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A B S T R A C T   

Trapped fossil fluids in mineral-hosted fluid inclusions preserve pivotal information on the evolution of paleo 
geological systems, particularly the hydrothermal mineralization systems. However, identification of the sources 
of the extracted gases during bulk analysis of fluid inclusions is challenging because multiple generations, types, 
and phases of fluid inclusions may exist in the same mineral. To better identify the gas sources during stepwise 
crushing we report an improved gas extraction model of fluid inclusions. Stepwise extracted gases from fluid 
inclusions in quartz and cassiterite were measured with a quadrupole mass spectrometer and compared with 
Raman analysis of different types of secondary (SFIs) and primary (PFIs) fluid inclusions. We found that H2O- 
poor and CO2-rich gases with elevated CO2/CH4 ratios, H2O and formamide-rich gases, and CH4-rich gases were 
extracted sequentially during stepwise crushing. Such compositional variations of the released gases suggest that 
the extraction of fluid inclusions starts from SFIs with high vapor-filling degrees (f) and CO2-bearing tri-phase 
high-f fluid inclusions, which is followed by large liquid-rich SFIs and mid-sized high-f PFIs that are rich in 
CO2 and formamide, and ends with small CH4-rich low-f PFIs. These findings suggest that the degassing pattern 
of hydrothermal minerals during stepwise crushing is mostly governed by the physicochemical characteristics of 
the fluid inclusions, in particular, their vapor-filling degrees, sizes, compositions (which can lead to different 
inner pressures and densities), and associations with micro-cracks. This updated model of gas release patterns 
strengthens the theoretical basis for differentiating and identifying the sources of gases extracted during stepwise 
crushing experiments, which is key to understanding the fluid geochronology and geochemistry of hydrothermal 
deposits with multi-stage hydrothermal evolution in general.   

1. Introduction 

Through heat and elemental exchanges between the earth’s surface 
and its interior, hydrothermal activities play important roles in many 
geological processes and are crucial for the formation of ore deposits 
worldwide (Gamo and Glasby, 2003; Pirajno, 2008; Lowell et al., 2014; 
Simmons, 2021). As such, hydrothermal fluids trapped in inclusions, 
especially in primary fluid inclusions, could contribute to our under
standing of a geologic system, particularly the ore-forming systems 
(Roedder, 1997; Yardley and Bodnar, 2014). In particular, gas 

compositions of fluid inclusions provide unique insights into the metal 
mineralization processes and the provenance, evolution as well as 
physical and chemical conditions of the ore-forming fluids (Andrawes 
and Gibson, 1979; Bergman and Dubessy, 1984; Norman and Sawkins, 
1987; Blamey, 2012; Buikin et al., 2014). 

1.1. Traditional extraction methods for gas composition analysis of fluid 
inclusion populations 

Thermal decrepitation (Scott, 1948; Alderton et al., 1982) and 
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mechanical crushing (Andrawes and Gibson, 1979; Andrawes et al., 
1984; Kelley et al., 1986) are two of the most common ways to extract 
gases from fluid inclusion populations for gas composition analysis using 
mass spectrometry or gas chromatography. 

Thermal decrepitation is often regarded as an effective way to suc
cessively extract secondary and primary fluid inclusions, at lower and 
higher temperatures, respectively. However, in addition to the trapping 
temperatures, decrepitation behaviors also depend on physicochemical 
characteristics including size, shape, distribution, density, and compo
sition of the fluid inclusions and the mechanical properties of the host 
minerals (Bodnar et al., 2003; Campione et al., 2015). For example, 
compared with large fluid inclusions, tiny ones can sustain larger in
ternal pressures, and higher temperatures are therefore required to 
decrepitate them. This has been demonstrated by heating experiments of 
quartz minerals (Kelley et al., 1986; Hall and Bodnar, 1989) and mantle 
xenoliths (Hopp and Trieloff, 2005) where they found that a large pro
portion of gases were released above 800 ◦C or higher. Moreover, the 
heating process may also lead to the formation of secondary neonate 
inclusions (less than a few μm in size) from re-equilibration of larger 
fluid inclusions, which could have distinct compositions from the pre
cursor inclusions (Pecher, 1981; Tarantola et al., 2012). Significant 
release of these tiny fluid inclusions at a higher temperature would 
interfere with analytical results of the larger primary fluid inclusions. 

Additionally, heating experiments of quartz have shown that pseu
dosecondary gaseous inclusions (e.g., CO2-rich inclusions) could be 
decrepitated at lower temperatures than similar-sized secondary 
aqueous ones (e.g., H2O-rich inclusions) due to their higher inner 
pressures (Partamies and Poutiainen, 2001). This finding suggests that 
thermal decrepitation is not always an effective way to distinguish gases 
from different fluid inclusion generations. Moreover, high-temperature 
reactions would generate significant amounts of additional gas spe
cies, making the qualification and quantification of gases less reliable 
(Landis et al., 2005; Blamey, 2012). 

Mechanical crushing is a better way to extract mineral-hosted fluid 
inclusions since limited high-temperature reactions develop during 
extraction. However, most traditional crushers are designed based on 
the original stainless-steel piston-cylinder apparatus (Andrawes et al., 
1984; Matsumoto et al., 2001) and screw-type crusher (Stuart et al., 
1994). These crushers are commonly associated with heavy crushing 
strengths, and as a consequence, gases from different sources, e.g., 
secondary fluid inclusions, primary fluid inclusions as well as mineral 
micro-cracks, lattice, and impurities could be simultaneously extracted 
during crushing, especially when prolonged crushing processes are 
applied with a large number of crushing (Scarsi, 2000; Villa, 2001; 
Kendrick et al., 2006). On the contrary, if the samples are only crushed 
with a small number of strokes, e.g., several to tens of strokes, small fluid 
inclusions, especially the micron-sized primary fluid inclusions, would 
not be fully extracted (Norman and Sawkins, 1987; Blamey, 2012). 

More importantly, a common weakness of these traditional extrac
tion methods is that they cannot distinguish different fluid inclusion 
populations as they would be extracted simultaneously (Villa, 2001; 
Landis et al., 2005; Blamey, 2012). For example, significant in
terferences from secondary fluid inclusions could lead to geologically 
meaningless data if the gases were assumed to be derived only from the 
primary fluid inclusions (Villa, 2001; Qiu et al., 2002). This problem 
hinders the understanding of the thermal evolution of a given geological 
system. Improvements upon existing extraction methods are therefore 
urgently needed. 

1.2. Progressive extraction using gentle stepwise crushing technique 

Stepwise crushing technique has been applied to gas composition 
analysis of fluid inclusions and mantle rocks for decades (Sarda et al., 
1985; Staudacher et al., 1989; Trieloff et al., 2000; Hopp et al., 2004; 
Buikin et al., 2005; Buikin et al., 2014). This method permits progressive 
extraction of fluid inclusions based on their generation, and as such, 

studies of volatile and isotope compositions and geochronology of 
different generations of fluid inclusions become possible (Qiu and Jiang, 
2007; Jiang et al., 2012; Buikin et al., 2016; Bai et al., 2018a; Xiao et al., 
2019). For example, when combined with 40Ar/39Ar geochronology, 
stepwise crushing has shown great potential in obtaining the formation 
ages of both secondary and primary fluid inclusions (Qiu and Jiang, 
2007; Jiang et al., 2012; Xiao et al., 2019; Bai et al., 2013, 2018a). 

It has long been noted that stepwise crushing preferentially extracted 
large secondary fluid inclusions along micro-cracks in the initial 
crushing stage while gases from smaller primary ones were mainly 
extracted in the final crushing stage (Stuart and Turner, 1992; Trieloff 
et al., 1997; Qiu and Wijbrans, 2006; Qiu and Jiang, 2007; Jiang et al., 
2012; Bai et al., 2018a). When the extraction technique was connected 
to a quadrupole mass spectrometer (QMS), many authors have observed 
significant compositional differences in gases released from different 
crushing stages (Fang et al., 2018; Liu et al., 2018; Xiao et al., 2021), 
which further supports the hypothesis that different populations of fluid 
inclusions are gradually extracted during stepwise crushing. Recently, 
we have applied the QMS-stepwise crushing technique to measure 
common gases (e.g., CO2, CH4, H2O, and organic species) of a few major 
groups of fluid inclusions in cassiterite, wolframite, and quartz with 
relatively simple phase behaviors. Along with irradiation-derived argon 
isotopes of these samples, these results allowed us to summarize a first- 
order gas release pattern of fluid inclusions during stepwise crushing 
(Xiao et al., 2019). This was an important step towards understanding 
the overall degassing behavior of fluid inclusions in hydrothermal 
minerals during stepwise crushing. 

1.3. The main purpose of this study 

While the earlier stepwise crushing experiments cited above have 
built a framework that greatly improved our understanding of fluid in
clusion gas release behaviors during stepwise crushing (Qiu and Jiang, 
2007; Jiang et al., 2012; Bai et al., 2013, 2018a; Xiao et al., 2019), these 
pilot studies focused on fluid inclusions in hydrothermal minerals with a 
simple hydrothermal history. In reality, most hydrothermal minerals 
have much more complex geologic histories. Taken an ordinary ore 
deposit as an example, it could have undergone multiple types of fluid 
processes and multiple episodes of hydrothermal disturbances during its 
geological evolution, which usually lead to the formation of multiple 
generations and phases of fluid inclusions with much more complicated 
characteristics than those used to establish the existing gas release 
patterns. 

In this study, based on detailed micropetrography and Raman spec
troscopy of fluid inclusions, we coupled gentle stepwise crushing ex
periments with QMS gas composition analysis on minerals with more 
complex hydrothermal history to improve the gas release pattern pro
posed by Xiao et al. (2019). It is our hope that the updated model of gas 
release patterns established here could be generally applicable for 
minerals from most hydrothermal systems when they are stepwise 
crushed and analyzed for volatile, isotope, and noble gas compositions. 

The Yaogangxian tungsten deposit is the type of hydrothermal de
posit that underwent multi-stages of hydrothermal disturbances. Intense 
late-stage hydrothermal overprints likely generated multiple pop
ulations of fluid inclusions in ore and gangue minerals as documented in 
many previous studies (Cao et al., 2009; Dong et al., 2011; Xiao et al., 
2019; Xiao et al., 2021). Additionally, ore minerals and gangue mineral 
quartz could have undergone different fluid processes during their 
precipitation as fluid immiscibility appear to have only affected quartz 
that formed later (Xiao et al., 2021). All these hydrothermal processes 
should generate distinct fluid inclusion characteristics in ore and quartz 
minerals. This is the type of situation we want to address in the current 
study through the identification of common gas release behaviors for 
multi-generations/phases of fluid inclusions during a stepwise crushing 
procedure. 
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2. Geological setting and sample descriptions 

2.1. Geological setting 

The South China Craton, situated in the southeastern part of 
Eurasian, comprises the Yangtze Block in the northwest and the 
Cathaysia Block in the southeast (Fig. 1a and b). As one of the most 
important polymetallic metallogenic provinces in the world, the South 
China Craton is well known for its metal mineral resources with multiple 
word-class W, Sn, and Sb deposits and many important rare-metals, Cu, 
Hg, As, Pb, Zn, Au, and Ag deposits (Hua et al., 2003; Mao et al., 2011; 
Mao et al., 2013; Yuan et al., 2019). The Nanling Region (111◦–117◦E, 
23◦20′–26◦40′N, Fig. 1c), located at the central-southern part of the 
South China Craton, forms the famous Nanling polymetallic minero
genic belt, which is characterized by widespread and multiple-aged 
granitoids and associated W, Sn, and rare-metal mineralization (Shu, 
2007; Chen et al., 2013). Most of the W, Sn, and rare-metal deposits in 
this belt formed during Middle–Late Jurassic (ca. 160–150 Ma, Hua 
et al., 2003; Mao et al., 2013). The polymetallic mineralization in this 
belt is generally spatially and genetically associated with the regional 

Late Mesozoic granitic plutons that are thought to be related to the 
subduction of the Paleo-Pacific oceanic plate (Shu, 2007). 

The Yaogangxian tungsten deposit is a world-class tungsten deposit 
located in the center of the Nanling polymetallic minerogenic belt in the 
northwestern Cathaysia Block. It consists of a dominant quartz-vein-type 
wolframite deposit and a small-scale skarn-type scheelite deposit. In the 
mining district, thick Cambrian meta-sandstone and slate succession is 
unconformably overlain by Devono–Carboniferous sandstone and 
limestone as well as the overlying younger Triassic–Jurassic sandstone- 
dominated sequence (Fig. 1d) (Chen, 1992; Zhu et al., 2015). The 
Yaogangxian composite granitic pluton consists of highly differentiated 
S-type granites, which intruded Devonian and Cambrian strata with 
wolframite-bearing ore bodies commonly developed along the contact 
zone between them (Fig. 1d) (Lin et al., 1986; Chen, 1988). Crystalli
zation ages of the granites are constrained by zircon U–Pb ages at 
161–155 Ma (Li et al., 2011; Li et al., 2020). The timing of wolframite 
mineralization broadly falls within a range of 163–153 Ma, which was 
constrained by Re–Os, 40Ar/39Ar stepwise heating and crushing, and in- 
situ LA-ICP MS U–Pb dating (Peng et al., 2006; Wang et al., 2010; Deng 
et al., 2019; Xiao et al., 2019; Li et al., 2020). The spatial and temporal 

Fig. 1. Simplified geological map showing the location (a–c) and geological characteristics (d, modified after Peng et al. (2006) and Zhu et al. (2015)) of the 
Yaogangxian tungsten deposit. Important W-Sn ore deposits in South China are also indicated (after Mao et al. (2011)). 
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associations between the granites and the wolframite-bearing ore bodies 
indicate a potential genetic link between them (e.g., Li et al., 2011; Li 
et al., 2020). 

2.2. Sample description 

Two ore-bearing quartz vein samples with multiple associated min
erals were studied. Sample 13YGX06 contains quartz, muscovite, 
wolframite, arsenopyrite, pyrite, chalcopyrite, and minor cassiterite 
(Fig. 2a and d). Sample 13YGX32 contains wolframite, quartz, musco
vite, cassiterite, and abundant sulfides such as chalcopyrite, pyrite, 
arsenopyrite, and sphalerite, together with some calcite and K-feldspar 
(Fig. 2b–c and e–h). The complex mineral assemblages of these samples 
indicate multi-stage hydrothermal events during or after ore-formation. 
Additionally, fluid immiscibility occurred in later-formed quartz sam
ples that are associated with sulfides, especially chalcopyrite that usu
ally forms in late- or post-mineralization stage (e.g., Fig. 2i, Xiao et al., 
2021), which resulted in multi-phase fluid inclusions coexisting in the 
quartz. These different hydrothermal processes should, therefore, lead 
to complicated and distinct characteristics of the fluid inclusions in the 
associated ore mineral cassiterite and gangue mineral quartz, which 
makes them good test subjects for revealing the impact of phases of fluid 
inclusions on extraction. Detailed studies of these minerals allow us to 

construct a more systematic model of gas release patterns of fluid in
clusions for common hydrothermal minerals through gentle stepwise 
crushing. 

3. Analytical methods 

3.1. Compositional analysis of individual fluid inclusions by Raman 
spectroscopy 

A series of ~100 μm thick double-polished fluid inclusion wafers 
were prepared for the quartz and cassiterite samples for laser Raman 
compositional analysis using a Renishaw InVia Reflex micro-Raman 
spectrometer, equipped with an Ar+ ion laser (514.5 nm), at State Key 
Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, 
Chinese Academy of Sciences (IGCAS). The resolution was ± 1 cm−1. 

Several common gas species were identified: CO2 = 1386–1388 
cm−1, CH4 = 2916–2918 cm−1, N2 = 2327–2329 cm−1. Formamide 
[CH3NO] was identified by Raman peaks at 1430–1390 cm−1 (amide III 
band (C–N) stretching), 1640–1620 cm−1 (amide II band (N–H) vibra
tion, 1620–1585 cm−1 for non-associated molecule), 1650 ± 20 cm−1 

(amide I band (C=O) stretching, 1685 ± 15 cm−1 for non-associated 
molecule), 1669 cm−1 (C=O stretching vibration of primary amide), 
and/or 1607 cm−1 (formamide dissolving in water) (Puranik and 
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Ramiah, 1959; Lees et al., 1981; Ke, 1998; Frost et al., 2001). Addi
tionally, the Raman peak at 1450 cm−1 is ascribed to the CH2 wagging 
mode of straight-chain alkanes (e.g., Pironon et al., 1995). 

The A(CO2/CH4) values of fluid inclusions were calculated as area 
ratios of the Raman peaks of CO2 and CH4 using the software PeakFit 
(version v.4.12, Singh et al., 2011). The Raman peak area ratio of two 
gas species allows the calculations of their molar ratio if a quantification 
factor is given, which is controlled by the Raman scattering cross-section 
and the spectral efficiency of the microspectrometer (Seitz et al., 1996; 
Burke, 2001). Without a rigorous calibration process using standards, it 
is very difficult to obtain the precise quantification factor (Seitz et al., 
1996; Blamey, 2012; Frezzotti et al., 2012). The same goes for this study. 
However, as the studied samples are measured with the same machine 
under similar experimental conditions, it is reasonable to assume nearly 
identical quantification factors for all the measured fluid inclusions in 
the same kind of mineral. The A(CO2/CH4) values, therefore, permit the 
general comparison and discussion of the molar ratios of CO2 and CH4 
for different types of fluid inclusions in the same mineral. The results are 
presented in Table A.1 in Appendix A. 

3.2. QMS composition analysis 

The ore mineral cassiterite and gangue mineral quartz from the two 
ore-bearing quartz vein samples were selected for gas compositional 
analysis using an SRS© RGA200® quadrupole mass spectrometer which 
was coupled with an in-house designed stepwise crushing system (Qiu 
and Wijbrans, 2006; Qiu and Jiang, 2007; Qiu et al., 2011) at the State 
Key Laboratory of Isotope Geochemistry, Guangzhou Institute of 
Geochemistry, Chinese Academy of Sciences (GIGCAS). This QMS is 
equipped with a Faraday cup and an electron multiplier and has a mass 
range of 1–200 amu (mass to charge ratio), which is sufficient to identify 
most common gas species. The crushing system consists of a crusher and 
a Pfeiffer HiCube80 Eco® turbo pumping station that cleans the system 
immediately after each analysis. The crusher comprises a type 316 L 
stainless steel tube (length: 160 mm, inner diameter: 28 mm) and a 
magnetic 3Cr13 type (or S42030) stainless steel pestle. A spherical 
curvature on the internal base of the crushing tub matches the spherical 
bottom of the pestle well, which permits more effective crushing of 
mineral grains. The pestle with a weight of only 214 g was controlled by 
an external electric magnet. The magnet was controlled by a repeating- 
timer-relay to repeatedly lift and drop (free-fall) the pestle from a height 
of 3–5 cm to crush the minerals. These setups permit gentle stepwise 
crushing with a strength that is more than one-order-of-magnitude lower 
than those of traditional crushing devices based on the design of 
Andrawes and Gibson (1979) and Matsumoto et al. (2001). The crushing 
frequency and drop numbers of each crushing step (“drop” represents 
the free-fall of the pestle) are adjustable, which allows for rapid ex
tractions of fluid inclusions even when elevated drop numbers were 
applied and also prevents overburdening of the mass spectrometer. 

Prior to crushing, mineral samples with a size range of 380–830 μm 
were carefully hand-picked under a binocular microscope and rinsed 
several times with dilute nitric acid followed by deionized water in an 
ultrasonic bath to remove surface organics. Around 150 mg of dried 
mineral grains of each sample were loaded at the bottom of the crushing 
tube together with the pestle. To remove gas impurities absorbed by the 
surface of the metal tubes, the crushing system, and the connecting tubes 
were baked at 150 ◦C for ~20 h using a furnace and heat tapes, 
respectively. 

The experiments were performed at room temperature when high 
vacuum conditions (4.0 × 10−8 mbar) were achieved inside the machine 
using a turbo pump. A blank measurement was carried out before each 
round of sample measurement. During QMS analysis, the gas extraction 
line was isolated from the mass spectrometer and the vacuum system. 
The released gases were introduced into the QMS immediately as the 
crushing steps finished and were analyzed using the Faraday cup of the 
QMS in static mode. A histogram scan mode was applied to rapidly scan 

the mass range between 1 and 65 amu, which covers the entire mass 
range of all the common gases in a magmatic-hydrothermal system. The 
electron energy and ion energy were set at 70 eV and 12 eV, respec
tively, for electron impact ionization. When several gas species share 
overlapping peak patterns, the strongest peaks with the least in
terferences from other gas fragments were used for quantification pur
poses. The resulting data were converted to their associated base peaks. 
After each measurement, the turbo pump was used to clean the entire 
system. The analytical procedures are similar to those described in Xiao 
et al. (2019). The results are presented as relative contents in Table A.2 
in Appendix A. 

3.3. 40Ar/39Ar stepwise crushing 

The 40Ar/39Ar stepwise crushing experiment was performed at Key 
Laboratory of Tectonics and Petroleum Resources, Ministry of Educa
tion, China University of Geosciences (Bai et al., 2018b). The cassiterite 
sample with grain sizes of 380–830 μm was wrapped in aluminum foil 
and placed in an aluminum vessel together with biotite monitor stan
dards ZBH-2506 with a 40Ar/39Ar plateau age of 132.7 ± 0.1 Ma (1σ, 
Wang, 1983) which is used for irradiation parameter and J-value cal
culations. 39Ar recoil loss is unavoidable during neutron irradiation but 
its effect is negligible when the mineral grains are > 100 μm (Paine et al., 
2006; Jourdan et al., 2007; Ren and Vasconcelos, 2019). Given that the 
grain sizes we used are > 380 μm, this effect should be negligible for the 
studied samples. 

The sample was crushed using a similar in-house designed stepwise 
crushing system (Qiu and Wijbrans, 2006; Qiu and Jiang, 2007; Qiu 
et al., 2011) as the one used for the QMS analysis. The gases released 
were cleaned using a cryotrap at −110 ◦C followed by equilibration with 
a SAES ST101® Zr/Al getter at room temperature and further purifica
tion with another Zr/Al getter at 400 ◦C for 400 s. The purified noble 
gases were analyzed using an ARGUS VI® mass spectrometer equipped 
with five Faraday cups and a CDD (compact discrete dynode) ion 
counting multiplier. The blank measurements were conducted between 
every three or four rounds of sample measurements. 

The J-value of the sample was interpolated based on the regression 
line of J-values of co-irradiated monitor standards. 40Ar/39Ar data are 
calculated and plotted using the ArArCALC software (version 2.5.2, 
Koppers 2002). The total decay constant for 40K used is from Steiger and 
Jäger (1977): λ = 5.543 × 10−10/yr. The correction factors used are 
(39Ar/37Ar)Ca = 6.175 × 10−4, (36Ar/37Ar)Ca = 2.348 × 10−4 and 
(40Ar/39Ar)K = 2.323 × 10−3 which were derived from irradiated CaF2 
and K2SO4. The results are presented in Table A.3–A.4 in Appendix A. 

4. Results 

4.1. Fluid inclusion types, petrographic characteristics, and Raman 
compositions 

Fluid inclusions in the studied samples show variable distribution 
and morphologic features (Figs. 3–5). Based on the discrimination 
criteria of Roedder (1984) and Goldstein and Reynolds (1994), the fluid 
inclusions can be grouped into two main generations: primary (PFIs) and 
secondary (SFIs) fluid inclusions. The PFIs trapped during mineral 
growth generally occur in three-dimensional clusters or along mineral 
growth zones. Some of them are randomly distributed between the 
growth zones. Some small fluid inclusions form linear trends within 
mineral grains are pseudosecondary fluid inclusions (PSFIs). As the 
PSFIs also form during the growth of the host minerals and trap similar 
primary ore-forming fluids as the PFIs, they are not distinguishable from 
the typical PFIs in the classification and discussion. The SFIs trapped 
after mineral growth preferentially distribute linearly along micro- 
cracks. Compared to the PFIs, the SFIs generally have larger sizes and 
less regular shapes because mineral micro-cracks tend to capture big 
fluid fluxes during rapid hydrothermal disturbances whereas the PFIs 
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form during the slow growth period of the host mineral in a steady fluid 
flux, which generally leads to isolated or linear distributions along 
growth zones/crystal faces with regular shapes. There are also some 
large and irregular fluid inclusions sporadically distributed in these 
minerals. Some of them show tiny necks. They are likely modified PFIs 
because very large fluid inclusions are easily affected by late-stage hy
drothermal or structural events which could lead to necking-down, 
stretching, or non-decrepitative H2O leakage of the fluid inclusions (e. 
g., Goldstein and Reynolds, 1994; Audétat and Günther, 1999). 

Gas compositions of both the PFIs and the SFIs within the studied 
minerals were analyzed using Raman spectroscopy. The calculated 
Raman A(CO2/CH4) values of different types of fluid inclusions are 
presented in Fig. 6. When microscopic observations (see Figs. 3–5) are 
combined with Raman analysis (see Fig. 6), PFIs and SFIs in the studied 
samples can be further subdivided into several different types. Their 
relative proportions in the minerals are estimated and presented in 
Table 1 and their physical and chemical characteristics are described in 
the following text. 

4.1.1. Fluid inclusions in cassiterite sample 13YGX32Cst 
Fluid inclusions in the cassiterite sample 13YGX32Cst are mainly 

liquid-rich two-phase with minor gas-rich two-phase and gas inclusions 
(Fig. 3). CO2-bearing tri-phase fluid inclusions are absent (Fig. 3). The 
SFIs are mainly liquid-rich and two-phase. They generally display 
irregularly elongated shapes along mineral boundaries or mineral 
micro-cracks (Fig. 3a–e). Two types of liquid-rich two-phase SFIs, i.e., 
Type I and Type II SFIs, can be identified based on their sizes, vapor- 
filling degrees (expressed as f, represents the volume percentage of the 
vapor), and their Raman compositions. Type I SFIs, accounting for 
~15% of the bulk fluid inclusions, have smaller sizes, lower f values (e. 
g., Fig. 3d and e), and very low A(CO2/CH4) values (≪ 1, Fig. 6a). Type II 
SFIs, accounting for ~25% of the bulk fluid inclusions, are relatively 
larger (some can be up to 110 μm, e.g., Fig. 3a–c) and usually have 
extremely irregular shapes, slightly higher but more variable f values, 
and much higher A(CO2/CH4) values (> 1) (Fig. 6a) than Type I SFIs. 
PFIs in the sample are mainly liquid-rich two-phase with relatively 
regular shapes (Fig. 3g–i). They are generally isolated while some are 
distributed linearly along mineral growth zones (Fig. 3g). These PFIs are 
methanoic with significant CH4 but negligible CO2 Raman signatures, 
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which correspond to very low A(CO2/CH4) values (≪ 1, Fig. 6a). 
Modified PFIs are sporadically distributed in the cassiterite sample. They 
generally have large sizes, extremely irregular shapes (e.g., Fig. 3f), and 
are also methanoic in composition (Table A.1). Additionally, very fine 
beak-like or linearly distributed SFIs also developed in the sample and 
their abundance is different from grain to grain (Fig. 3d, g and j). Their 
gas compositions are currently undetermined due to their very small 
sizes (less than several micrometers). 

4.1.2. Fluid inclusions in quartz sample 13YGX32Qtz 
Fluid inclusions in quartz sample 13YGX32Qtz have more compli

cated features compared to its spatially associated cassiterite sample 
13YGX32Cst cited above. Fluid inclusions in this sample show the 
following characteristics (see Fig. 4): 1) abundant secondary gas in
clusions, gas-rich two-phase SFIs, and CO2-bearing tri-phase SFIs 
distribute along micro-cracks (Fig. 4a–c), which are CO2-rich with A 
(CO2/CH4) values > 1 (Fig. 6b); 2) very large (usually > 50 μm) liquid- 
rich SFIs are widespread (Fig. 4d and e), which are also CO2-rich with 
high A(CO2/CH4) values (> 1, Fig. 6b), and 3) PFIs ranging from tens of 
micrometers to nanoscale (mostly are 20–50 μm) with distinct vapor- 
filling degrees (Fig. 4f–h) are generally considered as products of fluid 
immiscibility. These PFIs are mainly CO2-rich in composition with high 
A(CO2/CH4) values (> 1, Fig. 6b) except for minor smaller ones 
(generally < 10 μm, f < 12%) that have A(CO2/CH4) values < 1 
(Fig. 6b). 

4.1.3. Fluid inclusions in quartz sample 13YGX06Qtz 
Quartz sample 13YGX06Qtz is characterized by multiple types of 

fluid inclusions in terms of their sizes, phases, and vapor-filling degrees 
(Fig. 5). Pure gas SFIs are usually distributed along micro-cracks (Fig. 5a 
and e). There is a group of isolated inclusions with regular shapes similar 
to pure gas PFIs but with dark black surfaces (e.g., Fig. 5b). Raman ex
periments failed to detect any gas species in them, which indicates that 
the gases might have leaked during late-stage events. Tri-phase CO2- 
bearing PFIs and SFIs are widely distributed in the sample (Fig. 5c and 
e). They generally have very large sizes (up to 100 μm) and very high A 
(CO2/CH4) values (2.34–14.50, Table A.1). Additionally, abundant very 
large liquid-rich two-phase SFIs (20–80 μm) and minor gas-rich two- 
phase SFIs are present (Fig. 5d and e). These SFIs have relatively 
irregular shapes and are characterized by high A(CO2/CH4) values (> 1, 

Fig. 6b). In addition to the CO2-bearing tri-phase PFIs cited above, 
liquid-rich two-phase PFIs also widely exist and can be divided into 
three subgroups: i.e., 1) dominated medium-sized CO2-rich (A(CO2/ 
CH4) > 1, Fig. 6b) PFIs with higher f values (15–30 μm, f = 10–30%, 
Fig. 5f and h), 2) subordinate large CO2-rich (A(CO2/CH4) > 1) PFIs with 
low f values (20–60 μm, f < 10%, Fig. 5c and f), and 3) minor small 
methanoic (A(CO2/CH4) < 1, Fig. 6b) PFIs with low f values (usually less 
than several micrometers, f < 10%, Fig. 5f–h). The higher-f PFIs 
generally show round or elongated shapes whereas those with lower f 
values have sharp edges (Fig. 5c and f–h). 

4.2. QMS gas composition analysis 

QMS gas composition analysis was conducted on the cassiterite and 
quartz samples. The results are listed in Table A.2 and presented in 
Figs. 7–9. The dominant gas components of the fluid inclusions in the 
studied minerals are CO2, CH4, N2, H2O, and organic species that mainly 
include formamide (amu = 45), ethane, propane, and butane. He, Ar, 
and O2 also occur as minor components in fluid inclusions. In the 
following sections, the chemical characteristics of the major gas com
ponents are discussed. 

During the crushing process, gas compositions vary from one 
crushing step to another. Based on the variations of the CO2/CH4 ratios 
and the relative contents of the major gas components, the whole 
crushing process could be broadly divided into three crushing stages: the 
initial, intermediate, and final crushing stages (see Figs. 7–9 and 
Table A.2). Gases released in the initial crushing stage (usually less than 
tens to hundreds of drops of crushing) generally show high CO2, C4H10, 
and low H2O contents and elevated CO2/CH4 ratios (> 1). Gases liber
ated in the intermediate crushing stage usually show gradually 
enhanced proportions of H2O and formamide (some of them even reach 
the peak values in this stage). Gases extracted from the final crushing 
stage (usually up to thousands of drops of crushing) have extremely high 
CH4 and C3H8 contents but very low CO2/CH4 ratios (< 1). 

Notably, the crushing experiment of the quartz sample 13YGX32Qtz 
showed more complicated features in the initial crushing stage. As 
shown in Fig. 8a, steps 1–17 (19 drops in total) in the initial crushing 
stage have almost uniform and slightly elevated CO2/CH4 ratios 
(1.51–1.90) whereas the subsequent steps 18–46 (102 drops in total) 
have disordered and elevated CO2/CH4 ratios (1.85–2.94). 
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4.3. 40Ar/39Ar stepwise crushing of the cassiterite sample 

The irradiated counterpart of the ore mineral cassiterite sample 
13YGX32Cst was selected for 40Ar/39Ar stepwise crushing. The results 
are presented in Tables A.3–A.4 (also see Fig. 10). The 40Ar/39Ar step
wise crushing experiment of the cassiterite sample 13YGX32Cst yielded 
a steadily decreasing age spectrum for the first 4 crushing steps (290 
drops of crushing) with anomalously old apparent ages and an upward- 
convex age spectrum for the final crushing steps. The inverse isochron of 
steps 5–14 (4690 drops of crushing) has an initial 40Ar/36Ar ratio of 
302.0 ± 1.0, which is higher than the atmospheric ratio of 295.5 (Steiger 
and Jäger, 1977), indicating excess argon. Excluding excess 40Ar by 
assuming the initial 40Ar/39Ar value of 302.0 yields a flat age spectrum 
of these steps with a plateau age of 152.9 ± 3.2 Ma (MSWD = 0.1), 
which is consistent with the isochron age of 152.9 ± 6.0 Ma (MSWD =
0.1) for this sample. 

Gases released during the first 4 crushing steps of this sample 
exhibited good linear correlations on plots of 38ArCl–39ArK–40Ar* cor
relation diagrams (Fig. 10c–d). Ages calculated from the slope and the X- 
intercept are 129.2 ± 13.9 Ma and 129.3 ± 13.9 Ma, respectively. As the 
crushing experiment proceeds, the 40Ar*/39ArK ratios dropped to rela
tively uniform levels and formed a good linear correlation on the plot of 

40Ar*/38ArCl versus 39ArK/38ArCl (Fig. 10c–d). The ages calculated from 
the 40Ar*/39ArK ratios on the plot of 38ArCl/40Ar* versus 39ArK/40Ar* 
have an average age of 152.7 ± 2.3 Ma and the age calculated from the 
slope of the regression line on the plot of 40Ar*/38ArCl versus 
39ArK/38ArCl is 153.1 ± 2.3 Ma. These ages agree well with their plateau 
and isochron ages. 

5. Discussion 

5.1. A general model of gas release patterns of fluid inclusions during 
stepwise crushing 

5.1.1. Low-density gas-rich fluid inclusions 
As shown in the crushing experiments above (see Figs. 7–9), the very 

low proportions of H2O in the initial crushing stage suggest that gas-rich 
sources such as gases captured in mineral micro-cracks, gas inclusions, 
and gas-rich fluid inclusions dominate the degassing budget. Notably, 
the gases released from initial crushing steps (steps 1–17) of the sample 
13YGX32Qtz have uniform and slightly elevated CO2/CH4 ratios 
(1.51–1.90, Fig. 8a) which resemble those from secondary gas inclusions 
and gas-rich SFIs along micro-crocks (Fig. 8c and d). It is worth noting 
that extraordinarily large amounts of CO2-rich and H2O-poor gases are 
released during the first tens of crushing steps of this sample (Table A.2), 
which likely originate from gas inclusions that are widespread along the 
micro-cracks (Fig. 4a). In contrast, gases released in the following 
dozens of crushing steps 18–46 of this sample are still H2O-poor and 
CO2-rich but show higher CO2/CH4 ratios (1.85–2.94, Fig. 8a). This 
indicates the evacuation of CO2-rich gas-rich sources, especially, the 
CO2-bearing tri-phase fluid inclusions (both PFIs and SFIs) because these 
inclusions generally have low H2O contents but higher Raman A(CO2/ 
CH4) ratios relative to other fluid inclusions (e.g., Fig. 8e, also see 
Fig. 6b). Taken together, fluid inclusions with high vapor-filling degrees, 
specifically, pure gas inclusions distributed along micro-cracks that were 
only filled with low-density gases, are most likely extracted at the very 
initial stage of crushing (Fig. 11a). Meanwhile, fluid inclusions that 
contain high CO2 contents in the vapor are also the more easily extracted 
group due to their higher internal pressures. 

On the other hand, super-large fluid inclusions, regardless of whether 
they are secondary (very common in the mineral) or primary (if any) 
fluid inclusions, are likely also preferentially broken during initial 
crushing steps. This is supported by the degassing pattern of the 
cassiterite sample (Fig. 7b) where high proportions of formamide from 
the initial crushing stage correspond to the breakup of Type II SFIs (e.g., 
Fig. 7c and d) with sizes up to 100 μm. 

5.1.2. Large liquid-rich fluid inclusions 
Gases extracted in the intermediate crushing stage have CO2/CH4 

ratios that vary from high (> 1) to low values (< 1) (see Figs. 7–9). Some 
even display a linear relationship marked by continually decreasing 
CO2/CH4 ratios (e.g., sample 13YGX32Qtz, Fig. 8a). This likely indicates 
that the extracted gases during the intermediate crushing stage repre
sent a mixture of both SFIs and PFIs, which successively evolved from 
SFIs- to PFIs-dominated regimes. It is worth noting that the H2O contents 
in this crushing stage increased gradually, which suggests a gradual 
transition of the degassing sources from gas-rich to liquid-rich sources. 
Additionally, the peak values of the formamide contents in this crushing 
stage (Figs. 8–9) indicate a formamide-rich source. We propose that 
gases extracted in this stage are mainly from large liquid-rich and CO2- 
rich SFIs, as well as some large liquid-rich PFIs (usually modified by late- 
stage events) with relatively high f values as both of them contain 
considerable amounts of H2O and formamide (Fig. 8f and g and Fig. 9e, f 
and g). In contrast, the small methanoic PFIs were most likely unaffected 
since they have the lowest Raman A(CO2/CH4) ratios while gases 
released in these steps have high CO2/CH4 ratios (> 1) (Figs. 7–9). 

Compared with the two quartz samples studied above, the cassiterite 
sample 13YGX32Cst showed different gas release patterns in the 
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intermediate crushing stage (Fig. 7a–b), which should be related to the 
distinct fluid inclusion characteristics in the cassiterite. For example, the 
formamide and CO2 proportions of the cassiterite sample vary dramat
ically, which is accompanied by rapidly decreasing CO2/CH4 ratios in 
this stage. This likely resulted from mixing between gases from the CO2- 
rich and formamide-bearing Type II SFIs (Fig. 7c and d) and gases from 
the CH4-rich and formamide-poor Type I SFIs (Fig. 7e). 

5.1.3. Small fluid inclusions 
Gases released in the final crushing stage (usually after thousands of 

pestle drops) generally show intermediate to high H2O contents 
(Figs. 7–9) indicating aqueous fluid inclusion sources. The variable 
compositions of H2O, C2H6, formamide, and N2 in these crushing stages 
of the three studied samples also suggest that contribution from the 
crusher is insignificant. Typically, these gases are characterized by 
relatively high CH4 and low CO2 contents with very low CO2/CH4 ratios 
(≪ 1), which indicate methanoic sources, namely the small methanoic 
PFIs, with negligible contamination of gases from the CO2-rich sources. 
For the cassiterite sample 13YGX32Cst, even though methanoic Type I 
SFIs are also present, their spatial distribution along micro-cracks would 
lead to their preferential breakup by stress relative to the isolated PFIs 
(Fig. 11b). Additionally, the peak values of the N2 contents in steps 
10–14 and the significant elevation of the CH4 and H2O proportions 
from the subsequent steps 15–21 in the final crushing stage (Fig. 7b) 
indicate successive releases of the larger PFIs (usually modified) with 
higher f values, which show an apparent Raman signature of N2 (e.g., 
Fig. 7f), and smaller PFIs, which are typically aqueous methanoic 
(Fig. 7g and h). 

It is noteworthy that multiple types of PFIs with distinct phase be
haviors and compositions coexist in the studied quartz samples. For 
example, high-f PFIs and some low-f large PFIs are CO2-rich with high 
Raman A(CO2/CH4) ratios > 1 (Fig. 6b) whereas the low-f smaller ones 
are methanoic with A(CO2/CH4) ratios ≪ 1, which is likely a result of 
fluid immiscibility. The fact that only methanoic gases are released in 
the final crushing stage suggests that the CO2-rich PFIs, including PFIs 
with high f values (either large or small) and some large PFIs, are 

extracted during earlier crushing steps such as the intermediate crushing 
stage (Fig. 11b), whereas the methanoic PFIs, which are small with 
lower f values, are extracted later, especially, in the final crushing stage 
(Fig. 11c). In addition to the vapor-filling degrees and sizes of the fluid 
inclusions, the relatively higher inner pressures of the CO2-rich PFIs may 
also contribute to their earlier extraction than the CH4- and H2O-rich 
PFIs. 

The gases released in the last several crushing steps of the cassiterite 
sample also show a simultaneous C2H6 peak (Fig. 7b), which most likely 
resulted from the degassing of very fine SFIs that are very common in 
this cassiterite (Fig. 3g). This agrees with the proposed gas release 
pattern of Xiao et al. (2019) where very fine SFIs (if any) were released 
when sufficient numbers of crushing were applied. This hypothesis is 
also supported by increasing amounts of SFI-associated gases such as 
CO2, formamide, and C2H6 together with 38ArCl in final crushing steps of 
the cassiterite sample from Xiao et al. (2019). Recent stepwise crushing 
experiments on quartz samples from Xiao et al. (2021) also showed 
elevated proportions of large molecules such as C3H8, C2H6, N2, and/or 
CH4 after 9000 drops of crushing, which further demonstrates that fluid 
inclusions, rather than solid phases such as mineral lattices and impu
rities, are the predominant gas source during prolonged crushing. It is 
hard to evaluate the contribution of these tiny fluid inclusions during 
analysis as we were unable to reveal their chemical compositions by 
traditional analytical methods such as Raman spectroscopy. However, 
significant release of these tiny fluid inclusions could cause considerable 
interference for the analytical results of the PFIs, for example, by 
introducing higher 40Ar* contents and thus older 40Ar/39Ar apparent 
ages in final crushing steps (Xiao et al., 2019). 

5.1.4. Overview of the general model of gas release patterns 
Overall, the vapor-filling degree (f value), inclusion size, composi

tion, and spatial distribution of fluid inclusions in hydrothermal min
erals are important factors that control their degassing sequences during 
gentle stepwise crushing experiments. Building upon the results of Xiao 
et al. (2019) (see Fig. 12a), the effort of this study allows us to propose a 
more detailed model of gas release patterns of fluid inclusions for 

Table 1 
Major fluid inclusion types and their proportions in hydrothermal minerals from the Yaogangxian tungsten deposit, South China.  

Note: Proportions of different types of fluid inclusions were visually estimated. The symbol “−” denotes insignificant amounts or absence. Abbreviations: PFIs–primary 
fluid inclusions, SFI–secondary fluid inclusions, aquo–aqueous, L–liquid, V–vapor, f–vapor-filling degree of a fluid inclusion (expressed as n%). The composition 
classification of the fluid inclusions is mainly based on the Raman A(CO2/CH4) values that those with Raman A(CO2/CH4) values > 1 are CO2-rich whereas those with 
Raman A(CO2/CH4) values < 1 are methanoic. 
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hydrothermal minerals during in-vacuo gentle stepwise crushing 
(Fig. 12b). In this model, we propose that large fluid inclusions with high 
vapor-filling degrees and inner pressures, specifically, pure gas SFIs are 
preferentially extracted in the initial crushing stage. Soon after, large 
liquid-rich fluid inclusions, both SFIs and PFIs, are released during the 
intermediate crushing stage to generate gas mixtures with variation 
trends from SFIs- to PFIs-dominated origins. During the final crushing 
stage, the small liquid-rich PFIs with very low vapor-filling degrees are 
extracted. This is compatible with the observation that the SFIs generally 
form along micro-cracks and have larger sizes and irregular shapes 
relative to the small PFIs (Figs. 3–5). Very fine fluid inclusions, usually 
the SFIs (if any), can also be extracted in the final crushing steps together 
with the PFIs. The model presented here provides a theoretical basis to 
understand how different generations of fluid inclusions could be 

successively extracted through gentle stepwise crushing. 

5.2. Application of the general model of gas release patterns 

The general model built by this study applies to most terrestrial 
hydrothermal systems, especially high-temperature magmatic-hydro
thermal systems. In most magmatic-hydrothermal or hydrothermal 
systems, the growing crystals entrap tiny crystal cavities with hydro
thermal fluids to form PFIs at a fluid-sufficient, slow, and stable envi
ronment and the generated PFIs are usually very small and regular. After 
mineral growth, multiple episodes of hydrothermal perturbations may 
affect the systems to varying degrees and the resultant hydrothermal 
fluids with different sources may be captured by mineral micro-fractures 
to form multiple generations, types, and phases of SFIs. These SFIs, 
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(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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especially the large ones (either gas-rich or liquid-rich), usually occupy a 
significant proportion of the mineral-hosted fluid inclusions. Their 
presence may be the biggest obstacle for accurate isotope and compo
sition analyses of primary fluids (Villa, 2001; Qiu et al., 2002). On the 
basis of this proposed gas release model, the gentle stepwise crushing 
technique permits us to effectively distinguish the PFI gases from the SFI 
gases because these SFIs generally formed at less stable environments 
with larger sizes, less regular shapes, and fissure-controlled distributions 
which would lead to their preferential degassing relative to the small 
PFIs during gentle stepwise crushing. 

Hydrothermal minerals could also undergo complex fluid processes 
such as fluid immiscibility or boiling during evolution, this general 
model also allows us to identify the source of the extracted gases during 
gentle stepwise crushing. For example, fluid inclusions that are rich in 

low-density gases would be extracted earlier than the liquid-rich ones 
when they have similar sizes and distributions. 

Additional experiments may be necessary to further constrain the 
degassing behaviors in metamorphic and sedimentary minerals with 
different fluid trapping behaviors. However, this gas release model is 
still of reference significance as it summarizes the degassing behaviors of 
multiple types and phases of fluid inclusions. In short, large, irregular, or 
gas-rich fluid inclusions, especially those distributed along micro-cracks, 
will always be the most easily extracted groups during gentle stepwise 
crushing. We now summarize the implications of this general model of 
gas release patterns for progressive geochronological and compositional 
analyses in the following text. 
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5.2.1. Implication for dating different generations of fluid inclusions 
It is very difficult to directly date hydrothermal activities via fluid 

inclusions since most hydrothermal minerals commonly host multi- 
phases/generations of fluid inclusions. While the stepwise crushing 
technique has the potential to extract different generations of fluid in
clusions and to date them properly (e.g., Qiu et al., 2002; Qiu and 
Wijbrans, 2006; Bai et al., 2013; Shi et al., 2018; Xiao et al., 2019), our 
knowledge regarding the degassing process during crushing is still 
fragmental. 

The current study demonstrates that SFIs and/or gas inclusions can 
be preferentially extracted by initial stepwise crushing steps while the 
PFI gases are primarily released in the final crushing stage. This view is 
supported by the 40Ar/39Ar dating experiment of cassiterite sample 
13YGX32Cst. By preferentially excluding the gas interferences from 

most Type I and II SFIs, the 40Ar/39Ar age of the PFIs (around 153 Ma) 
was obtained in the final crushing steps (Fig. 10). This age is close to the 
ore-forming timing (163–153 Ma) of the deposit obtained by different 
methods including Re–Os dating of molybdenite (Peng et al., 2006; 
Wang et al., 2010), 40Ar/39Ar stepwise heating of phlogopite and 
muscovite (Peng et al., 2006; Xiao et al., 2019), fluid inclusion 40Ar/39Ar 
stepwise crushing of wolframite, cassiterite and quartz samples (Xiao 
et al., 2019) as well as in-situ LA-ICP MS U–Pb dating of wolframite and 
cassiterite (Deng et al., 2019; Li et al., 2020). 

The general model of gas release patterns proposed here suggests 
that it is possible to date the SFIs if a certain group of the SFIs dominates 
the extracted gases during crushing, usually from the earlier crushing 
stages. The 40Ar/39Ar age of the post-mineralization hydrothermal event 
recorded by the SFIs is, therefore, obtainable. During stepwise crushing 
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of the irradiated cassiterite sample, gases released from initial crushing 
steps 1–4 (290 drops of crushing) yielded a good linear correlation be
tween 38ArCl and 40Ar* (see Fig. B.1 in Appendix B). Previous 40Ar/39Ar 
studies have suggested that chlorine and excess argon are closely asso
ciated in the fluids (Kelley et al., 1986; Turner and Wang, 1992; Jiang 
et al., 2012; Bai et al., 2013, 2019). The correlation between 38ArCl and 
excess 40Ar can be regarded as an indicator of fluid inclusion degassing 
(Turner and Wang, 1992; Harrison et al., 1994; Bai et al., 2013). These 
initial crushing steps of the cassiterite also yielded isochron ages of ca. 
129 Ma based on their Cl–K–Ar correlations (Fig. 10c–d). These ages are 

similar to the SFI ages (128–127 Ma) of spatially associated quartz and 
cassiterite samples as well as the stepwise heating 40Ar/39Ar age (129.2 
± 2.1 Ma) of a late crosscutting K-feldspar vein in that sample from the 
same ore deposit as reported by Xiao et al. (2019). Given the high pro
portions of formamide and CO2 in the gases released during the first 
several crushing steps of its unirradiated counterpart (Fig. 7b), these 
extractions most likely represent the degassing of large, irregular, and 
formamide-bearing Type II SFIs in the sample. Large vapors of these SFIs 
could be the most important reservoir for excess argon in the mineral. 
Gases released from these SFIs could have resulted in high 40Ar* 
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Fig. 11. Sketch map showing the breakup process of mineral grains and the degassing process of mineral-hosted fluid inclusions during stepwise crushing.  
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contents (Fig. B.2, Appendix B) and thus the elevated apparent ages 
(Fig. 10a) in initial crushing steps. Additionally, stepwise crushing ex
tracts SFIs from high-f to low-f in general without considering the impact 
of fluid inclusion sizes and compositions (Fig. 12b). This effect likely 
generated the low and increasing 39ArK contents during these crushing 
steps (Fig. B.2). 

It is apparent from the above example that the proposed model of gas 
release patterns offers important information for more accurate in
terpretations of 40Ar/39Ar geochronological data. The QMS-stepwise 
crushing experiment of the unirradiated cassiterite sample 
13YGX32Cst suggests that very fine SFIs in the sample could be released 
in the final crushing stage along with the PFIs (Fig. 7b). Given their high 
abundance, argon derived from these very fine SFIs could cause signif
icant interferences and result in large errors in the PFI 40Ar/39Ar ages 
from the final crushing steps (Fig. 10). 

5.2.2. Implication for tracing fluid origins and processes of mineralization 
While the stepwise crushing technique has been applied in gas 

composition analysis for decades (Sarda et al., 1985; Trieloff et al., 2000; 
Hopp et al., 2004; Buikin et al., 2005; Buikin et al., 2014), only a few 
authors have noticed the potential of this technique in separating gases 
from different fluid inclusion generations (e.g., Buikin et al., 2016; Xiao 
et al., 2021). Moreover, there have been few attempts to discrim
inatively use and explain data derived from different stepwise crushing 

stages due to the lack of a clear criterion. This gap can be filled by the 
finding of this work, which can support more accurate data interpreta
tion in terms of constraining the fluid sources and hydrothermal pro
cesses that affected a geological system, such as an ore deposit. 

For example, as shown in the discrimination diagrams of N2/ 
Ar–CO2/CH4 of Norman and Moore (1999) (Fig. 13, improved by 
Blamey (2012)), the initial-extracted gases show compositions varying 
from evolved crustal water (namely meteoric water approximatively in 
equilibrium with crustal rocks) and/or organic crustal water to 
magmatic water whereas the final-extracted gases have compositions 
varying from evolved magmatic water to organic crustal water, which 
indicates distinct fluid sources these gases have. Based on the petro
graphic characteristics of fluid inclusions in these minerals (Figs. 3–5) 
and the proposed general model of gas release patterns during gentle 
stepwise crushing (Fig. 12b), it is easy to conclude that the initial- 
extracted gases are mainly derived from SFIs which could form in 
different episodes of hydrothermal events and have different fluid 
sources whereas the final-extracted gases are mainly derived from the 
PFIs which may contain magmatic and crustal non-magmatic compo
nents in the source and form in a reduced environment (Fig. 13). 
Additionally, the secondary gases released in the first several steps of the 
quartz samples 13YGX32Qtz and 13YGX06Qtz plot in the space of 
evolved crustal water and close to that of shallow meteoric water 
(Fig. 13b and c) whereas the primary gases extracted in the final 

Fig. 12. Gas release patterns during stepwise crushing of hydrothermal minerals. (a) Gas release pattern concluded by Xiao et al. (2019). (b) Updated general model 
of gas release patterns by this study. 

Fig. 13. Plots of N2/Ar versus CO2/CH4 ratios. This discrimination diagram is developed by Norman and Moore (1999) and improved by Blamey (2012) to 
distinguish fluid origins of volatiles, i.e., magmatic, evolved magmatic, shallow meteoric, crustal, and crustal organic sources. Crustal water represents meteoric 
fluids approximatively in equilibrium with crustal rocks. Organic crustal water represents meteoric fluids approximatively in equilibrium with crustal rocks and 
contaminated by organic species derived from wall rocks. Evolved magmatic water represents composite fluids that consist of various proportions of volatiles from 
magmatic, crustal, and/or meteoric sources. 
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crushing steps plot away from shallow meteoric water, which indicates 
the contribution of shallow meteoric water occur during the formation 
of a certain group of SFIs rather than PFIs (see more details in Xiao et al. 
(2021)). This result suggests that the conclusion derived from fluid in
clusion He–Ar isotope analysis on chalcopyrite, wolframite, pyrite, and 
arsenopyrite from this deposit that shallow meteoric water contributed 
to the precipitation of tungsten-tin minerals (Chen et al., 2011; Hu et al., 
2012) likely needs reconsideration. 

In many situations, if we cannot effectively exclude the influence of 
SFIs during compositional analysis of fluid inclusion populations, we 
would not be able to obtain the true ore-forming information. Fortu
nately, the stepwise crushing technique coupled with the general model 
of gas release patterns allows us to extract additional information car
ried by different generations of fluid inclusions. It should be noted that 
this general gas release model is only applicable in systems where 
different generations of fluid inclusions have significant physical and/or 
chemical differences. Random destruction of fluid inclusions during 
crushing and simultaneous extraction of SFIs and PFIs near microcracks 
are also unavoidable. However, compared with most traditional 
extraction methods, this technique permits the extraction of different 
groups of fluid inclusions with minimal interferences, which can offer 
better insights into the geological process of the ore deposits. 

6. Conclusions 

Combined Raman and QMS gas composition analyses of cassiterite 
and quartz minerals allowed us to build a more detailed model to explain 
the gas release patterns of fluid inclusions with complicated features 
during the stepwise crushing experiments of common hydrothermal 
minerals. The main pieces of the conclusions are summarized below.  

1) Microscopic observations coupled with Raman spectroscopic results 
suggested that many types of fluid inclusions develop in the cassit
erite and quartz from ore-bearing quartz veins in the Yaogangxian 
deposit, e.g., 1) CO2-rich pure gas inclusions and gas-rich SFIs, 2) 
large CO2-bearing tri-phase SFIs and PFIs with variable f values, 3) 
large, irregular and liquid-rich CO2-rich SFIs along micro-cracks, 
which usually contain formamide, 4) mid-sized, mid-f, CO2-rich 
two-phase PFIs, and 5) small, low-f, methanoic two-phase PFIs in 
three-dimensional clusters or along mineral growth zones. Compared 
with the methanoic PFIs, the CO2-rich PFIs have larger sizes, more 
round shapes, higher f values, and higher A(CO2/CH4) ratios (> 1).  

2) QMS analysis of these minerals revealed distinct gas compositions 
during different stepwise crushing stages, i.e., H2O-poor and CO2- 
rich (CO2/CH4 ratios > 1) gases in the initial crushing stage, H2O- 
and formamide-rich gases in the intermediate crushing stage, and 
CH4-rich (CO2/CH4 ratios < 1) gases in the final crushing stage.  

3) Combined with the Raman results of different types/generations of 
fluid inclusions, the differences of gas compositions in different 
crushing stages suggested that stepwise crushing with gentle crush
ing strengths progressively extracts secondary gas inclusions and gas- 
rich SFIs, large liquid-rich SFIs and PFIs with higher f values, and 
small PFIs with lower f values. These observations allowed the 
establishment of a general model of gas release patterns of multi- 
generations/phases of fluid inclusions during stepwise crushing of 
common hydrothermal minerals.  

4) This updated model distinguishes sources of gases during stepwise 
crushing and provides more thorough characterizations of the gas 
composition from each of these sources and more precise PFI 
composition analysis when combined with detailed petrography and 
micro-petrography. Therefore, this study provides a better and more 
general framework for interpreting data generated using gentle 
stepwise crushing techniques including 40Ar/39Ar geochronology, 
stable isotope, noble gases, and volatile analyses of fluid inclusions.  

5) Additionally, we show that the combined QMS-stepwise crushing 
technique is a reliable analytical technique for gas compositions of 

multi-phases and multi-generations of fluid inclusions within hy
drothermal minerals. Combined with the updated model of gas 
release patterns, the gentle stepwise crushing technique should have 
great application prospects in future isotopic and volatile composi
tion analyses. 
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Pironon, J., Pagel, M., Lévêque, M.H., Mogé, M., 1995. Organic inclusions in salt. Part I: 
Solid and liquid organic matter, carbon dioxide and nitrogen species in fluid 
inclusions from the Bresse basin (France). Org Geochem. 23 (5), 391–402. 

Puranik, P.G., Ramiah, K.V., 1959. Infrared and Raman spectroscopic studies of the 
association of formamide. J. Mol. Spectrosc. 3 (1-6), 486–495. 

Qiu, H.N., Jiang, Y.D., 2007. Sphalerite 40Ar/39Ar progressive crushing and stepwise 
heating techniques. Earth Planet. Sci. Lett. 256 (1–2), 224–232. 

Qiu, H.N., Wijbrans, J.R., 2006. Paleozoic ages and excess 40Ar in garnets from the 
Bixiling eclogite in Dabieshan, China: New insights from 40Ar/39Ar dating by 
stepwise crushing. Geochim. Cosmochim. Acta 70 (9), 2354–2370. 

Qiu, H.N., Wu, H.Y., Yun, J.B., Feng, Z.H., Xu, Y.G., Mei, L.F., Wijbrans, J.R., 2011. High- 
precision 40Ar–39Ar age of the gas emplacement into the Songliao Basin. Geology 39 
(5), 451–454. 

Qiu, H.N., Zhu, B.Q., Sun, D., 2002. Age significance interpreted from 40Ar–39Ar dating 
of quartz samples from the Dongchuan Copper Deposits, Yunnan, SW China, by 
crushing and heating. Geochem. J. 36 (5), 475–491. 

Ren, Z., Vasconcelos, P.M., 2019. Quantifying 39Ar recoil in natural hypogene and 
supergene alunites and jarosites. Geochim. Cosmochim. Acta 260, 84–98. 

Roedder, E., 1984. Fluid inclusions, 12. Mineralogical Society of America, 644 pp. 
Roedder, E., 1997. Fluid inclusion studies of hydrothermal ore deposits. In: Barnes, H.L. 

(Ed.), Geochemistry of Hydrothermal Ore Deposits. Wiley and Sons Inc., New York, 
pp. 657–698. 
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