we deduce that

_Jm VeV, + epre(@0) [p V- VY,

b, =
! 1—pp + Ep,rel(wO)Mn

(3.57)

Using the orthogonality and substituting (3.52) and (3.55)—(3.57) into (3.26) with v=¢, we
obtain

€cff€ - €= (8p,rel(a)0)9P + QM)é -e

o0
+0nR Y (14 mn(Eprel — 1)) (@n + bn)?

n=1
—|—J Vq-Vq+ sp,relJ Vq-Vq. (3.58)
M P

And the proof of theorem 2.7 (2) is concluded.
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4. Conclusion

The frequency-dependent effective dielectric permittivity and magnetic permeability are
described by two types of subwavelength resonances: a plasmon resonance generating frequency-
dependent positive or negative effective dielectric properties and an artificial magnetic resonance
generating a frequency-dependent effective magnetic permeability. In this article, we show how to
employ these two resonances to rationally design double negative metamaterials. We numerically
calculate the effective properties for metamaterial crystals made from coated sphere geometries
and identified frequency intervals in the near infrared—optical regime where the metamaterial
exhibits double negative behaviour. The term double negative refers to simultaneously negative
effective magnetic permeability and dielectric permittivity, implying that the propagation of
energy is opposite to the direction of phase velocity. The dependence of the sign of the
effective magnetic permeability and effective dielectric permittivity depends on frequency.
Frequency intervals corresponding to band gaps as well as intervals of normal dispersion
and double negative dispersion are controlled explicitly through the geometry as seen in the
theory and numerical experiments. Here, phenomenological modelling is not used but instead
all results follow directly the Maxwell system on substituting a power series representation of
the solution and examining leading order behaviour. We expect similar rigorous arguments to
show that the power series represents the solution in three dimensions and this is a project for
future work.
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