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We propose a new iterative scheme to compute the numerical solution to an over-determined boundary value
problem for a general quasilinear elliptic PDE. The main idea is to repeatedly solve its linearization by using
the quasi-reversibility method with a suitable Carleman weight function. The presence of the Carleman weight
function allows us to employ a Carleman estimate to prove the convergence of the sequence generated by the
iterative scheme above to the desired solution. The convergence of the iteration is fast at an exponential rate
without the need of an initial good guess. We apply this method to compute solutions to some general quasilinear

elliptic equations and a large class of first-order Hamilton-Jacobi equations. Numerical results are presented.

1. Introduction

The main aim of this paper is to develop a numerical method based
on Carleman estimates to solve quasilinear elliptic PDEs with over-
determined boundary data. We consider this new method as the sec-
ond generation of Carleman-based numerical methods while the first
generation is called the convexification, which will be mentioned in de-
tail later. Let Q be an open and bounded domain in R?, d > 2, with
smooth boundary dQ. Let f and g be two smooth functions defined
on dQ. Let F: QxR x R? > R be a function in the class C2. Let

A=(q /-);’jz i Q — R be C2, symmetric, and positive definite, that is,
yIEP <a;0&¢ <y'IEPF forallxeQ, ¢eRY,

for some fixed y € (0, 1). The following problem is of our interests.

Problem 1. Assume that the over-determined boundary value problem

—div(A(X)Vu(x)) + F(x,u(x), Vu(x)) =0 x€e€Q,
u(x) = f(x) X € 0Q, (€D)]
0, u(x) = g(x) X € 0Q

has a solution u* in C*(Q). Compute the function u*.

Problem 1 is motivated by a class of nonlinear inverse problems in
PDEs, in which f and g are the data that can be measured. One im-
portant goal of inverse problems is to reconstruct the internal structure
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of a domain from boundary measurements, which allow us to impose
both Dirichlet and Neumann data of the unknown in (1). Recently, a
unified framework to solve such inverse problems was developed by
the research group of the first and second authors, which has two main
steps. In the first step, by introducing a change of variables, one derives
a PDE of the form (1) from the given inverse problem, in which f and
g can be computed directly by the given boundary data. In the second
step, one numerically solves (1) to find u*. The knowledge of u* directly
yields that of the solution to the corresponding inverse problem un-
der consideration. See [1,2] and the references therein for some works
in this framework. Moreover, this unified framework was successfully
tested with experimental data in [3-5]. Another motivation to study
Problem 1 is to seek solutions to Hamilton-Jacobi equations under the
circumstance that the Neumann data of the unknown can be computed
by its Dirichlet data and the given form of the Hamiltonian, see e.g.,
[6, Assumption 1.1 and Remark 1.1]. Since inverse problems are out
of the scope of this paper, we only focus on the applications in solving
quasilinear elliptic PDEs and first-order Hamilton-Jacobi equations.

A natural approach to solve (1) is based on optimization. That means
one sets the computed solution to (1) as a minimizer of a mismatch
functional, e.g.,

v J() = / ‘ —div(A(x)Vo(x)) + F(x, v(x), Vo(x)) ? dx
Q

+ a regularization term
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subject to the Cauchy boundary conditions v|,o = f and 9, v|,q = g. The
methods based on optimization are widely used in the scientific com-
munity, especially in computational mathematics, physics and engineer-
ing. Although effective and popular, the optimization-based approaches
have some drawbacks:

1. In general, it is not clear that the obtained minimizer approximates
the true solution to (1).

2. The mismatch functional J is not convex, and it might have mul-
tiple minima and ravines (see an example in [7] for illustration).
To deliver reliable numerical solutions, one must know some good
initial guesses of the true solutions.

3. The computation is expensive and time consuming.

Drawbacks # 1 and #2 can be treated by the convexification method,
which is designed to globalize the optimization methods. The main idea
of the convexification method is to employ some suitable Carleman
weight functions to convexify the mismatch functionals. The convex-
ity of weighted mismatch functionals is rigorously proved by Carleman
estimates. Several versions of the convexification method have been de-
veloped in [8,1,9-11,5] since it was first introduced in [12]. Moreover,
we recently discovered that the convexification method can be used to
solve a large class of first-order Hamilton-Jacobi equations [6].

In this paper, we introduce a new method to solve (1) based on
linearization and Carleman estimates. Like the convexification method,
our method delivers a reliable solution to (1) without requiring a good
initial guess. This fact is rigorously proved. Unlike the convexification
method which is time consuming, our new method quickly provides
the desired solutions. Its convergence rate is O(0") as n — oo for some
6e(0,1).

We find the numerical solution to (1) by repeatedly solving the
linearization of (1) by a new “Carleman weighted” quasi-reversibility
method. The classical quasi-reversibility method was first proposed in
[13], and it has been studied intensively since then (see [14] for a sur-
vey). By a Carleman weighted quasi-reversibility method, we mean that
we let a suitable Carleman weight function involve in the cost functional
suggested by the classical quasi-reversibility method. The presence of
the Carleman weight function is the key for us to prove our conver-
gence theorem. Our process to solve Problem 1 is as follows. We first
choose any initial solution that might be far away from the true one.
Denote this initial solution by the function . Linearizing (1) about u,,
we obtain a linear PDE. We then solve this linear PDE by the Carle-
man weighted quasi-reversibility method to obtain an updated solution
u;. Using the Carleman weighted quasi-reversibility method rather than
the classical one in this step is the key to our success. By iteration, we
repeat this step to construct a sequence {u,},-o. The convergence of
this sequence to the true solution to (1) is proved by using Carleman
estimates. We then apply this method to numerically solve some quasi-
linear elliptic equations. It is important to note that our approach works
well for systems of quasilinear elliptic PDEs too.

Remark 1. In general, (1) is over-determined and it might have no so-
lution, especially when the boundary data contains some noise. Our
iteration and linearization method using the Carleman weighted quasi-
reversibility method in each step still delivers a function that “most fits”
(1.

On the other hand, (1) with only Dirichlet boundary condition, that
is, the equation

u(x) = f(x) X € 0Q @
might have many solutions since we do not impose structural condi-
tions on F. For example, in case F(x,u(x),Vu(x)) = Au for some 1 € R
and f =0, (2) becomes an eigenvalue problem with possibly many solu-
tions as eigenfunctions. In such cases, requiring the additional Neumann
boundary condition is then natural, and (1) is not over-determined.

{ —div(AX)Vu(x)) + F(x,u(x), Vu(x)) =0 x€Q,
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Next, we use our method to solve some first-order Hamilton-Jacobi
equations. More precisely, to find viscosity solutions to the first-order
equation

Fx,u(x),Vu(x))=0 xe€Q,

we use the vanishing viscosity procedure and consider, for 0 < ¢; < 1,

—€pAu(x) + F(x,u(x), Vu(x)) =0 x€e€Q,

with given Cauchy boundary data. Our new method is robust in the
sense that it works for general nonlinearity F(x,u, Vu) that might not be
convex in Vu. We refer the readers to [15-17] and the references therein
for the theory of viscosity solutions. A weakness of our new approach in
computing the viscosity solutions to Hamilton-Jacobi equations is that
we need to require both Dirichlet and Neumann data of the unknown
u. See [6, Remark 1.1] for some circumstances that this requirement is
fulfilled. There have been many important methods to solve Hamilton-
Jacobi equations in the literature. For finite difference monotone and
consistent schemes of first-order equations and applications, see [18-
22] for details and recent developments. If F = F(x,u, Vu) is convex in
Vu and satisfies appropriate conditions, it is possible to construct some
semi-Lagrangian approximations by the discretization of the Dynamical
Programming Principle associated to the problem, see [23,24] and the
references therein.

The paper is organized as follows. In Section 2, we recall a Carleman
estimate and two examples about inverse problems in which Problem 1
appears. In Section 3, we introduce a new iterative method based on
linearization and Carleman estimates. In Section 4, we prove the con-
vergence of our method. Some numerical results for quasilinear elliptic
equations and first-order Hamilton-Jacobi equations are presented in
Section 5. Concluding remarks are given in Section 6.

2. Preliminaries

In this section, we recall a Carleman estimate, which plays a key
role for the proof of the convergence theorem in this paper. We then
present an inverse scattering problem in which Problem (1) appears.

2.1. A Carleman estimate

In this section, we present a simple form of Carleman estimates. Car-
leman estimates were first employed to prove the unique continuation
principle, see e.g., [25,26], and they quickly became a powerful tool in
many areas of PDEs afterwards. Let x, be a point in R \ Q such that
r(x) = |x — x| > 1 for all x € Q. For each g > 0, define

Hp(X) = rPx)=|x - x0|_ﬂ for all x € Q. 3

We have the following lemma.

Lemma 1 (Carleman estimate). There exist positive constants f, 4, de-
pending only on xy, Q, v, and d such that for all function v € C*(Q)

satisfying
v(x)=0,0(x)=0 forall x €0Q, (4)

the following estimate holds true

/ ™| div(AVD)|? dx
Q
>Ca / M0 |V ux)|? dx + CA° / MO px)2dx  (5)
Q Q

forall p > p, and A > 4. Here, C = C(xy,Q,7,d, ) > 0 depends only on the
listed parameters.
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Proof. Lemma 1 is a direct consequence of [27, Lemma 5]. Let 0 <
R, <1 and R;> 1 such that Q € B(x), R3) \ B(xy. R,). Here, B(x,,s) =
{yeR?: |y —xyl <s} for s> 0. Extend v to the whole R? such that
v(x) =0 for all x € R? \ Q. Using a change of variable x ~ x — x, and
[27, Lemma 5], there exists a number §, > 1 depending on y, R; and
R; such that for all > f, and |4] > 2R3_ﬂ , we have

/

B(x(,R3)\B(x(.R)

r)P22 07 | div(AV )2 dx

/

B(x0.R3)\B(X9.Ry)

>C PO 4182 2220l + [ Vol?) dx

/

9(B(x0.R3)\ B(x9.R1))

-C |12 ® (r(x)| Vo)

+ B2 Y %) ux)H) do(x)  (6)

for some constant C depending only on d and y. Since v =0 on
(B(xg, R3) \ B(xo, R})) \ @ and since Q € B(xy, R3) \ B(X), R,), allowing
C to depend on f and Q, we deduce the Carleman estimate (5) from

©. O

An alternative way to obtain (5) is to apply the Carleman estimate
in [28, Chapter 4, §1, Lemma 3] for general parabolic operators. The
arguments to obtain (5) using [28, Chapter 4, §1, Lemma 3] are similar
to that in [29, Section 3] with the Laplacian replaced by the operator
div(AV").

Remark 2. We specially draw the reader’s attention to different forms
of Carleman estimates for all three main kinds of differential opera-
tors (elliptic, parabolic and hyperbolic) and their applications in inverse
problems and computational mathematics [30-32]. It is worth mention-
ing that some Carleman estimates hold true for all functions v satisfying
v|yo =0 and o, v| = 0 where T is a part of 0Q, see e.g., [6,33], which
can be used to solve quasilinear elliptic PDEs with the boundary data
partly given.

2.2. An inverse scattering problem

As mentioned in Section 1, Problem 1 arises from nonlinear inverse
problems. We present here an important example in the context of in-
verse scattering problems in the frequency domain. Let ¢ : RY — [1, 00)
be the spatially distributed dielectric constant of the medium and [k, k1
be an interval of wavenumbers with k > 0. Since the dielectric constant
of the air is 1, we set c¢(x) = 1 for all x € R? \ Q. For each k € [k,z],
let w(x,k), x € RY, be the wave field generated by a point source at
x, € R? \ Q with wavenumber k. The function w is governed by the
Helmholtz equation and the Sommerfeld radiation condition

{

Problem 2 (Inverse Scattering Problem). Compute the function c(x), x € Q,
from the measurements of

Aw(x, k) + K e(Xw(x, k) = —6(x —x,) x €RY,

(g — R, k) = of|x|1=/2)

7)

|X| = 0.

The inverse scattering problem is formulated as follows.

f1x, k) =wx,k) and f,(x,k)=0,w(x,k) 8)

for all x € 9Q, k € [k, k].

The knowledge of the function ¢ partly provides the internal struc-
ture of the domain Q. In other words, solving the inverse scattering
problem allows us to examine a domain from external measurements,
which has applications in security, sonar imaging, geographical explo-
ration, medical imaging, near-field optical microscopy, nano-optics, see,
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g., [34] and references therein for more details. There have been
many important methods to solve inverse scattering problems in the
literature. Each method has its own advantages and disadvantages. A
common drawback of the widely-used method based on optimization to
solve inverse scattering problems is the need of a good initial guess of
the true solution c¢. We recall from [35] a method to solve the above
inverse scattering problem in which such a need is relaxed. Denote by

_ 1 w(x, k) -
205k = - log ( el ) for all x € Q. k € [. kI,
ik|x—xq |
where w(x, k) = :ﬂlx—xf:)l' Then, z satisfies

2Vz(x, k) - Vwy(x, k)

Az(x, k) + k% | Vz(x, k)|> +
z(x, k) + k7| Vz(x, k)|~ + 0%, K)

=—-c(x)+1
forallxeQ, ke [K,E]. Let {¥,},>; be the orthonormal basis of LZ(K, )
introduced in [36] and define

k
zn(x):/z(x,k)‘l’,,(k)dk forn>1,xeQ.
k

©)
We approximate

0 N
o(x, k) = Z Z, (X)W, (k) ~ Z z,(x)W,(k),

i=1 i=1

for a suitable cut-off number N € N. Then, the vector Zy = (z;, z,, ...
“approximately” satisfies the system

,ZN)

N N N

Y 5Bz () + Y a4 Vz(x)- Vz;(x) + ) B(x) - Vz,(x) =0

i=1

10)
i=1 i,j=1
where

k
Syi :/‘I‘/.(k)‘}’,(k)dk,

k
a; = 2/
k

B;(x)=

KW, ()W (k) + K, ()W j(k)>‘I’,(k) dk,

k) Vuwy(x,
‘Pk W, (k)d,
() + (k) 0o (%, )

( k) )>‘P,(k)dk
Wy (X

w\ ol

for all i,j,l € {1,...,N} and x € Q, see [35, Section 6] for details. The
Dirichlet and Neumann boundary conditions for Z, can be computed
by the knowledges of f;, f,, and (9). Solving the system of quasilinear
elliptic equations (10) with the provided Dirichlet and Neumann data
is basically a goal of Problem 1. Doing so is the key step to compute c.
See [35] for convexification method to compute Z, and the procedure
to obtain ¢ from the knowledge of Z .

2.3. Electrical impedance tomography

We present here another potential application of our study in this
paper to the 3D electrical impedance tomography (EIT) problem, so-
called the 3D Calderén problem, with only a part of the Dirichlet to
Neumann map is given. Let Q = (=R, R)? for some R > 0. Let the line of
source be defined as

«={X,=(@0,-R) : |a| <R} C0Q.

For each « € [-R, R], let x, = (¢,0,—R) € L, and w = w(x,X,), X € Q, be
the solution to

{ div(a(x)Vuw(x,x,

wX,X,) =

) =0 XeQ,

f1(x,x,) X €0Q. an
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Here, f|(x,x,) > 0 is a smooth approximation of the Dirac delta §,(x —
x,). In EIT, f,(x.x,) represents the boundary electric voltage. The EIT
problem is formulated as follows.

Problem 3 (Electrical impedance tomography). Determine the electric con-
ductivity a(x), x € Q, from the boundary measurement of the electric current
fr(X,x,) =0, w(x,x,) for all x € 9Q, x, € L.

Remark 3. Problem 3 only requests the data generated by the source
moving on L . The dimension of this set of data is 3, including 1 dimen-
sion of the orbit L, of the source and 2 dimensions of the measurement
surface 0Q. This feature makes Problem 3 not over-determined because
our goal is to reconstruct a 3D function a. This is unlike most of the
works studying the EIT problem that request the whole Dirichlet to
Neumann map I' : H/2(0Q) —» H~/2(0Q). Since H'/2(9Q), the domain
of T, has uncountably infinity dimensions, the data requested by the
Dirichlet to Neumann map is highly over-determined.

The EIT problem arises from bio-medical imaging; especially, in de-
tecting early cancerous tumors in living tissues without operation. Most
publications for the EIT problem studied the question how to recon-
struct the electric conductivity a(x), x € Q for some domain Q, from the
Dirichlet to Neumann or the Neumann to Dirichlet map. We refer the
reader to [37-40] for some well-known uniqueness results of the EIT
problem. We list here a few publications for some effective approaches
to numerically solve the EIT problem: the D-bar method [41-43], the
methods based on optimization [44,45] and the convexification method
[46]. Although effective, these methods have drawbacks. Firstly, the D-
bar method is designed only for 2D. Secondly, the methods based on
optimization request good initial guess of the true solution. And finally,
the convexification method is time consuming. Naturally, a new com-
putational method should be studied in this direction. Our potential
method to solve the 3D EIT problem is to reduce this inverse problem
to a problem of the form (1). Introduce the change of variable

2(X,X,) = log (Vax)w(x,x,)) forall xeQ,x, € L. 12)

Let {¥,}% be the orthonormal basis of L2(—R, R) first introduced in

[36]. Like in Section 2.2, we approximate the function z(x,x,) as

o0 N
2(%,X,) = ) 2,0, (@) = Y 2,00, (a) (13)
n=1 n=1
for all x € Q,x, € L, for some cut-off number N where
R
z,(x) = / z2(x, X))V, (@)da a4
“R

for all n> 1. We choose N such that the approximation in (13) “numer-
ically” holds for all x € 0Q where the data are known. Then, it is not

hard to verify, see [46], that the vector Zy =(z,,...,zy) satisfies the
system
N N

Y S Az X+ D @ V2, (%) Vz,(x)=0 forallx€Q,

n=1

(15)

nl=1

for each me {1,..., N}, where

R
smn:/‘l‘;(a)‘{‘m(a)da,
-R
R
At =2/‘Pn(a)‘P;(a)‘Pm(a)da.
-R

The Dirichlet and Neumann boundary conditions for Z, can be com-
puted by the knowledges of the Dirichlet condition f;, the given Neu-
mann data f,, (12) and (14). Solving the system of quasilinear elliptic
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equations (15) with the provided Dirichlet and Neumann data is ba-
sically a goal of Problem 1. We refer the reader to [46] the step of
computing a from the knowledge of the vector Z .

The discussion above for the inverse scattering problem and the EIT
problem motivates us to study Problem 1. Since these inverse problems
are out of the scope of this paper, we only mention them here to explain
the significance of Problem 1. In future works, we will use our solver
for Problem 1 to solve these two important inverse problems.

3. The iteration and linearization approach for Problem 1

Our approach to solve (1) is based on linearization and iteration.
Assume that the solution «* to (1) is in the space H?(Q2) for some p >
[d/2] + 2 where [d/2] is the smallest integer that is greater than d /2.
Define the set of admissible solutions

W={peHQ) : plon=/.0,0lia=8} (16)

Then, the assumption in Problem 1 implies that W # @, and u* € W.
We now construct a sequence {u,},>, that converges to the solution u*
to (1). Take a function u, € W. Assume by induction that we have the
knowledge of u, for some n > 0. We find u,,, as follows. Assume that
u* =u, + h for some h € H, where

Hy={pe HY(Q) : ¢lyn=0,0,0|yo=0}.

Plugging u* =u, + h into (1), we have

—div(AX)V(u, + h)(x)) + F(x,u,(x) + h(x), Vu,(x) + VA(x)) =0 a7

for all x € Q. Heuristically, we assume at this moment that 4 is small,
that is, ||4llc1q) < 1.

Remark 4. The temporary assumption ||A|c1q) < 1 is imposed for the
suggestion in establishing a numerical scheme to find u,,; while this
condition is completely relaxed in the proof of the convergence theo-
rem.

By Taylor’s expansion, we approximate (17) as

—div(AVu,) — div(AVh) + F(X,u,(X), Vi, (X)) + DF (u,)h = 0 18)

for all x € Q where

DF (v)h = Fy(x, v(x), Vo(x))h + V, F(x, v(x), Vo(x)) - VA(x)

for all v € H?(Q). Here, F, and V,F are the partial derivative of F with
respect to its second variable and its gradient vector with respect to the
third variable, respectively.

The next step is to compute a function h € H, satisfying (18).
Since there is no guarantee for the existence of such a function h,
we only compute a “best fit” function 4 by the Carleman-based quasi-
reversibility method described below. For each v € H?(Q), A>1, >0

and # > 0, define the functional Jlf’ﬂ M Hy—R as

Abag oy — [ 20
Jvﬂ”((p)—/e Hpx

Q

—div(AVe) — div(AVo) + F(x, v(x), Vu(x))

2
+DF)p| dx+nllo+ell,q)-

2

Here, the function 4, is defined in (3) and #llv + |3, @)

tion term.

is a regulariza-

Proposition 1. For all 4> 1,8 >0 and n > 0, for each v € HP(Q), the
functional J}P H, — H, has a unique minimizer.

Proof. It is obvious that J**" is coercive and weakly lower semicontin-
uous. Thus, it has a minimizer in H,. The uniqueness of the minimizer
can be deduced from the strict convexity of J,f’ﬁ "in Hy. O
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For each n > 0, thanks for Proposition 1, we can minimize Jlfn’ﬂ (@)
on H,. The unique minimizer is the desired function 4. We then set

Uy =U, +h. (19)

The construction of the sequence {u,},. above is summarized in Al-
gorithm 1. We will prove that the sequence {u,},5, converges to u* in
Section 4 as n — oo and 5 — 0. The presence of the Carleman weight
¥ is a key point for us to prove this convergence result.

Algorithm 1 The procedure to compute the numerical solution to (1).

1: Choose a threshold number 0 < k, < 1. Choose an arbitrary initial solution u, € W'.
2: Set n=0.

3: Solve the linear equation (18) for a function h € H, by minimizing J;"*'

Setu,,; =u,+h.

4 if gy —u,ll 2@ > Ko then
5 Replace n by n+ 1.

6 Go back to Step 3.

7: else
8
9

(@) on H,,.

Set the computed solution ugy,, =i,
: end if

4. The convergence analysis

In this section, we prove that the sequence {u,},5, generated by
Algorithm 1 converges to the solution u* to (1). The following result is
the main theorem in this paper.

Theorem 1. Assume that || F|c2qr rey IS @ finite number. Assume further
that (1) has a unique solution u* € W. Let {u, },~o be the sequence generated
by Algorithm 1, where u, € W is chosen arbitrarily. Then, there exist Ay >0
and 6 € (0, 1) such that, for all 1> A,

2

9n+l
ApspB 0

+,101_—

* (12
u
|

2 @ (20)

#112 n+1 *
ety =113, 5 < 0" llag = |

Here,

1
ol 1, = [/ez’l”ﬂ<x)(|0|2+|Vv|2)dx]2 for dll ve H'(Q).
Q

Proof. Fix n>0. Let h=u, | —u,. Due to Step 3 in Algorithm 1, h is
the minimizer of J,fn’ﬁ *1. By the variational principle, we have

/ ™ (— div(AVh) — div(AVu,) + F(x,u,, Vu,) + DF (u,)h)
Q

(= div(AVe) + DF(u,)@) dx + n{u, + h, @) oy =0 (21)
for all ¢ € H,. Since u,,; =u, + h, we can rewrite (21) as
/ M0 (— div(AVi,,,) + F(X,u,, Vi) + DF ()t — i)
Q
(= div(AV@) + DF(u,)@) dX + 0,y 1, @) gry =0 (22)
for all ¢ € H;,. As u* is the solution to (1), we have
/ 29N (— div(AVY*) + F(x,u*, Vu*))
Q
(—div(AV@) + DF(u,)@) dx=0 (23)
for all ¢ € H,,. It follows from (22) and (23) that for all ¢ € H,,
M) (— div(AV(u,.,, —u*)) + F(x,u,, Vu,) — F(x,u*, Vu*
(AV(uyy — ") + F(x,u,, Vu,) — F( )
Q
+ DF(u,) (1 — ) ( — div(AV@) + DF (u,)@) dx
+ 1y 1, @Y pr =0 (24)
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Take ¢ =u,,| —u* € Hy. It follows from (24) that

/ ™) [|div(AV<p)|2 - DF(u,)@div(AVe) — (F(x,u,, Vu,)
Q

— F(x,u*, Vu*))div(AV @) + (F(x,u,, Vu,) = F(x,u*, Vu*)) DF (u,)¢

Uy,
—div(AV@)DF (u,)(u, 1 —u,) + DF (u,) (U, — u,,)DF(u,,)(p] dx
=1yt <P>HP(Q)- (25)

As || Fllc2qr rey = C < +00, we can estimate

|DF (u,)el < Clol + [Vol),
|F(x,u,, Vu,) — F(x,u*, Vu*)| < C(|lu, — u*| + |V(u, — u™)|),
| DF ()Wt — )| = | DF () 1ty —u* +u* —u,)]
S Cuyyy =1+ [V —uD + Cluy, — ™| + |V, — ™)),

and
= 1{Uyr1- @Y Hri) = —1(@ + U™, @) (o)

= =nllel} ) = 10" P riray < 31 1
These estimates, together with the inequality |ab| < 4a® + b%/8, imply
/ M0 |div(AVe)* dx < C [ / MY (] + |Vol?) dx
Q Q

4 K ’1 )
+/e2’”yﬂ(x)(|un — Py IV (u, — u*)|2)dx] + 5”“*“2[-11’(9)'
Q

(26)

Applying the Carleman estimate (5) for the function ¢, we have

/ ™| div(AVe)|? dx
Q
>CA / M|V px)|2 dx + CA3 / 0| px)|>dx. (27)
Q Q

Combining (26) and (27), we have

pl / 0|V ox)| dx + A3 / M| p(x)|% dx

<c| [ ol +1voPyaxt [ &m0, - 4190, -0 dx
Q Q
+ 21 ey (28)
) HP(Q)

Letting 4 be sufficiently large, we can simplify (28) as

3 [ P+ 9pPrax<C [ @m0, —a P+ 1V, 10 dx
Q Q
+ I 2y (29)
5 HP(Q)

Recall that ¢ =u,,,; —u*. We get from (29) that

C n
ity =013, < Sl =1+ 510 - (30)
Applying (30) for n— 1 and denoting # =C/4 € (0, 1), we have

2 2 2 2
ity =13 5 < 00Nty =12, 5+ 101" | + 100 3

=0?|u,_, — u*||i%ﬂ +10(1 + 9)||u*||§1,,(9).

By induction, we have

(3D

n
2 1 €112 2
lttygs =115, 5 O™ Mg =15, 5 +10 Y 0" 14" 1300
i=0

which implies (20). The proof is complete. []
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Remark 5 (Removing the boundedness condition of F in C? in Theorem 1).
In the case when || F|| c2qurxrd+1) = ©, We need to assume that we know
in advance that the true solution u* to (1) belongs to the ball B,, of
C1(Q) for some M > 0. This assumption does not weaken the result
since M can be arbitrarily large. Define the cut-off function y € C®°(Qx
R x R?) as

_J 1 Isl+Ipl< M,
x(x,s,p)—{o Is| + p| > 2M

and set F = xF. Since |u*| + |Vu*| < M, it is obvious that u* solves the
problem

—div(AX)Vu(x)) + F(x,u(x), Vu(x)) =0 x€Q,
u(x) = f(x) X € 09,
0, u(x) = g(x) X € 0Q.

(32)

Now, we can apply Algorithm 1 for (32) to compute u*.

Remark 6. Theorem 1 and estimate (20) rigorously guarantee that each
sequence generated by Algorithm 1 converges to u* at the exponential
rate. This fact is numerically confirmed by our numerical results in Sec-
tion 5.

Remark 7. As seen in the proof of Theorem 1, the efficiency of Al-
gorithm 1 is guaranteed by Carleman estimate (5). Therefore, we call
the proposed method described in Algorithm 1 the second generation
of Carleman-based numerical methods. This second generation includes
the method in [2,47] in which the iteration scheme is developed based
on the contraction principle and Carleman estimates. The first gen-
eration of Carleman-based numerical method was developed in [12],
which is called the convexification. See [8,6,2,35] for some following
up results. Like the convexification method, Algorithm 1 can be used to
compute solutions to nonlinear PDEs without requesting an initial good
guess. The advantage of our new method is the fast convergence rate,
see Remark 6.

5. Numerical study

In this section, we present some numerical results obtained by Algo-
rithm 1. For simplicity, we set d =2 and Q = (-1, 1)>. On Q, we arrange
an N x N grid points

C={(xi=-1+>G-Db,y;=-1+( -1 : 1<i,j <N}

where § =2/(N — 1). In our numerical scripts, N = 80.

In Step 1 of Algorithm 1, we choose a function u, € W. It is natural
to find a function u, satisfying the equation obtained by removing from
(1) the nonlinearity F(x,u, Vu). We apply the Carleman-based quasi-
reversibility method to do so. That means, u;, is the minimizer of

APy — Aug(X) | g 2 2
5 = [ P AT O ax ol g
Q

(33)
subject to the boundary conditions in (39). To simplify the efforts in
implementation, the norm in the regularization term is the H2(Q)-norm
rather than the HP(Q)-norm. This change does not affect the perfor-
mance of Algorithm 1. Algorithm 1 still provides satisfactory solutions
to (1).

Remark 8. We employ the Carleman-based quasi-reversibility method
to find u, for the consistency to Step 3 of Algorithm 1. Since u, € W
can be chosen arbitrarily, one can use the quasi-reversibility method
without the presence of the Carleman weight function ¢*s®. In our
computation for all numerical examples below, 1 =4, =10 and x, =
(—4,0). The regularized parameter is # = 10~*. The threshold number
ko =1075.
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We minimize J(f 41 on H, by the least square MATLAB command
“Isqlin”. The implementation for the quasi-reversibility method to min-
imize more general functionals than J;’ﬁ I was described in [2, §5.3]
and in [48, §5]. We do not repeat this process here. In Step 3 of Algo-
rithm 1, given u, € W, we minimize the functional J,fn‘ﬁ I on H,. Again,
we refer the reader to [2, §5.3] and in [48, §5] for details in imple-
mentation. The scripts for other steps of Algorithm 1 can be written
easily.

5.1. Quasilinear elliptic equations

The convexification method, first introduced in [12], was used to nu-
merically solve quasilinear elliptic equations in [8,6,35]. Our approach
here is of course different based on iteration and linearization. In partic-
ular, Step 3 in Algorithm 1 is very efficient as we only need to solve the
linear equation (18) as opposed to solving directly a nonlinear quasilin-
ear elliptic equation. In this subsection, we present two (2) numerical
tests. In both tests, we choose the matrix A to be

sl

That means, div(AVu) =2u,, +2u,, +2u,,.

A=

In test 1, we solve (1) when

F(x,s,p):s+|p|—(—x2+2y2+ 4x2 +16)2 — 4) (34)

for all x = (x,y) €Q, s €R and p € R%. The boundary conditions are
given by
(35)

u(x) = —x2 + 27, o, u(x) = (—2x,4y) - v

for all x = (x, y) € 0Q. The true solution of (1) is the function u,,.(x,y) =
—x24+2y%

It is evident from Fig. 1 that Algorithm 1 provides out of expectation
solution for test 1. The relative error ||ty — Ueompll oo @)/ Utruell Loo(@) =
1.23 x 107>, One can see from Fig. 1c that Algorithm 1 converges at the
third iteration.

In test 2, we solve (1) when

2 2
F(x,s5,p)=|p| - [\/[gcos(%(x+y)) +ex] + %cosz (%(x+y))

2
+ (L +p)-20]  @6)
2 2

for all x = (x,y) €Q, s €R and p € R%. The boundary conditions are
given by

u(x) = sin (%(x +3)) +e",

avu(x)=(%cos(%(x+y))+ex,cos(%(x+y))>~v 37)
for all x = (x, y) € 0Q. The true solution of (1) is the function u(x,y) =
sin (g(x +)) +e*.

It is evident from Fig. 2 that Algorithm 1 provides out of expectation
solution for test 2. The relative error [|ugye = Ueompll o)/ 1Uiruell Lo@) =
4.19 x 1075 One can see from Fig. 2c that Algorithm 1 converges at the
fifth iteration.

5.2. Application to first-order Hamilton-Jacobi equations

Our aim in this subsection is to solve numerically

F(x,u,Vu)=0 forallxeQ, (38)
with the boundary conditions
ulpo=/ and dyulyo=g. 39
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Fig. 1. Test 1. The numerical solution to (1) where F is given in (34) and the boundary data are given in (35).
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horizontal axis is the num-
ber of iteration n

Fig. 2. Test 2. The numerical solution to (1) where F is given in (36) and the boundary data are given in (37).

Basically, we use the vanishing viscosity process to approximate solu-
tions to (38). For ¢ > 0, consider

—eAu+ F(x,u,Vu)=0 forallxeQ (40)

with boundary conditions (39). Again, (40)-(39) is an over-determined
boundary value problem. For ¢ > 0 sufficiently small, assume that
(40)—(39) has a solution u¢ € W. Then, u¢ approximates u, solution to
(38)—(39), quite well under some appropriate assumptions on F. In our
numerical tests, we choose € = ¢, = 1073.

In this part, we provide six (6) numerical tests, in which we com-
pute the viscosity solution to some Hamilton-Jacobi equations of the
form (38) given Cauchy boundary data. That means, by applying Algo-
rithm 1, we numerically find a function Ucomp satisfying (40)-(39) when
F, f and g are given. The verification that u* is the correct viscosity
solution can be done in a similar manner as that in [17,6].

Test 1. In this test, we solve (40)-(39) when

Fx,s,p)=s+pl+ x| -1, (41)

for all x = (x,y) € Q,s € R,p € R%. The boundary conditions are given
by
u(x) = —|x|,

9, u(x) = (—sign(x),0) - v (42)

for all x = (x,y) € 0Q. In this case, the true solution is u* = —|x|. The
numerical result is displayed in Fig. 3.

It is evident from Fig. 3 that we successfully compute the solution
Ucomp- The procedure described in Algorithm 1 converges after four it-
Il

“*_ucomp”L‘x’(Q) =5.33%

erations. The relative error -
[l 1l oo ()

Test 2. We find the viscosity solution to the eikonal equation. In this
test, we solve (40)—(39) when the Hamiltonian is

F(x,5,p) = [p|* = (1 + (1 +sign(x + ))*) (43)
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for all x = (x,y) € Q,s € R,p € R%. The boundary conditions are given
by

ux)=—|x+yl -y, oux)=(-sign(x +y),-sign(x+y)—1)-v (44)

for all x = (x,y) € 0Q. The true solution is u*(x) = —|x + y| — y. The
graphs of u* and u,y, are displayed in Fig. 4. The relative error
lle* —tcompll Loo (@) —3.6%

[l |l Loo ()

Test 3. We test the case when the Hamiltonian is not convex with
respect its third variable. The Hamiltonian in this test is given by
F(x,5.0) =205+ |p;| = |pa] [20(—|x +0.5] 4 ¢<osr 7))

+ |sign(x + 0.5) + 47zx sin(r(x? + y2))es A 0|

— Jdzysinr(:> + ﬁ))emsa”("zﬂz)ﬂ] (45)

forallx=(x,y) €Q,seR,p=(p;.p;) € R2. The boundary conditions are
given by

U(X) = —|x +0.5] + T for all x = (x, y) € 0Q (46)
and
9,u(x) = (= sign(x +0.5) — dzx sin(@r(x? + ),

— 4xysinQr(x? + yz))e°°s(2”(xz+y2))) v (47)
for all x = (x,y) € 0Q. The true solution is u*(x) = —|x + 0.5] +

20525+ The graphs of u* and Ueomp are displayed in Fig. 5. The

llu* —tucompll Lo (@)
[l |l oo (2

this test is large, the numerical result is acceptable. In fact, we observe

. " =ticompll Lo (@
from Fig. 5f that ——ome 2@
[l [l oo ()

large at only two small places near the left edge of the domain.

relative error = 10.65%. Although the relative error in

is small almost everywhere while it is
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Fig. 3. Test 1. The true viscosity solution to (40)-(39) and the computed one. The Hamiltonian and the boundary conditions are given in (41)—(42).
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Fig. 4. Test 2. The true viscosity solution to (40)-(39) and the computed one. The Hamiltonian and the boundary conditions are given in (43)-(44).

Test 4. We test the case when the Hamiltonian is not increasing in the
second variable and is not convex in the third variable. The Hamiltonian

in this test is given by

2
F(x,5,p) = —40s + ||p| — 10| +40<|x+y—0.5| +sin ("7 +y2>)

- ’([sign(x+y—0,5)+xcos(%2 +y2)]2+

[sign(x +y—0.5)+2ycos (%2 + y2>]2)1/2 - 10| (48)

forallx=(x,y) €Q,seR,p=(p;.p;) € R2. The boundary conditions are
given by

2
u(x)=|x+y—0.5] +sin<x7 +yz) for all x = (x,y) € 0Q (49)

and

20
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Fig. 5. Test 3. The true viscosity solution to (40)-(39) and the computed one. The Hamiltonian and the boundary conditions are given in (45)—(47).

2
0,u(x) = (sign(x +y—0.5)+ xcos (% + yz),

2
sign(x+y—0.5)+2ycos(x? +y2))~v (50)

for all x = (x, y) € 0Q. The true solution is u*(x) = |x + y — 0.5| + sin (% +

are displayed in Fig. 6. The relative

comp

y2>. The graphs of »* and

" —ucompll Lo
error — M L2@ _ () 959,
[l 1l oo ()

Test 5. We solve a G-equation. The Hamiltonian in this test is given
by

F(x,5.p) =55+ |p| — xp; + [5(|x ~0.5] + |y) — xsign(x — 0.5) - \/5] 51)

forallx=(x,») €Q,seR,p=(p,py) € R2. The boundary conditions are
given by

u(x)=—|x—-05|—|y| forall x=(x,y)€ IR (52)
and
0,u(x) = —(sign(x — 0.5),sign(y)) - v (53)

for all x = (x,y) € 0Q. The true solution is u*(x) = —|x — 0.5| — |y|. The
graphs of v* and u,,, are displayed in Fig. 7. The relative error

llw* —ucompll Lo @
) = 0.98%.

[l |l Loo ()

Test 6. The Hamiltonian in this test is given by

Fx,5,9) =205 + min{ L, [p| = 10] + 6} = [20(~|x| + sin(z(x + )
+min { AGx, ), 1hGe) = 101+6 }] - (54)

for all x = (x,y) €Q,s € R,p = (p, p,) € R? where

h(x,y)= \/[—Sign(x) + 27 cos(z(x2 + y2))|? + [27 cos(x(x2 + y2)]2.

The boundary conditions are given by

21

u(x) = —|x| +sin(z(x> + %)) for all x = (x, y) € 0Q (55)
and
o u(x) = ( —sign(x) + 2zx cos(x(x* + y*)), 2zycos(z(x* + y*)) v (56)

for all x = (x,y) € 9Q. The true solution is u*(x) = —|x| + sin(z(x? + y?)).
The graphs of u* and u,y, are displayed in Fig. 8. The relative error

lle* —ttcompll Loo (@)
— = = =4.38%.
[l Il oo ()

Remark 9. The L™ relative errors in all tests above for first-order
Hamilton-Jacobi equations are compatible with max{O(y/n), O(\/%)} ~
3%.

6. Concluding remarks

We have developed a new globally convergent numerical method
to solve over-determined boundary value problems of quasilinear el-
liptic equations. The key point of the method is to repeatedly solve
the linearization of the given PDE by the Carleman weighted quasi-
reversibility method (Algorithm 1). As the result, we obtain a sequence
of functions converging to the solution thanks to the Carleman estimate
(Lemma 1). The strength of our new method includes (1) the global con-
vergence property and (2) the fast convergence rate, which is described
in Theorem 1. Some numerical results for quasilinear elliptic equations
and first-order Hamilton-Jacobi equations are presented to show the ef-
fectiveness of our method.
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