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ABSTRACT: The electrochemical nitrate reduction reaction (NO3RR) on titanium introduces significant surface reconstruction
and forms titanium hydride (TiHx, 0 < x ≤ 2). With ex situ grazing-incidence X-ray diffraction (GIXRD) and X-ray absorption
spectroscopy (XAS), we demonstrated near-surface TiH2 enrichment with increasing NO3RR applied potential and duration. This
quantitative relationship facilitated electrochemical treatment of Ti to form TiH2/Ti electrodes for use in NO3RR, thereby
decoupling hydride formation from NO3RR performance. A wide range of NO3RR activity and selectivity on TiH2/Ti electrodes
between −0.4 and −1.0 VRHE was observed and analyzed with density functional theory (DFT) calculations on TiH2(111). This
work underscores the importance of relating NO3RR performance with near-surface electrode structure to advance catalyst design
and operation.

The conversion of wastewater nitrate to ammonia can
simultaneously remediate widespread nitrogen pollution

and electrify ammonia manufacturing. The electrochemical
nitrate reduction reaction (NO3RR) has been actively studied
because of its potential to circularize nitrogen management.1−9

As with other electrocatalytic reactions, NO3RR electro-
catalysts may undergo substantial structural evolution during
the reaction, creating a need to understand how the altered
catalyst structure influences reaction performance (activity and
selectivity).10−15 Titanium, an inexpensive and abundant
metal, has recently been identified as a robust electrocatalytic
material for NO3RR.

16 The reasons for its catalytic perform-
ance remain unclear, especially regarding the role of titanium
hydride (TiHx, 0 < x ≤ 2), a water-stable titanium species that
forms during NO3RR. The rational operation of Ti-catalyzed
NO3RR requires improved understanding of how TiHx forms
and influences NO3RR performance.
Metal hydrides have attracted attention for their ability to

perform thermal or mechanocatalytic ammonia synthesis from
N2 gas17−23 but remain underexplored for aqueous electro-
chemical ammonia synthesis (e.g., from nitrate). Electro-
chemical metal hydride formation proceeds at moderate
potentials, acting as a side reaction that convolves electro-
catalytic performance with an evolving electrode surface
structure. Studies on TiHx have demonstrated either
quantitative bulk characterization to determine hydrogen
content (e.g., X-ray diffraction,24 weight loss,25 outgassing
measurements26) or qualitative to semiquantitative near-
surface (topmost nanometers) characterization (e.g., time-of-
flight secondary ion mass spectrometry27). Quantitative near-
surface characterization has not been reported and is key to
overcoming the challenge of decoupling hydride formation
from reaction performance. In this work, we combined

systematic synchrotron X-ray characterization of Ti electrodes
with electrochemical testing to link near-surface structure
(chemical composition, crystal structure, coordination number,
and interatomic distance) with NO3RR performance. Through
ex situ grazing-incidence X-ray diffraction (GIXRD) and total
electron yield X-ray absorption spectroscopy (TEY XAS)
measurements, we demonstrated the electrochemically tunable
enrichment of near-surface TiH2 by controlling NO3RR
duration (2 to 8 h) and applied potential (−0.4, −0.6, −0.8,
and −1.0 VRHE). These results informed us about the
electrochemical treatment of Ti to produce TiH2/Ti electrodes
for use in NO3RR. Faradaic efficiency (FE) on TiH2/Ti varied
greatly with applied potential for the production of ammonia
(38.0% to 74.7%) and nitrite (23.9% to 52.3%) but not
hydrogen (<2.6%). Meanwhile, partial current density toward
ammonia formation on TiH2/Ti increased monotonically with
applied potential, reaching −1.83 mA cm−2 at −1.0 VRHE. A
surface Pourbaix diagram for the TiH2(111) surface was
developed from density functional theory (DFT) calculations.
Adsorbate free energy diagrams demonstrated that, on
TiH2(111), nitrogen species were competitive with H atoms
for adsorption in the experimentally studied potential range
(−0.4 to −1.0 VRHE), which may have contributed to the
relatively small amounts of hydrogen evolved. Notably, no
appreciable difference in NO3RR rate or selectivity was
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Figure 1. (a) Representative GIXRD of Ti foils before and after electrochemical NO3RR (−0.6 VRHE for 8 h in 0.1 M HClO4 + 0.8 mM KNO3) at a
nominal probe depth of 3.2 nm. (b) Ti foil chemical compositions calculated from GIXRD after 4 h of NO3RR (0.1 M HClO4 + 0.8 mM KNO3) at
varying applied potentials (12.6 nm nominal probe depth).

Figure 2. (a) Normalized Ti K-edge XANES characterizing Ti foil cathodes after 4 h NO3RR (0.1 M HClO4 + 0.8 mM KNO3) at different applied
potentials. (b) Magnitude of the k3-weighted Fourier-transformed EXAFS data calculated using a k-range of 3.3−11.6 Å−1. Dashed lines correspond
to Ti−Ti single-scattering paths for Ti (red) and TiH2 (black) references. (c) k3-weighted Fourier-transformed EXAFS data and best-fit model
characterizing the Ti foil cathode after NO3RR (−0.6 VRHE for 8 h in 0.1 M HClO4 + 0.8 mM KNO3). The k-range and R-range used in the fit were
3.3−11.6 Å−1 and 1.90−3.25 Å, respectively. (d) Ti atomic percentages obtained from the EXAFS modeling. Error bars represent ± one standard
deviation scaled by the regression standard error.
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observed between unamended Ti (cleaned but not chemically
nor electrochemically treated) and TiH2/Ti electrodes,
suggesting that both the rate-determining and selectivity-
determining steps were negligibly affected by the initial near-
surface structure of the electrodes.
With GIXRD, we characterized the crystalline structure of

commercially pure, polycrystalline Ti foil cathodes before and
after NO3RR (experimental matrix in Table S3). α-Ti was the
major phase in the diffractograms of unamended Ti foil. Over
the course of NO3RR, the Ti electrodes shared significant and
consistent structural alterations across the applied potentials,
durations, and nominal probe depths tested (chemical
composition estimates from each diffractogram in Figures
S4−S15). The α-Ti diffraction peaks decreased in relative peak
area, often becoming the nondominant phase (Figure 1a).
Meanwhile, diffraction patterns for TiHx appeared, the most
intense of which came from TiH2 and the less intense of which
corresponded to crystalline, substoichiometric TiHx. Alto-
gether, α-Ti, TiOx (0 < x ≤ 2), and TiHx coexisted in post-
NO3RR electrodes, and no other crystalline titanium species
(e.g., titanium nitride) were observed. For a fixed NO3RR
duration and nominal probe depth, a more negative applied
potential led to enriched hydride content (Figure 1b).
Likewise, longer NO3RR durations led to enriched hydride
content though to a lesser extent than the applied potential.
To complement GIXRD, Ti K-edge TEY XAS measure-

ments (nominal probe depth of 5−10 nm28−31) were used to
sample the ensemble average of local Ti coordination
environments at the electrode near-surface. The X-ray
absorption near-edge structure (XANES, Figure 2a) of
unamended Ti showed a characteristic pre-edge peak
corresponding to a Ti 1s → 3d transition.32 The peak was
absent in TiH2, indicating its cubic (fcc) structure33 and
facilitating TiH2 assignment in samples of various applied
potentials and durations. Ti foil from 4 h of NO3RR at −0.4
and −0.6 VRHE showed a pre-edge peak similar to that of the Ti
foil but diminished in intensity, while analogous samples from
NO3RR at −0.8 and −1.0 VRHE showed no pre-edge peak,
suggesting a near-surface structure transition from α-Ti (hcp)
to TiH2 (fcc). In the Fourier transform of the extended X-ray
absorption fine structure (EXAFS), a pronounced peak

corresponding to Ti−Ti scattering occurred at 2.52 Å for Ti
foil and −0.4 and −0.6 VRHE NO3RR samples (Figure 2b).
This peak was shifted to 2.79 Å for TiH2 and −0.8 and −1.0
VRHE NO3RR samples, corresponding to a 10.7% expansion.
EXAFS modeling was performed with bonding distance Ti−Ti
scattering paths from both Ti and TiH2 (representative fits in
Figure 2c). The resulting coordination numbers from each
sample are given in Table S1 and shown as atomic percentages
in Figure 2d. XANES, k3-weighted EXAFS, Fourier-trans-
formed EXAFS, and EXAFS fits for the complete set of
samples are presented in Figures S24−S36. The number of Ti
atoms belonging to TiH2 consistently increased with both
applied potential and duration, while Ti belonging to α-Ti
exhibited the opposite trend. In agreement with GIXRD, a
more negative applied potential enriched near-surface hydride
content more drastically than longer applied durations. For
example, more TiH2 was formed at −1.0 VRHE (2 h) than −0.6
VRHE (8 h). The evident control over the near-surface structure
enabled electrochemical treatment of Ti to produce TiH2/Ti
electrodes (Section S3.2 and Figure S37) for use in NO3RR.
The electrochemical NO3RR performance of unamended Ti

and preformed TiH2/Ti electrodes was assessed with 30-min
chronoamperometry experiments at −0.4, −0.6, −0.8, and
−1.0 VRHE (1 M NaClO4 + 10 mM HNO3, Section S3.2).
GIXRD of unamended Ti electrodes after chronoamperometry
showed no TiHx phase, while the persistence of near-surface
TiH2 was observed on TiH2/Ti electrodes (Figures S16−S23).
Faradaic efficiency toward H2 (FEH2) remained below 5.8 ±
2.5% (Figure 3a), indicating that NO3RR was the dominant
reaction and that TiH2/Ti electrodes did not introduce
appreciable HER competition. Nitrite was the major reaction
product at −0.4 and −0.6 VRHE while ammonia dominated at
−0.8 and −1.0 VRHE; negligible N2 production was observed
(50 ppm detection limit). FENH3 ratios of TiH2/Ti to
unamended Ti showed no significant difference between the
applied potentials investigated (Figure S38). The ratios of NH3
N-selectivity (fraction of reacted nitrate converted to
ammonia) followed a similar trend (Figure S39), suggesting
that the selectivity-determining step of NO3RR remained
unchanged between unamended Ti and TiH2/Ti electrodes.
An analogous conclusion was reached by examining the

Figure 3. (a) Faradaic efficiencies toward the production of ammonia, nitrite, and hydrogen gas on unamended Ti and TiH2/Ti electrodes (1 M
NaClO4 + 10 mM HNO3 electrolyte). Error bars represent ± one standard deviation. (b) Partial current density toward ammonia production on
unamended Ti and TiH2/Ti electrodes (1 M NaClO4 + 10 mM HNO3 electrolyte). Asymmetric error bars come from propagating error (one
standard deviation) in total current density and FENH3.
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performance metrics for electrocatalytic activity (jNH3 in Figure
3b and nitrate conversion in Figure S40). Several reasons may
explain the similar NO3RR performance. Although both
electrodes began with different near-surface structures, in situ
catalytic conditions may have led to a convergence of surface
structure and therefore similar reactivity. Alternatively, the
electrode surfaces may have remained distinct, yet other factors
played a more dominating role in conferring reaction
performance, such as surface roughness or contributions to
surface electronic state imparted by the coexistence of Ti,
TiOx, and TiHx.
To provide insights into the reactivity of TiH2, periodic

DFT calculations on the thermodynamics of surface coverage
were performed using the RPBE xc-functional in the Vienna
Ab-initio Simulation Package (Section S4).34−36 A surface
Pourbaix diagram (Figure 4a, surface and adsorption structures
in Figure 4c) was developed for TiH2(111), the most intense
TiH2 peak observed via GIXRD, to summarize H* coverage
(θH) under standard conditions. For TiH2, θH is defined as the
coverage of hydrogen following a full monolayer in all available
hcp sites. The hydrogen evolution reaction (HER) is
thermodynamically favorable over H* adsorption once the
hcp sites become occupied, and if HER is kinetically available,
this will lead to a lowering of θH. From thermodynamics, θH
increases with more negative applied potentials up to a TiH2-
terminated surface. For a fixed applied potential, θH may
sharply decrease with increasing pH, which we indeed
observed in the catholyte for all electrochemical experiments
(as drastic as pH 1.70 to 11.85, Figure S41). We therefore
hypothesize that transient θH plays a role in steering the
reaction selectivities seen in Figure 3a, such as by controlling
hydrogenation of surface intermediates to form NOx* and
NHy* species.37,38 Our calculated potential of zero charge
(negative of −1.0 VRHE for nearly all θH, Table S5) leads to a
positively charged surface, likely promoting anionic nitrate
adsorption, which is often the rate-determining step of
NO3RR.

7,39 The DFT calculations predict that, regardless of
the initial θH, nitrogen species are competitive for surface sites
compared to H (Figure 4b). While molecular nitrate (NO3*)
exhibits weak adsorption that gets weaker with increasing
NO3RR overpotential, dissociative adsorption into nitrite
(NO2*) and surface (hydr)oxide, O(H)*, is favorable. The
stability of coadsorbed O* and OH* relative to the oxidized
H2O(aq) state varies significantly with potential (Figures 4b and
S43 for high coverage), and understanding the competition
between nitrogen and oxygen surface species may elucidate the
potential dependence of NO3RR products over TiH2. Lastly,
preliminary DFT calculations on Ti(0001) indicate that the
integral free energies of H* under one monolayer are lower
than the integral free energy to evolve H2 (Figure S44),
implying that unamended Ti will eventually form surface TiH2
under NO3RR conditions. The analysis suggests that similar
reactivity to TiH2/Ti electrodes may be conferred to
unamended Ti in situ; this in situ modification may be more
influential than ex situ pretreatment.
In summary, electrochemical preparation and testing of

TiH2/Ti electrodes was enabled by systematically characteriz-
ing the Ti near-surface. Electrochemical experiments paired
with DFT calculations indicate that the applied potentials
explored in this work correspond to a fundamentally dynamic
range of NO3RR activity and selectivity on TiH2. Our
investigation advances direct relationships between NO3RR
performance with ex situ near-surface electrocatalyst compo-

sition and identifies key opportunities for further research, such

as kinetic DFT calculations and in situ characterization of Ti

electrodes.

Figure 4. (a) Surface Pourbaix diagram for the TiH2(111) surface
with TiH termination (Section S4.2 and Figure S42), denoted as
TiH2(111):TiH. Color scale indicates prevalent surface H* (hcp site)
coverage evaluated on a 3 × 3 unit cell. The black dotted line
indicates where H2(g) formation is thermodynamically favored over
H* adsorption. (b) Integral free energy (normalized by number of
sites), ΔGint, at the standard state of NO3RR intermediates for low
coverage on TiH2(111):TiH. (c) TiH2(111):TiH surface and
optimized adsorption structures of NO3RR intermediates. Adsorption
sites on the surface are depicted with additional H*, preferring the
hcp hollow site by 0.58 eV/H over the atop site occupied in epitaxial
growth. NO3* and NO2* adsorb in bidentate mode on the atop sites;
O* sits in the hcp site, and OH* sits on the atop site.
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