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ABSTRACT: The importance of discriminating between environments supportive of supercell thunderstorms and those
that are not supportive is widely recognized due to significant hazards associated with supercell storms. Previous research
has led to forecast indices such as the energy helicity index and the supercell composite parameter to aid supercell fore-
casts. In this study three machine learning models are developed to identify environments supportive of supercells: a sup-
port vector machine, an artificial neural network, and an ensemble of gradient boosted trees. These models are trained and
tested using a sample of over 1000 Rapid Update Cycle version 2 (RUC-2) model soundings from near-storm environ-
ments of both supercell and nonsupercell storms. Results show that all three machine learning models outperform classifi-
cations using either the energy helicity index or supercell composite parameter by a statistically significant margin. Using
several model interpretability methods, it is concluded that generally speaking the relationships learned by the machine
learning models are physically reasonable. These findings further illustrate the potential utility of machine learning-based

forecast tools for severe storm forecasting.

SIGNIFICANCE STATEMENT: Supercell thunderstorms are a type of thunderstorm that are important to forecast
because they produce more tornadoes, hail, and wind gusts compared to other types of thunderstorms. This study uses
machine learning to create models that predict if a supercell thunderstorm or nonsupercell thunderstorm is favored for
a given environment. These models outperform current methods of assessing if a storm that forms will be a supercell.
Using these models as guidance forecasters can better understand and predict if atmospheric conditions are favorable
for the development of supercell thunderstorms. Improving forecasts of supercell thunderstorms using machine learn-
ing methods like those used in this study has the potential to limit the economic and societal impacts of these storms.

KEYWORDS: Atmosphere; Convection; Storm environments; Supercells; Classification; Neural networks; Forecasting
techniques; Decision trees; Machine learning; Support vector machines

1. Introduction

Forecasting convective storms is important because the
severe weather they produce has far reaching impacts on soci-
ety. Convective storm hazards such as flooding, tornadoes,
wind, and hail can have significant economic impacts on indus-
tries including insurance (e.g., Sander et al. 2013), electrical
power (e.g., Shield et al. 2021), and aviation (e.g., NTSB 2010).
Supercells are responsible for a disproportionate amount of
severe weather compared to other convective storm morpholo-
gies (Duda and Gallus 2010), and thus, accurate supercell fore-
casts are critical for decision support and hazard mitigation.

A number of studies have utilized sounding climatologies
to characterize the environments supportive of severe convec-
tive weather (e.g., Rasmussen and Blanchard 1998; Rasmussen
2003; Thompson et al. 2003, 2007; Houston et al. 2008). Two
composite indices developed through this prior research are
used widely by forecasters: the energy helicity index (EHI;
Hart and Korotky 1991; Rasmussen 2003) and the supercell
composite parameter (SCP; Thompson et al. 2003, 2004, 2007,
Gropp and Davenport 2018).

Following Hart and Korotky (1991), EHI combines convec-
tive available potential energy (CAPE) and storm-relative
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helicity (SRH) over a layer of the atmosphere typically either
0-1 or 0-3 km:
CAPE X SRH
BRI =000 - )
where CAPE is in joules per kilogram (J kg™'), SRH is in
meters squared per second squared (m? s~2), and the normali-
zation factor has units that render EHI unitless. EHI has been
shown to be effective in discriminating between supercell and
ordinary deep convection by Rasmussen and Blanchard
(1998). While EHI can be calculated over different depths,
Rasmussen (2003) showed that 0-3-km EHI was better than
0-1-km EHI for discriminating between supercells and nonsu-
percells. In this study, the 0-3-km layer is used for SRH and
CAPE is based off a surface-based parcel.

SCP incorporates most unstable parcel convective available
potential energy (MUCAPE) along with effective-layer SRH
(ESRH) as well as the effective bulk wind difference (EBWD;
Thompson et al. 2007). Effective layers are designed to repre-
sent the inflow layer for supercells and the calculations follow
Thompson et al. (2007). EBWD is defined as the magnitude of
the vector difference in the wind between the bottom of the
effective inflow layer and the point halfway to the equilibrium
level of the most unstable parcel (Thompson et al. 2007). The
formulation of SCP used here follows the Storm Prediction
Center mesoanalysis calculation which also incorporates the
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most unstable parcel convective inhibition (MUCIN) based on
the work of Gropp and Davenport (2018):

MUCAPE
1000

ESRH

SCP = X EBWD x X MUCIN,  (2)

where MUCAPE has units of joules per kilogram (J kg™,

ESRH has units of meters squared per second squared (m?s ~2),
and

0;EBWD < 10
EBWD/20;10 < EBWD < 20,
1:EBWD > 20

EBWD =

where EBWD has units of meters per second (m s~ '), and

—40/MUCIN;MUCIN <—40
MUCIN = { /1; —40>MUCIN  °
where MUCIN has units of joules per kilogram (J kg™'). All
normalization factors have units that render SCP unitless.

While composite indices like EHI or SCP are useful tools
for diagnosing supercell storm potential, there are some poten-
tial shortcomings.

First, they incorporate a limited number of variables. Other
variables have been shown to indicate if an environment sup-
ports supercells. Supercells are more often observed when
CAPE in the lowest 3 km above the level of free convection
(LFC) is larger (Rasmussen and Blanchard 1998). Upper-tro-
pospheric storm-relative wind has been found to be slightly
higher in supercell environments (Rasmussen and Blanchard
1998), and effective inflow-layer storm-relative wind has also
been shown to be higher in supercell environments (Peters
et al. 2020). Mixed-layer lifting condensation level (MLLCL)
height is lower and 0-1-km shear magnitude is higher in envi-
ronments that support supercells than environments with non-
supercell storms (Thompson et al. 2002a). Thompson et al.
(2002b) as well as Gropp and Davenport (2018) contend that
a supercell is less likely as CIN magnitudes increase while
Rasmussen and Blanchard (1998) found that supercells were
more likely in environments with larger CIN magnitudes. These
hypotheses each have theoretical support since CIN magnitudes
that are too large would tend to prevent the sustenance of deep
convection required for storms to evolve into supercells. In con-
trast, low CIN magnitudes could favor widespread deep convec-
tion that interferes with discrete supercell organization.

Second, while these composite indices are based on simple
equations that are easily calculated, understood, and trusted by
forecasters they may fail to capture crucial relationships. For
example, an environment may have a large EHI value because
of extreme CAPE and small but nonzero SRH, but the minimal
SRH makes rotating storms less likely than in an environment
that may have the same EHI value but more SRH and less
CAPE. Similarly, SCP is not based on a proven physical process
but on the observations of supercells which leads to short com-
ings in certain situations. For example, since each term in SCP is
multiplied together a low value of SCP would result from an
environment with high shear and low cape, although supercells
occur in such environments (Sherburn and Parker 2014).
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Machine learning has the ability to generate predictions
incorporating a variety of inputs based on relationships
learned from historical data. As a result of this capability
machine learning is becoming more widely used in the atmo-
spheric sciences including for convective weather applications.
These applications include using machine learning for storm
classification (e.g., Haberlie and Ashley 2018; Jergensen et al.
2020), nowcasting the risk of hazards from convective storms
(e.g., Cintineo et al. 2014; Lagerquist et al. 2017; Cintineo et al.
2018; Gagne et al. 2019; Cintineo et al. 2020; Lagerquist et al.
2020), and postprocessing output from convection-allowing
numerical weather prediction models (e.g., Loken et al. 2020;
Sobash et al. 2020; Flora et al. 2021). Machine learning has
also been used to generate convective hazard outlooks and
tornado warnings similar to those issued by the National
Weather Service (e.g., Hill et al. 2020; Steinkruger et al.
2020). Research using machine learning to directly diagnose
environments supportive of supercells has been more limited.
Nowotarski and Jensen (2013) utilized single variable self-
organizing maps to identify differences between environments
for nonsupercells, nontornadic supercells, weakly tornadic
supercells, and significantly tornadic supercells. While their
results were promising, they were limited by the use of a single
sounding derived variable (e.g., the vertical wind profile).
Nowotarski and Jones (2018) increased the number of variables
used but focused on differences in tornadic production between
supercells rather than between supercells and nonsupercells.

A machine learning approach is advantageous for complex
tasks like diagnosing storm environments because machine
learning models have the ability to represent complex and
nonlinear relationships between variables as well as the ability
to recognize multiple types of environments that support
supercell storms (Nowotarski and Jensen 2013). In this study
we hypothesize that machine learning can be used to create a
forecast tool to discriminate between environments that are
supportive of supercells and those that are not. These machine
learning models are evaluated against the relatively simple
forecast indices currently used by operational forecasters.

2. Data and methods
a. Environmental data and input variables

Thompson et al. (2003) developed a climatology of sound-
ings from convective storm environments using soundings
from the Rapid Update Cycle version 2 (RUC-2) model
(Benjamin et al. 2004). Thompson et al. (2007) expanded
upon this climatology to include additional storm environ-
ments. This database of soundings is used to train and test
machine learning models. In total, 1079 modeled environmen-
tal soundings from a combination of near-storm environments
of supercells and discrete, nonsupercellular storms were used.
Although multiple storms typically occur on a given day,
using many soundings from the same day limits the diversity
of environments and could lead to leakage between the train-
ing and test dataset if environments are too similar. The data-
base used in this study has an average of two cases for a given
calendar day with data collected over the conterminous
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United States over six different calendar years. Additionally,
any cases from the same day must be separated by at least 3 h
and 185 km. As a result, this database includes cases from a
wide variety of environments with limited correlation between
each case. The manual classification of events as supercell or
nonsupercell performed by Thompson et al. (2003, 2007) is
used here. They based their classification of supercells on the
presence of a visible hook echo or inflow notch and azimuthal
shear = 20 m s~ ' across a distance of less than 10 km at a
radar elevation angle of 0.5° or 1.5° and 3°, that persists for at
least 30 min. Nonsupercells were defined as discrete storms
possessing a max composite reflectivity of 40 dBZ for more
than 30 min and failing to meet any of supercell characteristics.
Soundings were collected at the RUC-2 analysis time closest
to the storm’s peak intensity in the area upwind form the
storm. In total the database used contains ~77% right moving
supercells and ~23% nonsupercells from across the contermi-
nous United States.

This sampling criteria has an important implication for
interpreting the output of the machine learning models devel-
oped in this study. These machine learning models are not
predicting the probability of a supercell, but rather the condi-
tional probability of a supercell given deep convection that
persists for at least 30 min. Because the machine learning
models are predicting a conditional probability, the findings
of this research only apply to scenarios where deep convec-
tion initiation and/or sustenance is not in question but the
storm mode is uncertain. Other forecast tools should be used
to assess issues such as the likelihood of deep convection initi-
ation and/or sustenance. Additionally, because the models are
trained only on right moving supercells the models should not
be used to assess the potential for left moving supercells.

The proposed machine learning models rely on nine com-
mon sounding derived variables (Table 1) and are calculated
using SHARPpy (Blumberg et al. 2017). Following the logic
of Thompson et al. (2002a), thermodynamic variables are
based on the most unstable parcel in the lowest 400 hPa. This
approach enables consideration of both surface-based and
elevated deep convection. Low-level CAPE is defined using
the 3-km layer immediately above the LFC (Rasmussen and
Blanchard 1998). Storm-relative variables are calculated using
the internal dynamics method (Bunkers et al. 2000) to
estimate storm motion of a right moving supercell. Equilibrium-
level storm-relative wind (ELSRW) is defined as the storm-rela-
tive wind at the equilibrium level of the most unstable parcel.
The effective inflow layer used for ESRH and EBWD is the same
as used in Eq. (2). Figure 1 shows bivariate relationships between
the variables used in the study. Correlation analysis shows that
there is limited correlation between variables (|| < 0.6), with the
exception of the variable pairs MUCAPE/LLCAPE, ESRH/
0-1 BWD, and EBWD/ESRW. While some correlation
between variables is expected, the limited correlation suggests
that the nine input variables incorporate multiple environmen-
tal factors that regulate supercell likelihood without excessive
redundancy. This limited variable set reduces model complex-
ity which can improve generalizability and improve human
understanding of the machine learning model (Belle and
Papantonis 2021).
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TABLE 1. Sounding derived variables used models, grouped by
variable type.

Thermodynamic Kinematic

Most unstable parcel CAPE ~ 0-1-km bulk wind difference
(MUCAPE) (0-1 BWD)

Most unstable parcel CIN Effective bulk wind difference
(MUCIN) (EBWD)

Most unstable parcel LCL Effective storm-relative helicity
(MULCL) (ESRH)

Most unstable low-level cape  Equilibrium-level storm-relative
(LLCAPE) wind (ELSRW)

Effective inflow-layer storm-
relative wind (ESRW)

b. Machine learning model development

Machine learning models were developed with the goal of
improving assessment of the storm mode supported by an
environment, and the role of each variable in determining
storm mode. Three types of machine learning models were
created: a support vector machine (SVM), an artificial neural
network (ANN), and an ensemble of gradient boosted trees
(GBT). To facilitate model development, data were first split
into training and testing datasets using a stratified split method
where the data are shuffled and then split into different sets:
20% of the data are used for testing and 80% are used for train-
ing (step 1 of Fig. 2). This process also ensures that the balance
between supercell (~77%) and nonsupercell cases (~23%) is
maintained in each set. The test data are set aside and only used
for evaluating model performance (section 3).

Each machine learning model has some number of hyperpara-
meters that govern the exact model configuration and overall
complexity. To determine the approximate level of model com-
plexity necessary for this task, different model configurations
were evaluated by a hyperparameter search using 10-fold strati-
fied cross validation on the training dataset where the model
with a specific set of hyperparameters is trained on nine folds of
the training data and error metrics are calculated on the other
fold (Kuhn and Johnson 2013). This is repeated 10 times with
each fold used as the validation set once. This results in 10 values
of the error metric [Matthews correlation coefficient (MCC),
which is described in detail in section 2c], one for each validation
fold. The mean and standard deviation of MCC values across the
10 folds is calculated and configurations were ranked relative to
other model configurations for both mean MCC and standard
deviation of MCC with high mean and low standard deviation
values indicative of a good model configuration. The final model
configuration was chosen based on the rankings of each of the
configurations. The final model configuration was then trained
using the entire training dataset and it was used to make predic-
tions on the test dataset (step 3 of Fig. 2). This methodology
allows for the full training dataset to be used to train the final
models while maintaining an independent test dataset. While the
model performance on the test dataset may be slightly different
than the estimate from the cross-validation step, the estimate of
model performance from the k-fold cross validation was within
the confidence interval of the model performance on the
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FIG. 1. Predictor variable matrix. The variables are listed on the diagonal while the Pearson correlation coefficient between each pair of
variables is shown in the upper-right portion the grid. The bottom left shows the parameter space occupied by the dataset via kernel den-

sity estimation.

independent test dataset shown in section 3 for all three mod-
els. This suggests the methodology employed both prevents
overfitting and is an effective way to test different model con-
figurations when the dataset size makes independent training,
validation, and testing sets impractical. For the ANN and
SVM, the input data were scaled to have zero mean and a
standard deviation of one. The data scaling was performed
using the mean and standardized deviation of variables in
the training dataset only to prevent information leakage
(Kaufman et al. 2012).

An SVM works by finding an optimal hyperplane to sepa-
rate the two classes (supercell and nonsupercell) in the nine-
dimensional parameter space. [See chapter 5 of VanderPlas,
(2016) for an entry-level explanation of support vector
machines and how they are constructed.] An SVM was chosen
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because they are effective in modeling complex relationships
when relatively small training datasets are available (Géron
2017). Three hyperparameters were varied in the model con-
figuration stage: 1) a penalty parameter, 2) the kernel, and
3) class weights. The penalty parameter C controls the penalty
applied for each misclassified case and was varied from 0.25
to 1.25. The kernel controls the type of decision boundary and
can either be linear or include transforms of the variables to
allow for nonlinear decision boundaries. Each configuration
used one of the following kernels: linear, polynomial, radial
basis function, and sigmoid. Class weights are used so the
penalization of supercell misclassification is different than for
a nonsupercell case. Since there are significantly more super-
cells than nonsupercells in the dataset, equal penalties could
result in the model favoring predicting a supercell. The weight
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Step 1: Split the Data Into
Training and Testing Sets

] S
Y

Step 3: Create and Evaluate Final Model Performance

- 1
Model

Performance
Results

Many Different
Hyperparameter
Values

Step 2: Hyperparameter Search

Model Performance
Results for Each
Hyperparameter

Legend:

Validation Data

Hyperparameter
Values
Model Results

Optimal
Hyperparameter

Values

Configuration

FI1G. 2. Workflow for developing machine learning models. Step 1: The data are split into training and testing sets
using 80% for training and 20% for testing. Step 2: A hyperparameter search is conducted using k-fold cross validation
where a portion of the training data is used to validate the performance of each model configuration. Based on the per-
formance of each model configuration a final set of hyperparameters are chosen. Step 3: The optimal hyperparameter
values are used to construct the final model that is trained on the entire training dataset and evaluated on test dataset

to determine the model’s performance.

of nonsupercell cases relative to supercell cases was varied
from 2.125 to 5.25. The SVM was implemented with scikit-
learn (Pedregosa et al. 2011) and the final model configura-
tion utilized a linear separation boundary, a C value of 0. 25,
and relative weight of nonsupercells to supercells of 2.57.

An ANN uses a network of hidden layers of fully connected
neurons to make predictions. An ANN was chosen because
ANNSs are theoretically capable of representing any mathe-
matical function. Relatively shallow networks like the one
developed in this study are capable of performing well even
with limited training data (Aggarwal 2018). Each connection
uses a different weight with each neuron representing a
unique weighted sum based on the weights and input variable
values. To generate predicted probability, variable values are
inputted into this network and the prediction is based on the
weighted sum of the neurons in the output layer. The result is
a model that is able to handle very complex and nonlinear
relationships. The weights of each connection are adjusted
during the training to maximize the performance of the algo-
rithm. In the model configuration stage thousands of ran-
domly selected model architecture and hyperparameter
combinations are evaluated. Each model configuration tested
varies 1) the number and/or size of hidden layers, 2) the regu-
larization method/amount, 3) the activation function, and
4) the solver or optimizer. Chapter 13 of Boehmke and
Greenwell (2020) provides a brief introduction to artificial
neural networks and describes the role of each of the hyper-
parameters in the model. In the hyperparameter search stage of
model development, the number of hidden layers ranged from
two to four with between 4 and 64 neurons in each layer. The reg-
ularization method/amount is used to decrease the likelihood of
the model overfitting. Two methods of regularization were used:
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L2 regularization which introduces a penalty term based on the
model weights to the loss function, and dropout which randomly
ignores or “drops” some neurons during the training process. The
amount of penalty (L2) or the probability of an individual neuron
being “dropped” (dropout) was also varied during the hyperpara-
meter search. The activation function controls how the weighted
sum of inputs to a neuron are converted to outputs. Each configu-
ration used one of the following activation functions which con-
verts the weighted sum of inputs to an output value slightly
differently: rectified linear unit (ReLU), exponential linear unit
(ELU), sigmoid, tanh, scaled exponential linear unit (SELU).
The solver, or optimizer, controls the weight adjustments within
the network during the model training. Each of the following solv-
ers were evaluated during the hyperparameter search since each
solver uses a different method of updating weights within the
model: adaptive moment estimation (Adam), root-mean-square
prop (RMSProp), Nesterov-accelerated adaptive moment estima-
tion (Nadam), and adaptive gradient (Adagrad). The ANN was
implemented with Keras (Chollet et al. 2015) and the final
model configuration had 3 hidden layers with 40, 36, and 28
neurons in each layer, respectively, L2 regularization (Aggar-
wal 2018) was used with the amount (“alpha”) parameter set
to 0.001, with a SELU (Klambauer et al. 2017) activation
function, the solver “Adagrad” (Duchi et al. 2011) with
default parameters, and a binary cross-entropy loss function
were used to train the model.

A GBT uses a large number of decision trees to make a
probabilistic prediction. A gradient boosted tree ensemble
is a sequential ensemble where each tree added to the ensemble
after the initial tree is trained to correct the error of the ensemble up
to that point. A gradient boosting ensemble was chosen
because they have proven effective in a variety of domains of
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Boehmke and Greenwell (2020) and can result in impressive
performance by combing a series of weak learning decision
trees (Hastie et al. 2009). [See chapter nine of Boehmke and
Greenwell (2020) for a good introduction on decision trees,
and chapter 12 for an explanation of how boosting can be used
to combine multiple weak learners (in this study the individual
decision trees) to create a sequential ensemble.] Values for
four hyperparameters were tested in the model configuration
stage: 1) the number of trees used, 2) the number of variables
evaluated for each split in each tree, 3) the size, or maximum
depth of each decision tree, and 4) the learning rate. The num-
ber of trees represents the size of the ensemble, and the num-
ber of trees used ranged from 50 to 800. The optimal number
of variables used to construct each tree controls the bias/vari-
ance of the model. The number of variables used to construct
each tree ranged from 1 to 4. The optimal size or depth of
each decision tree depends on the degree of interaction
between variables and the tolerance for overfitting with
larger depths able to capture variable interactions but also
increase the risk of overfitting (Boehmke and Greenwell
2020). The depths tested ranged from 1 to 11. The learning
rate controls the impact of each new decision tree added to
the ensemble. Learning rates from 0.05 to 0.15 were evalu-
ated. The GBT was implemented with scikit-learn (Pedre-
gosa et al. 2011) and trained using the default loss function
“deviance” and the default criterion “Friedman mean
squared error” to determine the quality of splits within each
tree. The final model configuration utilized 200 trees and 2
variables per tree, a maximum depth of 1 and a learning rate
of 0.125.

¢. Model evaluation

Final model configurations are trained on the entire train-
ing dataset and used to make predictions on test data. Due to
the small dataset and need to generate confidence intervals,
1000 bootstrap samples (Efron and Tibshirani 1994) of test
data are generated and performance metrics calculated for
each sample. The 95% confidence interval is estimated by the
2.5th-97.5th percentiles in the performance metric for the
1000 bootstrap samples. MCC is used as a measure of overall
model performance due to its ability to evaluate binary classi-
fiers on imbalanced data (Boughorbel et al. 2017):

_ TP X TN — FP X FN
(TP + FP)(TP + EN)(TN + FP)(TN + EN)

MCC (3

where TP represents the number of correct predictions of
supercell storm mode, TN represents the number of correct
predictions of nonsupercell storm mode, FP represents the
number of incorrect predictions of supercell storm mode, and FN
represents the number of incorrect predictions of nonsupercell
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storm mode. An MCC value of one indicates a perfect prediction
while an MCC value of zero indicates a prediction with no skill.

While the MCC is the preferred metric due to the imbal-
ance between supercells and nonsupercells, other metrics can
provide additional insight and a more intuitive understanding
of performance. For this reason model performance is plotted
on a performance diagram (Roebber 2009) where the x axis is
success ratio, or one minus the false alarm ratio (FAR), and
the y axis is probability of detection (POD). To facilitate
this visualization POD and FAR were calculated. They are
defined by Egs. (4) and (5), respectively, with TP representing
the true positive rate, FP representing the false positive rate,
and FN representing the false negative rate:

TP
. .o TP 4
probability of detection TP+ EN’ 4)
. FP
false alarm ratio = TP+ TP %)

The three models were compared to threshold predictors
based on EHI and SCP. For each sounding EHI and SCP val-
ues were calculated and a prediction of storm mode was made
based on if the value of the index for that instance was above
or below a specific threshold. The thresholds were optimized
using the same cross-validation technique used to determine
the optimal machine learning model hyperparameters. For
EHI the threshold was varied from 0.05 to 5 in increments of
0.05 and the optimal threshold was determined to be 0.3. For
SCP the threshold was varied from 0.1 to 10 in increments of
0.1, and the optimal threshold was determined to be 0.5.

A potential limiting factor to the robustness of these perfor-
mance evaluations is the fact that supercells made up of a
majority (~77%) of cases in the dataset used, while in reality
supercells occur much less frequently than nonsupercells. As
a result the raw MCC, POD, and FAR values may not accu-
rately represent the performance of models/indices in a more
climatologically realistic dataset. While the actual occurrence
of supercells is unknown, the work of Duda and Gallus (2010)
suggests a reasonable approximation of supercell occurrence
for severe convective weather events is around 25%.

To assess performance on a more climatologically realistic
ratio of supercells, weighted versions of each metric were cre-
ated. In the weighted versions both the true positive (TP) and
false negatives (FN) are multiplied by 0.1 to reduce their
impact. This approximates the performance that would be
expected when ~25% of the samples are supercells instead of
~T77% of samples as is the case in the original dataset.

For analysis on a more climatologically representative ratio,
model predicted probabilities were adjusted using the follow-
ing formula, which was developed by Saerens et al. (2002):

adjusted predicted probability =

IPP X X
CR - (1-CR)’ ©
X —+ (1 - X
IPP o+ (1 = IPP) X (o
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where IPP represents the initial predicted probability, the
ratio of supercells to nonsupercells in the training data is rep-
resented by TR and the climatological ratio of supercells to
nonsupercells is represented by CR. For the ANN and GBT,
TR was set at 0.77 while for the SVM TR was set at 0.5 since
weights were used in model training to balance supercells and
nonsupercells. CR was set at 0.25 for all models. The thresh-
olds used for both EHI and SCP were also adjusted with the
cross-validation search technique repeated using the weighted
MCC. Optimal thresholds for the more climatologically realis-
tic case were found to be 0.6 for EHI and 3.0 for SCP.

d. Model interpretation methods

Several methods are used to interpret the machine learn-
ing models. Multipass permutation variable importance
(Lakshmanan et al. 2015; McGovern et al. 2019) is used to
rank variable impact in each model. Multipass permutation
variable importance works by using the original performance
of the model on the test dataset as a baseline. A single input
variable from the test set is then permuted and the model per-
formance is evaluated on the test set with the permuted vari-
able. This is repeated for each input variable, and the variable
which results in the largest drop in performance when per-
muted is ranked as the most important variable. This process
is then repeated with the exception that any variable which
has already been ranked remains permuted, this continues
until all variables are ranked. In this study each permutation
was done randomly 100 times with the average performance
decrease used. This was done to reduce the impact of unim-
pactful permutations (e.g., a random permutation where by
chance a large majority of samples end up with values similar
to their initial values). While multipass permutation impor-
tance is more computationally intensive than ordinary permu-
tation variable importance measures, theoretically this method
results in more accurate results when correlation is present
between variables (McGovern et al. 2019).

Examining the accumulated local effect (ALE) (Apley and
Zhu 2020) of each variable is another method to examine the
individual impact of each variable even when correlation
between variables exists (Molnar 2018). Local effects are cal-
culated by isolating a small window of observations (in this
study the deciles of the data) and measuring the average
change in predictions across that window for a given variable.
This is done by taking all observations in a window and set-
ting the value of the variable of interest to the lower bound of
the window making predictions, and then repeating for the
upper bound of the window. The average difference in predic-
tions is the local effect of that variable. In this study, a moving
decile window was used to create ALE curves with the center
ranging from the 5th percentile to the 95th percentile of the
variable of interest.

3. Results and discussion

a. Model performance

Model performance metrics were calculated from model
predictions on the held out test dataset (step 3 of Fig. 2).
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FIG. 3. Model performance for the supercell composite parame-
ter (SCP), the support vector machine (SVM), the artificial neural
network (ANN), and the gradient boosted tree (GBT) ensemble.
Whiskers represent the 95% confidence interval of the model
performance.

Dichotomous predictions of storm type for each machine
learning model were generated using a 50% probability
threshold, while the baseline EHI and SCP predictions were
based on the thresholds determined in section 2c. The MCC
for each of the three machine learning models as well as the
benchmark EHI and SCP threshold predictors, are shown in
Fig. 3. Means and confidence intervals rely on the boot-
strapped samples. Results show that the GBT has the highest
mean MCC of 0.90 followed by the SVM (0.88) and the ANN
(0.87). The 95% confidence intervals for all three models
overlap and does not indicate a statistically significant differ-
ence between the three machine learning models. By compari-
son the EHI has a mean MCC of 0.31 and the SCP has a mean
MCC of 0.65. The 95% confidence intervals indicate that the
SVM, ANN, and GBT all have statistically significant better
performance than the EHI and SCP threshold predictors.

Further insight into model performance is gained by exam-
ining the performance diagram (Fig. 4). The performance
diagram indicates that the machine learning models have
higher mean POD than EHI or SCP. The difference between
EHI and the three machine learning models is statistically
significant, while the confidence intervals indicate that the
difference between SCP and the machine learning models is
only statistically significant for the ANN and GBT. The
machine learning models also have lower mean FAR than
both SCP and EHI. The difference in FAR between all three
machine learning models and EHI is statistically significant,
while the confidence intervals do not indicate a statistically
significant difference between SCP and any of the machine
learning models. From Fig. 4 we can also deduce that the bias
of the machine learning models is better than either SCP or
EHI with bias represented by the dashed contours and 1.0
being the ideal value. Similarly, the machine learning models
have a higher critical success index (CSI) with CSI repre-
sented by the continuous contours and 1.0 being an ideal
CSI.
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FIG. 4. Model performance diagram: The success ratio is on the x
axis, and probability of detection is on the y axis. The dashed con-
tours labeled on the top and right indicate bias values while the
solid contours indicate critical success index values. Performance is
plotted for each model as well as SCP and EHI with whiskers indi-
cating the 95% confidence intervals.

Another useful method for evaluating model performance
is the receiving operator characteristic (ROC) curve. The
ROC curve shows how the true positive rate and false positive
rate change as the decision threshold is changed with each
point on the curve representing the true positive and false
positive rates for a specific decision threshold. The area under
the ROC curve (AUROCC) is a measure of overall skill and
represents the average likelihood that two different instances
are ranked in the correct order. An AUROCC value of 1.0
indicates a perfect prediction while an AUROCC value of 0.5
indicates a prediction with no skill (i.e., random chance of
classification). Both the ROC curves and the AUROCC for
each machine learning model and the two benchmark indices
is shown in Fig. 5.

Generally, the three machine learning models have higher
true positive rates and lower false positive rates than either
EHI or SCP across a range of decision thresholds. There are
minimal differences between the three machine learning mod-
els. This is quantified by the AUROCC values where the
three machine learning models have AUROCC values between
(0.985 and 0.988) while AUROCC values for EHI and SCP are
lower at 0.762 and 0.908. These differences were found to be
statistically significant (not shown).

The strong performance of the machine learning models in
ROC curve analysis suggests that while their raw probabilities
have the potential to be biased toward predicting supercell
storm mode as a result of the dataset used, they are still skill-
ful and can be used in situations where supercells are much
more rare so long as the decision thresholds or probabilities
are adjusted. This is illustrated by testing performance of
models using adjusted probabilities (machine learning models)
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FIG. 5. Receiver operating characteristic (ROC) curves for each
of the three machine learning models as well as SCP and EHI. The
area under the ROC curve (AUROCC) for each is shown in the
legend.

and thresholds (EHI and SCP) on weighted versions of MCC,
POD, and FAR.

The weighted MCC for each of the three machine learn-
ing models as well as the benchmark EHI and SCP thresh-
old predictors are shown in Fig. 6. The weighted MCC is
used to estimate performance for a more climatological
realistic ratio of supercells to nonsupercells. Results show
that the SVM has the highest mean weighted MCC of 0.92
followed by the ANN (0.91) and the GBT (0.87). The 95%
confidence intervals for all three models overlap and does
not indicate a statistically significant difference between the
three machine learning models. By comparison the EHI has
a weighted MCC mean value of 0.32 and the SCP has a
weighted MCC mean value of 0.68. The 95% confidence
intervals indicate that the SVM, ANN, and GBT all have
statistically significant better performance than the EHI and
SCP threshold predictors.

0.8

T f T
T R RN, JEEe SS) L
4
L |
L

0.7

0.6

0.5

0.4

0.3

Matthews Correlation Coefficient

—_— e ——

0.2

[0 T

EHI SCP GBT

FIG. 6. As in Fig. 3, but for the weighted MCC to replicate more cli-
matologically representative supercell occurrence.
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FIG. 7. Asin Fig. 4, but for the weighted POD and FAR to repli-
cate more climatologically representative supercell occurrence.

Figure 7 shows the performance diagram with both POD
and FAR weighted to represent a more climatologically real-
istic environment. The performance diagram indicates that
the machine learning models have higher mean POD than
EHI or SCP. The difference in POD between the three
machine learning models and both EHI and SCP is statisti-
cally significant. The machine learning models also have lower
mean FAR than both SCP and EHI. The difference in FAR
between all three machine learning models and EHI is statisti-
cally significant while there was not statistically significant
difference in FAR between SCP and any of the machine
learning models. Similar to the unweighted case, the bias of
the machine learning models is better than either SCP or EHI
and machine learning models have a higher CSI.

To evaluate the sensitivity of the results to the methodology
of estimating performance on a more climatologically reason-
able environment, resampling on the test dataset was con-
ducted to construct a separate test dataset made up of 25%
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supercells and 75% nonsupercells. Results of MCC, POD,
and FAR for this dataset were consistent with the weighted
versions of these metrics shown in Figs. 6 and 7.

While the machine learning models show a clear improve-
ment in discriminating between storm modes, it is necessary
to determine if their predictions are based on physically rea-
sonable relationships between predictor variables and storm
mode. This is done by assessing variable importance rankings
and individual variable effects in the following sections.

b. Variable importance rankings

Variable importance rankings for each machine learning
model are shown in Fig. 8. There is agreement between all
three models on the top two variables, EBWD and ESRH.
EBWD is by far the most influential variable with MCC
decreases of 0.58 for the GBT, 0.62 for the ANN and 0.69 for
the SVM. This is consistent with previous research which
notes the importance of deep-layer shear for supercell organi-
zation (Thompson et al. 2003, 2007; Houston et al. 2008). The
second highest ranked variable in all models, ESRH, has
MCC decreases of 0.14 for the SVM, 0.15 for the GBT and
0.18 for ANN.

While the models show less agreement in the rankings of
the other variables, they generally agree on the importance of
kinematic variables with the only thermodynamic variable
ranked in the top five being MUCIN, ranked fourth in all
models. Both MUCAPE and LLCAPE are ranked in the bot-
tom three variables for all three models. A likely explanation
for this result is the data sampling strategy used. Because non-
supercells in the dataset are required to maintain radar reflec-
tivity of at least 40 dBZ for a minimum of 30 min, favorable
thermodynamic conditions for deep convection are present in
both supercells and nonsupercell environments resulting in a
large overlap between MUCAPE values for supercells and
nonsupercells. Additionally, kinematic effects can serve to
increase updraft strength (Peters et al. 2019), meaning that
for similar CAPE values, stronger updrafts would be expected
in an environment with favorable kinematics.

One variable which has disagreement between the models is
ESRW. It is ranked third in the GBT, eighth in the ANN, and
ninth in the SVM. While previous research (Peters et al. 2020)

SVM ANN GBT
1+ HEENR 1t HERB 1+ HEEND
2 + ESRH 2 - ESRE 2 + ESEH
3+ lo-1BWD 3+ Bo-1BwWD 3+ ESRW
+ 4+ B Mmucin + 4F 1 muciN + 4+ HMuciN
E 5+ | ELSRW 5 5+ B ELSRW § 5+ [lo-1BwD
6+ | muLcL 6 | mMuLcL 6+ B ELSRW
7} LLCAPE 7} | LLcaPE 7+ | muLcL
8 L | MUCAPE 8 | ESRW 8}  LLCAPE
9t ESRW 9+ | MucAPE 9+  MUCAPE
U.IO 0?2 014 0.‘6 O.IO 0j2 0?4 0.I6 O.ID Oj2 Djd 0:6

Decrease in MCC

Decrease in MCC

Decrease in MCC

FIG. 8. Variable importance results obtained via multipass permutation variable importance calculation. The rankings indicate the order
of the variable ranking, while the decrease in MCC shows the amount the model performance dropped with larger decreases indicating a
variable has more influence on model performance.
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FIG. 9. Accumulated local effect (ALE) for each of the nine predictor variables. The green lines show the ALE for the SVM, the blue
lines the ALE for the ANN, and the red lines shows the ALE for the GBT. The x axis shows the change in the value of the variable of
interest, with tick marks along the top of each panel indicating the deciles of the data. The y axis of each plot shows the mean centered

change in probability of a supercell according to each model.

has suggested that the ESRW component of ESRH is the pri-
mary driver of storm mode, our results show that ESRH is
more important in all models, and that in the ANN and SVM
ESRW is unimportant. We discuss this finding more in the fol-
lowing section; however, it is likely either related to the corre-
lation between ESRW and EBWD or a limitation of the
models.

While the rankings show that each model weights variables
slightly differently, overall, the models appear to have logical
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variable importance rankings, suggesting that they are based
on learned relationships that are physically reasonable.
Deeper analysis of each variable’s impact is contained in the
following section.

c¢. Individual variable effects

ALE values for the nine predictor variables appear in
Fig. 9. Values can be interpreted as the change in the proba-
bility of a supercell for changes in the value of a particular
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variable. For example, in Fig. 9a, the ALE for the ANN
model increases by about 1% as MUCAPE increases from
~2500 to ~4000 J kgfl, which means that, all else equal, the
probability of a supercell would increase by 1% if CAPE
were to increase from 2500 to 4000 J kg ™.

Figure 9a shows the ALE for MUCAPE for all three mod-
els. The SVM shows a linear decrease in supercell probability;
however, the effect is small, around 2%. The GBT has similar
small changes in probability, first decreasing then increasing,
but the maximum change is small, less than 2%; the small
change is consistent with the low importance ranking of
MUCAPE in the GBT. The ANN shows a similar decrease
then increase in supercell probability as the GBT but with
larger magnitudes. Supercell probability decreases by about
4% as MUCAPE increases to ~2500 J kg~ ! and then increases
by around 3% as MUCAPE increases from ~2500 J kg ™! to
near 5000 J kg~ '. While there is little support for the decreases
in supercell probability as MUCAPE increases, the increase in
probability for larger MUCAPE values is consistent with pre-
vious modeling studies (Kirkpatrick et al. 2011) as well as
observational climatologies (Rasmussen and Blanchard 1998;
Thompson et al. 2002a).

The SVM and ANN show a steady decrease in supercell
probability of 6% to 8% as the magnitude of MUCIN
deceases from ~—125 to 0 J kg~ ! (Fig. 9b). The GBT shows
little change in supercell probability as MUCIN magnitude
decreases from ~—125 to ~—251J kgfl; however, a decrease
in supercell probability of around 6% occurs as MUCIN
decreases from —25 to 0 J kg~!. These results agree with
Rasmussen and Blanchard (1998), who argue that supercells
are more likely with more CIN. Initially, this result appears to
contradict the hypothesis of Thompson et al. (2002b), who
suggested that supercell formation and sustenance is less
likely as CIN increases. However, the data sampling strategy
used to train the model came from a collection of storms that
were strong, and sustained themselves for at least 30 min.
This suggests that while large CIN values are present in the
dataset, in these cases the CIN was overcome by other factors
such as forcing mechanisms or pressure perturbations result-
ing from the storm itself. For this reason, it would not be
expected that the model would reflect the negative effect of
CIN on storm maintenance. If this were not the case and
soundings from storms that failed to sustain themselves were
included, the ALE plot would be more likely to resemble an
inverse U shape which would be expected based on the com-
bined hypotheses of Rasmussen and Blanchard (1998) and
Thompson et al. (2002b).

Both the SVM and ANN show linear decreases in supercell
probability of around 6% as MULCL height increases from
around 500 m to in excess of 2000 m (Fig. 9¢c). In contrast, the
GBT shows little change in supercell probability as LCL
increases from near the surface up to 1800 m after which a
decrease in supercell probability of around 5% occurs as
MULCL height increase above 2000 m. This result is gener-
ally consistent with prior work (e.g., Thompson et al. 2002a)
and has theoretical backing because as LCL height increases,
storms produce colder outflow which can horizontally decou-
ple near-surface vertical vorticity and the low-level lifting
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(Brooks et al. 1994; Snook and Xue 2008; Markowski and
Richardson 2009; Houston 2016; Brown and Nowotarski
2019).

Both the SVM and ANN show around a 2% increase in
supercell probability as low-level CAPE increases from near
0J kg™' to around 500 J kg ™' (Fig. 9d). The GBT shows that
LLCAPE has no effect which is consistent with the result of
the permutation variable importance results (section 3c). The
SVM and ANN, on the other hand, show a small increase in
supercell probability as LLCAPE increases. Although the rel-
ative increase in probability observed is small, these results
are consistent with the results of Rasmussen and Blanchard
(1998), McCaul and Weisman (2001), and Kirkpatrick et al.
(2011), who find that supercells are favored as low-level
CAPE increases. Low-level CAPE can be particularly impor-
tant in cases where overall CAPE was low or LCL heights
were high (Davies 2006).

All three models show that as 0-1 BWD increases so does
the supercell probability. However, both the ANN and GBT
show a small decrease in supercell probability of around 1%
as 0-1 BWD increases from 0 to around 3 ms™!. As 0-1 BWD
increases beyond that the GBT shows a large increase in
supercell probability of 5% as 0-1 BWD increases to around
8 m s~ ! after which there is little increase in supercell likeli-
hood with increasing 0-1 BWD. The ANN shows a more grad-
ual increase in supercell likelihood of 2% or 3% as 0-1 BWD
increases from 3 to over 15 m s~ '. The SVM shows constant
increase in supercell likelihood with an increase of about 5%
as 0-1 BWD increases from 0 to 8 m s~ . Above that the SVM
continues to show an increase in supercell likelihood, but the
effect is smaller, only an increase of around 2% in supercell
probability as 0-1 BWD increases from 8 to over 15 m s~ ..
The overall trend of increasing supercell likelihood with
increasing 0-1 BWD is consistent with the findings of Thomp-
son et al. (2002a), who noted that O—1-km shear was higher in
supercell environments.

Figure 9f shows that all three models have large increases
in supercell likelihood as EBWD increases. An increase in
probability of ~50% is observed as shear magnitude increases
from 10 to 20 m s~ '; additional shear above 20 m s~ ! has little
effect on supercell probability. This is consistent with the for-
mulation of SCP for which shear above a 20 m s~ ! has little
impact on supercell probability. In contrast to SCP, supercell
likelihood increases in the SVM with increasing EBWD
below 10 m s~ ! and a similar but much smaller change in
probability is observed in the ANN and GBT.

As shown in Fig. 9g, all three models show a large increase
in supercell likelihood as ESRH increases from 0 to 100 m* s~ 2,
after which the curve flattens and additional ESRH above
100 m? s* has little to no effect on supercell likelihood. The
GBT shows no increase in supercell probability as ESRH
increases to 300 m? s~2 and the probability only increases by
few percent in the SVM and GBT. These results generally
agree with previous research that highlights the importance of
ESRH for supercells by serving as an estimate of the stream-
wise vorticity ingested by a storm which is the primary source
of midlevel rotation in supercells (Davies-Jones 1984) and rep-
resenting the amount of effective inflow-layer storm-relative
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flow (Peters et al. 2020). The finding that ESRH above
100 m? s*> has minimal effect on the likelihood of supercell
storm mode is something that is not incorporated into EHI
or SCP and could result in false alarms from these indices
in situations with high storm-relative helicity.

Figure 9h shows the ALE of ELSRW. The ANN and SVM
both show a generally linear increase of 8% in supercell prob-
ability as ELSRW increases from near 0 m s™! to more than
35 m s~ . The GBT shows the same overall relationship
between ELSRW and supercell likelihood, but the effect of
additional ELSRW decreases as ELSRW increases, with the
largest change in supercell likelihood occurring as ELSRW
increases from 8 to 11 m s~ '. These results agree with Rasmussen
and Blanchard’s (1998) as well as Houston et al’s (2008)
observations of higher upper-tropospheric flow in supercell
environments, and the theoretical argument that faster upper-
tropospheric wind increases the evacuation of hydrometeors
form the updraft.

Figure 9i shows that the three models have different
impacts of ESRW. The ANN shows a slight decrease in super-
cell likelihood as ESRW increases from 7 to 9 m s~ ! but any
changes in ESRW above 9 m s~ ! have negligible impact on
supercell likelihood. The SVM shows a consistent decrease in
supercell likelihood as ESRW increases. GBT shows a differ-
ent relationship, with a slight decrease in supercell likelihood
as ESRW increases to from 7 to 9 m s~ . As ESRW increases
from 9 and 11 m s~ ! supercell likelihood increases by 7%.
Any increase in ESRW above 11 m s™' has no effect on
supercell likelihood in the GBT model. The GBT relationship
between ESRW and supercell likelihood seems to be the
most realistic, agreeing with Peters et al. (2020) on changes in
ESRW impacting the transition to supercellular storm mode.

d. Model interpretation summary

Overall, the relationships between input variables and pre-
dicted supercell likelihood match the understanding of their
influence on storm mode based on previous research with a few
exceptions. The deviations from previous research noted in
some of the thermodynamic variables (MUCAPE, LLCAPE,
and MUCIN) can be explained by the sampling strategy and
are likely not limitations of the machine learning models.

The only other relationship that does not agree with previ-
ous research is between ESRW and storm mode. The effect
of ESRW on storm morphology is not yet fully understood.
Peters et al. (2020) theorized that as ESRW increases, conver-
gence near the cloud base results in changes to updraft prop-
erties that favor supercell formation. The GBT appears to
model a similar relationship, whereas the SVM and ANN do
not, and variable importance rankings for the SVM and ANN
models suggest ESRW is not an important variable in deter-
mining the likelihood of supercells. This could be because of
the strong correlation between ESRW and EBWD (Fig. 1). It
is possible that the primary impact on storm mode is con-
tained in EBWD and once that is accounted for by the ANN
and SVM, the ESRW has little effect. Alternatively, ESRW
could play an important role in storm morphology, and GBT
captures this more accurately than the ANN or SVM due to
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limitations in those models. For example, the SVM imple-
mented here uses a linear decision boundary which can
reduce the negative effects of higher dimensional data; how-
ever, it also reduces the model’s ability to model complex
relationships (Hastie et al. 2009).

4. Conclusions

This study developed machine learning models to predict if
discrete supercell or discrete nonsupercell storm mode was
favored based on sounding derived environmental parame-
ters. These models were trained and evaluated on a dataset
consisting of ~1000 RUC-2 model proximity soundings from
near-storm environments. Results indicate that all three of
the machine learning models developed could better discrimi-
nate storm mode than EHI and SCP indices by a statistically
significant margin.

The dataset used to train and test the models results in sev-
eral potential limitations to the study. First, every possible
supercell environment cannot be represented in the dataset
used to train and test the models. As such, caution should be
used when applying these models, particularly when environ-
ments are outside the range of variable values used in this
study (Fig. 1). A second potential limitation resulting from
the dataset is related to the ratio of supercells to nonsupercell
storms. The dataset used in this study contains a much higher
ratio of supercells to nonsupercells than climatology would
suggest. This could limit the ability of the machine learning
models by biasing them to predict supercellular storm mode
too frequently. However, when machine learning model prob-
abilities are adjusted and performance results weighted to
replicate a more climatologically reasonable ratio show that
the machine learning models still outperform SCP and EHI by
a statistically significant margin, although this process effec-
tively shrinks the size of the already small test dataset, and has
the potential to limit the robustness of the conclusions.

The dataset used also means performance results (e.g.,
FAR, POD) could be misleading compared to performance in
an operational forecasting environment. Even when using
performance metrics that perform well for imbalanced data,
the skew can influence the metric values (Lampert and
Gangarski 2014; Boyd et al. 2012) and care should be taken
when interpreting performance metrics. Specifically, the val-
ues of the metrics used in this study (MCC, POD, FAR, and
AUROCC) are dependent on the dataset to which they are
applied. Additionally, the dataset used to train and evaluate
the machine learning models is a collection of idealized situa-
tions, (e.g., the database only contains discrete storms while
in reality other types of storms occur and supercells can be
embedded within or grow into larger convective systems
rather than simply staying either a discrete supercell or dis-
crete nonsupercell). These factors mean that the POD or
FAR listed in this study are likely unrealistic of what could be
expected in a true operational forecast environment.

Examination of variable importance rankings showed gen-
eral agreement with previous work on the importance of
EBWD and ESRH. The importance of EBWD and ESRH is
reflected both in permutation-based variable importance
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rankings and in the magnitude of ALE, which can also be
used as a measure of variable importance (Greenwell et al.
2018). EBWD ranked highest the variable importance rank-
ings and showed the largest magnitude of ALE for all models.
ESRH was ranked second in variable importance and had the
second largest ALE magnitudes for all models. The low rank-
ing of both MUCAPE and LLCAPE is not particularly sur-
prising considering the fact that the machine learning models,
by necessity due to the sampling strategy used to generate the
training data, generate a supercell probability conditioned on
the occurrence of a sustained thunderstorm. Expanding the
dataset to incorporate instances of failed convection initiation
or sustenance could be done in future research and would
allow for the development of machine learning models that
more accurately represent the impact of thermodynamics var-
iables and predict an absolute probability rather than a condi-
tional probability of supercell storm mode.

Individual variable effects showed that the machine learn-
ing models generated variable relationships that were gener-
ally consistent with previous research but there were several
exceptions. The models, particularly the SVM and ANN, indi-
cated relatively low impact of ESRW. It is uncertain if the
importance of ESRW noted by Peters et al. (2020) is the
result of the correlation of ESRW with EBWD or if the SVM
and ANN failed to accurately capture the influence of ESRW
on storm mode. As a result, future research into the impact of
ESRW is warranted. Additionally, for the SVM, an inverse
relationship between model performance and both MUCAPE
and ESRW is seen. This could be the result of the simplicity
of the linear SVM model used, but since the variable impor-
tance of these variables were lowest in the SVM the impact
on the predictions appears to be minimal. For the most impor-
tant variables in all models, EBWD and ESRH, the individual
variable effects were physically reasonable. EBWD shows a
relationship similar to SCP where the greatest change in
supercell likelihood occurs as EBWD increases from 10 to
20 m s~ !. ESRH shows a similar relationship where the great-
est increase in supercell probability occurs as ESRH increases
to 100 m*> s 2. Additional ESRH above this threshold has lit-
tle effect, which is not reflected in the calculation of EHI or
SCP. While not the focus of this study, these findings could be
used to modify the weighting of EBWD and ESRH in param-
eters like SCP to improve parameter performance. In sum-
mary, model interpretability results suggest the relationships
learned by the machine learning models were generally physi-
cally reasonable.

Opverall, this study demonstrates the ability of machine
learning models to strongly discriminate between storm
modes based on physically reasonable relationships between
environmental variables and storm mode. Machine learning
models like those developed in this study have potential to be
used directly as a forecast tool similar to how SCP or EHI are
used, or the knowledge gained (e.g., the most important varia-
bles and how changes in those variables influence storm
mode) can be utilized by forecasters when evaluating environ-
mental conditions. Due to their potential impact on opera-
tional forecasting, future work should continue the
development of machine learning—based forecasting tools and
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evaluate their performance in a more realistic operational
environment through cases studies.
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