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BLOCH WAVES IN HIGH CONTRAST ELECTROMAGNETIC CRYSTALS

ROBERT LIPTON'®, ROBERT VIATOR JR.%*, SILVIA JIMENEZ BOLANOS®*® AND
ABITI ADILI*

Abstract. Analytic representation formulas and power series are developed describing the band struc-
ture inside non-magnetic periodic photonic three-dimensional crystals made from high dielectric con-
trast inclusions. Central to this approach is the identification and utilization of a resonance spectrum
for quasiperiodic source-free modes. These modes are used to represent solution operators associated
with electromagnetic and acoustic waves inside periodic high contrast media. A convergent power series
for the Bloch wave spectrum is recovered from the representation formulas. Explicit conditions on the
contrast are found that provide lower bounds on the convergence radius. These conditions are sufficient
for the separation of spectral branches of the dispersion relation for any fixed quasi-momentum.
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1. INTRODUCTION

We are interested in photonic crystals, or photonic band-gap materials, and their use in controlling the
propagation of light. A photonic crystal is an artificially created optical material, which can be considered as
the optical analog of a semiconductor, since it behaves with respect to photon propagation in a similar fashion
as the semiconductor behaves with respect to electron propagation. Developments in optical materials provide
benefits to a number of fields, including spectroscopy and high-speed computing, for example. Several books
and surveys have been written about the subject; see, for instance, [15, 16,22, 23,30, 31].

A photonic crystal is a periodic lattice of inclusions surrounded by a connected phase with the property that
the contrast k between the dielectric properties of the inclusions and the connected phase can be quite large.
Understanding the propagation of electromagnetic waves in photonic crystals is crucial since it might allow
tailoring materials to obtain desired properties. The Maxwell system is given by:

VxE=-18'v.B=0

c ot

(1.1)
VxH=12 v.D=0,

t
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where c is the speed of light in free space, the vector-valued functions E and H are the macroscopic electric and
magnetic fields, and D and B are the displacement and magnetic induction fields, respectively [14]. To complete
the Maxwell system the constitutive relations describing the dependence of D and B on E and H are supplied.
We apply the linear constitutive relations, given by:

D=¢E, B=,H,

where € is the dielectric constant and p is the magnetic permeability. In this treatment, it is assumed that the
media is isotropic, the material is non-magnetic (i.e., p = 1), and the dielectric constant e(z) is periodic.

We consider the case of monochromatic waves E(z,t) = ¢“'E(x), H(z,t) = ¢*'H(x), where w is the time
frequency, and the system (1.1) becomes:

VxE=-“H V.-H=0

VxH=2¢2)E,V-eE=0
which, after eliminating the electric field E, reduces to:

V x %VxH:fH, V-H=0, where¢=(w/c) (1.2)

In a two-dimensional periodic medium (where €(x) is periodic with respect to x and y and homogeneous with
respect to z, for example), problem (1.2) reduces to scalar equations —AE = Ae(z)E and:

-V ?;)VH =¢H, where &€ = (w/c)?. (1.3)

One of the main goals of the photonic crystals theory is to choose e(z) > 0 such that the spectrum of the
corresponding problem, scalar (1.3) or vectorial (1.2), has a gap. Existence of a gap delivers a frequency interval
(band) over which electromagnetic waves cannot propagate in the material. A complete band gap is a range of
frequencies for which no Bloch wave of any wavelength or direction can propagate through the crystal. Band
gaps have many interesting and useful applications ranging from efficient photovoltaic cells to power electronics
and optical computers, see [15,16].

Most of the state-of-the-art developments [2,3,7,10-13] have been restricted to the asymptotic theory of
band gaps at infinite contrast. For the scalar case (1.3), the authors exploited structural resonances associated
with the Neumann-Poincaré operator to develop new techniques for complex operator valued functions, which
delivered explicit formulas for band gaps at finite contrast. This provides mathematically rigorous and explicit
formulas for the size of band gaps and pass bands, given in terms of the contrast, shape and configuration of
scatterers, and lattice parameters, see [24,25].

In this paper, we lay the foundation for the analytical methods to obtain the corresponding results to the ones
obtained in [24] for the fully three-dimensional electromagnetic photonic crystals lattices, via the vector wave
equation (1.2). In particular, we establish an analytic representation for the periodic and quasiperiodic spectra
of (1.2) in terms of the contrast between the dielectric constants of the two material components, together with
a radius of convergence described in terms of the crystal geometry by way of the associated Neumann-Poincaré
spectrum.

We consider a Bloch wave h(z), with Bloch eigenvalue ¢ = (w/c)?, propagating through a three-dimensional
photonic crystal, characterized by the periodic relative dielectric constant a='(z) = e(z) = e(z + p), p € Z3,
with unit cell Y = (0, 1]3, defined by:

(z) = 1 inside the inclusion D
W= e= 1/k in the host material H :=Y \ D.
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FIGURE 1. Period cell.

The magnetic field h(z) inside “non-magnetic media” solves the vector Helmholtz equation:
V x (a(z)V x h(z)) = €h(z), = €R3, (1.4)

together with the a-quasiperiodicity condition h(z + p) = h(x)e’®P. Here, « lies in the first Brillouin zone of
the reciprocal lattice given by Y* = (—x, 7]3. Equation (1.4) describes time harmonic wave propagation for the
magnetic field in non-magnetic media, i.e., for heterogeneous media with relative magnetic permeability u =1
everywhere.

We examine Bloch wave propagation through high contrast crystals made from periodic configurations of two
dielectric materials. The inclusion D contained within the interior of the period cell Y and surrounded by the
second “host” material, H := Y \ D, see Figure 1.

The coefficient a(z) is then specified on the unit cell by:

a(r) = kxm(r) + xp(z),

where Yz and xp are the indicator functions for the sets H and D, and are extended by periodicity to R3.
In this paper, we consider periodic crystals made from finite collections of separated inclusions, each with C'+7
boundary, where v > 0.

For each o € Y*, the Bloch eigenvalues £ are of finite multiplicity and denoted by A;(k, «), 7 € N. We develop
power series expansions for each branch of the dispersion relation:

Aj(k,a)=¢, jEN (1.5)

that are valid for k in a neighborhood of infinity.

To proceed, we complexify the problem and consider k¥ € C. Now a(z) takes on complex values inside H
and the operator —V x (kxg + xp)Vx is no longer uniformly elliptic. Our approach develops an explicit
representation formula for —V x (kxg + xp)Vx that holds for complex values of k. We identify the subset
z = 1/k € Qg of C where this operator is invertible. The explicit formula shows that the solution operator
(—=V x (kxg + xp)Vx)~! may be regarded more generally as a meromorphic operator valued function of z,
for z € Qy = C\ 5, see Section 4 and Lemma 4.1. Here, the set S is discrete and consists of poles lying on
the negative real axis with only one accumulation point at z = —1. For the problem treated here, we expand
about z = 0, and the distance between z = 0 and the set S is used to bound the radius of convergence for the
power series. The spectral representation for —V X (kxg + xp)Vx follows from the existence of a complete
orthonormal set of a-quasiperiodic functions associated with the a-quasiperiodic resonances of the crystal, i.e.,
a-quasiperiodic functions v and real eigenvalues \;(«), 7 € N, for which:

=V x (xp)V x v==X\;(a)Av.
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The collection of these eigenvalues, for a € Y*, comprises the structural spectrum of the crystal. The structural
spectrum encodes the geometry of the crystal and inclusions independently of dielectric properties. These reso-
nances are shown to be connected to the spectra of Neumann-Poincaré operators associated with a-quasiperiodic
double layer potentials. The formal definition of the structural spectrum given in terms of the Neumann-Poincaré
eigenvalues, for o € Y is provided in Definition 2.11.

For a = 0, these eigenvalues are the well known electrostatic resonances identified in [5,6,27], and [28].
Other electrostatic resonances for a vectorial Helmholtz equation are introduced and explored in [9]. Both
Neumann-Poincaré operators and the associated electrostatic resonances have been the focus of theoretical
investigations [17,21] and applied in analysis of plasmonic excitations for suspensions of noble metal particles
[26] and electrostatic breakdown [4]. The explicit spectral representation for the operator —V X (kxg + xp)V X
is crucial for elucidating the interaction between the contrast k and the quasiperiodic resonances of the crystal,
see Theorem 2.12.

The spectral representation is applied to analytically continue the band structure A;(k,a) =§,j € N,a e Y™
for k € R to C, see Theorem 3.1. On setting z = 1/k, the spectral representation for the inverse operator written
as Ay (2) = (=V x (kxm + xp)Vx)~! shows it to be a meromorphic operator valued function of z = 1/k,
see Section 4 and Lemma 4.1. Application of the contour integral formula for spectral projections [18,19, 32]
delivers an analytic representation formula for the band structure, see Section 4. We apply perturbation theory
in Section 4, together with a calculation provided in Section 10, to find an explicit formula for the radii of
convergence for the power series A;(k,a) about 1/k = 0. The formula shows that the radius of convergence
and the separation between different branches of the dispersion relation for any fixed a € Y* are determined
by: 1) the distance of the origin to the nearest pole z* of (—V x (kxg + xp)Vx)~!, and 2) the separation
between distinct eigenvalues in the z = 1/k — 0 limit, see Theorem 7.1 and Theorem 7.2. These theorems
provide conditions on the contrast guaranteeing the separation of the j-th and j + 1-th eigenvalue groups that
depend explicitly upon z*, j € N and o € Y*. Error estimates for series truncated after N terms follow directly
from the formulation.

When z = 0 the limit spectral problem is identified with a Magnetic eigenvalue problem, for each a € Y™,
see Sections 5 and 6. When « = 0, this is the spectra that is responsible for the magnetic activity generated by
“non-magnetic inclusions inside a period cell”, seen in the class of metamaterials identified in [7].

For clarity we place the current work in context of the earlier related work [2] and [3]. The insights of [2] and
[3] make elegant use of the generalized Rouché theorem to construct the complete asymptotic expansions of the
Bloch eigenvalues as the contrast goes to co. These were applied to two dimensional electromagnetic problems
in [2] and [3] and, as noted there, this technique in principle can also be applied to three dimensional crystals
as well. In this paper, as outlined above, we proceed differently, using the structural spectrum of the crystal to
get an explicit formula for each Bloch eigenvalue given by power series with the circle of convergence containing
the point at infinity. The formula for the convergence radius is also explicit and given by the geometry through
the structural spectra and magnetic spectra associated with the geometry of the inclusions inside the period cell.
This is done here for three dimensional photonic crystals.

The paper is organized as follows: In the next section, we introduce the Hilbert space formulation of the
problem and the variational formulation of the quasi-static resonance problem. The completeness of the eigen-
functions associated with the quasi-static spectrum is established and a spectral representation for the operator
=V x (kxm +xp)V X is obtained. These results are collected and used to continue the frequency band structure
into the complex plane, see Theorem 3.1 of Section 3. Spectral perturbation theory [20] is applied to recover
the power series expansion for Bloch spectra in Section 4. The leading order spectral theory is developed for
quasiperiodic a # 0 and periodic « = 0 problems in Sections 5 and 6, respectively. The main theorems on
radius of convergence and separation of spectra, given by Theorems 7.1 and 7.2, are presented in Section 7. A
large class of geometries for which an a-independent lower bound on the quasi-static resonances is introduced
in Section 8. Explicit formulas for each term of the power series expansion is recovered and expressed in terms
of layer potentials in Section 9. The explicit formulas for the convergence radii are derived in Section 10 as well
as hands-on proofs of Theorems 7.1, 7.2 and the explicit error estimates for N-th order truncations.
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2. HILBERT SPACE SETTING, QUASIPERIODIC RESONANCES AND REPRESENTATION
FORMULAS

The space of all a-quasiperiodic complex vector valued functions belonging to LZ (R C?) is denoted by
Li(a, Y,C?) and the L?-inner product is defined by:

(u,v):/y u-vdaz. (2.1)

For h € Li(a, Y, C3), its Helmholtz decomposition is given by:
h = Vhpot + V X hey, (2.2)

where hpot is an a-quasiperiodic scalar field belonging to HiL ((R3?,C) and heyy € Li(a, Y, C3), with V x heyy €

Li(a, Y, C?). The subspaces of gradients and curls are orthogonal with respect to the L?-inner product (2.1).
The Helmholtz decomposition (2.2) is shown in Appendix A.
For a # 0, the eigenfunctions h of (1.4) belong to the space Jg(a,Y,C3) C L%ﬁ (o, Y, C3) given by:

Ju(a,Y,C*) = {h € H} (R* C? : his a-quasiperiodic on Y, divh =0 in Y}. (2.3)

A simple calculation, found in Appendix B, shows that, for h € Jyx(a,Y,C?), we have Vh,o = 0 in (2.2).
Hence, h = V X heyy for h € Ju(a, Y, C3). Another straightforward calculation, given in Appendix D, delivers
the following result:

Theorem 2.1. Foru € Jy(a,Y,C3), the null space of V x u, for a # 0, is {0} and the bilinear form given by:
(u,v):/ Vxu-Vxvde (2.4)
Y

is an inner product on Jyu(a,Y,C?), with norm defined by ||u||* = (u,u). The space Jy(a,Y,C?) is a Hilbert
space under the inner product (2.4), with Jy(a,Y,C3) C W%E(a, Y,C3) and:

/qu-Vdex:/Vu:Vde (2.5)
Y Y
foru, v € Ju(a,Y,C3), where “:” represents the Frobenius inner product (see Appendiz C). Moreover, the null

space corresponding to the operator on the left hand side of (1.4) with domain Jy(,Y,C?) is identically zero.
For @ = 0, one has that Li(QY, C?) is the space of periodic L?- vector fields on Y. For this case, h €

L%(0,Y,C?) has the Helmholtz decomposition into L?- orthogonal components given by:
h = Vhpot +V X heut + ¢, (2.6)

where hpot is a periodic scalar field belonging to H. .

(Rgv (C), hcurl € Li&(oa Y7 Cg)’ with V x hcurl € LQ# (07 K (Cg)v
and c is a constant vector in C3, see Appendix A. For a = 0, the eigenfunctions h for (1.4) belong to the space:

{h € H} (R3 C?): h periodicon Y, V-h=0in Y}.

A simple calculation, given in Appendix B, shows that VhAye, = 0 and h = V x hgyy + ¢. We introduce the
space Jx(0,Y,C?) C LZ(0,Y,C?) given by:

J4(0,Y,C?) = {h € H} .(R® C?) : h is periodic, V-h =0 in Y, and / hdx = 0}. (2.7)
Y
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Theorem 2.2. For u € J4(0,Y,C3), the null space of V x u is {0} and the bilinear form:
(u,v)z/ Vxu-V xvde, (2.8)
Y

is an inner product on J(0,Y,C*), with norm defined by ||u||* = (u,u). The space J4(0,Y,C?) C W, (0,Y,C?)
with inner product (2.8) is a Hilbert space and:

/ qu-Vdex:/ Vu: Vvdz

Y Y

foru, v € J4(0,Y,C3). Moreover, the null space corresponding to the operator on the left hand side of (1.4),
forh € Ju(0,Y,C3), is {0}.

This theorem follows from a calculation given in Appendix D. From now on, we will refer to J4(a,Y,C3) for
all a € Y*, with the special choice of J4(a,Y,C3) for a = 0 defined as in (2.7).
The weak form of equation (1.4) is given by:

. /H(Vxh)~(V><W)da:+/D(V><h)-(V><W)dxzf/yh-wdx, (2.9)

for all w € Jy(a,Y,C?). We set k = ¢!, and the left hand side of (2.9) is given by the sesquilinear form
By : J4(a,Y,C3) x Ju(a,Y,C?) — C, defined as:

Bi(u, w) ::k/H(qu)-(VXW) da:+/D(V><u)-(V><W) dz. (2.10)

The linear operator T, associated with the sesquilinear form By, is defined by:
(Ta, w) .= Bi(u,w), (2.11)

for all u and w in Jx(a,Y,C?). So we can pose the weak form of our Bloch eigenvalue problem given by (2.9)
as

(T¢h,w) = §/Y h -w dz, (2.12)

for all w in Jy (o, Y, C3)

Our goal is to rewrite (1.4) in terms of a spectral representation formula for the differential operator V x
(a(x)V x -). We will do this by developing the spectral representation of T, appearing in (2.12), which we show
is directly linked to the following eigenvalue problem:

A(u,w):)\/Y(qu)~(V><W)dm:/D(V><u)~(V><W)dm, (2.13)

for all u,w € Jx(a,Y,C?); which will be shown to possess countably many real eigenvalues \,, with corre-
sponding eigenfunctions 1, € Jy(,Y,C?), that satisfy:

/\n/(van)-(va)dx:/(VXwn)-(va)dx, vYw € Jy(a,Y,C?).
Y D

The eigenspaces associated with different eigenvalues are easily seen to be orthogonal in the inner product (2.4).
We apply these eigenfunctions to introduce a different decomposition of J4(a, Y, C?) that is orthogonal in the
inner product (2.4). We introduce the three subspaces denoted by W, Wg', W¢* that are mutually orthogonal
with respect to the inner product (2.4) and defined as:

W ={u€ Jy(a,Y,C?, Vxu=0in D}, (2.14)
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W;‘:{ueJ#(a,Y,C?’), qu:0inH}, (2.15)

and W§' C Jy(a, Y, C3) is the subspace perpendicular to the direct sum (W & Wg).
The decomposition of J4(a, Y, C?) is recorded in the following lemma.

Lemma 2.3. The space Ju(o,Y, C3) can be decomposed into orthogonal invariant subspaces spanned by eigen-
functions of the eigenvalues of problem (2.13) and:

Ju(a,Y,C3 =Wy o W o W

It follows from the definitions of W and W§* that they are subspaces of the eigenspaces of (2.13) associated
with the eigenvalues 0 and 1, respectively. From (2.13), we easily deduce that the eigenvalues A belong to [0, 1].
To proceed, we must provide the explicit characterization of functions in Wg* in terms of eigenspaces. To do
this, we introduce the appropriate differential operators defined on the surface of the dielectric inclusion 9D.
We begin by defining the surface differential operators for smooth functions. The surface divergence Divg for
smooth complex-valued tangential vector fields v is defined over the surface 9D by:

D’i’l)sV = an(nlaj - njai)vj,

Jyi
where n;, i = 1,2, 3, are the components of the unit outward normal vector n to the surface. The operator:
n-vxv:.= (’I’L2(93 — ’I’Lgag, 77,3(31 — 71163,711(92 — nzal) Y%

is only composed of tangential derivatives and can be viewed as an operator defined on 0D. For every vector
field v in L?(0D)3, we have the relation between Divg and n- Vx given by:

Divs(nxv)=-n-V x v,

see [29]. Also, see [29], for a scalar function f € W#2(9D) and a vector function g € W!'=52(9D)3, for 0 < s <1,
we have the identity:

/ g-nxVfds=— f(n-V xg)ds. (2.16)
oD aD

To complete the set up, we introduce the spaces:

L}(0D)* = {p € L*(0D)*| n-p=0 on 8D},
L} o(0D)* = {p € L} (0D)?| Dwsp—O on 9D},
L3(0D) = {p € L*(0D)| (p,1)op =0},
Hy*(0D) = {p e H-1/2<6D>\ < Dap =0},

where (p,1)ap ::/ pds.
oD

In order to relate W$ to the invariant subspaces of the eigenvalue problem (2.13), we will introduce a
representation of W' given by single layer potentials parameterized by densities on dD. This is done in the
next section.
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2.1. Mapping properties of the single layer potential operator

We start by introducing the a-quasiperiodic Green’s function:

Ga(xvy) = - Z

nezs

ei(27rn+a) (xz—y)

WIBX?” for a # O7 (217)

and the periodic Green’s function:

ci(2mn)-(z—y)

0 _ —

G’ (z,y) = — Z e I3x3, for a =0, (2.18)

neZ3\{0}
where | - | is the usual norm of a vector in R*. For v € Y* and p € L7 (0D)?, we define the a-quasiperiodic

single layer potential as:
(o)) = [ G edpl)ds,. ¢ 0D. (2.19)
D
The single layer potential operator satisfies the continuity condition at = € 9D:
« + « -

SP)|5p = 5P| 5p (2.20)
—AS%(p)=0forz € HUD, (2.21)

and S%(p) € Wx(a, Y, C3) with S*(p) ’aD in W/22(9D)3. Let I'~(x) be a truncated circular cone in the interior
of D with vertex z and let I'"(x) be a truncated circular cone in the interior of H with vertex z. Now consider

these cones with common vertex p on dD. The boundary trace of a function f at p, f (p)}gD, is given by:

lim  f(z) = f(p)|}, . lim ()= f(p)|,,-

r—p z—p

z eI+ (p) zel~(p)

We introduce the magnetic dipole operator M® : L ;(dD)* — L7 4(9D)* given by:

M“(p) =n x (p.v. Ve X (G*(z,y) p(y)) d5y> , x€09D and o € Y™. (2.22)

oD
We have the following jump conditions for x € 0D:

af oyt 1 o
nxV, xS (p)’aD:i§p+M (p). (2.23)

For scalar densities p € L?(0D), we recall the jump conditions for = € dD:
o + 1 —\ *
n-V.S%p)|,p = F5o+ (K7°) (),

where the NeumannPoincaré operator (K~ %)* is defined by:

0G*(z,y)

() (o) = pov. | et s,

1%}

Applying Lemma 4.2 of [29] we obtain:

div S%(p)(z) = - G*(z,y)(Divgp(y))dsy,



BLOCH WAVES IN HIGH CONTRAST ELECTROMAGNETIC CRYSTALS 1491

and:
div S%(p)(z) =0, (2.24)

since p in Lio(@D)?’. We may extend Lemma 4.4 of [29] to the periodic and a-quasiperiodic cases, see Ap-
pendix E, to deliver a commutation relation between the surface divergence, the magnetic dipole and the
NeumannPoincaré operator given by:

DivgM“(p) = (K~ *)*(Divgp), (2.25)
where equality holds as elements of W~1(dD). It is noted, for future reference, that:
n-V x 5§%p) : L} ;(0D)* — L§(0D), (2.26)

is an isomorphism, see [29].

The following two lemmas are crucial for the parametrization of W¢* by single layer potentials.
Lemma 2.4. Let the single layer potential operator S* be defined as in (2.19). For every p € Lf’o(ﬁD)?’, we
have that S*(p) € WE.

Proof. First, recall that [S®(p)]|5, = 0 from (2.20), divS®(p) = 0 in Y from (2.24), and from (2.21) it follows
that:
V xV x S%p)=V(V-5%p)) — AS*(p) = —AS%(p) =0, forxze HUD. (2.27)

Choosing a smooth wo in W§', we get:

/VxS“(p)-Vxﬁgdx:/ V x S%p) -V x wa dx. (2.28)
% D

Since wy € W3', we have that V x we = 0 in H and, since H is connected, we have wy = V¢ in H, for some
scalar potential ¢, with ws|;, = w2|§D = V¢|$D. Integration by parts in (2.28), the application of (2.27), and
the fact that wa|,, = Vo|1, give:

/VxSa(p)-VXWde:/VxVXSa(p)-ngx—/ nxV xS p)- -Wads,
D D oD~

_ _/ n XV x §%p) - Vo ds, (2.29)
oD~

and, from (2.23), we see that:

/ nxVxSo‘(p)'ti)dsx:/ (—lp—i—Ma(p)) Vo ds,
oD~ oD~

2
_ /8 N (;Divsp - Dz’sto‘(p)> 6 ds,. (2.30)
Since p € L7 ,(9D)?, from (2.25) we obtain:
DivgM“(p) = (K~ )" (Divg(p) = 0. (2.31)

It now follows immediately, from (2.28), (2.29), (2.30) and (2.31), that:
/ V x 8%(p) - V x Wy dz = 0, (2.32)
Y

for a dense set of test fields ws in W§', and we conclude that S*(p) L Wg. Identical arguments can be made
for wy € W, to find that:

/ V x S%p) -V xwydz =0,
Y

and the lemma follows. (]



1492 R. LIPTON ET AL.

Define the Sobolev space:
V, @Dy = {(nxV)f : few'22oD)},

with the norm ||A|| _1 given by:
Vv, ?(8D)?

IA] - inf{||a+ flwiesopy @ 0 €C, feW?@D), (nxV)f= A} .

v, % (oD
Moreover, from [29], we have:

Lio(OD)> = V(0D = {(n x V)f : fe W'*(dD)},
with:
nx V:W"(0D)\ C — L},(8D)?, (2.33)
nxV:WY229D)\ C — V[% (D)3, (2.34)

isomorphisms, and:
1
L},(0D)® C V, *(9D)* c W1/*2(9D)>.

We now present the mapping property of the single layer potential operator necessary for characterizing the
spectrum of the sesquilinear operator 7% = S*M<(S*)~1.

_1
Theorem 2.5. The single layer potential operator can be extended as a bounded linear map from V, *(0D)3
to Wst.

Proof. To prove this theorem, we first show the following lemma.

Lemma 2.6. The space of tangential vector fields L7 (D) is a dense subspace of V, * (9D)3.

1
Proof. Note that, from (2.34), for g € V;, ? (D)? we can write g = n x V f, for some f € W'/22(9D)\ C. From
the density of W2(9D) in W'/22(dD), there exists a sequence {fi};2, e WH(@D)*\C C W1/22(9D)\ C
converging to f in W1/%2(9D) \ C. From (2.33), there are associated functions g; in L?,(0D)* such that

_1
g; = n x Vf;. By the continuity of the map n x V : W'/22(9D) — V, *(0D)?3, we have the existence of a
positive constant C' such that:

lg — 9j||Vt-%(aD) =|nxVf-nx vfj”v[%(aD) < CIf = fillwrrz2p)\c 5

_1
and it follows that L7 ,(9D)? is dense in V, * (0D)>. O

With Lemma 2.6 in hand, we prove Theorem 2.5. Given p € L7 ;(0D)* and 5*(p) € W', we have:

15°(p)|I? =/Hv X S‘*(p)-vfsa(p)dﬁ/jx S%(p) - V x 5%(p) dx

_ / I x V x S%(p)]; - 5%(p) dsx (2.35)
oD

—— [ b S dse
oD
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Writing p = n x V£, for f € WH2(9D) \ C, and using (2.16) in (2.35), we get:

_/ p -Sa(p)dsxz_/ nxVf- Sp)dsx = f -V x5%p)dsx.
oD oD oD

From (2.26), n-V x S%(p) € L2(dD), so it also belongs to WO (8D) (W2:2(dD)\C)’, where the notation
“7 is used to indicate the dual space. From (2.35) and the last equation above, for f € W12(9D)\ C, we have:

-V xS (p)|

a 2 ) Sar .
5@ = [ fn- VxSl ds < i+l e om

where inf,cc ||f+g||W%*2(8D) is the norm for W 2(3D)\(C Since the map n-V x S : (3D) R WO_%’Q(QD)
is bounded (see [29]), we have that ||n-V x S%( )|| b2 Cloll -1 oDy and also 1nfae(c I f+ol]
. 2 (0D

W32@0D)

Hp”v*%(ap)w so it follows that:

o 2 : 2
[S*(p)||" < C;gfcnf+UHW%vZ(aD)Hpij%(aD)s = Hp”v’?(aD)3

and, therefore:

(p) < 2.
IS < Clell, -y, (2:36)

The inequality (2.36) implies that S*(p) is a bounded operator mapping into W¢* for the densely defined
1 1 .

subspace L7 (0D)? of V, *(8D)3. Then, we extend the densely defined map S® to V,?(9D)3, using the BLT

theorem, to deduce that its extension S : (8D) — ng“ is bounded. O

Theorem 2.7. The single layer potential operator S< : (aD) — W$ is a bijection.

Proof. We first show that S® is one-to-one. For a given p € V, (aD) we have u = S%(p) € W§. Furthermore:

p:nxqu|aD+fnxqu‘aD_+n><V><u|8an><V><u|8Y

:nxqu[aH—nxqu‘aD,—nxVXu‘By.

Given a bounded Lipschitz domain Q € R3, if £ € L2(Q)3 and V x £ € L2(Q)3, then n x f € W~22(90Q)3. As a
consequence, there is a C' > 0, depending only on 0f2, such that:

£l 1 50 < CUIElL2 (@) + 1V X Ell220)2)-
Set f =V x u and, since VxVxu=0in HUD, peV, *(0D)*> c W~22(dD)3, one has:

-

= ||n><V><u‘8D+ —nxqu|8D7H ~12(gp)s

omp T [nx Vxull 1 2gpys T [n x V x uHW*%ﬂ(a

< C(IV xullzzemys + IV xullL2pys + [V x ul|L2(v)s)
< Cllull = C[IS%(p)]-

< ||Il XV x ullwf%,Z (v))3

Now, for p,, py € V; 2 (D) ¢ W~2:2(8D)3, we obtain:

0 <oy = Pollyy 3250 < C2llS*(P1) = S%(Pa)ll;
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to conclude that S« : V;% (OD)? — W$ is one-to-one.
To show the surjectivity of 5%, assume that u € W§* is given. From the definition of W§* and integration by
parts, we have:
V-u=0, VxVxu=0, on HUD.

Writing w = V x u, we see that Vxw = 0in HUD sow = Vqi, for ¢ € WY2(H), and w = Vg, for
g2 € WH2(D). Let I'"(z) be a truncated circular cone in the interior of D with vertex x and let I'T(x) be a
truncated circular cone in the interior of H with vertex x. Now consider these cones with common vertex p on
0D. Taking the cross product of w = V x u with the normal to the surface D given by n(p), we get:

lim n(p) x V xu(z)=n(p) x Va1 (p), lim n(p) x V xu(z) =n(p) x Vg2(p).

r—p r—p

z €T+ (p) zel~(p)

1
From (2.34), we have that n x V : W22(dD)/C — V, 2(8D)? is an isomorphism, and we choose:

pu:nqu1}8D+—nqu2|aD_ EV*%(aD)s.
Setting v = S%(p,,) gives:
VxVxv=0 in DUH, V-v=0 in Y, nxVxv]T=p, (2.37)
and:
AynxVx(v—u)-(V—ﬁ)ds:O, for v,u € Wg. (2.38)

Using integration by parts and applying (2.37) and (2.38), we discover:
|[v—u| =0.

For a # 0, this implies v = u and, for « = 0, we have u — v = ¢, where c is a constant vector. But, for a = 0,

we have 0 = | wdx = / u dz, to conclude ¢ = 0 and v = u. This shows that S¢ is surjective. ]
Y Y

From Theorem 2.7, we see that the inverse map (S*)~1 : W — V,2(9D)? exists. Finally, we apply the open

mapping theorem to derive the following theorem.

Theorem 2.8. The inverse (S*)~1 : W — V,2(0D)? is bounded.

2.2. Compactness of magnetic dipole operator

In this section, we show that the magnetic dipole operator M“ is compact.

Theorem 2.9. The operator M :V, > (0D)3 — V, > (0D)? is compact and satisfies:

(M V; *(9D)?) = o((K~*)*; Hy ¥ (0D)), (2.39)

1

where (K~*)* is the scalar valued NeumannPoincaré operator defined on Hy ?(0D) and where
_1 _1
o(M®; V, *(0D)3) and o((K~%)*; H, 2(0D)) are the spectra of M® and (K~%)*, respectively.

_1 .
Proof. We first establish that the magnetic dipole operator M is a bounded map of V, *(9D)3. To do this,
we start with the following Plemelj-like identity, that can be derived as in [29]:

(K~)*(n-V xS =n-VxS*M*, for p € L}, (0D)?, (2.40)
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The scalar valued Neumann-Poincaré operator is bounded and compact on H,, %(8D), see [21]. The map n -
1 _1

V x §%:V, *(0D)®> — H, *(0D) can be shown to be an isomorphism, as in [29]. The boundedness of (K ~)*

and the boundedness of the operator n -V x §¢ imply that:

I(E=) -V xS p))| 3 < Cln-Vx5%p)

IIH()_i(aD) < Cllpll -1 , (2.41)

_1 <
H, *(9D) Vv, ?(oD)3

On the other hand, the boundedness of n -V x S also implies the following:

M*(p <C|n-VxS*M(p . 2.42
| )l ;%(3 o = | X ( )HH(:%(‘?D) ( )
In view of (2.40), (2.41), and (2.42), we have:

M*(p)|| _1 <Cl|lp|ll -1 ,

| ()”t%(a)s* | ||t;(3)3

and we conclude that M®(p) is bounded, for p € L7,(0D)* C Vt_%(aD)?’. Since L7,(9D)* is dense in
V[% (0D)3, we can extend M® as a bounded linear map of V[% (OD)3.

Next, observe that n-V x S* : V[% (0D)? — H(;%(BD) is an isomorphism, so for a bounded sequence
{p,} € V[% (OD)3, we have:

-V 5%(py,)| <Cllenll -3

_1 >~
H, 2(dD) v, 2 (aD)3’

which shows that {n-V x S%(p,)} ~, € HO_%(Z?D) is bounded. By the compactness of (K~%)*, we have that
o _1
the subsequence {(K~*)*(n-V x 5%(p,,))},_, € Hy *(9D) is Cauchy, which in turn, by (2.40), implies that

1
2

oo -1 . -1 .
{n-V xS*M*(p,,))},_, € Hy *(0D) is also Cauchy. Because n -V x S* : V; *(dD)* — H, *(dD) is an
isomorphism and (K)* is a continuous map, we have for {p, }72;:

1M (pr,,) = M ()l -3 < Cln -V x S M (pp,)) —n-V xS (M (p,,))]|

_1
Vv, ?(aD)? H, 2(0D)’

1
and we conclude that the sequence {M“(pnk)}:;l €V, ?(0D)3 is Cauchy, and thus, M is a compact operator
_1 .
on V, *(8D)3. Finally, the identity (2.39) is the direct consequence of (2.40), and the isomorphic map n-V x S< :
1 1

V, ?(0D)? — H, *(9D). O

It is noted that the spectrum of (K ~)* lies in [—1/2,1/2] (see e.g., [21]) and, by the previous theorem, we see
that: )
o(M®; V, *(0D)?) c [-1/2,1/2]. (2.43)

2.3. Spectral property of the operator T = S*M*(§%)~1!
Theorem 2.10. The operator T = S*M*(S%)~1 : W§ — W is Hermitian, compact, and satisfies:

o (T Wg) = o (M5 V; * (9D)?). (2.44)
Proof. First, we show that T : W — W3' is Hermitian. For u, w € Wg*, we have:

(Tu, w) = /Y(v x SYM*(S)"ta) - (V x W) dw

/ (V x S“M*(S*)"tu) - (V x W) dz +/ (V x S*M(S*)"tu) - (V x W) dz.
H D
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Using integration by parts and since V x V x S*M®(S*)~1u) = 0 in H U D, we see that:
/ (V x S*M(S*)1a) - (V x W) dz = / [nx ¥V x S*M*(5*) " u]” - W dsy.
Y aD

Then, using the jump condition (2.23), we obtain (I'“u, w) = [, , M*(5%) " 'u-W dsx. We can write u = S8,
_1
for some 3 € V, *(0D)3, to get:

(T%a, w) :/ M*B-W ds,
oD

1
f/ MmxVxSB|, —nxVx85P6| | Wds,.
2 Jop +

Integration by parts gives:

1/ MxVxS*B|l, —nxVxS*B| | Wds,
2 Jop +

1

« W 1 a —
:i/H(VXS 5)(wa)dx—§/D(VxS B) - (V x W) du.

Therefore:

<To‘u,w>:%/H(V><u)~(V><W) dxf%/D(qu)(VxW) dz, (2.45)

and T is seen to be Hermitian.
Now, the identity given by (2.44) is established. Consider the eigenvalue eigenvector pair (u,p)

1 _1
o (Mo‘; v, ? (8D)3) x V, 2(0D)3 of M“p = pup. There exists u € W§ such that u = S%p, and p = (S*)"u.
Therefore, we have M(S*)~tu = pS~1u. This implies that:

SMY(S)tu=pS*(SY) " lu = T = pu,

1

which shows that o (Ma; v, ? (8D)3> Co (T Wg).
On the other hand, if we have T%u = pu, then S*M®(S*)~1u = pu; therefore, multiplying both sides by
(S2)~t gives M*(S%)"1u = p(S%)~tu, and we obtain:
_1
o (T% W§) C o(M<; V, * (9D)?).
Finally, the compactness of T = S*M*(S%)~! easily follows from the compactness of M®. (]

It now follows from (2.45) that the eigenvalue problem T“wu = pw is equivalent to (2.13), so the eigenfunctions
form a complete orthonormal system that span Ws'.
It is clear from Theorems 2.9 and 2.10 that:

_1
o (T% W3') =o((K™")"; H, *(9D)),
and we denote dependence on « explicitly and write u;(«), ¢ € N, a € Y* and make the following definition.

Definition 2.11. The structural spectra for the crystal is given by Usey+{ui(a)}ien, where the pairs p;(«),
u; € W3' satisfy:
T‘lui = ILLi(O[)’U,i.
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2.4. Spectral representation theorem

We present a spectral representation of the differential operator appearing in (1.4). With this in mind, by
Theorem 2.10 and (2.43), the invariant subspace associated with each eigenvalue p,(«) of T is denoted by
={u e Wg : T = p,(a)u} and the orthogonal projection onto this subspace is denoted by Pg ; here,
orthogonality is with respect to the (-,-) inner product. We write the projections onto W and Wg as P
and Pg, respectively. The differential operator appearing in (1.4) can be factored into the form given by the
following theorem.

Theorem 2.12. The vector Laplacian in a photonic crystal admits the representation:
V x (a(x)V x u(z)) = —ATiu(x),

where A, is the a-quasiperiodic Laplace operator defined on'Y and T is the linear transform associated with
the bilinear form By, defined for u(z) € Ju(a,Y,C3), see (2.10). The linear operator T (2.11) has the spectral
representation, which separates the effect of the contrast k from the underlying geometry of the photonic crystal,
given by:

Tdu=FkPfu+ Ps'u+ Z [k <2 —|—un(o¢)> + (2—;1”(04))} Pl u
%1<Nn(o‘)<%

where {p, ()} = o (T W), with W$ C Ju(a,Y,C3). If k € C\ Z, where:

n(a) —1/2

7 = {,u(a)/} , (2.46)
(@) +1/2] 1 joc i ay<1y
then T has an inverse and, for z = k=1, it is given by:
1 1 !
—1..
(T "'u=zPfu+ Pfu+ Z z {(2 + un(a)> +z (2 - un(a))} P u. (2.47)
S<pn ()<t
Proof. Let u € Jy(a,Y,C3). Note that:

ZPO‘u v)=(Pfu+Pfu+ > Pruv), (2.48)

_%<Hn(a)<%

for all v € Jy(a,Y,C?), from where:
ZMZ )P, v) Vv € Jyu(a,Y,C?).

Also, by (2.14), (2.15) and (2.45), for all v € Jy(a, Y, C3), we have:

1
(T*uq,v) = §<u1,v>, Yu; € Wi,
1
(I'*ugz,v) = *§<u2,V>7 Yugz € Wgt

By (2.48), for u,v € Jy(a,Y,C?), we have:

By(Pg u,v) = k/ (VxPru) - (VxV)dr+ / (VxPua)-(Vxv)de. (2.49)
H D
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On the other hand, by (2.45), we know that:

o pa _ 1 o — 1 o —
(T* P u,v) = i/H(V x PYua)-(VxV)dr— 3 /D(V x PYua)-(VxV)dr

,un(a)/H(V x Py ou) - (V xV) dx—i—/,tn(a)/D(V x P u) - (V xV)dz,

which implies that:

/H(v X P2 ) (V x ¥) da = i fﬁ:(z) /D(v x P2 w) -V x ) du. (2.50)
We also have:
/D(V x PYu)-(VxV)dr = (; - un(a)> /Y(V x P u)-(VxV)dz, (2.51)
from where (2.50) becomes:
/H(V x Prua)-(VxV)dr= (; + un(a)> /Y(V x Py ou) - (V xV)dz. (2.52)
Substituting (2.51) and (2.52) into (2.49), we get:
By(P u,v) = [k‘ (; + ,un(oz)> + (; - un(a)ﬂ /Y(v x P2 w) - (V x ¥) da. (2.53)
Noting that:
By (Pfu,v) = k/H(V x Plru) - (V x ¥) dz, (2.54)
Br(PSu,v) = /D(v x Pou) - (V x ¥) dz, (2.55)

one concludes that:

1 1
Bi(u,v) = (Tf'u,v) = (kPfu+ Py'u + Z [k (2 + un(a)) + (2 — un(a)>] PP u, v),
—1/2<pn (@) <1/2

and Theorem 2.12 easily follows since —A,, is the operator related to the bilinear form (u, v). O

3. BAND STRUCTURE FOR COMPLEX COUPLING CONSTANT

We recall that a(z) = (e(x))~! and the operator representation is applied to write the Bloch eigenvalue

problem as:
V x ((e(x))7'V x h) = —A, T¢h = ¢h. (3.1)

We characterize the Bloch spectra by analyzing the operator:
B (k) = (T) 71 (=Aa) 1, (3.2)

where the operator (—A,) ! : Li(a,Y,(Cls) — Ju(a, Y, C?), defined for all @ € Y*, is given by:

(~An) tu(z) = - /Y G (z, y)u(y) dy. (3.3)
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Let us suppose a # 0. The operator B*(k) : Li(a,Y, C?) — Jyu(a,Y,C3) is easily seen to be bounded
for k ¢ Z (2.46), see Theorem 10.5. Since H(a,Y,C?) (and hence Jy(a,Y,C?)) embeds compactly into
Li(a, Y,C3), we find that B®(k) is a bounded compact linear operator on Li(a, Y,C3) (see Thm. 10.6) and,
therefore, it has a discrete spectrum {7;(k, @)};en, with a possible accumulation point at 0. The corresponding
eigenspaces are finite-dimensional and the eigenfunctions p; € Li(a, Y, C3) satisfy:

B(k)pi(a) = i(k, ) pu(a), for z € Y, (3.4)

and also belong to Jg(a,Y,C?). Observe that, for 7; # 0, (3.4) holds if and only if (3.1) holds with £ =
Ni(k, @) =~ (k, @), and —A,Tp; = \i(k, a)p;. Collecting results, we have the following theorem.

Theorem 3.1. The Bloch eigenvalue problem (1.4) for the operator —V x (kxu + xp)V X, associated with the
sesquilinear form (2.10), can be extended for values of the coupling constant k off the positive real azis into
C\ Z (Z given by (2.46)), i.e., for each o € Y*, the Bloch eigenvalues are of finite multiplicity and denoted by
Aj(k, o) = fyj_l(k,a), j €N, and the band structure (1.5):

Aj(k,) =¢, jEN
extends to complex coupling constants k € C\ Z.
4. POWER SERIES REPRESENTATION OF BLOCH EIGENVALUES FOR HIGH CONTRAST
PERIODIC MEDIA

In what follows, we set v = A~1(k, ) and analyze the spectral problem:
B%*(k)u = v(k,a)u. (4.1)

Henceforth, we will analyze the high contrast limit by developing a power series in z = 1/k, about z = 0, for
the spectrum of the family of operators (3.2) associated with (4.1):

B(k) = (T¢) ™' (=Aa) ™
= (ZP1’1+P20‘+Z_1/2 2% : 1/2[(1/2+IM(0¢))+Z(1/2—Mz‘(a))]_lp,i)(—ﬁa)_l
=: A%(2). 1

Here, we define the operator A%(z) such that A%(1/k) = B%(k), and the associated eigenvalues B(1/k,a) =
~(k, ). Then, the spectral problem becomes A%(z)u = §(z, @)u, for u € Li& (o, Y, C3).

It is easily seen, from the above representation, that A%(z) is self-adjoint for k¥ € R and is a family of bounded
operators taking Li(a, Y, C?) into itself. Also, we have the following lemma.

Lemma 4.1. A%(z) is holomorphic on Qo := C\ S, where S = U;enzi(a) is the collection of points z;(a) =
(i) +1/2)/(pi(e) — 1/2) on the negative real axis associated with the eigenvalues {u;(o)}ien. The set S
consists of poles of A%(z) with only one accumulation point at z = —1.
The upper bound z*(«) on S for fixed v € Y* is written:

max{z;(a)} = z"(a) < 0. (4.2)

In Section 8, we develop explicit lower bounds on the structural spectrum, i.e.:

—1/2 < p~ < pila) € Uaey={pi(a) bien
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that holds for a generic class of inclusion domains D. The corresponding upper bound 2T is written:

po+1/2

max{z"(a);ja €Y'} = —— 12

=z <0, (4.3)
and 2*(a) < zT. This upper bound z*, which is realized for a large class of crystal geometries, guarantees that
the nearest pole of A%(2) to z = 0 is bounded away from the origin by a fixed distance. This enables A%(z) to
be realized as an analytic family of operators in a neighborhood about z = 0. For example, see the “buffered”
geometries in Section 8.

Let 8§ € o(A*(0)) with spectral projection P(0), and let I be a closed contour in C enclosing 5§, but no
other 8 € o(A*(0)). The spectral projection associated with 3%(z) € o(A%(z)), for 5%(z) € int(I"), is denoted
by P(z). We write M(z) = P(z)L%(,Y,C?) and suppose, for the moment, that T' lies in the resolvent of
A%(z) and dim(M(0)) = dim(M(z)) = m, realizing that Theorems 7.1 and 7.2 provide explicit conditions
for when this holds true. Now define 3%(z) := Ltr(A%(2)P(2)), the weighted mean of the eigenvalue group
{B¢(2), ..., 0% ()} corresponding to B7(0) = ... = 52,(0) = B. We write the weighted mean as:

5%(2) = 65 + *tr[( *(2) = B3 ) P(2)]-

Since A%(z) is analytic in a neighborhood of the origin, we write:
A%(z) = A%(0) + > 2" AL,
n=1

The explicit form of the sequence {A%},,cn is given in Section 7. Define the resolvent of A%(z) by:

R(¢,2) = (A%(2) = O

and expanding successively in Neumann series and power series, we have the identity:

R(C,2) = R(C,0)[I + (A%(2) — A*(0))R(¢,0)] "

= R((,0) + Y _[—(A%(2) — A*(0))R(, 0)7 (4.4)
= R(¢,0)+ ) 2"Rn(C)
n=1
where:
R,(¢) = ST (F1)PR(C0)AL, R(C,0)AR, ... R(C,0) AR, for n > 1.

k:1+...k:p:n,k:j >1

Application of the contour integral formula for spectral projections [18,19,32], delivers the expansion for the
spectral projection:

1
P(z2) = =5~ ¢ R(¢,2)dC = P(0) + Z Z"Py, (4.5)
where P, = 2m fr ¢)d¢. Now, we develop the series for the weighted mean of the eigenvalue group. Start

with:

(A%(2) = B R(C, 2) = T+ (C = BF)R(C, 2),

and we have: )

omi

(A%(2) = B5)P(2) = (C B5)R(¢, 2)dC,
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SO:

B(z) - g = ———tr f (¢ — BS)R(C, 2)dC. (4.6)

2mme

Equation (4.6) delivers an analytic representation formula for a Bloch eigenvalue or, more generally, the eigen-
value group when 3§ is not a simple eigenvalue. Substituting the third line of (4.4) into (4.6) yields:

B(z) =65+ Y 2By, (4.7)
n=1
where: ) 1y
pr=gumt Y EF g R oAy, RC0)A, BRG0G0, (48)

k1+---+kp:7‘b

5. SPECTRUM IN THE HIGH CONTRAST LIMIT, a # 0

We investigate the spectrum of the limiting operator A%(0), for « # 0. Using the representation:

A%2)= PP+ Pz Y 1124 pil@) +2(1/2 = ()] B (=A6)

—3<wpi(a)<j

we see that A%(0) = P§(—A,)~'; and, from Theorem 10.6, we get that Pg(—A,)~! is a bounded compact
operator and has a discrete spectrum. Denote the spectrum of A%(0) by o(A*(0)). Since A*(0) is clearly self-
adjoint and compact, it follows that o(A%(0)) C R is discrete, with only one possible cluster point at zero. Next,
we show that it is strictly positive as well.

We now consider the eigenvalue problem:

Py (=As) 'u = fu, (5.1)

with 8 € 0(A%(0)) and eigenfunction u € Li(a, Y, C?). This eigenvalue problem is equivalent to finding 3 and
u € Wg* which solve the Magnetic spectral problem:

(W, V) r2(y,c3) = B(u,v), for all v € Jy(a,Y,C?). (5.2)

This limit spectra is related to the internal resonance spectra of each period of the structure. For two dimensional
problems, it reduces to the Dirichlet spectrum of the inclusion. As shown in the next section, when a # 0 the
spectra is responsible for the magnetic activity seen in metamaterials [7]. Indeed, to see the equivalence, note
that we have Ps*(—=A,)~": L (a,Y,C?) — W5 and, for v € Jy (o, Y, C?), it holds:

(P (—=Aa) ', v) = Blu,v) = B(Psu, v);
hence:
(=Ay) tu, P9v) = B(u, P§'v). (5.3)

Since ((—Aq) tu,v) = Jyu-Vdzr = (u,v)r2ey,cs), for any u € Li(a,Y,(C?’) and v € Jyu(a,Y,C3), equa-
tion (5.3) becomes:
(u, P;V)Lz(y,@%) = ﬁ(u, PQ(XV>,

and the equivalence follows by noticing that Pg* is the projection of Jx(«,Y,C?) onto W4
Rewriting (5.2) as:

/qu-VXde:ﬁ_l/u-de,
D Y
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we define the sesquilinear form bg(-,-) : W' x W — C by:
bo(u,v) := / Vxu-V xvde.
D

Clearly bg is bounded and we wish to show that the spectrum is positive. To this end we introduce the following
lemma.

Lemma 5.1. For all u € W3*, there exists C > 0 such that:
bo(u,u) > C’/Y lu|? dz. (5.4)
Proof. Suppose (5.4) does not hold. Note that, for each n = 1,2, ..., there exists u,, € W§', for which:
n / Vu, :Vu,dz = n / Vxu, -Vxu,dzx < / lu,|? dz.
D D Y

Then, on normalizing u,, with respect to the L?-norm, there exists a sequence {v,,} C Wg", with [|v,,||p2(v,c2) = 1
and Vv, — 0 strongly in Li (o, Y, C3). After possibly passing to a subsequence, we apply standard arguments
to conclude that v,, — v strongly in J4(a,Y,C?), such that v is constant in Y and ||v||z2(y,csy = 1. But the
only constant function in Jy (o, Y, C3), for o # 0, is the zero function; which leads to a contradiction. O

In light of Lemma 5.1, we conclude that the problem (5.1) has a positive, decreasing sequence of eigenvalues,
with a possible cluster point only at zero.

6. SPECTRUM IN THE HIGH CONTRAST LIMIT: PERIODIC CASE, a =0

We describe the spectrum of the limiting operator A°(0), which is written as A°(0) = PY(—A¢)~!, where
PY is the projection onto WY. It is shown that the limit spectra for o = 0 is related to the internal resonance
spectra of each period of the structure, which are responsible for the magnetic activity seen in metamaterials
outlined in [7]. Here, the operator (—Ag)~" is compact and self-adjoint on L% (0,Y,C?), and given by (3.3) for
a = 0. Denote the spectrum of A°(0) by o(A°(0)). In this case we see, as in the case a # 0 of the previous
section, that o(A%(0)) C R, is discrete, with only one possible cluster point at zero.

As in [7], one can define:

Definition 6.1. The geometric average is a path integral with components defined by:

(%u)ei ::/Fiu-eidﬁ,

where I'; is any curve in H connecting two opposite points on the faces of JY orthogonal to e’ and df is an
element of arc-length.

The goal is to precisely identify o(A°(0)) C R;. With that in mind, we introduce the spaces:

F(Y)={ue H,.(R*C?) : uperiodiconY,V-u=0inY, Vxu=0in H}

xgi“:{ueF(Y): ]{u:o}.

A characterization of the space WY is given by the following lemma.
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Lemma 6.2. Let xy be the characteristic function of Y. We have:

Y

Proof. Consider the space F(Y). The curl-free condition in H, together with the Y-periodicity condition, implies
that u = Vyp+cin H, where ¢ € W;Q(H) and § u = c¢ € C3. From this, we can conclude that y@&C? = F(Y)

and that:
Wzoz{F(Y):/udsz}:{uEXf)“”@(C?’:/uda:zO}.
Y Y

To see that WY = Wa, we introduce the orthonormal system {u;};cy in L%(0,Y,C?) that is dense in x§™ with
respect to the W12(Y, C3)-norm, and is given by the eigenvectors of (6.2), see Theorem 6.3 below. Then:

FY)= {u € span {u;};_ & span {e', e, €’ }}7

and an element u of F(Y) is written:

oo

u = E lelj —+ a1e1 —+ a2e2 —+ a3e3.

Jj=1

From this, we see that the condition fY udx = 0 is equivalent to:

ap = —e . Z / cju;dx, fork=1,2,3.
j=1"Y

We define:
e .
a= chuj € xdw,
j=1
to discover u =@ — [, @dz, so W§ = W, and the lemma follows. O

Next, we identify all the eigenfunctions and eigenvalues of the following auxiliary eigenvalue problem. Find

all eigen-pairs (u, 3) in @ x R, which solve the Magnetic spectral problem:

(W, V) 2(y,cay) = B(u, v), for all v € x§™. (6.2)
Following the results in [7], we get the following theorem.

Theorem 6.3. The eigenvalues B of (6.2) are positive and form a sequence {3,}°2, converging to 0. The
eigenvectors of (6.2) deliver a orthonormal system in L3 (0,Y,C?) that is dense in X&' with respect to the
Wh2(Y,C?)-norm.

We now provide a precise characterization of the spectrum o(A°(0)) of the limit operator A°(0). In prepa-
ration, we consider the countably dense in Li(O,K C?), subset of @, orthonormal family of eigenfunctions
{u,,}22, associated with the eigenvalues G, \, 0 of (6.2). Here, orthonormality is considered with respect to
the L2(Y, C?)-inner product.

We have that o(A°(0)) consists of all v~! such that there exists a pair u and v, with u € W and v > 0,
such that:

(W,v)p = v (u,v)2(y,cay, forallve Wy, (6.3)
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div

where (u,v)p = [,V xu-V x¥vdz. By (6.1), u=u— [, udz, with a € x{§". Hence, there exists a sequence

{en},2; € C such that:

a= i chly, and u= i CpUy + C. (6.4)
n=1 n=1

where ¢ = — [, udz.
First, suppose u € x4 and ¢ = — [,, udz = 0. By (6.3), for v=v — [, vdz, with v € x{§

div we obtain:

<u, ‘7>D =V (u,\"/ — / f/dx)L2(y7C3) =V (u,V)L2(y7(C3),
Y

(u,/ {Idx)L2(y7c3):/ u-/ vdxdy = 0.
Y Y

div

since:

So u solves (u,Vv)p = v (u,V)r2(y,cs), for all v € x§', and is, therefore, an eigenfunction of (6.3) belonging
(oo}

& with fy udxz = 0. So all eigenvalues v are eigenvalues { B 1/} C { Bt }20—1 corresponding to mean zero
n=1 -

eigenfunctions. To summarize, a component of the spectrum O’(AO(_O)) of the limit operator A°(0) is given by
_1/}00

{671 n:l-
Next we identify the remaining component of o(A%(0)). Now, suppose that ¢ = — / udz # 0, and that u

Y
is an eigenfunction of (6.3) with eigenvalue v. We normalize so that |c| = 1. We have u =u — [, adz and for
all v =v— [, vdz, we get:

(,v)p = v (u,V)2(y,cs), for all v € xg". (6.5)
Using (6.4) in (6.5), we have:
Z Cpln, Vip = v ( Z Cnly + €, V)2(y,c8), for all v e xdi. (6.6)
n=1 n=1

Now, pick v = u,,, m € Nt in (6.6), to get:
cmﬁ;ll =venm + v (c, um)L2(y’C3)
= cmﬁ,;l =VCnm +1/C~/ u,, dr
Y

ve- [y Uy de

= Cmym = —
(@nl —v)
Then (6.4) becomes:
. Ve [, de S ve- [, u,de
a= ———u,(x), and u= ——u,(x)+c
n; (/6711*”) ,; (ﬂnlfl/)
Since we require fy udz = 0, we obtain:
nd ® nd
VZqu 78 Jy Gde (6.7)

n=1 V)

We introduce the effective magnetic permeability tensor:

i) = <Ig,xg+y§jf"“”gx®f"“”dx>,
n=1 n

—v)
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o 1(0) 52(0) 1 (0)

:

FIGURE 2. Schematic of T';, d, ¥/(0), and X" (0).

and (6.7) gives the homogeneous system for the vector ¢ in C? given by:
p(v)e=0. (6.8)

The effective permeability tensor agrees with the one given by the high contrast homogenization of Maxwell’s
equations in [7]. We form the spectral function given by:

S(v) = det[p(v)]; (6.9)

and, clearly, we have a nontrivial solution of (6.8) when S(v) = 0. The roots of the spectral function form a
countable non-decreasing sequence of positive numbers {1, }° ; tending to infinity. We set 3, = v, 1 and the
complete characterization of o(A°(0)) given by:

Theorem 6.4.
0 / %
o(A%(0)) = {8, }nz1 U{Bn}nts-
When the inclusion shape is invariant under the cubic group of rotations, the effective permeability tensor is

a multiple of the identity, i.e., u(v) = I3x3A(v), where A(v) is a scalar function of v. Here, det {u(v)} = \3(v),
so v; are the roots of the equation A(v) = 0. For any constant vector v in R? we have:

Ap) = BOVV > i (6.10)

v[? V=B

where a2 = | [, u, dz - v[?/|v|? > 0 and §;; are only associated with nonzero mean eigenfunctions. For £} | <
v < f3), calculation shows —oo < A(v) < oo, with A'(v) > 0. From this, we conclude §;; < v; < 35, and we
have the interlacing v,_1 < 8} < v,.

7. RADIUS OF CONVERGENCE AND SEPARATION OF SPECTRA

Fix an inclusion geometry specified by the domain D. Suppose first o« € Y* and o # 0. Take I'; to be a closed
contour in C containing an eigenvalue 3¢ (0) € o(A%(0)), but no other element of o(A%(0)), i.e, for a # 0 € Y~
fixed, ﬂj‘(()) is separated from other components of the spectrum, see Figure 2. Define d to be the distance
between I'; and o(A%(0)), i.e.:

d = dist(T5,0(4°(0)) = inf {dist(¢, 0(A"(0))}, (7.1)

The component of the spectrum of A%(0) inside I'; is precisely 55*(0), and we denote this by 3'(0). The part of
the spectrum of A%(0) in the domain exterior to I'; is denoted by %”(0), and %"”(0) = o(A*(0)) \ 3§ (0). The
invariant subspace of A%*(0) associated with ¥'(0) is denoted by M’(0) with M’(0) = P(O)Li(a, Y, C3).

Suppose the lowest a-quasiperiodic resonance eigenvalue for the domain D lies inside —1/2 < p~ (a) < 0. It
is noted that, in the sequel, a large and generic class of domains are identified for which —1/2 < u~(«). The
corresponding upper bound on the set z € S, for which A%(z) is not invertible, is given by:

2" () = W <0, (7.2)
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see (4.2). Now set:

2d *
oo laPd @] )
75 () T laf?d

Theorem 7.1. Separation of spectra and radius of convergence for a« € Y*, o # 0.
The following properties hold for inclusions with domains D that satisfy (7.2):

1. If |z| < r*, then T lies in the resolvent of both A*(0) and A*(z) and, thus, separates the spectrum of A%(z)
into two parts given by the component of spectrum of A%(z) inside T'j, denoted by ¥'(z), and the component
exterior to T'j, denoted by X" (z). The invariant subspace of A*(z) associated with ¥'(z) is denoted by M'(z),
with M'(z) = P(2) L3, (., Y, C?).

2. The projection P(z) is holomorphic for |z| < r* and P(z) is given by:

P(z) = 2;732 f{p R(G.2)dC

3. The spaces M'(z) and M'(0) are isomorphic for |z| < r*.
4. The power series (4.7) converges uniformly for z € C inside any disk centered at the origin contained within
|z] < 7*.

Suppose now « = 0. For this case, take I'; to be the closed contour in C containing an eigenvalue ﬂ? (0)

a(A°(0)), but no other element of ¢(A°(0)), i.e., T; separates 3§(0) from other components of the spectrum,
and define:

d= Cienrfj{dist(g a(A°(0))}.

Suppose that the lowest a-quasiperiodic resonance eigenvalue for the domain D lies inside —1/2 < p~(0) < 0
and the corresponding upper bound on S is given by:

(0) = p(0)+1/2

= < 0. 7.4
= (0)—1/2 (74)
Set: 2l (0
e — |2"(0)] —. (7.5)
1/2—u=(0) + 4m2d

Theorem 7.2. Separation of spectra and radius of convergence for a = 0.
The following properties hold for inclusions with domains D that satisfy (7.4):

1. If |z] < r*, then T; lies in the resolvent of both A°(0) and A°(z) and, thus, separates the spectrum of A°(z)
into two parts given by the component of spectrum of A°(z) inside I'j, denoted by ¥'(z), and the component
exterior to I'j, denoted by X" (z). The invariant subspace of A°(z) associated with ¥'(z) is denoted by M'(z),
with M'(z) = P(2)L%(a,Y,C?).

2. The projection P(z) is holomorphic for |z| < r* and P(z) is given by:

PE)= o fr R(G2)de,

3. The spaces M'(z) and M'(0) are isomorphic for |z| < r*.
4. The power series (4.7) converges uniformly for z € C inside any disk centered at the origin contained within
|z] < r*.

Next, we provide an explicit representation of the integral operators appearing in the series expansion for the
eigenvalue group.
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Theorem 7.3. Representation of integral operators in the series expansion for eigenvalues
Let P§ be the projection onto the orthogonal complement of W ®WS', and let I denote the identity on L*(0D)3,
then the explicit representation for the operators A% in the expansion (4.7), (4.8) is given by:

1.
AS = [SY(M™ + 51)—1(50)—113; + P{)(—Ay) "t and
A7 = SUM™ 4 LIS TS UM — S M+ S D) (S P (A

We have a corollary to Theorems 7.1 and 7.2 regarding the error incurred when only finitely many terms of
the series (4.7) are calculated.

Theorem 7.4. Error estimates for the eigenvalue expansion.

1. Let a # 0, and suppose D, z*(«), and r* are as in Theorem 7.1. Then, the following error estimate for the
series (4.7) holds for |z| < r*:

_ d|z|PH

G LG ED

2. Let « =0, and suppose D, z*(0), and r* are as in Theorem 7.2. Then, the following error estimate for the
series (4.7) holds for |z| < r*:

B - 3

n=0

p

270 S Gl )

We summarize results in the following theorem.

Theorem 7.5. The Bloch eigenvalue problem (1.4) is defined for the coupling constant k extended into the
complex plane and the operator —N x (kxu + xp)Vx with domain Jy(a,Y,C3) is holomorphic for k € C\ Z.
The associated Bloch spectra is given by the eigenvalues \j(k,a) = (5}"(1//{))_1, for j € N. For a € Y* fized,
the eigenvalues are of finite multiplicity. Moreover for each j and o € Y™, the eigenvalue group is analytic
within any neighborhood of infinity contained within the disk |k| > (r*)~! where r* is given by (7.3) for a # 0
and by (7.5) for a = 0.

The proofs of Theorems 7.1, 7.2 and 7.4 are given in Section 10. The proof of Theorem 7.3 is given in Section 9.

8. RADIUS OF CONVERGENCE AND SEPARATION OF SPECTRA FOR PERIODIC SCATTERERS
OF GENERAL SHAPE

In this section, we identify an explicit condition on the inclusion geometry that guarantees a lower bound p~
on the structural spectrum.

Let D be a simply connected set, compactly contained in Y, with C'Y boundary, v > 0. Recall that, by
Theorem 2.9, we have that the eigenvalues of the magnetic dipole operator are precisely those of the Neumann-
Poincaré operator, that is:

o(M%; V, 2 (0D)) = o((K—*)*; Hy *(9D)).

_1
Moreover, a criteria for an a-independent lower bound for o ((K ) Hy ® (GD)) was already established in

[24], in a theorem which we restate below.

Theorem 8.1. Let = be the infimum of the structural spectrum. Suppose there is a constant 0 > 0 such that,
for all w € HL(Y) that are harmonic in D and Y \ D, we have:

IVullZ2(v\py = OlVullZ2(py- (8.1)

Let p = min{%7 g} Then pu~ + % > p.
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Clearly, the parameter 6 is a geometric descriptor for D. The class of inclusions for which Theorem (8.1)
holds, for a fixed positive value of 6, is denoted by Py, and we have the following corollary.

Corollary 8.2. For every inclusion domain D belonging to Py, Theorems 7.2 through 7.5 hold with z*(a)
replaced with z+ given by:
+_ Bt 1/2 0
z 7;;* 12 <y,

where p~ = min{%, ¢} — L.

In [24], the authors also introduce a wide class of inclusion shapes with 6 > 0 that satisfy (8.1). Consider
a “buffered” inclusion geometry, which consists of an inclusion domain D surrounded by a buffer layer R, see
Figure 3. In the “buffer” R\ D, we have a(x) = 1, that is, the buffer is a region of positive volume surrounding
D that does not intersect with the boundary 9Y of the unit cell Y. Denote the Dirichlet-to-Neumann map on
the boundary of the inclusion by DN : HY/2(dD) — H~'/2(dD), denote its norm by |[DN||, and denote the
Poincaré constant for the buffer layer by Cr; we have the following theorem, also from [24].

Theorem 8.3. The buffered inclusion geometry satisfies (8.1) with:
0=' > /1+ C%|DN]|

provided this mazimum is finite.

We now take D; = B,(z;), a sphere with center z; and radius a, and observe that D, = By(z;) D D; if a < b.
Following Appendix A.3 of [8], we see that 01 will satisfy:

-1 _
6" = max Ci(a,b),

where:
lb2l+1 + (l + 1)a2l+1

(I + 1) (2T — g2y

Ci(a,b) =

Adding and subtracting 2t in the numerator yields:

b2l+1 + CL2l+1 b2[+1

p2+1 _ g20+1 (I+ 1)(b21+1 _ a2l+1)
2Ll 4 2141

S i — ot Ci(a,b).

Cl(a, b) =

Note that C}*(a,b) is decreasing in I:

d . 2(ab)?*+1(In(a) — In(b))
acl (a,b) = (B2H1 — g2l+1)2 <0,
for all [ > 1. So:
b3+ a?
—1 < * _ )
b7 < maCi(a,b) = 5
Thus:
bB _ a3
IVullz2(v\p) > WHVUHL?(D)~

Observe that this bound is not sharp.
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FIGURE 3. Buffered inclusion.

9. LAYER POTENTIAL REPRESENTATION OF OPERATORS IN POWER SERIES

In this section, we obtain explicit formulas for the operators A% appearing in the power series (4.8). It is
shown that A%, n # 0, can be expressed in terms of integral operators associated with layer potentials, and we
establish Theorem 7.3.

Recall that A%*(z) — A*(0) is given by:

PP+ > 2124 ml@) + 2(1/2 = ()] PR (=AY,

—3<pi(a)<j

Factoring (1/2 + u;(«))~! and expanding in power series the term:

[(1/2 + pi(@)) + 2(1/2 = (@)™ = (1/2 + paler IZZ" <m> ’

we obtain:

(o) — n—1
A%(2) — A%(0) = (zP? +Zz > (pila) +1/2)7 <“()1/2) P2 P§)(—AZY).

<l i) +1/2

It follows that:

AY=(Pr+ > (1/24 mi(a) TP P (-ALY) 9.1)
—3<pi(e)<3}
A% = ( Z (/sz(a) + 1/2)71 (W) - P}ip;z) (_Agl) (92)

—3<pi(a)<3
We also that we have the resolution of the identity given by:
I = IJ#(a7y7cz) = Pla -+ P2a + Pél,

with P = > P, and the spectral representation:
—3<wi(a)<3

1 1
(T, v) = ((S*M(S*) ") P§u + in‘u - §P2°‘u, v)

L1 1
= Z i) Py u+2P1uf§P2uv>

—i<pi(a)<d
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Adding %I to both sides of the above equation, we obtain:
(T + 5 1)u,v) = (( (ni(e) + 5) P + Pr)u, v)
2 2
—3<pi(@)<3
(0% « )\ — 1 (% (6% (0%
= ((S"M(5%) ™" + 5 P) P + Pf)u,v) (9.3)
« a 1= a)— o4 «
= (((8*(M* + 5 D)($*) )P + Pf)u,v),

where I is the identity on H~'/2(dD)3. Now, from (9.3), we sce that:

S (g +mila) B PR = (577 4 5D (SY) A (9.4)

—3<pi(a)<j
Combining (9.1) and (9.4), we obtain:
a a a L a\— «a o _
AY = [S7(M™ + SD)7HS™) TIPS 4 PRY(=Aa) T

We now turn to the higher-order terms. By the mutual orthogonality of the projections Py, for n > 1, we
have that:

i\ -1 M ”*1 «
é3(:&)«;(;%( )+1/2) (Ni(a)—f'l/?) Po .

(Y azim@ B (Y we@-128)" (X ule) +1/2Es)

—3<ni()<3 —L<pi(@)<} —L<pi(a)<t

As above, we have that:

S /24 mle) LR = UM+ DTSN R,

i

—s<pi(a)<}
1= — a
> (124 pm(e) PPy = SUM™ + 51)(5%) Py, (9.6)

—3<pi(a)<j

Yo () -1/2)P Py

—s<pi(a)<3

1~
SH(M™ — 51)(5“)—1133&.

Combining (9.6), (9.5), and (9.2), we obtain the layer-potential representation for A%, concluding the proof
of Theorem 7.3:

1

A5 = §UM® 4+ LD (5 S (M — ST (M L DTS P (-8

| —

10. DERIVATION OF THE CONVERGENCE RADIUS AND SEPARATION OF SPECTRA

In this section, we present the proof of Theorem 7.1 and the proof of Theorem 7.2. To begin, we suppose
a # 0 and recall that the Neumann series (4.4), and consequently (4.5) and (4.7), converge provided that:

[(A%(2) — A%(0))R(C, O)H£[Li(a,Y,C3);Li(a,Y,C3)] <L (10.1)
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With this in mind, we will compute an explicit upper bound B(a, z) and identify a neighborhood of the origin
on the complex plane for which:

[(A%(2) = A%(0) R(C, 0)ll£ (22, (a,vic2): 2, (o, v,e2)) < Bla, 2) <1,

holds for ¢ € I';. The inequality B(«a,z) < 1 will be used first to derive a lower bound on the radius of
convergence of the power series expansion of the eigenvalue group about z = 0. Then, it will be used to provide
a lower bound on the neighborhood of z = 0 where properties 1 through 3 of Theorem 7.1 hold.

We have the basic estimate given by:

(A% (z) — A*(0))R(C, O)H,C[Li(a,Y,(ﬁ);LQ#(a,Y,(CS)] (10.2)
< I(A%(2) = A%(0) |22, (a,vie2yiz2, (@, vieon 1RG0l 2122, (0, vic2)522, (0, v,00))-
Here ( € I';, as defined in Theorem 7.1, and elementary arguments deliver the estimate:

HR(CaO)”L[Li(a,Y,Cf‘);Li(a,Y,C?')] <d, (10.3)

where d is given by (7.1). Next, we estimate ||(A%(z) — Aa(o))||£[L2#(Q7Y,C3);Li(a7y7((:3)].
Denote the energy seminorm of u by:

[l = IV xallL2(v,co)-
To proceed, we introduce the following Poincaré estimate:

Lemma 10.1. Poincaré estimate for functions u belonging to Jy(a,Y,C?), for a # 0:

[l 2 (vcs) < lol ™ ull. (10.4)

Proof. First, we obtain that:

(~AF ) p2qyce) = /Y /Y —G*(z,y)uly) dy - ulz) dx

’fY e—i(27‘r n+a)yu(y) dy’Q

- n§3 2 n + af? (10.5)
Observe that, for a € Y*, the following holds:
jaf* < [[2mn| - |al* < [27n+ of?,
and using this in (10.5), we have:
; 2
(A7 Waren < 3 e ] (10.6)

nezd |a|2

Now, write u(y) = a(y)e!®? and observe that:

/ e i(2m n—&-(x)'yu(y) dy = / e—i(2m n)@!ﬁ(y) dy = ﬁ(n),
v Y
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where u is the Fourier transform of @, so we can rewrite (10.6) as:

_ 1 - _
(_Aaluvu)LQ(Y,C?’) < W /Y |u(y)|2 dy = |Oé| 2||u||2L2(Y,(C3)' (107)

Also, we have the Cauchy inequality:

[ 1P dy= [ V(-a;t(): Tutyyay
Y Y
< (/Y |V x (—Aalu(y))|2dy)l/2(/y |V x u(y)|2dy)1/2. (10.8)

Applying (10.7), we get:

1 2 \1/2 . ——— \1/2
([ 1oxcaruwfa)” = ([ VA uw): VEATulm) dy)
Y Y
< la["HullL2(vco) (10.9)
and the Poincaré inequality follows from (10.8) and (10.9). O
For any u € L% (a,Y,C?), we apply (10.4) to find:
1 (A%(2) = A%(0) ufl 2(v,cs) < [ IV x (A%(2) — A%(0)) ullz2(v,co)
< a7 ((T) 7 = P ll s (e, (o vicoy | — A5 | (10.10)
Applying (10.9) and (10.10) delivers the upper bound:
[A%(z) — Aa(o)”[:[Li(a,Y,Cii);Li(a,Y,([ﬁ)] <o (T = P8) 2174 (0,viC3): 7 (a,viC3)) -

The next step is to obtain an upper bound on || ((T,g“)’1 — PQO‘) | £ (0, ¥,C3); 74 (0, v,03))- By (2.47), for all
u € Jyu(a,Y,C?), we have:

. 5 \1/2
(S IV () = Pg) ul” dy)

[[u

Je4 — o 1/2
_ Sy IV X GPRPa+ Y s wyer 2 [(1/2 4 i) + 2(1/2 = pi())] " Pw)? dy

[[uf[?
L, N1
it Y 10/ ) + 212 - ) )
—3<wi(a)<3
where w, = || Pfull*/[|ul]?, w; = |P3ul?/|[ul?, and w, + > w; = ¢ < 1, ¢ > 0. Hence, maximizing the right

hand side is equivalent to calculating:

max  {wo+ Y wil(1/2+ pi()) + 2(1/2 — i) 722

wo+Y] wi=c<1 L .
—5<pi()<s3

= sup{L, [(1/2 + pi(e)) + 2(1/2 — ()| 23172,

Thus, we maximize the function:
-2

f(x):‘;—kx—kz(;—x)
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over z € [~ (), pT ()], for z in a neighborhood about the origin. Let Re(z) = u, Im(z) = v, and we write:

- < (; +r4u @ —x>)_2 =: g(Re(2), )

f(z) = %+x+(u+z‘v) (;—x)

to get the bound:

1/2
[T = P 21w,y c2)su(any.cy) < |2|sup {17 sup g(u,x)} ) (10.11)
z € [p~ (a),pt ()]

We now examine the poles of g(u, z) and the sign of its partial derivative 0,g(u, z) when |u| < 1. If Re(z) = u
is fixed, then g(u,z) = ((3 + 2) +u($ — 2)) =2 has a pole when (1 + z) + u(3 — 2) = 0. For u fixed, this occurs

when x = %, given by:
. . 1/1+u
=2z(u)= = .
2\u—-1

On the other hand, if x is fixed, g has a pole at:

x+1/2

r—1/2°

The sign of J,g is determined by the formula:

—2(1 —w) _ —2(1 —u)?z — (1 —u?)
Fretu(d-o)]" [retu(G-2)]"

Ozg(u,x) = (10.12)

Observe that the denominator on the right hand side of (10.12) is positive. A calculation shows that 9,9 < 0
for x > &, i.e. g is decreasing on (Z, c0). Similarly, we have 9,9 > 0 for < Z and ¢ is increasing on (—o0, Z).
Now, we identify all u = Re(z) for which & = Z(u) satisfies & < p~ (o) < 0.
Indeed, for such u, the function g(u,x) will be decreasing on [~ (), u* ()], so that, for all z € [u~ (), fi],
we have g(u, p~ (a)) > g(u, x), yielding an upper bound for (10.11).

Lemma 10.2. The set U of u € R for which —% < #(u) < p~ () < 0 is given by U := [2*,1], where:

RPN C b Y
p(a) — 5

Proof. Note first that p~ (o) = infen{p;} < 0 follows from the fact that zero is an accumulation point for the
sequence {1; }ien, so it follows that:

i (0) < —p(@) = 1/2+ 7 (@) < (~)(u(a) —1/2) = = > —1.

1 r+1/2
Observe that & = &(u) = L, we invert and write u = aj +1/ .
2(u—1) &—1/2
. B . T4+1/2 ia -1
We now show that z* < wu <1, for & < pu~ (a). Set h(Z) = then h/(%) = ——— < 0,

&—1/2 (@ —3)?
and so, h is decreasing on (—o00, 3). Since ™ () < 3, h attains a minimum over (—oo, u™ (a)] at z = ™ ().
Thus #(u) < p~ («) implies:

1 (u+1 _ . _ K (a)+1/2
3 (i57) =0 = - i s

as desired. 0
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Combining Lemma 10.2 with the inequality (10.11), noting that —|z| < Re(z) < |2|, and on rearranging terms,
we obtain the following corollary.

Corollary 10.3. For |z| < |2*|, the following holds:

a a — £\ — 1 _ -1
1(4°(2) = A*(O) L2123, (0 vieiz, o vieny < lal 2el(=lzl =27 (5 =0 (@)
Proof. Observe that:

A% (2) — Aa(o)H5[Li(a,y’(cs);Li(a,y,c3)] < |O“72|| ((Tka)il - PQQ) ||£[J#(a7Y,C3;J#(a,Y,(C3]

1/2
<la|2zsup {1, swp  g(Re(z),x)}
z € [p(a),pt(a)]

< Jol 22l (2l = =) (5 - (@)
From Corollary 10.3, (10.2) and (10.3), it follows that:
1(A%(2) = A*(0)R(C, 0)ll 222, (a,v,c2):22 (0, vic2))
< a2l - )7 (G- @) = Bla,s).
A straightforward calculation shows that B(«, z) < 1, for:

ey _laPdlz (@)
S —
T T lol*d

and property 4 of Theorem 7.1 is established, since r* < |z*|.

Now we establish properties 1 through 3 of Theorem 7.1. Inspection of (4.4) shows that, if (10.1) holds
and if ¢ € C belongs to the resolvent of A%(0), then it also belongs to the resolvent of A%(z). Since (10.1)
holds for ¢ € I'; and |z| < r*, property 1 of Theorem 7.1 follows. Formula (4.5) shows that P(z) is analytic
in a neighborhood of z = 0, determined by the condition that (10.1) holds for ¢ € I';. The set |z| < r* lies
inside this neighborhood and property 2 of Theorem 7.1 is proved. The isomorphism expressed in property 3 of
Theorem 7.1 follows directly from Lemma 4.10 of [20] (Chap. I, Sect. 4), which is also valid in a Banach space.

To prove Theorem 7.2, we need the following Poincaré inequality for J4(0,Y, C3).

Lemma 10.4. The following inequality holds:

1
HVHL;(O,Y,CS) < §HV||~ (10.13)

This inequality is established proceeding as in the proof of Lemma 10.1, with (2.18). Using (10.13) in place
of (10.4), we argue, as in the proof of Theorem 7.1, to show that:

1(A°(2) — AO(O))R(Q0)||L[(L;(o,Y,CS);Li(o,Y,CS)} <1

holds provided |z| < r*, where r* is given by (7.5). This establishes Theorem 7.2.

The error estimates presented in Theorem 7.4 are easily recovered from the arguments in [20] (Chap. II,
Sect. 3); for completeness, we restate them here. We begin with the following application of Cauchy inequalities
to the coefficients 8 of (4.7), from [20] (Chap. II, Sect. 3, pg 88):

|Ba| < d(r®)~".
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It follows immediately that, for |z| < r*, we have:

I R P Pt
’ n:OZ ! _n:erl ) T (’I‘*)p(r* - ‘ZD’

completing the proof.
For completeness, we establish the boundedness and compactness of the operator B*(k) in (3.2).

Theorem 10.5. The operator B*(k) : Lf‘;ﬁ(a,Y7 C3) — Ju (o, Y,C3) is bounded for k € Z.
Proof. For a # 0 and for v € Li(a, Y, C3), we have:
1B (k)] = [I(T5) " (—2a) v
<) M epp(aycoyidpiay.coll — ATV
< e THIATE) ™ s (0,v,€3) 00 (e v,y VI L2 (vics)

where the last inequality follows from (10.9). The upper estimate on ||((T§) ™| £, (a,v,C%); /4 (a,v,c3)] 18 Obtained
from:

7o) v o > 1/2
WO < {1 Y wnla/2 ) + 5072 2}
i=1
where @ = [|PPv|?/[[v]?, @ = |[Psv|?/IIv]]?, and w; = [|[P2v]]?/[[v]]*. Since w + @ + Y772 w; = ¢ < 1, one
recovers the upper bound:
1)l
Il
where: B
M = max {1, |z, sup {\(1/2 + i) +2(1/2 = ,ui)|_1}}.
A similar argument can be carried out for o = 0. O

Theorem 10.6. For k ¢ Z, B*(k) : Li(a,Y,(C?’) — Li(a,Y,(C:g) is a bounded compact operator mapping
Li(a,Y, C3) into itself.

Proof. The Poincaré inequalities (10.4) and (10.13), together with Theorem 10.5, show that B%(k)
L3 (0, Y,C?) — L3(,Y,C%) is a bounded linear operator mapping L% (a,Y,C?) into itself. The compact
embedding of Jy(a,Y,C?) into L% (a, Y, C?) shows the operator is compact on L3 (a,Y,C?). O

11. CONCLUSIONS

In this paper, analytic representation formulas and power series describing the band structure inside non-
magnetic periodic photonic crystals, made from high dielectric contrast inclusions, are developed. The spectral
representation for the operator —V X (kxg + xp)Vx is derived, as well as a power series representation of
Bloch eigenfunctions. The radius of convergence for the power series, together with explicit formulas for each
of its terms, in terms of layer potentials, is obtained. The spectrum in the high contrast limit is completely
characterized for the a-quasiperiodic and periodic (o = 0) cases. Explicit conditions on the contrast are found
that provide lower bounds on the convergence radius. These conditions are sufficient for the separation of
spectral branches of the dispersion relation for any fixed quasi-momentum. From a mathematical perspective, it
is pointed out that the non-magnetic nature of the crystal permits us to explore the solutions to equation (1.4)
in a divergence-free Sobolev space of vector-valued functions, see (2.3), (2.7). For magnetic crystals with u =
wu(z) # 1, the proper solution space must include fields h for which V - (uh) = 0. This presents a challenge for
future research.
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APPENDIX A. HELMHOLTZ DECOMPOSITION FOR PERIODIC AND QUASIPERIODIC VECTOR
FIELDS.

Here, we show how to obtain the Helmholtz decomposition (2.2). First, consider aw € Y*, « # 0. For h(z) €
Li(a, Y, C3), we have h(z) = hpe(z, @)e?™ @, where:

hper(xaa) = Z ﬁper(kva)e%ﬂk.z'
kezZ?

In other words: A '
h(l‘) _ Z hper(kva)627m(k+a)<x'

kez3
Now, define the following:
. i (k+a)-hye(k,a)
h o ka = —35_ L )
pot (K, ) 2m |k + «|?
N i (k4 a) X hpe (K, a)
heyr kv = 5= .
(k@) 27 |k + «f?

By the vector triple product formula, we observe that:
2mi(r + k) hpot (k, @) + 27i(e + k) X D (k, @)
(a+ ) [(a+ k) - Bper (b, )|
Ik + a2 -
= hper (k, @).
It follows that h(z) = Vhpet(2) + V X hey(x), where:

hpot(x) — Z }Alpot(kya)e%ri(k#»a)m’
keZ3

hcurl(x) = Z 1Alcurl(k, a)ez"ri(kJra)m'
keZ3

(a4 B)[(a+ k) hper(k, )] hper(k, @)[(+E) - (a + k)]
|k + of? |k + a)?

This is the Helmholtz decomposition for a-quasiperiodic fields, for a € Y*, o #£ 0.
When o = 0, we have h(z) = Z h(k)e? 2 or equivalently:
kez3
h(z) =h(0) + Y h(k)e™
kez?
k0
with h(0) = / h(z). Then, the Helmholtz decomposition for h € L% (0,Y,C?) is given by:
Y
h(z) = Vhpe(z) + V X heyn(z) + ¢, c€ C3,

where:

kEZ
k#0
ik i mik-x
hpot(x) = Z §7|k|2 (k) 2mik
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APPENDIX B. FOR h € Jy(a,Y,C?), Vhyy =0 IN (2.2):

If o # 0, from Appendix A, we have h(z) = Vhpot(z) + V X heyn(2). Taking divergence on both sides, and
since h € Jy (o, Y, C?), we obtain that Ahpot = 01in Y and, since hpot is a-quasiperiodic, we have:

/ |Vhp0t|2 - / hpotanhpot - O
Y oy
A similar argument works for to the case a = 0.

APPENDIX C. NECESSARY LEMMAS

Lemma C.1. For u and v in Jy(a,Y,C?), we have:
/ qu-Vdez:/ Vu: Vvdz.
Y Y

Proof. Let us write:

u(y) _ Z e?wi(kJra)-yﬁk and v(y) _ Z e?wi(k+a)~y‘7k'
kez? kez?
Then:
/ Vxu - Vxvdr = / Z omi 2™ k)Y (k4 o) x ak- Z 2rie2mimta)y(m 4+ o) x Vkdz
Y Y pezs mezd
=4r[Y] Y (k+a) x 0 (k+a) x ¥
kez3
—4nY] Y (\k+a\2ﬁk-€/k —(k+a) 5k +a) -vk)
kez3

z/ Vu:VVdm—/ (V-u)(V~V)dx=/ Vu: Vvdz.
Y Y Y

(I
Lemma C.2. (See [7], Lem. 4.7 for proof.) Letu € LQ#(Y7 C3) such that curlu € Li(Y, C3) and divu € LQ#(Y).

Then u € W;Q(Y, C3) and:
/|Vu|2dX=/ |curlu|2dx—|—/ |div u|? dx.
Y Y Y

Lemma C.3. Let u € Li(a,Y,(Cg’) such that curlu € Li(a,Y,(CS) and divu € Liﬁ(a,Y), Then u €
W, (0, Y,C%) and:

u X = curlu X+ wu X. .
Vul?d lul?d divul?d C.1
Y Y Y
Proof. Let us write:
u(y> _ Z 627ri(k+a)~yck-
keZ3

We then have that:
curlu = Z omi 2™ k)Y (k4 ) x ek,
kez?
divau= Z omi e?™ k)Y (k4 ) . ek
kez?
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Since |(k+ a) x ck|2 + ’(k+a)~ck|2 = lk+a |ck|2, we infer that ), ;s Ik + al? ’ck’2 < oo, thus u €
W;’Z(Q,Y)S. Moreover, (C.1) follows. O

APPENDIX D. FOR u € Jy(a,Y,C?), THE NULL SPACE OF V X u 1s {0}:

Let u € Jg(a,Y,C?) such that V x u = 0. Then, from Lemma C.1, we have:

/|Vu\2:/ |curl u)? = 0.
1% 1%

Then u must be a constant in Y. If a # 0, since u is a-quasiperiodic, we conclude it must be zero. If a = 0,
since fy udx = 0, then we can also conclude that u = 0.

APPENDIX E. PERIODIC AND a-QUASIPERIODIC (GREEN’S FUNCTIONS AND THEIR
RELATION TO THE FREE SPACE GREEN’S FUNCTION

Consider GY and G, defined in (2.18) and (2.17), respectively, and the free-space Green’s function given by:

1

r N —
(2,9) prp—

Observe that, in the unit cell Y, we have:

AT (z,y) = G(z,y) =0z —y) — (b(z —y) —1) =1

and, from the regularity of the elliptic problem, we have that R°(z) = I'(z,y) — G°(x,y) is smooth in Y, see
[1]. A similar argument works for G%, « # 0. In that case:

AG*(z,y) = Z S(x —y —n)e™™ in R3,

nez3

which implies that, in the unit cell Y, we have:
A(F<xay) - Ga(ma y)) = Oa

from where R*(x) = I'(x,y) — G*(x,y) is smooth in Y. The generalization of Lemma 4.4 of [29] to the periodic
and a-quasiperiodic cases follows from the above.
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