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We propose a new iterative scheme to compute the numerical solution to an over-determined boundary value 
problem for a general quasilinear elliptic PDE. The main idea is to repeatedly solve its linearization by using 
the quasi-reversibility method with a suitable Carleman weight function. The presence of the Carleman weight 
function allows us to employ a Carleman estimate to prove the convergence of the sequence generated by the 
iterative scheme above to the desired solution. The convergence of the iteration is fast at an exponential rate 
without the need of an initial good guess. We apply this method to compute solutions to some general quasilinear 
elliptic equations and a large class of first-order Hamilton-Jacobi equations. Numerical results are presented.

1. Introduction

The main aim of this paper is to develop a numerical method based 
on Carleman estimates to solve quasilinear elliptic PDEs with over-
determined boundary data. We consider this new method as the sec-
ond generation of Carleman-based numerical methods while the first 
generation is called the convexification, which will be mentioned in de-
tail later. Let Ω be an open and bounded domain in ℝ! , ! ≥ 2, with 
smooth boundary "Ω. Let # and $ be two smooth functions defined 
on "Ω. Let % ∶ Ω × ℝ × ℝ! → ℝ be a function in the class &2. Let 
' = (()* )!),*=1 ∶ Ω→ℝ!×! be &2, symmetric, and positive definite, that is,
+|,|2 ≤ ()* (!),),* ≤ +−1|,|2 for all ! ∈Ω, , ∈ℝ! ,

for some fixed + ∈ (0, 1). The following problem is of our interests.

Problem 1. Assume that the over-determined boundary value problem
⎧
⎪
⎨
⎪⎩

−div('(!)∇-(!)) + % (!,-(!),∇-(!)) = 0 ! ∈Ω,
-(!) = # (!) ! ∈ "Ω,
".-(!) = $(!) ! ∈ "Ω

(1)

has a solution -∗ in &2(Ω). Compute the function -∗.

Problem 1 is motivated by a class of nonlinear inverse problems in 
PDEs, in which # and $ are the data that can be measured. One im-
portant goal of inverse problems is to reconstruct the internal structure 
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of a domain from boundary measurements, which allow us to impose 
both Dirichlet and Neumann data of the unknown in (1). Recently, a 
unified framework to solve such inverse problems was developed by 
the research group of the first and second authors, which has two main 
steps. In the first step, by introducing a change of variables, one derives 
a PDE of the form (1) from the given inverse problem, in which # and 
$ can be computed directly by the given boundary data. In the second 
step, one numerically solves (1) to find -∗. The knowledge of -∗ directly 
yields that of the solution to the corresponding inverse problem un-
der consideration. See [1,2] and the references therein for some works 
in this framework. Moreover, this unified framework was successfully 
tested with experimental data in [3–5]. Another motivation to study 
Problem 1 is to seek solutions to Hamilton-Jacobi equations under the 
circumstance that the Neumann data of the unknown can be computed 
by its Dirichlet data and the given form of the Hamiltonian, see e.g., 
[6, Assumption 1.1 and Remark 1.1]. Since inverse problems are out 
of the scope of this paper, we only focus on the applications in solving 
quasilinear elliptic PDEs and first-order Hamilton-Jacobi equations.

A natural approach to solve (1) is based on optimization. That means 
one sets the computed solution to (1) as a minimizer of a mismatch 
functional, e.g.,

/↦ 0 (/) ∶= ∫
Ω

|||− div('(!)∇/(!)) + % (!,/(!),∇/(!))|||
2
!!

+ a regularization term
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subject to the Cauchy boundary conditions /|"Ω = # and "./|"Ω = $. The 
methods based on optimization are widely used in the scientific com-
munity, especially in computational mathematics, physics and engineer-
ing. Although effective and popular, the optimization-based approaches 
have some drawbacks:

1. In general, it is not clear that the obtained minimizer approximates 
the true solution to (1).

2. The mismatch functional 0 is not convex, and it might have mul-
tiple minima and ravines (see an example in [7] for illustration). 
To deliver reliable numerical solutions, one must know some good 
initial guesses of the true solutions.

3. The computation is expensive and time consuming.

Drawbacks # 1 and #2 can be treated by the convexification method, 
which is designed to globalize the optimization methods. The main idea 
of the convexification method is to employ some suitable Carleman 
weight functions to convexify the mismatch functionals. The convex-
ity of weighted mismatch functionals is rigorously proved by Carleman 
estimates. Several versions of the convexification method have been de-
veloped in [8,1,9–11,5] since it was first introduced in [12]. Moreover, 
we recently discovered that the convexification method can be used to 
solve a large class of first-order Hamilton-Jacobi equations [6].

In this paper, we introduce a new method to solve (1) based on 
linearization and Carleman estimates. Like the convexification method, 
our method delivers a reliable solution to (1) without requiring a good 
initial guess. This fact is rigorously proved. Unlike the convexification 
method which is time consuming, our new method quickly provides 
the desired solutions. Its convergence rate is 1(23) as 3 →∞ for some 
2 ∈ (0, 1).

We find the numerical solution to (1) by repeatedly solving the 
linearization of (1) by a new “Carleman weighted” quasi-reversibility 
method. The classical quasi-reversibility method was first proposed in 
[13], and it has been studied intensively since then (see [14] for a sur-
vey). By a Carleman weighted quasi-reversibility method, we mean that 
we let a suitable Carleman weight function involve in the cost functional 
suggested by the classical quasi-reversibility method. The presence of 
the Carleman weight function is the key for us to prove our conver-
gence theorem. Our process to solve Problem 1 is as follows. We first 
choose any initial solution that might be far away from the true one. 
Denote this initial solution by the function -0. Linearizing (1) about -0, 
we obtain a linear PDE. We then solve this linear PDE by the Carle-
man weighted quasi-reversibility method to obtain an updated solution 
-1. Using the Carleman weighted quasi-reversibility method rather than 
the classical one in this step is the key to our success. By iteration, we 
repeat this step to construct a sequence {-3}3≥0. The convergence of 
this sequence to the true solution to (1) is proved by using Carleman 
estimates. We then apply this method to numerically solve some quasi-
linear elliptic equations. It is important to note that our approach works 
well for systems of quasilinear elliptic PDEs too.

Remark 1. In general, (1) is over-determined and it might have no so-
lution, especially when the boundary data contains some noise. Our 
iteration and linearization method using the Carleman weighted quasi-
reversibility method in each step still delivers a function that “most fits” 
(1).

On the other hand, (1) with only Dirichlet boundary condition, that 
is, the equation
{

−div('(!)∇-(!)) + % (!,-(!),∇-(!)) = 0 ! ∈Ω,
-(!) = # (!) ! ∈ "Ω (2)

might have many solutions since we do not impose structural condi-
tions on % . For example, in case % (!, -(!), ∇-(!)) = 4- for some 4 ∈ ℝ
and # = 0, (2) becomes an eigenvalue problem with possibly many solu-
tions as eigenfunctions. In such cases, requiring the additional Neumann 
boundary condition is then natural, and (1) is not over-determined.

Next, we use our method to solve some first-order Hamilton-Jacobi 
equations. More precisely, to find viscosity solutions to the first-order 
equation

% (!,-(!),∇-(!)) = 0 ! ∈Ω,

we use the vanishing viscosity procedure and consider, for 0 < 50 ≪ 1,

−50Δ-(!) + % (!,-(!),∇-(!)) = 0 ! ∈Ω,

with given Cauchy boundary data. Our new method is robust in the 
sense that it works for general nonlinearity % (!, -, ∇-) that might not be 
convex in ∇-. We refer the readers to [15–17] and the references therein 
for the theory of viscosity solutions. A weakness of our new approach in 
computing the viscosity solutions to Hamilton-Jacobi equations is that 
we need to require both Dirichlet and Neumann data of the unknown 
-. See [6, Remark 1.1] for some circumstances that this requirement is 
fulfilled. There have been many important methods to solve Hamilton-
Jacobi equations in the literature. For finite difference monotone and 
consistent schemes of first-order equations and applications, see [18–
22] for details and recent developments. If % = % (!, -, ∇-) is convex in 
∇- and satisfies appropriate conditions, it is possible to construct some 
semi-Lagrangian approximations by the discretization of the Dynamical 
Programming Principle associated to the problem, see [23,24] and the 
references therein.

The paper is organized as follows. In Section 2, we recall a Carleman 
estimate and two examples about inverse problems in which Problem 1
appears. In Section 3, we introduce a new iterative method based on 
linearization and Carleman estimates. In Section 4, we prove the con-
vergence of our method. Some numerical results for quasilinear elliptic 
equations and first-order Hamilton-Jacobi equations are presented in 
Section 5. Concluding remarks are given in Section 6.

2. Preliminaries

In this section, we recall a Carleman estimate, which plays a key 
role for the proof of the convergence theorem in this paper. We then 
present an inverse scattering problem in which Problem (1) appears.

2.1. A Carleman estimate

In this section, we present a simple form of Carleman estimates. Car-
leman estimates were first employed to prove the unique continuation 
principle, see e.g., [25,26], and they quickly became a powerful tool in 
many areas of PDEs afterwards. Let !0 be a point in ℝ! ⧵ Ω such that 
7(!) = |! − !0| > 1 for all ! ∈Ω. For each 8 > 0, define

98 (!) = 7−8 (!) = |! − !0|−8 for all ! ∈Ω. (3)
We have the following lemma.

Lemma 1 (Carleman estimate). There exist positive constants 80, 40 de-
pending only on !0, Ω, + , and ! such that for all function / ∈ &2(Ω)
satisfying

/(!) = "./(!) = 0 for all ! ∈ "Ω, (4)
the following estimate holds true

∫
Ω

:2498 (!)|div('∇/)|2 !!

≥ &4∫
Ω

:2498 (!)|∇/(!)|2 !! +&43 ∫
Ω

:2498 (!)|/(!)|2 !! (5)

for all 8 ≥ 80 and 4 ≥ 40. Here, & = &(!0, Ω, + , !, 8) > 0 depends only on the 
listed parameters.
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Proof. Lemma 1 is a direct consequence of [27, Lemma 5]. Let 0 <
;1 < 1 and ;3 ≫ 1 such that Ω ⋐ =(!0, ;3) ⧵ =(!0,;1). Here, =(!0, >) =
{" ∈ ℝ! ∶ |" − !0| < >} for > > 0. Extend / to the whole ℝ! such that 
/(!) = 0 for all ! ∈ ℝ! ⧵ Ω. Using a change of variable ! ↦ ! − !0 and 
[27, Lemma 5], there exists a number 80 ≥ 1 depending on + , ;1 and 
;3 such that for all 8 ≥ 80 and |4| ≥ 2;−8

3 , we have

∫
=(!0 ,;3)⧵=(!0 ,;1)

7(!)8+2:247(!)−8 |div('∇/)|2 !!

≥ & ∫
=(!0 ,;3)⧵=(!0 ,;1)

:247−8 (!)|4|8(83427−28−2(!)|/|2 + |∇/|2)!!

−& ∫
"(=(!0 ,;3)⧵=(!0 ,;1))

|4|8:247−8 (!)(7(!)|∇/(!)|2

+ 82427−28−1(!)|/(!)|2)!?(!) (6)
for some constant & depending only on ! and + . Since / = 0 on (
=(!0, ;3) ⧵ =(!0,;1)

)
⧵Ω and since Ω ⋐ =(!0, ;3) ⧵ =(!0,;1), allowing 

& to depend on 8 and Ω, we deduce the Carleman estimate (5) from 
(6). □

An alternative way to obtain (5) is to apply the Carleman estimate 
in [28, Chapter 4, §1, Lemma 3] for general parabolic operators. The 
arguments to obtain (5) using [28, Chapter 4, §1, Lemma 3] are similar 
to that in [29, Section 3] with the Laplacian replaced by the operator 
div('∇⋅).

Remark 2. We specially draw the reader’s attention to different forms 
of Carleman estimates for all three main kinds of differential opera-
tors (elliptic, parabolic and hyperbolic) and their applications in inverse 
problems and computational mathematics [30–32]. It is worth mention-
ing that some Carleman estimates hold true for all functions / satisfying 
/|"Ω = 0 and "./|Γ = 0 where Γ is a part of "Ω, see e.g., [6,33], which 
can be used to solve quasilinear elliptic PDEs with the boundary data 
partly given.

2.2. An inverse scattering problem

As mentioned in Section 1, Problem 1 arises from nonlinear inverse 
problems. We present here an important example in the context of in-
verse scattering problems in the frequency domain. Let @ ∶ ℝ! → [1, ∞)
be the spatially distributed dielectric constant of the medium and [A, A]
be an interval of wavenumbers with A > 0. Since the dielectric constant 
of the air is 1, we set @(!) = 1 for all ! ∈ ℝ! ⧵ Ω. For each A ∈ [A, A], 
let B(!, A), ! ∈ ℝ! , be the wave field generated by a point source at 
!0 ∈ ℝ! ⧵ Ω with wavenumber A. The function B is governed by the 
Helmholtz equation and the Sommerfeld radiation condition
{

ΔB(!,A) + A2@(!)B(!,A) = −C(! − !0) ! ∈ℝ! ,
( "
"|!| − iA)B(!,A) = D(|!|(1−!)∕2) |!|→∞. (7)

The inverse scattering problem is formulated as follows.

Problem 2 (Inverse Scattering Problem). Compute the function @(!), ! ∈Ω, 
from the measurements of

#1(!,A) =B(!,A) and #2(!,A) = ".B(!,A) (8)
for all ! ∈ "Ω, A ∈ [A, A].

The knowledge of the function @ partly provides the internal struc-
ture of the domain Ω. In other words, solving the inverse scattering 
problem allows us to examine a domain from external measurements, 
which has applications in security, sonar imaging, geographical explo-
ration, medical imaging, near-field optical microscopy, nano-optics, see, 

e.g., [34] and references therein for more details. There have been 
many important methods to solve inverse scattering problems in the 
literature. Each method has its own advantages and disadvantages. A 
common drawback of the widely-used method based on optimization to 
solve inverse scattering problems is the need of a good initial guess of 
the true solution @. We recall from [35] a method to solve the above 
inverse scattering problem in which such a need is relaxed. Denote by

E(!,A) = 1
A2

log
( B(!,A)
B0(!,A)

)
for all ! ∈Ω,A ∈ [A,A],

where B0(!, A) = :iA|!−!0 |
4F|!−!0|

. Then, E satisfies

ΔE(!,A) + A2|∇E(!,A)|2 + 2∇E(!,A) ⋅∇B0(!,A)
B0(!,A)

= −@(!) + 1

for all ! ∈ Ω, A ∈ [A, A]. Let {Ψ3}3≥1 be the orthonormal basis of G2(A, A)
introduced in [36] and define

E3(!) =
A

∫
A

E(!,A)Ψ3(A)!A for 3 ≥ 1,! ∈Ω. (9)

We approximate

/(!,A) =
∞∑
)=1

E)(!)Ψ)(A) ≈
H∑
)=1

E)(!)Ψ)(A),

for a suitable cut-off number H ∈ℕ. Then, the vector IH = (E1, E2, … , EH )
“approximately” satisfies the system
H∑
)=1

>J)ΔE)(!) +
H∑

),*=1
(J)*∇E)(!) ⋅∇E* (!) +

H∑
)=1

=J)(!) ⋅∇E)(!) = 0 (10)

where
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

>J) =
A

∫
A

Ψ′
)(A)ΨJ(A)!A,

(J)* = 2
A

∫
A

(
A2Ψ)(A)Ψ′

* (A) + AΨ)(A)Ψ* (A)
)
ΨJ(A)!A,

=J)(!) = 2
A

∫
A

(
Ψ′
)(A)

∇B0(!,A)
B0(!,A)

+Ψ)(A)"A
∇B0(!,A)
B0(!,A)

)
ΨJ(A)!A

for all ), *, J ∈ {1, … , H} and ! ∈ Ω, see [35, Section 6] for details. The 
Dirichlet and Neumann boundary conditions for IH can be computed 
by the knowledges of #1, #2, and (9). Solving the system of quasilinear 
elliptic equations (10) with the provided Dirichlet and Neumann data 
is basically a goal of Problem 1. Doing so is the key step to compute @. 
See [35] for convexification method to compute IH and the procedure 
to obtain @ from the knowledge of IH .

2.3. Electrical impedance tomography

We present here another potential application of our study in this 
paper to the 3D electrical impedance tomography (EIT) problem, so-
called the 3D Calderón problem, with only a part of the Dirichlet to 
Neumann map is given. Let Ω = (−;, ;)3 for some ; > 0. Let the line of 
source be defined as

Gsc = {!K = (K,0,−;) ∶ |K| ≤;} ⊂ "Ω.

For each K ∈ [−;, ;], let !K = (K, 0, −;) ∈Gsc and B =B(!, !K), ! ∈Ω, be 
the solution to
{

div
(
((!)∇B(!,!K)

)
= 0 ! ∈Ω,

B(!,!K) = #1(!,!K) ! ∈ "Ω. (11)
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Here, #1(!, !K) > 0 is a smooth approximation of the Dirac delta C0(! −
!K). In EIT, #1(!, !K) represents the boundary electric voltage. The EIT 
problem is formulated as follows.

Problem 3 (Electrical impedance tomography). Determine the electric con-
ductivity ((!), ! ∈Ω, from the boundary measurement of the electric current 
#2(!, !K) = ".B(!, !K) for all ! ∈ "Ω, !K ∈Gsc.

Remark 3. Problem 3 only requests the data generated by the source 
moving on Gsc. The dimension of this set of data is 3, including 1 dimen-
sion of the orbit Gsc of the source and 2 dimensions of the measurement 
surface "Ω. This feature makes Problem 3 not over-determined because 
our goal is to reconstruct a 3D function (. This is unlike most of the 
works studying the EIT problem that request the whole Dirichlet to 
Neumann map Γ ∶M1∕2("Ω) →M−1∕2("Ω). Since M1∕2("Ω), the domain 
of Γ, has uncountably infinity dimensions, the data requested by the 
Dirichlet to Neumann map is highly over-determined.

The EIT problem arises from bio-medical imaging; especially, in de-
tecting early cancerous tumors in living tissues without operation. Most 
publications for the EIT problem studied the question how to recon-
struct the electric conductivity ((!), ! ∈Ω for some domain Ω, from the 
Dirichlet to Neumann or the Neumann to Dirichlet map. We refer the 
reader to [37–40] for some well-known uniqueness results of the EIT 
problem. We list here a few publications for some effective approaches 
to numerically solve the EIT problem: the D-bar method [41–43], the 
methods based on optimization [44,45] and the convexification method 
[46]. Although effective, these methods have drawbacks. Firstly, the D-
bar method is designed only for 2D. Secondly, the methods based on 
optimization request good initial guess of the true solution. And finally, 
the convexification method is time consuming. Naturally, a new com-
putational method should be studied in this direction. Our potential 
method to solve the 3D EIT problem is to reduce this inverse problem 
to a problem of the form (1). Introduce the change of variable

E(!,!K) = log
(√

((!)B(!,!K)
) for all ! ∈Ω,!K ∈Gsc. (12)

Let {Ψ3}∞3=1 be the orthonormal basis of G2(−;, ;) first introduced in 
[36]. Like in Section 2.2, we approximate the function E(!, !K) as

E(!,!K) =
∞∑
3=1

E3(!)Ψ3(K) ≃
H∑
3=1

E3(!)Ψ3(K) (13)

for all ! ∈Ω, !K ∈Gsc, for some cut-off number H where

E3(!) =
;

∫
−;

E(!,!K)Ψ3(K)!K (14)

for all 3 ≥ 1. We choose H such that the approximation in (13) “numer-
ically” holds for all ! ∈ "Ω where the data are known. Then, it is not 
hard to verify, see [46], that the vector IH = (E1, … , EH ) satisfies the 
system
H∑
3=1

>N3ΔE3(!) +
H∑

3,J=1
(N3J∇E3(!) ⋅∇EJ(!) = 0 for all ! ∈Ω, (15)

for each N ∈ {1, … , H}, where

>N3 =
;

∫
−;

Ψ′
3(K)ΨN(K)!K,

(N3J = 2
;

∫
−;

Ψ3(K)Ψ′
J(K)ΨN(K)!K.

The Dirichlet and Neumann boundary conditions for IH can be com-
puted by the knowledges of the Dirichlet condition #1, the given Neu-
mann data #2, (12) and (14). Solving the system of quasilinear elliptic 

equations (15) with the provided Dirichlet and Neumann data is ba-
sically a goal of Problem 1. We refer the reader to [46] the step of 
computing ( from the knowledge of the vector IH .

The discussion above for the inverse scattering problem and the EIT 
problem motivates us to study Problem 1. Since these inverse problems 
are out of the scope of this paper, we only mention them here to explain 
the significance of Problem 1. In future works, we will use our solver 
for Problem 1 to solve these two important inverse problems.

3. The iteration and linearization approach for Problem 1

Our approach to solve (1) is based on linearization and iteration. 
Assume that the solution -∗ to (1) is in the space MO(Ω) for some O >
⌈!∕2⌉ + 2 where ⌈!∕2⌉ is the smallest integer that is greater than !∕2. 
Define the set of admissible solutions

P =
{
Q ∈MO(Ω) ∶ Q|"Ω = # ,".Q|"Ω = $

}
. (16)

Then, the assumption in Problem 1 implies that P ≠ ∅, and -∗ ∈ P . 
We now construct a sequence {-3}3≥0 that converges to the solution -∗
to (1). Take a function -0 ∈P . Assume by induction that we have the 
knowledge of -3 for some 3 ≥ 0. We find -3+1 as follows. Assume that 
-∗ = -3 + ℎ for some ℎ ∈M0 where

M0 = {Q ∈MO(Ω) ∶ Q|"Ω = 0,".Q|"Ω = 0}.

Plugging -∗ = -3 + ℎ into (1), we have

−div('(!)∇(-3 + ℎ)(!)) + % (!,-3(!) + ℎ(!),∇-3(!) +∇ℎ(!)) = 0 (17)
for all ! ∈ Ω. Heuristically, we assume at this moment that ℎ is small, 
that is, ‖ℎ‖&1(Ω) ≪ 1.

Remark 4. The temporary assumption ‖ℎ‖&1(Ω) ≪ 1 is imposed for the 
suggestion in establishing a numerical scheme to find -3+1 while this 
condition is completely relaxed in the proof of the convergence theo-
rem.

By Taylor’s expansion, we approximate (17) as

−div('∇-3)− div('∇ℎ) + % (!,-3(!),∇-3(!)) +S (-3)ℎ = 0 (18)
for all ! ∈Ω where

S (/)ℎ = %>(!,/(!),∇/(!))ℎ+∇#% (!,/(!),∇/(!)) ⋅∇ℎ(!)

for all / ∈MO(Ω). Here, %> and ∇#% are the partial derivative of % with 
respect to its second variable and its gradient vector with respect to the 
third variable, respectively.

The next step is to compute a function ℎ ∈ M0 satisfying (18). 
Since there is no guarantee for the existence of such a function ℎ, 
we only compute a “best fit” function ℎ by the Carleman-based quasi-
reversibility method described below. For each / ∈MO(Ω), 4 > 1, 8 > 0
and T > 0, define the functional 04,8,T

/ ∶M0 →ℝ as

04,8,T
/ (Q) = ∫

Ω

:2498 (!)
||||− div('∇Q)− div('∇/) + % (!,/(!),∇/(!))

+S (/)Q
||||
2
!! + T‖/+Q‖2MO(Ω).

Here, the function 98 is defined in (3) and T‖/ +Q‖2MO(Ω) is a regulariza-tion term.

Proposition 1. For all 4 > 1, 8 > 0 and T > 0, for each / ∈ MO(Ω), the 
functional 04,8,T

/ ∶M0 →M0 has a unique minimizer.

Proof. It is obvious that 04,8,T
/ is coercive and weakly lower semicontin-

uous. Thus, it has a minimizer in M0. The uniqueness of the minimizer 
can be deduced from the strict convexity of 04,8,T

/ in M0. □
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For each 3 ≥ 0, thanks for Proposition 1, we can minimize 04,8,T
-3 (Q)

on M0. The unique minimizer is the desired function ℎ. We then set

-3+1 = -3 + ℎ. (19)
The construction of the sequence {-3}3≥0 above is summarized in Al-
gorithm 1. We will prove that the sequence {-3}3≥0 converges to -∗ in 
Section 4 as 3 → ∞ and T → 0. The presence of the Carleman weight 
:2498 (!) is a key point for us to prove this convergence result.

Algorithm 1 The procedure to compute the numerical solution to (1).
1: Choose a threshold number 0 < U0 ≪ 1. Choose an arbitrary initial solution -0 ∈P .
2: Set 3 = 0.
3: Solve the linear equation (18) for a function ℎ ∈M0 by minimizing 04,8,T

-3 (Q) on M0 . 
Set -3+1 = -3 + ℎ.

4: if ‖-3+1 − -3‖G2 (Ω) > U0 then
5: Replace 3 by 3 + 1.
6: Go back to Step 3.
7: else
8: Set the computed solution -comp = -3+1 .
9: end if

4. The convergence analysis

In this section, we prove that the sequence {-3}3≥0 generated by 
Algorithm 1 converges to the solution -∗ to (1). The following result is 
the main theorem in this paper.

Theorem 1. Assume that ‖%‖&2(Ω,ℝ,ℝ! ) is a finite number. Assume further 
that (1) has a unique solution -∗ ∈P . Let {-3}3≥0 be the sequence generated 
by Algorithm 1, where -0 ∈P is chosen arbitrarily. Then, there exist 40 > 0
and 2 ∈ (0, 1) such that, for all 4 > 40,

‖-3+1 − -∗‖24,9,8 ≤ 23+1‖-0 − -∗‖24,9,8 + T2 1− 23+1
1− 2

‖-∗‖2MO(Ω). (20)
Here,

‖/‖4,9,8 =
[
∫
Ω

:2498 (!)
(|/|2 + |∇/|2)!!

] 1
2 for all / ∈M1(Ω).

Proof. Fix 3 ≥ 0. Let ℎ = -3+1 − -3. Due to Step 3 in Algorithm 1, ℎ is 
the minimizer of 04,8,T

-3 . By the variational principle, we have

∫
Ω

:2498 (!)
(
− div('∇ℎ)− div('∇-3) + % (!,-3,∇-3) +S (-3)ℎ

)

(
− div('∇Q) +S (-3)Q

)
!! + T⟨-3 + ℎ,Q⟩MO(Ω) = 0 (21)

for all Q ∈M0. Since -3+1 = -3 + ℎ, we can rewrite (21) as

∫
Ω

:2498 (!)
(
− div('∇-3+1) + % (!,-3,∇-3) +S (-3)(-3+1 − -3)

)

(
− div('∇Q) +S (-3)Q

)
!! + T⟨-3+1,Q⟩MO(Ω) = 0 (22)

for all Q ∈M0. As -∗ is the solution to (1), we have

∫
Ω

:2498 (!)
(
− div('∇-∗) + % (!,-∗,∇-∗)

)

(
− div('∇Q) +S (-3)Q

)
!! = 0 (23)

for all Q ∈M0. It follows from (22) and (23) that for all Q ∈M0

∫
Ω

:2498 (!)
(
− div('∇(-3+1 − -∗)) + % (!,-3,∇-3)− % (!,-∗,∇-∗)

+S (-3)(-3+1 − -3)
)(

− div('∇Q) +S (-3)Q
)
!!

+ T⟨-3+1,Q⟩MO(Ω) = 0. (24)

Take Q = -3+1 − -∗ ∈M0. It follows from (24) that

∫
Ω

:2498 (!)
[
|div('∇Q)|2 −S (-3)Qdiv('∇Q)−

(
% (!,-3,∇-3)

− % (!,-∗,∇-∗)
)
div('∇Q) +

(
% (!,-3,∇-3)− % (!,-∗,∇-∗)

)
S (-3)Q

− div('∇Q)S (-3)(-3+1 − -3) +S (-3)(-3+1 − -3)S (-3)Q
]
!!

= −T⟨-3+1,Q⟩MO(Ω). (25)
As ‖%‖&2(Ω,ℝ,ℝ! ) = & < +∞, we can estimate

|S (-3)Q| ≤ &(|Q|+ |∇Q|),
|% (!,-3,∇-3)− % (!,-∗,∇-∗)| ≤ &(|-3 − -∗|+ |∇(-3 − -∗)|),
|S (-3)(-3+1 − -3)| = |S (-3)(-3+1 − -∗ + -∗ − -3)|

≤ &(|-3+1 − -∗|+ |∇(-3+1 − -∗)|) +&(|-3 − -∗|+ |∇(-3 − -∗)|),
and
− T⟨-3+1,Q⟩MO(Ω) = −T⟨Q+ -∗,Q⟩MO(Ω)

= −T‖Q‖2MO(Ω) − T⟨-∗,Q⟩MO(Ω) ≤ T
2‖-

∗‖2MO(Ω).

These estimates, together with the inequality |(V| ≤ 4(2 + V2∕8, imply

∫
Ω

:2498 (!)|div('∇Q)|2 !! ≤ &
[
∫
Ω

:2498 (!)(|Q|2 + |∇Q|2)!!

+ ∫
Ω

:2498 (!)(|-3 − -∗|2 + |∇(-3 − -∗)|2)!!
]
+ T

2‖-
∗‖2MO(Ω). (26)

Applying the Carleman estimate (5) for the function Q, we have

∫
Ω

:2498 (!)|div('∇Q)|2 !!

≥ &4∫
Ω

:2498 (!)|∇Q(!)|2 !! +&43 ∫
Ω

:2498 (!)|Q(!)|2 !!. (27)

Combining (26) and (27), we have

4∫
Ω

:2498 (!)|∇Q(!)|2 !! + 43 ∫
Ω

:2498 (!)|Q(!)|2 !!

≤ &
[
∫
Ω

:2498 (!)(|Q|2 + |∇Q|2)!!+∫
Ω

:2498 (!)(|-3−-∗|2 + |∇(-3−-∗)|2)!!
]

+ T
2‖-

∗‖2MO(Ω). (28)

Letting 4 be sufficiently large, we can simplify (28) as

4∫
Ω

:2498 (!)(|Q|2 + |∇Q|2)!! ≤ & ∫
Ω

:2498 (!)(|-3 − -∗|2 + |∇(-3 − -∗)|2)!!

+ T
2‖-

∗‖2MO(Ω). (29)

Recall that Q = -3+1 − -∗. We get from (29) that

‖-3+1 − -∗‖24,9,8 ≤ &
4
‖-3 − -∗‖24,9,8 +

T
24‖-

∗‖2MO(Ω). (30)

Applying (30) for 3 − 1 and denoting 2 = &∕4 ∈ (0, 1), we have

‖-3+1 − -∗‖24,9,8 ≤ 2
[
2‖-3−1 − -∗‖24,9,8 + T2‖-∗‖2MO(Ω)

]
+ T2‖-∗‖2MO(Ω)

= 22‖-3−1 − -∗‖24,9,8 + T2(1 + 2)‖-∗‖2MO(Ω).

By induction, we have

‖-3+1 − -∗‖24,9,8 ≤ 23+1‖-0 − -∗‖24,9,8 + T2
3∑
)=0

23‖-∗‖2MO(Ω), (31)

which implies (20). The proof is complete. □
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Remark 5 (Removing the boundedness condition of % in &2 in Theorem 1). 
In the case when ‖%‖&2(Ω×ℝ×ℝ!+1) =∞, we need to assume that we know 
in advance that the true solution -∗ to (1) belongs to the ball =W of 
&1(Ω) for some W > 0. This assumption does not weaken the result 
since W can be arbitrarily large. Define the cut-off function X ∈ &∞(Ω ×
ℝ ×ℝ! ) as

X(!, >,#) =
{

1 |>|+ |#| <W ,
0 |>|+ |#| > 2W

and set %̃ = X% . Since |-∗| + |∇-∗| <W , it is obvious that -∗ solves the 
problem
⎧
⎪
⎨
⎪⎩

−div('(!)∇-(!)) + %̃ (!,-(!),∇-(!)) = 0 ! ∈Ω,
-(!) = # (!) ! ∈ "Ω,
".-(!) = $(!) ! ∈ "Ω.

(32)

Now, we can apply Algorithm 1 for (32) to compute -∗.

Remark 6. Theorem 1 and estimate (20) rigorously guarantee that each 
sequence generated by Algorithm 1 converges to -∗ at the exponential 
rate. This fact is numerically confirmed by our numerical results in Sec-
tion 5.

Remark 7. As seen in the proof of Theorem 1, the efficiency of Al-
gorithm 1 is guaranteed by Carleman estimate (5). Therefore, we call 
the proposed method described in Algorithm 1 the second generation 
of Carleman-based numerical methods. This second generation includes 
the method in [2,47] in which the iteration scheme is developed based 
on the contraction principle and Carleman estimates. The first gen-
eration of Carleman-based numerical method was developed in [12], 
which is called the convexification. See [8,6,2,35] for some following 
up results. Like the convexification method, Algorithm 1 can be used to 
compute solutions to nonlinear PDEs without requesting an initial good 
guess. The advantage of our new method is the fast convergence rate, 
see Remark 6.

5. Numerical study

In this section, we present some numerical results obtained by Algo-
rithm 1. For simplicity, we set ! = 2 and Ω = (−1, 1)2. On Ω, we arrange 
an H ×H grid points

 = {(Z) = −1 + ()− 1)C,[* = −1 + (* − 1)C) ∶ 1 ≤ ), * ≤H}

where C = 2∕(H − 1). In our numerical scripts, H = 80.
In Step 1 of Algorithm 1, we choose a function -0 ∈P . It is natural 

to find a function -0 satisfying the equation obtained by removing from 
(1) the nonlinearity % (!, -, ∇-). We apply the Carleman-based quasi-
reversibility method to do so. That means, -0 is the minimizer of

04,8,T
0 (Q) = ∫

Ω

:498 (!)|div('∇Q)|2!! + T‖Q‖2M2(Ω) (33)

subject to the boundary conditions in (39). To simplify the efforts in 
implementation, the norm in the regularization term is the M2(Ω)-norm 
rather than the MO(Ω)-norm. This change does not affect the perfor-
mance of Algorithm 1. Algorithm 1 still provides satisfactory solutions 
to (1).

Remark 8. We employ the Carleman-based quasi-reversibility method 
to find -0 for the consistency to Step 3 of Algorithm 1. Since -0 ∈ P
can be chosen arbitrarily, one can use the quasi-reversibility method 
without the presence of the Carleman weight function :498 (!). In our 
computation for all numerical examples below, 4 = 4, 8 = 10 and !0 =
(−4, 0). The regularized parameter is T = 10−4. The threshold number 
U0 = 10−6.

We minimize 04,8,T
0 on M0 by the least square MATLAB command 

“lsqlin”. The implementation for the quasi-reversibility method to min-
imize more general functionals than 04,8,T

0 was described in [2, §5.3]
and in [48, §5]. We do not repeat this process here. In Step 3 of Algo-
rithm 1, given -3 ∈P , we minimize the functional 04,8,T

-3 on M0. Again, 
we refer the reader to [2, §5.3] and in [48, §5] for details in imple-
mentation. The scripts for other steps of Algorithm 1 can be written 
easily.

5.1. Quasilinear elliptic equations

The convexification method, first introduced in [12], was used to nu-
merically solve quasilinear elliptic equations in [8,6,35]. Our approach 
here is of course different based on iteration and linearization. In partic-
ular, Step 3 in Algorithm 1 is very efficient as we only need to solve the 
linear equation (18) as opposed to solving directly a nonlinear quasilin-
ear elliptic equation. In this subsection, we present two (2) numerical 
tests. In both tests, we choose the matrix ' to be

' =
[
2 1
1 2

]
.

That means, div('∇-) = 2-ZZ + 2-Z[ + 2-[[.
In test 1, we solve (1) when

% (!, >,#) = >+ |#|− (
− Z2 + 2[2 +

√
4Z2 + 16[2 − 4

) (34)
for all ! = (Z, [) ∈ Ω, > ∈ ℝ and # ∈ ℝ2. The boundary conditions are 
given by

-(!) = −Z2 + 2[2, ".-(!) = ⟨−2Z,4[⟩ ⋅ . (35)
for all ! = (Z, [) ∈ "Ω. The true solution of (1) is the function -true(Z, [) =
−Z2 + 2[2.

It is evident from Fig. 1 that Algorithm 1 provides out of expectation 
solution for test 1. The relative error ‖-true − -comp‖G∞(Ω)∕‖-true‖G∞(Ω) =
1.23 × 10−5. One can see from Fig. 1c that Algorithm 1 converges at the 
third iteration.

In test 2, we solve (1) when

% (!, >,#) = |#|−
[√[F

2 cos
(F
2 (Z+ [)

)
+ :Z

]2
+ F2

4 cos2
(F
2 (Z+ [)

)

+ 3F2

2 sin
(F
2 (Z+ [)

)
− 2:Z

]
(36)

for all ! = (Z, [) ∈ Ω, > ∈ ℝ and # ∈ ℝ2. The boundary conditions are 
given by

-(!) = sin
(F
2 (Z+ [)

)
+ :Z,

".-(!) =
⟨F
2 cos

(F
2 (Z+ [)

)
+ :Z, cos

(F
2 (Z+ [)

)⟩
⋅ . (37)

for all ! = (Z, [) ∈ "Ω. The true solution of (1) is the function -true(Z, [) =
sin

( F
2 (Z + [)

)
+ :Z.

It is evident from Fig. 2 that Algorithm 1 provides out of expectation 
solution for test 2. The relative error ‖-true − -comp‖G∞(Ω)∕‖-true‖G∞(Ω) =
4.19 × 10−5. One can see from Fig. 2c that Algorithm 1 converges at the 
fifth iteration.

5.2. Application to first-order Hamilton-Jacobi equations

Our aim in this subsection is to solve numerically

% (!,-,∇-) = 0 for all ! ∈Ω, (38)
with the boundary conditions

-|"Ω = # and ".-|"Ω = $. (39)

18
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Fig. 1. Test 1. The numerical solution to (1) where % is given in (34) and the boundary data are given in (35).

Fig. 2. Test 2. The numerical solution to (1) where % is given in (36) and the boundary data are given in (37).

Basically, we use the vanishing viscosity process to approximate solu-
tions to (38). For 5 > 0, consider

−5Δ-+ % (!,-,∇-) = 0 for all ! ∈Ω (40)
with boundary conditions (39). Again, (40)–(39) is an over-determined 
boundary value problem. For 5 > 0 sufficiently small, assume that 
(40)–(39) has a solution -5 ∈P . Then, -5 approximates -, solution to 
(38)–(39), quite well under some appropriate assumptions on % . In our 
numerical tests, we choose 5 = 50 = 10−3.

In this part, we provide six (6) numerical tests, in which we com-
pute the viscosity solution to some Hamilton-Jacobi equations of the 
form (38) given Cauchy boundary data. That means, by applying Algo-
rithm 1, we numerically find a function -comp satisfying (40)–(39) when 
% , # and $ are given. The verification that -∗ is the correct viscosity 
solution can be done in a similar manner as that in [17,6].

Test 1. In this test, we solve (40)–(39) when

% (!, >,#) = >+ |#|+ |Z|− 1, (41)
for all ! = (Z, [) ∈ Ω, > ∈ ℝ, # ∈ ℝ2. The boundary conditions are given 
by

-(!) = −|Z|, ".-(!) = ⟨−sign(Z),0⟩ ⋅ . (42)
for all ! = (Z, [) ∈ "Ω. In this case, the true solution is -∗ = −|Z|. The 
numerical result is displayed in Fig. 3.

It is evident from Fig. 3 that we successfully compute the solution 
-comp. The procedure described in Algorithm 1 converges after four it-
erations. The relative error ‖-

∗−-comp‖G∞ (Ω)
‖-∗‖G∞(Ω)

= 5.33%.

Test 2. We find the viscosity solution to the eikonal equation. In this 
test, we solve (40)–(39) when the Hamiltonian is

% (!, >,#) = |#|2 − (1 + (1 + sign(Z+ [))2) (43)

for all ! = (Z, [) ∈ Ω, > ∈ ℝ, # ∈ ℝ2. The boundary conditions are given 
by

-(!) = −|Z+ [|− [, ".-(!) = (−sign(Z+ [),−sign(Z+ [)− 1) ⋅ . (44)
for all ! = (Z, [) ∈ "Ω. The true solution is -∗(!) = −|Z + [| − [. The 
graphs of -∗ and -comp are displayed in Fig. 4. The relative error 
‖-∗−-comp‖G∞(Ω)

‖-∗‖G∞ (Ω)
= 3.6%.

Test 3. We test the case when the Hamiltonian is not convex with 
respect its third variable. The Hamiltonian in this test is given by

% (!, >,#) = 20>+ |O1|− |O2|−
[
20(−|Z+ 0.5|+ :cos(2F(Z2+[2)))

+ |sign(Z+ 0.5) + 4FZ sin(2F(Z2 + [2)):cos(2F(Z2+[2))|
− |4F[ sin(2F(Z2 + [2)):cos(2F(Z2+[2))|

]
(45)

for all ! = (Z, [) ∈Ω, > ∈ℝ, # = (O1, O2) ∈ℝ2. The boundary conditions are 
given by

-(!) = −|Z+ 0.5|+ :cos(2F(Z2+[2)) for all ! = (Z,[) ∈ "Ω (46)
and

".-(!) =
(
− sign(Z+ 0.5)− 4FZ sin(2F(Z2 + [2)):cos(2F(Z2+[2)),

− 4F[ sin(2F(Z2 + [2)):cos(2F(Z2+[2))
)
⋅ . (47)

for all ! = (Z, [) ∈ "Ω. The true solution is -∗(!) = −|Z + 0.5| +
:cos(2F(Z2+[2)). The graphs of -∗ and -comp are displayed in Fig. 5. The 
relative error ‖-∗−-comp‖G∞(Ω)

‖-∗‖G∞ (Ω)
= 10.65%. Although the relative error in 

this test is large, the numerical result is acceptable. In fact, we observe 
from Fig. 5f that ‖-

∗−-comp‖G∞ (Ω)
‖-∗‖G∞ (Ω)

is small almost everywhere while it is 
large at only two small places near the left edge of the domain.
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Fig. 3. Test 1. The true viscosity solution to (40)–(39) and the computed one. The Hamiltonian and the boundary conditions are given in (41)–(42).

Fig. 4. Test 2. The true viscosity solution to (40)–(39) and the computed one. The Hamiltonian and the boundary conditions are given in (43)–(44).

Test 4.We test the case when the Hamiltonian is not increasing in the 
second variable and is not convex in the third variable. The Hamiltonian 
in this test is given by

% (!, >,#) = −40>+ ||#|− 10|+ 40
(
|Z+ [− 0.5|+ sin

(Z2
2 + [2

))

−
||||
([
sign(Z+ [− 0.5) + Z cos

(Z2
2 + [2

)]2
+

[
sign(Z+ [− 0.5) + 2[ cos

(Z2
2 + [2

)]2)1∕2
− 10

|||| (48)

for all ! = (Z, [) ∈Ω, > ∈ℝ, # = (O1, O2) ∈ℝ2. The boundary conditions are 
given by

-(!) = |Z+ [− 0.5|+ sin
(Z2
2 + [2

)
for all ! = (Z,[) ∈ "Ω (49)

and
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Fig. 5. Test 3. The true viscosity solution to (40)–(39) and the computed one. The Hamiltonian and the boundary conditions are given in (45)–(47).

".-(!) =
(
sign(Z+ [− 0.5) + Z cos

(Z2
2 + [2

)
,

sign(Z+ [− 0.5) + 2[ cos
(Z2
2 + [2

))
⋅ . (50)

for all ! = (Z, [) ∈ "Ω. The true solution is -∗(!) = |Z + [ − 0.5| + sin
(
Z2
2 +

[2
)
. The graphs of -∗ and -comp are displayed in Fig. 6. The relative 

error ‖-
∗−-comp‖G∞ (Ω)
‖-∗‖G∞(Ω)

= 0.95%.

Test 5. We solve a G-equation. The Hamiltonian in this test is given 
by

% (!, >,#) = 5>+ |#|− ZO1 +
[
5(|Z− 0.5|+ |[|)− Zsign(Z− 0.5)−

√
2
]
(51)

for all ! = (Z, [) ∈Ω, > ∈ℝ, # = (O1, O2) ∈ℝ2. The boundary conditions are 
given by

-(!) = −|Z− 0.5|− |[| for all ! = (Z,[) ∈ "Ω (52)
and

".-(!) = −
(sign(Z− 0.5), sign([)) ⋅ . (53)

for all ! = (Z, [) ∈ "Ω. The true solution is -∗(!) = −|Z − 0.5| − |[|. The 
graphs of -∗ and -comp are displayed in Fig. 7. The relative error 
‖-∗−-comp‖G∞(Ω)

‖-∗‖G∞ (Ω)
= 0.98%.

Test 6. The Hamiltonian in this test is given by

% (!, >,#) = 20>+min{|#|, ||#|− 10|+ 6}−
[
20(−|Z|+ sin(F(Z2 + [2)))

+ min
{
ℎ(Z,[), |ℎ(Z,[)− 10|+ 6

}]
(54)

for all ! = (Z, [) ∈Ω, > ∈ℝ, # = (O1, O2) ∈ℝ2 where

ℎ(Z,[) =
√

[−sign(Z) + 2F cos(F(Z2 + [2))]2 + [2F cos(F(Z2 + [2)]2.

The boundary conditions are given by

-(!) = −|Z|+ sin(F(Z2 + [2)) for all ! = (Z,[) ∈ "Ω (55)
and

".-(!) =
(
− sign(Z) + 2FZ cos(F(Z2 + [2)),2F[ cos(F(Z2 + [2))

)
⋅ . (56)

for all ! = (Z, [) ∈ "Ω. The true solution is -∗(!) = −|Z| + sin(F(Z2 + [2)). 
The graphs of -∗ and -comp are displayed in Fig. 8. The relative error 
‖-∗−-comp‖G∞(Ω)

‖-∗‖G∞ (Ω)
= 4.8%.

Remark 9. The G∞ relative errors in all tests above for first-order 
Hamilton-Jacobi equations are compatible with max{1(

√
T), 1(

√
50)} ≃

3%.

6. Concluding remarks

We have developed a new globally convergent numerical method 
to solve over-determined boundary value problems of quasilinear el-
liptic equations. The key point of the method is to repeatedly solve 
the linearization of the given PDE by the Carleman weighted quasi-
reversibility method (Algorithm 1). As the result, we obtain a sequence 
of functions converging to the solution thanks to the Carleman estimate 
(Lemma 1). The strength of our new method includes (1) the global con-
vergence property and (2) the fast convergence rate, which is described 
in Theorem 1. Some numerical results for quasilinear elliptic equations 
and first-order Hamilton-Jacobi equations are presented to show the ef-
fectiveness of our method.
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Fig. 6. Test 4. The true viscosity solution to (40)–(39) and the computed one. The Hamiltonian and the boundary conditions are given in (48)–(50).

Fig. 7. Test 5. The true viscosity solution to (40)–(39) and the computed one. The Hamiltonian and the boundary conditions are given in (51)–(53).
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