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Abstract

Background: Select and enact appropriate learning tactics that advance learning has
been considered a critical set of skills to successfully complete highly flexible online
courses, such as Massive open online courses (MOQOCs). However, limited by analytic
methods that have been used in the past, such as frequency distribution, sequence
mining and process mining, we lack a deep, complete and detailed understanding of
the learning tactics used by MOOC learners.

Objectives: In the present study, we proposed four major dimensions to better inter-
pret and understand learning tactics, which are frequency, continuity, sequentiality
and role of learning actions within tactics. The aim of this study was to examine to
what extent can a new analytic technique, the ordered network analysis (ONA),
deepen the understanding of MOOC learning tactics compared to using other
methods.

Methods: In particular, we performed a fine-grained analysis of learning tactics
detected from more than 4 million learning events in the behavioural trace data of
8788 learners who participated in a large-scale MOOC ‘Flipped Classroom’.

Results and Conclusions: We detected eight learning tactics, and then chose one
typical tactic as an example to demonstrate how the ONA technique revealed all four
dimensions and provided deeper insights into this MOOC learning tactic. Most
importantly, based on the comparison with different methods such as process mining,
we found that the ONA method provided a unique opportunity and novel insight into
the roles of different learning actions in tactics which was neglected in the past.
Takeaway: In summary, we conclude that ONA is a promising technique that can
benefit the research on learning tactics, and ultimately benefit MOOC learners by

strengthening the strategic support.
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1 | INTRODUCTION

Massive open online courses (MOOCs) have made education more
accessible to many learners around the world (Hew & Cheung, 2014).
Learners can sign up for a variety of MOOCs offered at no or a rea-
sonably low cost, study at their own pace, and earn educational cre-
dentials from globally recognized universities. Since external support
from instructors or peers are usually limited in MOOC:s, the ability to
self-regulate learning (SRL), that is, select and enact goal-oriented
learning tactics that advance learning (Winne & Hadwin, 1998;
Winne & Marzouk, 2019), comes to be a critical set of skills to suc-
cessfully complete coursework (Kizilcec et al., 2017; Virtanen
et al., 2017). Productive engagement in self-regulated learning, how-
ever, presents a challenge, in part because many learners struggle to
enact effective learning tactics, that is, sequences of learning pro-
cesses that a learner performs to master learning content and meet
instructional expectations in a course (Azevedo et al., 2005; Bjork
et al., 2013). This further hinders the already high attrition rate among
MOOC learners (75%-90%) (Li & Baker, 2018; Reparaz et al., 2020).

Use of learning tactics is pivotal to productive SRL (Hadwin
et al., 2007; Winne, 2018; Winne et al., 2002; Winne & Hadwin, 1998).
Skilful self-regulated learners thus know which learning actions to
invoke, how to compose a learning tactic from those actions and when
to enact the tactic to advance their learning (Winne & Hadwin, 1998;
Winne & Marzouk, 2019). Learning actions are specific learning events
recorded in raw trace data (Fan et al., 2022), for example, a learner's
click to play a video in MOOC is indicative of a ‘Content_Access’
action. Learning tactics are ‘considered as learners' cognitive routines
used for performing specific learning tasks’ (Fan, Saint, et al., 2021,
p. 1), that is, how learners engage with different learning actions. For
example, a learner may engage in the following learning actions to con-
struct knowledge from course content: navigate a MOOC environment
to find a page of interest, revisit a video lecture they watched earlier
on that same page, and after that, read a relevant book chapter. It can
be articulated from previous research (Azevedo et al., 2010; Bannert
et al, 2014; Molenaar & Jarveld, 2014; Winne, 2010; Winne &
Marzouk, 2019; Winne & Perry, 2000) that each learning action mea-
sured from trace data within different tactics can be described across
four major dimensions (i) frequency, that is, how many times an action
has been observed within a tactic in a given learning session;
(ii) continuity, that is, learners' continually uninterrupted engagement
with one specific action within a tactic; (iii) sequentiality, that is, the
probability of an action preceding/succeeding another action, and
(iv) role, that is, the significance an action contributes to a tactic, for
example, is it a primary or supportive action. These four methodological
dimensions related to how to describe and understand different learn-
ing actions and what kinds of operations are validly applied to reveal
different learning tactics.

Researchers have reported positive relationships between use of
learning tactics and academic success (cf., Broadbent & Poon, 2015;
Dent & Koenka, 2016). To promote the use of learning tactics in a
MOOC environment and boost learning performance, it is hence very

important to understand: (i) which learning tactics learners typically
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enact when learning online, and (ii) whether learners can use these
tactics efficiently and appropriately. Many researchers to date have
examined learning tactics in online learning environments using differ-
ent methods (e.g., Broadbent & Poon, 2015; Dignath & Bittner, 2008;
Fan, Matcha, et al.,, 2021; Fincham et al., 2019; Jansen et al., 2019;
Matcha, Gasevi¢, Ahmad Uzir, et al., 2019; Matcha, Gasevi¢, Uzir,
et al, 2019) and most often relying upon learner trace data
(Bernacki, 2018). However, most studies only interpreted and
explained learning tactics based on the frequency and temporal distri-
butions of learning action. A more comprehensive insight into learning
actions and learning tactics regarding above all four dimensions has
yet to be gained.

Traditionally, researchers have recorded learning actions as fre-
quency counts, which ignores the information about context, for
example, learning actions that precede or follow (Aleven et al., 2010;
Azevedo et al., 2010; Saint et al., 2021; Winne, 2010). This approach,
therefore, can provide only a partial understanding of the learning tac-
tics studied. Recently, researchers have begun increasingly utilizing
analytic techniques that go beyond frequency-based approaches, for
example, process/sequence mining, cluster and network analysis, to
study learning actions and tactics (Fan, Matcha, et al., 2021; Jovanovi¢
et al., 2017; Matcha, Gasevi¢, Uzir, et al., 2019; Saint et al., 2021;
Siadaty et al., 2016). These analytical techniques, for example, process
mining in Fan, Saint, et al. (2021); Saint et al. (2021) or process mining
and network analysis in Ahmad Uzir et al. (2020); Matcha, Gasevi¢,
Uzir, et al., 2019; Saint et al. (2020), have advanced research on learn-
ing tactics use, in particular deepening the understanding of temporal
and sequential relations among learning actions that compose a tactic.
It, however, remains less clear whether and to what degree the role of
a learning action differs across learning tactics, as the same learning
action may serve different purposes across learning tactics. The role
of action relates to learners' operation phases of self-regulated learn-
ing based on the COPES model (Winne & Hadwin, 1998), and it refers
to the function or functions one action plays in a specific learning tac-
tic, that is, how the learner's engagement in such action will support
his or her own learning process and serve his or her own usage of a
specific tactic. For example, the ‘Search’ learning action can be con-
sidered a primary action in the ‘Content Revisiting’ tactic and a sup-
portive action in the ‘Self-Assessment’ tactic, because learners may
use this action for different purposes, that is, finding key terms vs
finding answers in course materials. The role of a learning action can
hence determine whether and to what degree educators should pro-
mote learner engagement with that action to maximize the benefits of
a corresponding tactic. In other words, understanding a role of a learn-
ing action within a tactic is a critical step towards tailoring appropriate
support to learners who struggle to compose and effectively use
learning tactics. However, most methods (e.g., process mining) used in
previous studies failed to reveal all the dimensions, including the role
of a learning action, when studying learning tactics.

To this end, we explored the viability of using ordered network
analysis (ONA) (Tan et al., 2022) to further our understanding of learn-
ing tactics from the aforementioned four dimensions. ONA is a tech-

nique for identifying and quantifying directed connections among
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elements in data by accounting for the order of events, and visualizing
these connections in network models. Such models not only measure
the strength of connections and illustrate the direction of connections,
they also create a meaningful metric space for interpretation. In the
present study, we applied ONA in investigating the directed connec-
tions among learning actions in a learning tactic. In particular, we per-
formed a fine-grained analysis of learning tactics detected from
behavioural trace data® of learners who participated in a large-scale
MOOC ‘Flipped Classroom’. The goal of this paper is to examine and
demonstrate methodological advantages and affordances of the ONA
analytic technique. In order to achieve this, we compared the results
generated using ONA to the results generated using process mining
(van der Aalst, 2016), another advanced analytic technique that
researchers have previously used to study learning tactics (Saint
et al., 2022). We detected MOOC tactics used by learners and choose
one tactic as an example to analyse the above-mentioned four dimen-
sions using both ONA and process mining techniques. Based on the
comparison between different methods, our results confirmed that
both approaches can reveal the continuity and sequentiality of learn-
ing actions as they dynamically unfold throughout learning sessions
we observed. The ONA technique provided additional information on
frequency, and high-level insight into the roles of learning actions,
depicted as interpretable positions of nodes in the generated network
graphs. The contribution of this paper is mainly in terms of methodol-
ogy, and the tactic examples given in the paper are used to compare a
process mining method with the ONA method. Due to its length and
scope, the current paper offers relatively limited interpretations of
other learning tactics and specific self-regulation processes of MOOC

learners.

2 | RELATED WORK

2.1 | The process-based approach: process mining

As an advanced alternative to conventional statistical methods
(Reimann et al., 2014), process mining techniques have been applied
to investigate sequential and temporal characteristics of processes
captured by trace data (Saint et al., 2021; van der Aalst, 2016). For
this reason, process mining has sparked the interest of SRL
researchers, and they have been increasingly using the process mining
techniques, for example, Heuristics Miner, Inductive Miner, Fuzzy
Miner, and pMineR (Saint et al., 2021), to study learning as a temporal
and sequential process. Researchers who used process mining tech-

niques have typically created process maps separately for each

The term ‘trace data has been used in different articles to refer to different meanings. Some
researchers used this term to refer to the data about learning behaviours that the learner
engaged in during learning, such as clicking on a timer; the other usage of this term refers to
the theoretically justified representation of a cognitive, metacognitive or motivational state
or process (Winne, 2020), such as clicking on a timer which indicates the learner's monitoring
process about time left. The first way of using ‘trace data’ emphasizes the ‘recorded data’ of
the learning process, the second way emphasizes the ‘interpreted trace’ of the learning
process. In this paper, we use the term ‘trace data’ following the former definition, which
refers to the actual trace data recorded by a MOOC platform.

Journal of Computer Assisted Learning_WI]_E\(J_3

learning tactic, where the process maps show interconnected learning
actions, usually in a form of graph with nodes that represent learning
actions and edges that represent the probability of transition between
any pair of the actions observed.

The examples include studies conducted by Matcha, Gasevi¢,
Uzir, et al. (2019) and Fan, Saint, et al. (2021). For instance, Matcha,
Gasevi¢, Uzir, et al. (2019) applied a process mining technique to
detect learning tactics based on the trace data generated by learners
in a flipped classroom course. In particular, Matcha et al. identified
tactics as sequences of learning actions, including Assessment-oriented
Tactic and Diverse Assessment-oriented Tactic (Matcha, Gasevi¢, Uzir,
et al.,, 2019). The findings indicated that learners who enacted more
diverse learning tactics throughout the semester outperformed their
colleagues who enacted a single tactic. Researching another MOOC,
Fan, Matcha, Uzir, et al. (2021) applied the process mining technique
to identify four major learning tactics that learners enacted and dem-
onstrated that learners' selection of learning tactics was related to
learning opportunities imposed by the instructional design.

Not only were the process mining techniques successful in
detecting diversity and temporality of learning tactics throughout
semester, but also, more recently, in advancing the understanding of
learning tactics. For example, Fan, Saint, et al. (2021) analysed tempo-
ral sequences of different learning actions within learning tactics and
found that learners who engaged in the assessment-related tactics
enacted more metacognitive evaluations throughout learning sessions
than the learners who primarily utilized reading-oriented tactics. Even
though the evaluation actions were detected in both tactics, process
mining could hardly reveal the role of evaluation in each of these tac-
tics, for example, the researchers may expect that learners engage in
evaluation for different purposes such as evaluation of prior knowl-
edge in a reading-oriented tactic or evaluation of learning perfor-
mance in the assessment-oriented tactic. Moreover, this same action
may even play a dual role in another tactic, for example, in a monitor-
ing tactic where a learner simultaneously evaluates both prior knowl-
edge and immediate learning performance. Additional research is
needed to further analytic means that can provide a more comprehen-
sive picture of learning tactics, including roles of learning actions that
compose a tactic. We thus explored network analytics as a promising
venue to this end, as network analytic techniques can allow for mean-
ingful interpretation of the observed learning actions relative to their
position in the network space, which, in turn, can cast light on the
roles the action plays in a learning tactic.

2.2 | The network-based approach: ordered
network analysis (ONA)

Researchers have recently begun introducing network analytic
approaches to the study of SRL. For example, Shea et al. (2013) ana-
lysed online learner self-regulation using social network analysis (SNA)
and quantitative content analysis. Li et al. (2020) examined the tempo-
ral dynamics of SRL behaviours in STEM learning by conceptualizing

learner interactions in network models. There are also some studies
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that combined process mining and epistemic network analysis (ENA),
that is, a fundamental method that ONA is built upon, as a comple-
mentary method to analyse SRL processes. For example, Saint et al.
(2020) combined ENA and process mining to examine the sequential
and temporal nature of SRL behaviours and identified behaviours that
differentiate between learners across performance levels. Melzner
et al. (2019) combined ENA and process mining to analyse how
learners regulate collaborative learning activities when faced with
motivational or comprehension related problems and found that ENA
and process mining, when applied jointly, can provide a richer
description of collaborative learning activities than using a single
method only.

However, even though the combination of process- and network-
based approaches advanced the understanding of SRL, the lack of
directional information between learning actions in ENA models pre-
vented researchers from gaining deeper insights into the associations
between actions, which is, in turn, critical information for understand-
ing learning actions observed in the learner data and further for tailor-
ing appropriate support to MOOC learners. Moreover, Saint et al.
(2020) and Melzner et al. (2019) noted that more comprehensive
information about SRL would be revealed in their studies if the direc-
tions between pair-wise actions were identified in ENA.

As an extension of ENA, researchers have introduced the ONA
technique to account for the direction of associations between com-
ponents of a studied phenomenon (Tan et al., 2022). The ONA tech-
nique thus captures connections between elements and represents
both the strength and direction of those connections statistically and
visually (Tan et al., 2022). As the network space formed in this way
can meaningfully represent the directed connections between learn-
ing actions, in the present study, we explored the viability of using
ONA to deepen understanding of learning tactics. To this end, we sep-
arately performed the ONA and process mining analyses on the same
learning tactic that encompasses nine learning actions and compared
the results generated by these two methods. One central research
question guided our study:

To what extent can the use of ONA technique deepen under-
standing of learning tactics and actions enacted by learners in a

MOOC, compared to process mining?

3 | METHODS

3.1 | Study context

The study was conducted in the context of a MOOC named ‘Flipped
Classroom’. Most of the participants were teachers, 80% (in-service)
and 8% (pre-service). Of the participants, around 60% of them were
female learners. The average age of the participants was 36 years
(SD = 9 years). In this course, the teachers learned about the flipped
classroom pedagogy, including the application of this pedagogical con-
cept in their teaching practice. Each MOOC offering was 7 weeks
long, covering one unit per week. At the beginning of each week, the

teaching team released the unit learning resources and the learners
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were required to spend 3-5 h watching videos, participate in discus-
sion, browse reading materials, finish quizzes, and conduct peer
reviews throughout the week. The scores learners earned on all quiz
tasks were accounted for 25%, the peer review scores accounted for
35%, the forum participation accounted for 20%, and the final exam
(administered in week 7) accounted for 20% of the final grade in the
course. Overall, the completion rate of this course was 6.48%.

From 2016 to 2018, 97,475 learners were enrolled across
12 offerings of this MOOC. Only about half of these learners logged
in to the course and participated in different learning activities. Many
learners dropped out of this MOOC only after few logins or a very
short stay. We included in our analysis only those learners who were
active in the course for more than 3 weeks. As a result, we obtained a
sample of 8,788 learners who produced more than 4 million data

points from traced interactions recorded in the MOOC platform.

3.2 | Analytic approach to detect learning tactics

To detect learning tactics from this big dataset, we followed the ana-
lytic approach shown in Figure 1, which was also used in (Fan,
Matcha, et al., 2021; Fan, Saint, et al., 2021; Matcha, Gasevi¢, Ahmad
Uzir, et al,, 2019; Matcha, Gasevi¢, Uzir, et al., 2019). We first defined
learning sessions during which a learning tactic would be observed,
and then developed an action library to translate raw trace data
into nine meaningful learning actions. Based on the sequences of
actions identified in each learning session, we used a clustering
method to group those sessions and map them to corresponding

learning tactics.

3.2.1 | Learning sessions

In previous studies, the ‘unreasonably long dwell times between two
events’ were commonly used as indicators or markers to segmenting
learning events in trace data into ‘learning sessions’ (Gasevic
et al., 2017; Kovanovic et al., 2015). In this study, we used 45 minutes
as the ‘unreasonably long dwell times’ to segment learning sessions,
which means any action with a duration equal to or longer than 45 min
marked the end of a learning session. A more detailed rationale of this
threshold to segment sessions is provided by Fan, Matcha, Uzir, et al.
(2021). Based on this segmenting approach, we divided 4,664,214
unique learning events from the log data into 201,038 learning

sessions.

3.2.2 | Learning actions

To model different learning processes, researchers have utilized raw
trace data that learners generate as they interact with digital course
resources, for example (Davis et al, 2016; Kizilcec et al, 2017,
Maldonado-Mahauad et al., 2018; Sinha et al, 2014). We harnessed
trace data collected in this study to model/detect learning actions
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MOOC platform

MOOC: Flipped classroom
12 rounds in 3 years
Selected 8,788 learners
4,664,214 unique events
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FIGURE 1

TABLE 1

Label

1-Content_Access

2-Content_Revisit

3-Discussion

4-Forum

5-Assessment

6-Overview

7-Help_Seeking

8-Interruption

9-Search

Event-ised Trace data

T o~ Process
. ® mining
_\ results
Tactic 3
[ Tectics ] AN e
onA
...... results

t I t

The analytical approach to detect learning tactics

Learning actions and definitions

Action definition

A learner for the first time interacts with
learning materials that include videos,
documents, pdf, and non-score quizzes

Revisit learning materials that include videos,
documents, pdf, and non-scoring quizzes
items

Browse and answer instructors' questions in the
discussion forum (scored)

Browse and participate in discussions posted by
learners in the discussion forum (not scored)

Participate in the unit quiz, unit homework, peer
review and final exam

Browse general course information that
includes weekly announcements, scoring
criteria, course calendars, chapter
introductions, and chapter reviews

Post and seek help in the help_seeking forum,
review course manuals (Q&A), and review
technical support resources

A break during a study session or a study
interruption; also includes situations when no
data were logged for more than 25 min and
less than 45 min

Sequence of searching behaviours that include
quick clicks to navigate through pages (each
stay is less than 5 s) and a long stay on a
certain page (more than 5 s and less than
20 min)

Cluster and interpret sessions into tactics

Understand and compare tactics

performed in the MOOC learning environment. To this end, we first
defined and labelled nine learning actions, as shown in Table 1, which is
similar as we did in Fan, Matcha, Uzir, et al. (2021). It is worth noting that
each approach to operationally defining data (such as our action library)
has its own constraints and affordances, which can influence what the
analytic method can and cannot reveal. We also discuss this issue in
Section 5.

3.2.3 | Learning tactics

In order to detect learning tactics, we first generated first-order Mar-
kov model (FOMM) of actions for all learning sessions using the pMi-
neR R package (Gatta et al, 2017). In this way, we obtained a
transition matrix for every session with transition probabilities
between any pair of learning actions (Figure 1). Then, we used the
expectation-maximization (EM) algorithm to cluster all 201,038 ses-
sions based on the transition matrix generated by FOMM. Here, we
used the gap statistic method (Tibshirani et al., 2001) to estimate the
optimal number of clusters. This clustering approach has been found
useful for detecting learning tactics in several previous studies
(Ahmad Uzir et al., 2019; Fan, Matcha, et al, 2021; Fan, Saint,
2021; Matcha, Gasevi¢, Ahmad Uzir, et al, 2019; Matcha,
Gasevi¢, Uzir, et al., 2019). Last, we used the exploratory sequence

et al,

analysis implemented in the TraMineR R package to examine the dis-
tribution of learning actions in detected tactics, that is, frequency and
temporal distribution of actions within learning sessions (Gabadinho
et al., 2011) (Table 1).
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3.3 | Understand learning tactics from trace data

3.3.1 | Process mining technique

After obtaining the learning tactics, we applied the same pMineR R
package to build process maps of action for different tactics. It is
worth noting that, there are many different algorithms and visualiza-
tion methods for process mining (Saint et al., 2021). Here, we decided
to use first order Markov models (FOMMs) and the pMineR package
because it provides better insights into learning tactics than others
such as Inductive Miner and Heuristics Miner (Saint et al., 2021) and it
was also the most frequently used algorithm in previous studies in
learning tactics (Fan, Matcha, et al, 2021; Matcha et al, 2020;
Matcha, Gasevi¢, Ahmad Uzir, et al., 2019; Matcha, Gasevié¢, Uzir,
et al., 2019; Saint et al., 2020; Saint et al., 2021). The Inductive Miner
and Heuristics Miner are more suitable to be used to seek process
model soundness in a more structured set of learning paths, and the
process models they generated for exploratory SRL models proved to
be difficult to interpret (Saint et al., 2021). The pMineR could model
and visualize the temporally ordered sequences of learning actions in
learning sessions, which is proven to be suitable in similar research
contexts and the results are easy to interpret (Fan, Matcha,
et al, 2021; Matcha et al., 2020; Matcha, Gasevi¢, Ahmad Uzir,
et al, 2019; Matcha, Gasevi¢, Uzir, et al., 2019; Saint et al., 2020;
Saint et al., 2021). Like other methods, pMineR has its own limitations,
which are also discussed in section 5.

This process mining method allowed us to reveal the relationship
between nine actions in the form of transition probabilities. As shown
in Figure 2-left, which is a process map example, the nodes represent
the actions and the edges indicate the transitions between the nodes
with different transition probabilities (nhumbers on edges). We used
5% as a threshold which means edges with transition probabilities
below 5% were not shown in the process maps for tactics?. For exam-
ple, in Figure 2-left, the nodes A and B represent learning actions in
one tactic and the transition probability from A to B was 22%. How-
ever, the edge from B to A was not shown in Figure 2-left because
the corresponding transition probability was below 5%.

3.3.2 | ONA technique

We conducted the ONA analysis using the ONA R package. To model
the directed connections among learning actions, we used the nine
types of learning actions (Table 1) as codes and binary-coded their
presence and absence in the identified learning tactics. The nine types
of learning actions were represented as nodes in the resulted ONA
network graphs. With the binary-coded learning actions, we set a
moving stanza window of two for the ONA algorithm to identify and
accumulate the directed connections formed between each pair of

2We have tested all thresholds from 0% to 15%, in order to avoid messy and spaghetti-like
process maps (e.g., if we use 0% or 1%), and oversimplified process maps with many actions
being isolated (e.g., if we use 10% or 15%), we decided to use 5% as the threshold. This is
also a threshold other studies used (e.g., Srivastava et al., 2022).
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FIGURE 2 Examples of results produced by process mining (left)
and ONA (right)

current action and its preceding action. Such directed connections
were represented as edges in ONA graphs. Because ONA uses an
optimisation routine to determine node position (Tan et al., 2022), the
resulted ONA metric space can be interpreted based on the location
of nodes. To demonstrate how to interpret the nodes, edges, and the
metric space in ONA network graphs within the aforementioned four-
dimension framework (i.e., frequency, continuity, sequentiality, and
role), we use Figure 2-right as an example.

The size of each node is proportional to the frequency of that
learning action that occurs in a learning tactic, specifically when its
occurrence is subsequent to other actions (i.e., representing the fre-
quency dimension), with larger nodes indicate higher frequency. The
coloured circle within each node is proportional to self-transition.
That is, in addition to transitioning to other learning actions, this
learning action makes transitions to itself (i.e., representing the con-
tinuity dimension). In other words, this learning action's preceding
action is itself. The larger the coloured circle is, the more self-
transited that learning action is. For example, in Figure 2-right, Ais a
relatively more frequent learning action with more self-transitions
compared to others. The directed connection between two nodes is
represented by a pair of triangles, with a dark chevron place inside
the triangle to indicate the direction of a connection. For example, in
Figure 2-right, the triangle with a chevron pointing from A towards
B represents the frequency of B as A's subsequent action. In other
words, the frequency that learning action B act as a response to
A. Given that the triangle pointing from A to B is thicker and more
saturated than the other way around, it is more frequent that B fol-
lows A (i.e., representing sequentiality dimension). Between any pair
of nodes, if there is a bidirectional connection, the chevron only
appears on the side with stronger connections. This helps viewers
differentiate heavier edges in cases such as between node B and C,
where the connection strengths from both directions are similar.
When the connection strengths are identical between two codes,
the chevron will appear on both edges. Lastly, in a ONA network,
node positioning is a distinguishing feature that explains the charac-

teristics of this network relative to other networks. For example, in
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Figure 2-right, node B and C are located closer in the network space
compared to their distance with node A, meaning that the qualitative
meaning that learning action B and C carry similarly explains the fea-
ture of this network. Therefore, by comparing the node position of
learning actions within a ONA network besides the connections
between them, we can make sense of the role of each learning

action in defining various learning tactics.

4 | RESULTS
In this section, we show the results of the process mining and ONA
analyses aimed at deepening understanding of learning actions and

tactics enacted by learners in a MOOC.

41 | Learning tactics identified

We identified eight optimal clusters in our data set, as per the gap
statistic analysis (Tibshirani et al., 2001). Each cluster encompasses
similar patterns of learning actions which are considered as a learning
tactic in our study. In Table 2, we provide the brief descriptions and
tactic names of the eight clusters.In the present study, we chose the
Assessment Content Forum and Search Tactic (hereinafter abbreviated
to ACFS-Tactic) as an example to explain this tactic in more detail
based on the frequency, continuity, sequentiality and role of different
learning actions encompassed within this tactic. The reason why we
choose this tactic is that it is more complicated than many of other
tactics (such as Focus On Content Tactic and Focus On Assessment Tac-
tic), and it occupies a larger proportion (7.37%) of all learning sessions
than several other tactics (such as Assessment Content Forum Tactic
which is 3.22%). Here, we first used the two distributions which were
also used in most previous studies (Fan, Matcha, et al., 2021;
Jovanovi¢ et al, 2017; Matcha, Gasevi¢, Uzir, et al, 2019; Saint
et al., 2021) to understand and interpret tactics: the frequency distri-
bution and temporal distribution plots.

As the frequency distribution of this tactic shows (see Figure 3-
left), Assessment, content related actions (Content_Access and Conten-
t_Revision), Overview, Forum and Search actions were all prominent
actions in the ACFS-Tactic. On the temporal distribution plots of
ACFS-Tactic (see Figure 3-right), the i-th bar represents the probabil-
ity of each learning action learners engaged with as their i-th action of
sessions when using the ACFS-Tactic. For example, the first bar
shows for each action type the probability that it would be the type

of the first action in the sessions of a particular tactic®. Upon looking

3|t is worth noting that the x-axis of the temporal distribution figure represents the length of
action sequences, and the i-th bar on x-axis was generated based on the distribution of the i-
th actions from learning sessions that length equal to or longer than i. The number of
sessions available for analysing actions decreases proportional to the session length. For
example, the 5th bar was generated based on the distribution of the 5th action from all
sessions that contained at least 5 learning actions; and the 15th bar was generated based on
the distribution of the 15th action from all sessions that contained at least 15 learning
actions; and the sample size of longer sessions is much smaller than the shorter sessions.
Therefore, when interpreting Figure 3, it should be noted that the sample size of each bar is
different.

Journal of Computer Assisted Learning_WlLEyj_7

TABLE 2 Brief descriptions of eight learning tactics

Learning tactics Proportions  Brief description

Assessment 3.22% Content related actions
Content Forum together with Assessment
Tactic and Forum actions were

prominent actions in this
tactic;

Assessment 13.30% Content related actions
Content Search together with Assessment
Tactic and Search actions were

prominent actions in this
tactic;

Focus On 34.60% More than 55% of all the
Assessment learning actions within this
Tactic tactic were Assessment;

Integrated 3.46% Learners approximately equally
Learning engaged in all learning
Without actions, except Search;
Searching Tactic

Assessment 7.37% Content related actions
Content Forum together with Assessment,
and Search Forum and Search actions
Tactic were prominent actions in

this tactic;

Focus On Content 27.86% Content related learning
Tactic actions that include

Content_Access and
Content_Revision were
central to this tactic,
accounting for 64% of all
actions;

Learning With 4.53% Learning with Search and
Search and Help_Seeking were central
Help_Seeking to this learning tactic;
Tactic

Learning With 5.65% Learning with Search were

Search Tactic central to this learning tactic.

at temporal distribution of these actions, we noted the overall pattern
that learners started their learning sessions from Overview and Assess-
ment and went to Content, Search and Forum in this tactic (see the
temporal distribution in Figure 3). Therefore, we named this tactic as
Assessment Content Forum and Search Tactic due to its prominent
actions and overall temporal distribution. The more detailed descrip-
tions for all eight clusters can be found in the supplemental
document.

The above two distribution plots, which were mainly used in pre-
vious studies (Fan, Matcha, et al., 2021; Jovanovi¢ et al., 2017;
Matcha, Gasevi¢, Uzir, et al., 2019; Saint et al., 2021), can only reveal
two dimensions of learning tactics: the frequency and sequentiality of
learning actions. They failed to further explain and understand learn-
ing tactics from the dimensions of the continuity and the role of learn-
ing actions. Therefore, in the following subsections, we continue to
use ACFS-Tactic as an example to demonstrate and compare the pro-
cess mining and ONA analytic approaches towards understanding and

explaining learning tactics.
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4.2 | Analysing learning tactics with process

mining technique

Firstly, the FOMM of the ACFS-Tactic highlighted the continuity of
actions via self-looping transition probabilities in process mining
(Figure 4). For example, Figure 4 revealed that learners who used the
ACFS-Tactic tended to continuously engage in Forum and Search actions.

Secondly, the process mining technique successfully revealed the
sequentiality characteristic of actions. The process mining technique
represents the sequences as the actions (nodes) interconnected with
the edges. In this way, the sequential information provides additional
insight into the action. For example, the analysis so far demonstrated
that Forum was not only among the most frequently (accounted
17.24% in the frequency distribution) and most continuously (with a
79% self-looping transition probability) enacted learning actions, but it
was also one of the most prominent actions overall in the ACFS-Tac-
tic, because it was connected to many other nodes (see edges in
Figure 4). For example, this process map of learning actions revealed
that learners who used this tactic may browse the Forum before and
after engagement with the Assessment and Overview, and Forum
action are sequentially related to Help_Seeking action.

Process mining technique also revealed the probability of an action
preceding/succeeding another action in the ACFS-Tactic. The process
mining technique was capable of capturing this sequentiality in a learn-
ing tactic as transitional probability between pairs of actions. The tran-
sitional probability is calculated as conditional and depicted using
weights and edge widths in the process mining technique. Taking the
Content_Revisit action as an example and looking at the transition prob-
abilities between the Content_Revisit and its adjacent nodes in both
plots, researchers may notice that some MOOC learners who enacted
the ACFS-Tactic may have revisited certain learning content under dif-
ferent circumstances: (1) after participating the discussion tasks pro-
posed by instructors, see the transition probability from Discussion to
Content_Revisit; (2) before or after accessing new content, see the tran-
sition probabilities between the Content_Revisit and Content_Access; or
(3) before or after participating the assessment, see the transition prob-
abilities between the Content_Revisit and Assessment.

Although the process mining technique has deepened our under-
standing of tactics from two dimensions: continuity and sequentiality
of learning actions in the ACFS-Tactic, it failed to indicate the fre-

quency of actions by itself as the node size in Figure 4 is meaningless.
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More importantly, the process mining technique could hardly reveal

the role of different learning actions in this tactic.

4.3 | Analysing learning tactics with ONA
technique

To triangulate with above findings, and more importantly, to gain a dee-
per insight into the learning tactic, we created and analysed the ONA
graph (Figure 5) of learning actions that comprise the ACFS-Tactic.

In Figure 5, node size depicts the frequency of a learning action
act as a response to other actions in the ACFS-Tactic. The more fre-
guent that action was subsequent to other actions, the larger the cor-
responding node is. For example, Assessment, Content_Reuvisit,
Overview, Forum and Search actions occurred as a response to other
actions relatively more frequently, as we also showed in Figure 3. This
means that learners were relatively more engaged with these learning
actions than others. Further, the ONA technique highlighted the con-
tinuity of actions via the coloured circles within each node in ONA
(Figure 5). For example, the coloured circles in Forum and Search
actions were proportionally larger than other actions, meaning that
learners who used this tactic tended to continuously engage in Forum
and Search actions, which is consistent with the findings generated by
the process mining technique. Another key dimension towards a dee-
per understanding of a learning tactic is to examine the sequentiality
of learning actions that comprise the tactic and, again, the ONA tech-
nique successfully revealed the sequential characteristics of learning
actions. For instance, as shown in Figure 5, the chevron pointing from
Overview and towards Assessment is placed on an edge with the dark-
est saturation, representing the directed connections with the great-
est strength from Overview to Assessment. This means that relative to
other learning actions, the order of browsing general course informa-
tion (Overview) before working on quizzes and homework (Assessment)
was the most frequently used order when learners used ACFS-Tactic.

Importantly, the network space with meaningful node positions
created using the ONA technique provides researchers with an addi-
tional layer of information compared to the results generated by the
process mining technique. In ONA, instead of placing nodes by priori-
tizing aesthetics criteria such as avoiding edge-crossing as process
mining technique usually does, ONA determines its nodes placement
by accounting for connection weights across the network. Therefore,
the position of nodes can be used to interpret the dimensions of the
metric space. First, by investigating the node position alone without
looking into how strongly certain nodes are connected, we learned
that the overall network space shared by the eight learning tactics is
primarily distinguished by the role different learning actions play. Spe-
cifically, taking Figure 5 as an example, the bottom end of the network
space includes Content_Access and Assessment, the two primary learn-
ing actions in this MOOC, as per the course design; the upper end of
the network includes Content_Revisit, Search, Help_Seeking, Discussion,
Interruption, Forum, Overview, supportive or optional learning actions
in this MOOC, as per the course design. In this way, the network ver-
tically differentiated among learning actions given their role, that is,
primary vs supportive/optional. Further, the left side of the network
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FIGURE 5 Using the ONA technique to understand and interpret
the ACFS-Tactic

space includes learning actions that relate to studying content, for
example, Content_Access and Content_Revisit; the right side of this
space includes learning actions that relate to assessment, for example,
Assessment and Overview. Some supportive actions, for example,
Search and Forum, are located near the middle of the graph, horizon-
tally, which may indicate that these actions were utilized to support
both studying and assessment activities. The above information was
hardly available from the process mining analysis.

Second, focusing on ACFS-Tactic specifically, as indicated in
Figure 5, relatively strong connections were primarily made by nodes
that are located in the middle and the right side of the network. In con-
trast, nodes that are located on the left side of the space about studying
new content made relatively weak connections overall. This indicates
that the characteristics of ACFS-Tactic are less about studying new con-
tent but more about engaging in activities and assessments. Referring
back to Forum as an example, the corresponding information from the
ONA graph indicates that this learning action was frequent (node size),
used over prolonged time intervals (coloured circle), often co-occurred
with other learning actions (directed connections with other nodes), and
used for different purposes, that is, roles, (node position). Learners,
therefore, mainly went to discussion forums to support their studying
(e.g., to find answers about course content) and assessment activities

(e.g., to get clarification about course and exam requirements).

5 | DISCUSSION

5.1 | Summary of findings

Researchers studying SRL have been increasingly interested in apply-
ing analytic methods that can capture sequential and temporal charac-
teristics of learning actions and tactics (Fan, Matcha, et al., 2021; Fan,
Saint, et al, 2021; Jovanovi¢ et al, 2017; Matcha, Gasevi¢, Uzir,
et al., 2019; Saint et al., 2021; Siadaty et al., 2016). This line of
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TABLE 3 Understanding learning tactics using basic, process mining and ONA techniques

Dimensions of tactics Basic methods

Frequency of actions Frequency distribution
Continuity of actions -
Sequentiality of action Temporal distribution

Role of actions -

research has resulted in improved understanding of learning actions,
not only in terms of their frequency, but also in terms of their continu-
ity and sequentiality, another two dimensions that characterize SRL
processes (Winne & Hadwin, 1998). However, learning tactics are typ-
ically complex structures, containing multiple interconnected learning
actions that may play different roles relative to instructional context.
The information about frequency, continual and sequential trends of
actions is often not enough to provide researchers with insights into
the role of an action within a tactic. As the understanding of the role
is important to support tactics use (e.g., by promoting primary actions
over the less prominent ones) and thus help MOOC learners engage
in productive SRL, we investigated whether the network-based ana-
lytic technigue ONA can reveal the role of a learning action, moti-
vated by the capability of this approach to create a network of actions
that can be meaningfully interpreted relative to each other. We exam-
ined the Assessment Content Forum and Search (ACFS) tactic using
ONA and process mining techniques. Following, we summarize and
discuss our findings (see Table 3 for an overview).

The frequency of learning actions can easily be revealed through
the frequency distribution method (proportions) and the ONA method
(the meaningful node size), but not revealed in the process mining
results as the node size in FOMMs is meaningless. We demonstrated
that, using either process mining or ONA, researchers can obtain
information about continuity and sequentiality of learning tactics.
Continuity is represented via self-loops in process mining and
coloured circles within nodes in ONA. Sequentiality is depicted using
the edges with single directions in process mining and the edges with
bilateral directions in ONA.

By meaningfully positioning learning actions in a network space
(Figure 5), for example, grouping studying related actions on the left
and assessment related actions on the right side of the network space,
the ONA technique also revealed information about the role of an
action. Specifically, we found that Content_Access and Assessment
actions played primary roles in the ACFS tactic, an example learning
tactic we opted to investigate in this study. The remaining actions in
this tactic, for example, Forum, Overview and Search, played the sup-
portive roles. For instance, the position of Overview action in the ONA
plot shows that MOOC learners access general course information
(e.g., syllabus, announcements, scoring criteria) to support both con-
tent revisiting and assessment activities. Given the frequency, conti-
nuity and dual role of the Overview action, it can be inferred that
MOOC learners often engaged in monitoring (of task requirements
and standards they set for the course), a central metacognitive pro-
cess in SRL (Butler & Winne, 1995; Efklides, 2006; McCardle &
Hadwin, 2015; Winne & Azevedo, 2014; Winne & Hadwin, 1998).

Process mining technique
Self-looping
Edges with single directions

ONA technique

Node size

Coloured circle within node
Edges with bilateral directions

Meaningful node positions

Similarly, the position of the Forum action corroborates prior evidence
from the computer-supported collaborative learning literature that
learners tend to utilize a MOOC discussion forum for different pur-
poses; in this case, to facilitate content revisiting (e.g., by reading
peers' posts that explain a concept in a book chapter) (Galikyan
et al., 2021; Wei & Chen, 2006; Wise & Cui, 2018) and assessment
(e.g., by discussing the practice exam answer key) activities
(Heirdsfield et al., 2011; Joksimovi¢ et al., 2018)

5.2 | Research and instructional implications
Following, we discuss research and instructional implications of our
findings.

Researchers who study learning tactics unpacked using the ONA
technique can gain a deeper insight into a theorized learning pro-
cesses that interplay within and across learning tactics and, in that
way, improve their understanding of how self-regulated learners enact
and monitor learning tactics. For instance, being able to observe a
fine-grained structure of learning tactics and processes as they change
over a semester in the context of evolving task requirements,
researchers may identify SRL behaviours that distinguish between
more and less productive self-regulated learners at multiple points in a
semester, for example, between those who participate in a MOOC
forum mainly to understand the assessment requirements and those
who strategically utilize forums for multiple purposes following the
course dynamics. These analyses may further allow for confirming or
challenging different theoretical propositions about SRL, for example,
use of learning tactics is determined by task requirements and instruc-
tional goals (Fan, Saint, et al., 2021); prior metacognitive and domain
knowledge affect how a tactic has been composed and engaged (Taub
et al., 2014; Trevors et al., 2014); external feedback a learner receives
(often in a form of a score or grade) will determine whether a learner
will continue to enact the same learning tactics or they will adjust
learning tactics accordingly in the remainder of the course or in subse-
quent, similar courses (Binbasaran Tuysuzoglu & Greene, 2015;
Butler & Winne, 1995).

From a practical perspective, the analytics on learning tactics
use in a form of ONA graphs has the potential to provide learners
with a detailed overview of their learning engagement over the
selected learning period and, combined with the information about
learning performance and course requirements, may prompt
learners to evaluate whether the way they have studied in a MOOC
was beneficial to their learning success. For instance, upon looking

at the analytics about their engagement in the Assessment Content
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Forum and Search Tactic during semester, a lowachieving learner
may notice that this engagement was insufficient in the weeks
before course exams. As well, this learner may also notice that they
underutilized the ‘Help_Seeking’ processes to support Content
Revist, that is, the role of the ‘Help_Seeking’ action in this tactic
was primarily to support assessment, reflected by the position of
the ‘Help_Seeking’ node which was located close to the ‘Assess-
ment’, but far from the ‘Content Revisit’ node. The effects of SRL
interventions based on ONA on learners' engagement in metacogni-
tive monitoring and control of tactics use remains an important

topic for future research.

5.3 | Limitations and future works
Following, we note the potential limitations of our study and recom-
mend steps for future research.

In this study, ONA modelled the directed connections among
learning actions by accounting for the order and interdependence of
events. We used a stanza window size of two to accumulate the con-
nections between each pair of adjacent learning actions, which trea-
ted learning tactics as a step-by-step process. Such approach allowed
us to investigate the close relationship between learning actions that
tend to happen right before or after each other. Given the flexibility
of stanza window size in ONA to ‘capturing recent temporal context’
(Siebert-Evenstone et al., 2017, p.126), future work could explore
using a different stanza window size to model connections between
learning actions in a broader temporal proximity.

We also note that even though the ONA technique generated
more comprehensive information about learning actions observed in
this study compared to process mining, this should not necessarily
mean that process mining techniques cannot contribute to better
understanding of learning tactics. For instance, the process mining
technique based upon the transition probability that we applied in this
study is only one among many process mining techniques. The pMi-
neR method has its own limitations, such as (i) focuses only on the
probability matrix and ignores the frequency of actions; (ii) assumes
that the current action is only affected by the previous action; and
(iii) unable to calculate and reveal the time intervals of transitions of
actions. There are other process mining algorithms (e.g., Fuzzy Miner)
(Saint et al., 2021) that researchers can apply and explore their bene-
fits in studying learning tactics in the future. As well, studying SRL
processes by combining different techniques (Ahmad Uzir et al., 2020;
Saint et al., 2020), instead of applying methods individually, may be
another way of improving the validity of SRL measurements. For
instance, combining techniques can be used to enable much more
fine-grained analysis to discover low-frequency transitions between
actions that are still important and theoretically meaningful.

From a data processing point of view, our action library only oper-
ationally defined learning actions at a relatively coarse-grained level
and lacks theoretical explanatory power, which limited what the ONA
method can reveal. For example, the Help_Seeking action can be further

unpacked into (i) learners seeking information about how to use the

Journal of Computer Assisted Learning_WI]_E\(J_11

MOOC platform, or (i) learners seeking information to understand
concepts in the course. These more fine-grained learning actions will
enable methods such as ONA to further reveal the nature of learning
tactics. Another level of data interpretation, such as a pattern library or
process library will overcome the limitation in terms of limited theoret-
ical explainability (Fan, Saint, et al., 2021; Saint et al., 2021; Siadaty
et al., 2016). For example, extracting SRL processes based on action
patterns can enable methods such as ONA to model and visualize
learners' regulation processes when using different learning tactics.

Last, we acknowledge that, although we analysed a quite extensive
sample of student data collected over multiple offerings of the ‘Flipped
Classroom’ MOOC, validating and generalizing our results across differ-
ent MOOCs remains an important step for future research.

6 | CONCLUSION

In general, our results show that both basic method and process mining
technique failed to address all the dimensions we defined, but the ONA
technique successfully revealed all four dimensions (frequency, continu-
ity, sequentiality, and role) which provided deeper insights into the
learning actions of learning tactics. The ONA technique provided a
unique opportunity and novel insight into the roles of different learning
actions in tactics, which also corresponds to different MOOC course
modules or resources. Our findings related to MOOC learning tactics
also provide practical implications for instructors and designers to bet-

ter support learners' productive engagement in self-regulated learning.
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