

Geospatial Vulnerability Framework for Identifying Water Infrastructure Inequalities

Mathews J. Wakhungu, Ph.D.¹, Noha Abdel-Mottaleb, M.S.², E. Christian Wells*, Ph.D.³, and Qiong Zhang, Ph.D.⁴

**Corresponding Author*

¹Research Associate, Dept. of Anthropology, Univ. of South Florida, Tampa, FL 33620. Email: mwakhungu@usf.edu

²Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Univ. of South Florida, Tampa, FL 33620. Email: nohaa@usf.edu

³Professor, Dept. of Anthropology, Univ. of South Florida, Tampa, FL 33620. Email: ecwells@usf.edu

⁴Professor, Dept. of Civil and Environmental Engineering, Univ. of South Florida, Tampa, FL 33620. Email: qiongzhang@usf.edu

Abstract: Recent infrastructure failures in the United States have brought attention to the ways and extent to which water security is unevenly distributed in urban areas. For many marginalized communities, infrastructure interdependencies (e.g., water, wastewater, stormwater, transportation) have created significant vulnerabilities in the face of aging or inadequate water treatment and delivery systems. In these communities, cascading failures precipitated by environmental hazards such as flooding often propagate across multiple infrastructure systems, sometimes resulting in poor water quality and/or lack of access to water for significant periods. However, little is known about how specific environmental and social factors combine with water infrastructure vulnerability and interdependencies to create enduring infrastructure inequalities. This paper presents a geospatial vulnerability framework for identifying water infrastructure inequalities, using the City of Tampa, Florida to demonstrate the framework. For this framework, we integrate GIS analysis of environmental hazards, a factor analytic model of socio-demographic data, and a network topology-based performance indicator for the water distribution network. The resulting framework models the environmental and social vulnerabilities, quantifies hydraulic vulnerability and infrastructure interdependence, and maps their distributions across the urban environment. We find that the highest levels of social and environmental vulnerabilities in Tampa are present in low-income areas and communities of color that have high hydraulic vulnerability and infrastructure interdependency, which creates pockets of low resilience capacity.

Author Keywords: Environmental hazards; Social vulnerability; Infrastructure interdependency; Water insecurity; Geographic information systems; Marginalized communities

1 **Introduction**

2 Access to a reliable and affordable supply of safe and clean water is essential for human
3 wellbeing (UNESCO 2019). While continuous efforts through the United Nations Millennium
4 Development Goals and, more recently, the Sustainable Development Goals, have succeeded in
5 improving water quality and providing water access to millions of people globally (Dar and
6 Khan 2011; UNICEF & WHO 2019), 2.1 billion people still lack access to potable water, mostly
7 in developing countries (Mihelcic et al. 2017). At the same time, although high-income
8 economies have made significant progress toward universal access to water through advances in
9 treatment technologies and rapid expansion of water infrastructure networks (Sedlak 2014),
10 recent infrastructure failures have exposed the growing problem of water insecurity for many
11 marginalized communities in developed nations (Graham 2010). Recent studies in the U.S. and
12 Canada, for example, reveal chronic and systemic failures of infrastructure systems and
13 organizational management in communities of color, low-income communities in both urban
14 (e.g., *colonias*) and rural (e.g., agricultural) settings as well as tribal communities (Allaire et al.
15 2018; Butler et al. 2016; Deitz and Meehan 2019; Jepson and Vandewalle 2016; Leker and
16 Gibson 2018; Meehan et al. 2020).

17 In metropolitan areas, these failures are often attributed to aging infrastructure, dwindling
18 resources, and lack of political will to address problems in minority and high-poverty
19 communities (AWWA 2018; Butler et al. 2017; Steele and Legacy 2017). For example, from
20 2014-2015, lead leaching from municipal water pipes in Flint, Michigan exposed approximately
21 99,000 residents of mostly low-income, minority communities to elevated levels of lead, *E. coli*,
22 and *Legionella* bacteria (Clark 2018). In this case, dual failures of both infrastructure and its
23 management were to blame (Pauli 2019). Moreover, as cities become smarter and more

24 connected, water and other utilities have become increasingly interdependent, creating a varied
25 array of infrastructural vulnerabilities (Mohebbi et al. 2020). Water treatment and distribution
26 failure, for instance, can be precipitated by power outages (electricity infrastructure) and road
27 maintenance (transportation infrastructure). Research has shown that infrastructures in densely
28 built environments are often physically interdependent because of their high degree of physical
29 colocation (e.g., water/wastewater pipes and roadways), which makes them vulnerable to
30 cascading failures (Abdel-Mottaleb and Zhang 2020). The social, economic, and political
31 relations between infrastructure institutions coupled with the connectivity of information systems
32 also result in social and cyber interdependencies that influence the resilience of infrastructures
33 (Wells et al. 2019).

34 In many cases, the impacts of infrastructure failures reveal infrastructure inequalities between
35 communities, particularly for marginalized populations in middle- and high-income economies
36 (Deitz and Meehan 2019). In these settings, infrastructural conditions, interdependencies, and
37 sociopolitical decisions intersect, leading to water inequalities and insecurity across socio-
38 economic divides such as race, class, and citizenship (Switzer and Teodoro 2017). For instance,
39 in border towns in south Texas, low-income migrants receive significantly inadequate water
40 services (Jepson and Vandewalle 2016). Another study investigating the relationship between
41 race and water services in North Carolina found that the probability of having community water
42 services is lowest in census blocks with 100% Black residents (Leker and Gibson 2018). These
43 examples join a growing number of studies that specifically recognize the social dimensions of
44 hydraulic vulnerabilities (Linton and Budds 2014).

45 In addition to race and class inequities in the distribution of water provision, flooding from
46 climate-induced extreme weather events has exposed the vulnerability of water infrastructures

47 (due to age and interdependencies) and further increase the severity of cascading failures,
48 especially in coastal cities. For example, flooding (stormwater infrastructure) caused by
49 Hurricane Katrina led to road closures (transportation infrastructure) and made it inaccessible to
50 water and wastewater treatment facilities for repairs; over 1,000 drinking water supply systems
51 and 172 wastewater treatment plants were impacted (Mohebbi et al. 2020). In such
52 circumstances, studies have shown that low-income and minority groups disproportionately
53 endure the burden of infrastructural failures. In the wake of Hurricane Katrina, for instance, the
54 poor in primarily Black, highly concentrated districts did not have an opportunity to escape and
55 remained stranded in their homes without access to water (Scheper-Hughes 2005). Here, social
56 and political systems intersected with environmental hazards to produce infrastructure
57 inequalities.

58 In sum, a growing number of studies demonstrate many instances in which marginalized
59 communities lack access to potable water or are forced to rely on inadequate infrastructure
60 systems and processes, creating water service inequalities across racial and socioeconomic
61 categories. Methodological innovations in quantitative and qualitative research, including
62 geospatial approaches, are becoming increasingly useful for documenting these kinds of
63 challenges (Jepson et al. 2017; Wutich et al. 2017; Young et al. 2019). However, there has been
64 very little research examining the extent to which environmental, social, and infrastructural
65 vulnerabilities synergistically contribute to water infrastructure inequalities that create
66 intermittent (i.e., sporadic or periodic) water insecurity and low levels of resilience. The lack of
67 understanding about the collective influence of these factors on the overall vulnerability of
68 communities means state and non-state actors have limited capacity to assess the social and
69 economic impacts of temporary infrastructural failures on local communities (Boin and

70 McConnell 2007). The significant challenge in evaluating the effects of infrastructural
71 inequalities on society, then, lies in understanding the contexts in which these failures occur. To
72 address this issue, in this study we use a network analysis approach to model water infrastructure
73 vulnerability and situate it within the environmental and social context of an urban environment
74 (the City of Tampa, Florida) using factor analysis within a geospatial framework. Our primary
75 research question is, in what ways and to what extent are water infrastructure vulnerabilities
76 associated with social and environmental vulnerabilities, and how can publicly available data be
77 used to model these associations? The greater goal of this effort is to develop an analytical
78 framework for producing actionable information that communities can use to explore and explain
79 socio-hydraulic inequalities to policymakers.

80

81 **Methods**

82 *Study context*

83 Tampa is a ca. 150-year old, mid-sized, coastal city in the southeastern United States with a
84 population of approximately 400,000 (U.S. Census Bureau 2019). Its location on Tampa Bay
85 makes transportation, water, and stormwater infrastructure vulnerable to storm surge from the
86 Gulf of Mexico (e.g., Weisberg and Zheng 2006). While the city has only experienced three
87 direct hits from hurricanes over the past century (in 1921, 1960, and 1968), hurricanes elsewhere
88 in the region and annual local tropical storms regularly cause significant flooding throughout the
89 city and storm-force winds impact critical infrastructures including the power grid (Bigger et al.
90 2009). These conditions threaten the city's aging water infrastructure (established in 1924),
91 which draws on surface water from the Hillsborough River and serves over 620,000 connections
92 within the city and adjacent regions (Park et al. 2010). During Hurricane Irma in 2017, for

93 instance, strong winds (up to 185 km/h) uprooted trees causing main breaks throughout the city
94 that interrupted both water delivery and transportation. Similar to many U.S. cities of comparable
95 size and age, deferred maintenance in the infrastructure network over the years has contributed to
96 frequent infrastructure failures (Folkman 2018; Graham 2010; Patz et al. 2008). For example,
97 city officials reported at least 1200 water main breaks between 2017 and 2018, normalized as 55
98 breaks per 100 miles of pipeline per year (WFTS 2019). While the main breaks interrupted water
99 services to many residents across the city, they also caused widespread flooding that closed
100 roadways and temporarily displaced families.

101 As our research shows, many of these infrastructure failures occurred in Black and Hispanic
102 communities characterized by high poverty and low homeownership rates, which we refer to as
103 marginalized communities (Lehigh et al. 2020; Wakhungu 2020; Wells et al. 2020). Tampa has
104 an overall poverty rate of 20% compared to the national average of 12% (U.S. Census Bureau
105 2017). Likewise, homeownership in Tampa is 48%, which is below the national average of 64%.
106 As of 2019, the racial composition of the city was 45% White, 26% Hispanic or Latino, and 24%
107 Black (U.S. Census Bureau 2017). As in many metropolitan regions in the U.S., a large
108 proportion of the low-income, minority population is concentrated in distinct neighborhoods
109 (Curley 2005; Wilson 2012). The settlement pattern for marginalized communities in Tampa is
110 partly an outcome of historical segregation laws that delineated neighborhoods based on race and
111 ethnicity (Jackson 2020; Mirabal 1993), and has resulted in six marginalized communities in the
112 eastern and western portions of the city: East Tampa, Jackson Heights, Ybor City, Sulphur
113 Springs, West Tampa, and West Hyde Park.

114

115 ***Data modeling***

116 To understand how environmental, social, and infrastructural conditions intersect to create or
117 amplify water insecurity in these Tampa communities, we draw on the place-based vulnerability
118 framework of Cutter (1996), which accounts for three components of vulnerability:
119 environmental, social, and infrastructure. We present our overall analytical framework in Fig. 1,
120 which is described in more detail below.

121

122 [insert Figure 1 here]

123

124 ***Environmental Vulnerability***

125 While there are many factors that constitute “environmental vulnerability” (e.g., air and
126 water quality, chemical exposure risk, etc.), for this study we characterize it as proximity to
127 physical or environmental hazards such as floods, contaminated properties (e.g., brownfields),
128 and hazardous waste following research reported by several studies that link these variables to
129 marginalized communities (Borden et al. 2007; Cutter 1996; Cutter et al. 2008; Sapir and Lechat
130 1986; Wisner et al. 2012). We also selected these factors because the data are publicly available
131 in the United States and relatively easy to access, thus permitting reproduction of our analytical
132 framework in other contexts. In this study, we combined quantitative modeling and GIS to assess
133 the spatial distribution of environmental vulnerability using census block groups as the
134 geographic units of analysis. We considered two drivers of environmental vulnerability for this
135 coastal environment: flooding and proximity to brownfields and hazardous waste.

136 To compute a Flood Vulnerability Index (FVI) in ArcGIS Pro (Version 10.3, manufactured
137 by ESRI), we relied on U.S. FEMA flood zone classification and data from the National Flood
138 Hazard Layer (NFHL), created and maintained by the U.S. Department of Homeland Security

139 (2016). One-hundred-year flood zones or Special Flood Hazard Areas have a high probability of
140 flooding. Thus, census block groups marked Zone A or Zone V (and their variants) were
141 assigned a FVI score of (3), the highest in our classification. Census block groups in five-
142 hundred-year flood zones (labeled Zone B or Zone X) have a moderate risk of flooding, and
143 were assigned a FVI of (2). Census block groups in Zone C that have minimal risk of flooding
144 were assigned a FVI of (1).

145 We also computed a Hazardous Waste Proximity Index (HWPI) for each census block group
146 in the city using data obtained from the Florida Brownfields Redevelopment Atlas (Center for
147 Brownfields Research and Redevelopment 2020), which records the locations of documented
148 brownfields and Superfund sites in the state and includes hazardous waste disposal permit data
149 from the U.S. EPA Environmental Justice Screening Tool (U.S. Environmental Protection
150 Agency 2016). These data indicated the proximity of block groups to hazardous waste sites in
151 percentiles. We used quartiles to classify these percentiles and assigned a HWPI score for each
152 census block group. In the end, the flooding and hazardous waste proximity indices were
153 aggregated with equal weighting into an Environmental Vulnerability Index (EVI). While equal
154 weighting makes sense in this case study (as indicated by simulations of different weights across
155 the study area that produced similar results), this may not be the case in other places. Different
156 weighting schemes may thus be appropriate elsewhere.

157

158 ***Social Vulnerability***

159 In addition to the environmental conditions discussed previously, the susceptibility to harm
160 or potential social disruptions posed by hazardous events at a particular location are created by
161 socio-economic characteristics (e.g., age, gender, race, education, income, unemployment,

162 housing, disability, and household size) that limit the ability of people in a particular place to
 163 respond and recover from hazards and disasters (Adger 2006; Borden et al. 2007; Cutter 1996;
 164 Cutter et al. 2003, 2008). Vulnerability studies have shown that impacts of these environmental
 165 hazards as well as infrastructure failures are also disproportionately located between social
 166 categories (Bjarnadottir et al. 2011; Sweeney 2006). Drawing on the social dimension of the
 167 place-based model (Cutter 1996), we evaluated the social vulnerability of census block groups in
 168 Tampa, in which we view social vulnerability as the disproportionate inability to respond and
 169 recover to environmental and infrastructural disruptions because of one's social position in
 170 society (see Clark et al. 1998; Wisner et al. 2012). Table 1 provides a summary of significant
 171 social factors used in our model that contribute to social vulnerability in Tampa.

172

173 **Table 1.** Social vulnerability variables

174

Variable	Source
<i>Social Class</i>	Adger (2006); Bjarnadottir et al. (2011);
%Households below Poverty Level	Cutter (1996); Cutter et al. (2008);
%Less than High School Diploma	Flanagan et al. (2011); Fothergill et al. (1999); Morrow (1999); Reid et al. (2009)
Population per Acre	
<i>Household Composition & Sensitive Population</i>	Clark et al. (1998); Cutter et al. (2003); Flanagan et al. (2011); Morrow (1999); Reid et al. (2009); Tate (2013)
Average Household Size	
%Population under 14 years	
%Population over 64 years	
%Population 20-64 with Disability	
<i>Minority</i>	Clark et al. (1998); Flanagan et al. (2011); Fothergill et al. (1999); Sweeney (2006)
%Limited English-Speaking Households	
%Minority Race	
<i>Housing Tenure</i>	Borden et al. (2007); Clark et al. (1998); Deitz and Meehan (2019); Flanagan et al. (2011); Morrow (1999)
%Renter Occupied	
%Occupied Units	
%Multi-family Units	

Quality of Life Emrich (2005); Flanagan et al. (2011)
 Travel Time to Work
 %Households with No Internet Access

175

176 The data for these variables were obtained from the 2016 American Community Survey
 177 (with 2017-2019 updates) and the U.S. Census Bureau (2017). Some of the factors we
 178 considered are similar to those used by the University of South Carolina and the Centers for
 179 Disease Control and Prevention, which created social vulnerability indexes for the U.S. using
 180 2010-2014 data at the county level. Similarly, we considered factors used by the Utility
 181 Resilience Index (URI) of the American Water Works Association (AWWA 2013), which
 182 examines vulnerabilities at the system level. For our index, however, we used the census block
 183 group as the geographic unit of analysis because block groups are smaller and more homogenous
 184 subdivisions of census tracts and provide a granular evaluation of social vulnerability in city
 185 neighborhoods (see Harlan et al. 2012). Our social vulnerability model consisted of 14 variables
 186 shown in Table 2. The descriptive statistics of the variables in Table 2 corresponded with recent
 187 U.S. census data on social class, household composition, race, and housing tenure in Tampa
 188 (U.S. Census Bureau 2017). Because none of the 14 variables were perfectly correlated, they
 189 were all included in our model. Some of the block groups were missing values for some
 190 variables; our model therefore considered 309 valid census block groups.

191

192 **Table 2.** Social vulnerability indicators for census block groups in the Tampa

Category/ Indicator	n	Mean	Std. Dev
<i>Social Class</i>			
%Households below Poverty Level (2016)	309	20.3	17.0
%Less than High School Diploma (2017)	310	8.9	7.4
Population per Acre (2016)	311	8.3	5.4

Household Composition & Sensitive Population

Average Household Size (2016)	311	2.5	0.6
%Population under 14 years (2017)	310	17.3	9.5
%Population over 64 years (2016)	311	0.1	0.1
%Population 20-64 with Disability (2016)	311	11.7	9.1
<i>Minority</i>			
%Limited English-Speaking Households (2017)	309	7.1	9.7
%Minority Race (2017)	310	33.9	27.8
<i>Housing Tenure</i>			
%Renter Occupied (2017)	310	47.7	26.6
%Occupied Units (2017)	310	89.1	8.8
%Multi-family Units (2016)	309	30.2	31.5
<i>Quality of Life</i>			
Travel Time to Work (2017)	311	474.2	283.5
%Households with No Internet Access (2017)	309	20.5	17.8

193

194 Since social vulnerability is a latent variable, we used R-mode factor analysis (SPSS v. 25) to
 195 derive a Social Vulnerability Index (SVI) for each census block group. The factor analysis
 196 empirically reduced our large number of sociodemographic variables into a small set of linear
 197 components derived from a correlation matrix that explain a large proportion of the variation in
 198 the data, but also addressed the problem of multicollinearity. Such an approach is necessary for
 199 how we use the resulting factor scores, which is not possible with other statistical decomposition
 200 techniques. Using the Kaiser criterion, we retained four components with eigenvalues greater
 201 than 1. Each of the four component scores was weighted by the percentage of variance
 202 explained, then aggregated into a cumulative factor score. For ease of interpretation, the
 203 cumulative factor scores were grouped into quartiles, scored, and mapped with ArcGIS Pro
 204 (Version 10.3; manufactured by ESRI). Here, the higher the cumulative factor score, the higher
 205 the Social Vulnerability Index (SVI) score. The SVI data table was spatially mapped using block
 206 group IDs obtained from the US Census 2017 Tiger shapefile (U.S. Census Bureau 2017). By

207 calculating the placement of each block group on the component distribution, it was possible to
208 assess the vulnerability of a census block group relative to others. In hazards research, Borden et
209 al. (2007), Reid et al. (2009), and Harlan et al. (2012) have used this type of factor analysis in a
210 similar way to determine the social vulnerability of states, census tracts, and census block
211 groups.

212

213 ***Infrastructure Vulnerability***

214 Aging infrastructure, a warming climate, increasing population, and decreasing budgetary
215 resources are some of the drivers of water insecurity in Tampa (Abdel-Mottaleb and Zhang 2020;
216 Park et al. 2010). There are many ways of characterizing vulnerable water distribution network
217 (WDN) components related to these challenges (Christodoulou and Fragiadakis 2015; Hernandez
218 and Ormsbee 2021; Laucelli and Giustolisi 2015; Maiolo et al. 2018; Soldi et al. 2015; Wéber et
219 al. 2020; Yazdani and Jeffrey 2012). In this study, we evaluated the hydraulic vulnerability of
220 WDN segments based on how reachable a segment is to water sources when other segments are
221 isolated. A segment is the minimum isolatable unit of a WDN that can contain several pipes or
222 only part of a single or multiple pipes. Many end users reside along the pipes in a segment. When
223 failures occur in WDNs, segments must be isolated (from water flow) for repairs to take place.
224 An unintended isolation is when a segment is unintentionally isolated, resulting in the end users
225 within it not receiving water, in the process of repairing another segment. In Tampa, many pipes
226 in the network are severely aged, and there can be as many as 50 breaks in a single day (Tampa
227 Bay Times 2019). For this reason, it is important to evaluate how vulnerable segments are to
228 unintended isolation so that the unsupplied demands for end users can be minimized.

229 A vulnerability score for each segment is calculated from the reachability matrix of a given
230 WDN as described in Abdel-Mottaleb and Walski (2020). First, segments are identified using
231 WaterGEMS (Bentley Systems 2019). Then, the segment-valve (or dual) representation is
232 constructed in python using the *networkx* package, where nodes are segments and edges are the
233 valves that separate them. The reachability matrix (**R**) is constructed using python, with rows
234 corresponding to isolated segments and columns corresponding to affected segments. Values are
235 assigned to the matrix cells as follows. If an isolated segment (S_m) (row m) results in loss of
236 connection of the segment S_n (column n) to any water source, a value of 2 is assigned to $\mathbf{R}[S_m,$
237 $S_n]$. If the isolation of S_m results in loss of connection of S_n to a reservoir but maintains a
238 connection to a tank, a value of 1 is assigned to $\mathbf{R}[S_m, S_n]$. If S_n is connected to the water
239 reservoir regardless of S_m 's isolation, a value of 0 is assigned. The existence of a connection, or
240 flow path, between source(s) and segments is evaluated using the *has_path()* function in the
241 *networkx* package. The sum of the values in column n is the vulnerability score of segment S_n ,
242 and indicates how vulnerable segment S_n is to other segments' isolation. For this study, the GIS
243 data for the WDN model were provided by the City of Tampa. The City of Tampa Water
244 Department is responsible for pumping 257,000 m³/day of water through approximately 134,000
245 pipes to about 600,000 customers (Abdel-Mottaleb et al. 2019; Park et al. 2010). There is one
246 reservoir in the network and five storage tanks. The WDN model was a skeletonized version of
247 the field-validated model used by the city at the time of our research, consisting of 1978
248 segments and all isolation valves were assumed to be operable.

249 Census block group polygon features were overlaid with the segment line features, as shown
250 in Fig. 2 so that the length of segments within given census block groups could be determined.
251 The vulnerability score for a segment i , $S_{v,i}$, was weighed with the ratio of its length within a

252 given census block, $L_{b,i}$, to its total length, L_i . The hydraulic vulnerability per polygon was
 253 calculated using the *summarize within* geoprocessing tool within GIS by aggregating the
 254 weighed vulnerability scores of the segments contained in the polygon according to equation 1,
 255 where k is the number of segments in a given census block. The higher the vulnerability scores of
 256 segments in a census block group, the higher the Hydraulic Vulnerability Index (HVI) score of
 257 that census block group.

$$258 \quad HVI_b = \sum_{i=1}^{i=k} S_{v,i} \times \frac{L_{b,i}}{L_i} \quad \text{Equation 1}$$

259

260 [insert Figure 2 here]

261

262 It is important to note that not all aspects of hydraulic vulnerability are accounted for or
 263 considered by this method since this study focuses on vulnerability due to the network
 264 configuration. Namely, this method does not consider the likelihood or consequence of failure,
 265 and implicitly assumes that all segments have an equal probability of failing (or being isolated).
 266 Finally, only one segment at a time was simulated as isolated. In reality, there could be different
 267 types of failures simultaneously in WDNs. These are model limitations that need to be
 268 considered in future research on our framework.

269 To account for infrastructure interdependencies that can lead to cascading failures, we
 270 evaluated the vulnerability of the potable water network based on its physical colocation with
 271 other infrastructure networks under the assumption that increasing colocation can contribute to
 272 the propagation of failure (but does not determine vulnerability). While this assumption may be
 273 generally appropriate for this study of a dense, urban environment, it may not be so for rural
 274 contexts where areas with lower levels of colocation could be equally or more vulnerable

275 because of their greater difficulty to access in emergencies (Clar 2019). Our model considered
276 four infrastructure networks: potable water, sewer, stormwater, and roads, all of which are
277 completely separate systems in Tampa. All data were provided by our partners in the City of
278 Tampa. The data layers for each infrastructure were imported into GIS and the multi-layer sets
279 for a single infrastructure were merged (e.g., gravity and pressurized pipes). Each pair of
280 infrastructures (line features) were intersected to provide point features indicating colocation
281 between the pair of infrastructures. The six colocation point layers were merged into a single
282 feature class, which was used to calculate the density of co-located infrastructures within each
283 census block group. The point densities were then used to assign an Infrastructure Colocation
284 Index (ICI), where census block groups with higher ICI were considered more vulnerable in the
285 context of infrastructure interdependencies. However, it must be noted that, while this approach
286 views infrastructure colocation as a vulnerability, the model does not provide a complete
287 representation of the interdependencies between infrastructures. Moreover, this approach also
288 does not take into account the potential impacts of weather-related events, such as roadway
289 flooding, which can impede access to broken systems and therefore increase vulnerability (Wang
290 et al. 2019). In the end, the hydraulic vulnerability and colocation indices were aggregated with
291 equal weighting into a Water Infrastructure Vulnerability Index (WIVI).

292 Finally, we used the identified environmental and social vulnerabilities to compute an
293 aggregate Vulnerability of Place Index (VPI), which allowed us to map the spatial distribution of
294 combined environmental and social vulnerabilities across the city. Despite the breadth of
295 scientific literature on place-based vulnerability, many studies fail to consider the effect of the
296 infrastructural vulnerability on the overall vulnerability of communities (see Borden et al. 2007;
297 Cutter et al. 2003). We therefore sought to situate water infrastructure vulnerability within place-

298 based models. This required a GIS intersect of the VPI and WIVI layers to identify highly
299 vulnerable urban spaces within environmental, social, and infrastructural context.

300

301 **Results and Discussion**

302 Our quantitative models described previously yielded four main vulnerability indices, which
303 we mapped in GIS. In this section, we discuss the Environmental Vulnerability Index (EVI), the
304 Social Vulnerability Index (SVI), the Vulnerability of Place Index (VPI), and the Water
305 Infrastructure Vulnerability Index (WIVI). We conclude with observations on the aggregation of
306 VPI and WIVI layers.

307

308 ***Environmental Vulnerability Index (EVI)***

309 Our assessment of environmental vulnerability considered the risk of flooding across the city.
310 Our GIS model shows that the southeast parts of the city are highly vulnerable to flooding (Fig.
311 3). This region includes the area surrounding MacDill Air Force Base, Sun Bay South, Palma
312 Ceia, and Davis Islands. We also found a high risk of flooding for neighborhoods such as
313 Temple Crest, Sulphur Springs, Seminole Heights, and Tampa Heights, which are all situated
314 along the Hillsborough River. Perhaps due to their proximity to the Lower Hillsborough
315 Wilderness Preserve and surrounding wetlands, neighborhoods farther north such as Tampa
316 Palms, New Tampa, and Pebble Creek were also highly vulnerable to flooding.

317

318 [insert Figure 3 here]

319

320 While the risk of flooding cuts across the city, we found that marginalized communities in
321 eastern parts of the city were more vulnerable to the dangers posed by the proximity to hazardous
322 waste sites compared to surrounding communities. As shown in Fig. 3, there was a distinct
323 corridor of census block groups with high hazardous waste proximity and a higher number of
324 brownfields running from the southeast to the northeast parts of Tampa. Our model suggests that
325 the most affected neighborhoods in southeast Tampa were around the Port of Tampa Bay (with
326 several Superfund sites), historic Ybor City (with several brownfields), and the historically Black
327 community of East Tampa. Other neighborhoods farther north include Jackson Heights, Sulphur
328 Springs, North Tampa, Temple Crest, and University Square — all low-income, predominantly
329 Black or Hispanic communities. Within the context of flooding and proximity to hazardous
330 waste sites, we found that the corridor running from the southeast to the northeast part of the city
331 had more census block groups with a high Environmental Vulnerability Index. However, there
332 are pockets of environmental vulnerability in Forest Hill and Carrollwood, both in the northwest
333 of the city.

334

335 ***Social Vulnerability Index (SVI)***

336 Our factor analytic model yielded four factors with eigenvalues greater than 1, which
337 together accounted for approximately 66% of the variance for the 14 social vulnerability
338 variables. As shown in Table 3, the first component accounted for 26.4% of the variability, and
339 was strongly correlated with households below the poverty line, lower education levels, a high
340 number of people living with disabilities, minority races, rental units, and households with no
341 access to the internet. The second component correlated strongly with population characteristics

342 (high population density, large household sizes, and multi-family housing units) and accounted
 343 for 16.5% of the variance. The last two factors accounted for 13.6% and 9.8% of the variance.

344

345 **Table 3.** Factor analysis of social vulnerability indicators

Variable	Component			
	1 (26.4)	2 (16.5)	3 (13.6)	4 (9.8)
Factor Loadings				
<i>Social Class</i>				
%Households below Poverty Level (2016)	.877	-	-	-
%Less than Highschool Diploma (2017)	.548	-	-	-
Population per Acre (2016)	-	.411	-	-
<i>Household Composition & Sensitive Population</i>				
Average Household Size (2016)	-	.649	-	-
%Population under 14 years (2017)	-	-	.678	-
%Population over 64 years (2016)	-	-	-.685	-
%Population 20-64 with Disability (2016)	.686	-	-	-
<i>Minority</i>				
%Limited English-Speaking Households (2017)	-	-	-	.704
%Minority Race (2017)	.733	-	-	-
<i>Housing Tenure</i>				
%Renter Occupied (2017)	.669	-	-	-
%Occupied Units (2017)	-	-	-	.400
%Multi-family Units (2016)	-	.875	-	-
<i>Quality of Life</i>				
Travel Time to Work (2017)	-	-	-	.507
%Households with No Internet Access (2017)	.801	-	-	-

346

347 The component scores were weighted by variance and summed into a cumulative
 348 vulnerability score. The cumulative scores for the 309 valid block groups ranged between -63 to
 349 131, with a mean of .2 and a median of -.5. Based on standard deviation (36), skewness (.7), and
 350 kurtosis (.4), the vulnerability scores had a normal distribution. For ease of interpretation, the

351 scores were re-coded into social vulnerability indices between 1-4, with (1) representing census
352 block groups below the 25th percentile and (4) for those above the 75th percentile (Fig. 4).

353

354 [insert Figure 4 here]

355

356 As with environmental vulnerability, we found pockets of high social vulnerability in the
357 eastern parts of the city and a few neighborhoods to the west. Some of the areas with high social
358 vulnerability in the eastern parts of the city included Ybor City, East Tampa, Jackson Heights,
359 Temple Crest, Sulphur Springs, and North Tampa. West and North Hyde Park, Drew Park, Plaza
360 Terrace, and Old West Tampa were areas with high social vulnerability in the western parts of
361 Tampa. The block groups with high (≥ 4) indices (n=80) correspond to communities that have a
362 majority of households living below the poverty level. These neighborhoods had a poverty rate
363 of 46% or higher compared to the city's overall rate of 20%.

364 We observed that areas with a large proportion of minority races (68% or higher) also had
365 high social vulnerability indices. The influence of race and class was no surprise, given the
366 strong positive correlation with the first factor in our factor analysis results. More importantly,
367 studies have shown that income and race/ethnicity significantly influence how people cope with
368 and respond to environmental, social, and infrastructural disruptions (e.g., Borden et al. 2007;
369 Cutter 1996; Cutter et al. 2003; Flanagan et al. 2011; Sweeney 2006).

370

371 ***Vulnerability of Place Index (VPI)***

372 When taken together, environmental conditions and social makeup intersect to produce a
373 distinctive corridor of high vulnerability in the eastern parts of the city (Fig. 5). The corridor

374 begins in Ybor City, extends northward to the University Community area, and then west to
375 neighborhoods around Nebraska Avenue. There is also a distinct pocket of high VPI around
376 West and North Hyde Park, Drew Park, Plaza Terrace, and Old West Tampa in the northwest
377 part of the city. Interestingly, these northwest parts are separated from the eastern corridor with a
378 narrow band of low overall vulnerability.

379

380 [insert Figure 5 here]

381

382 ***Water Infrastructure Vulnerability Index (WIVI)***

383 Whereas vulnerability of place (due to environmental and social conditions) shows an eastern
384 and northwestern bias, the results in Fig. 6 reveal that vulnerability of water infrastructures is far
385 less distinct. Besides the neighborhoods in the north-central part of the city, such as Sulphur
386 Springs and Old Seminole Heights, block groups with high WIVI were mostly spread out in the
387 southeast and southwest parts of the city. These included some parts of Ybor City, Tampa
388 Heights, and North Hyde Park. The WIVI pattern was much like that observed from the
389 distribution of infrastructure colocation indices.

390

391 [insert Figure 6 here]

392

393 Many of the block groups with high infrastructure colocation are in the southeast parts of the
394 city (including East Tampa and Ybor City), Tampa Heights, Downtown Tampa, and Old West
395 Tampa. The high ICI levels were expected in these densely built areas of the city (Ouyang 2014;
396 Rinaldi et al. 2001). Because of the high ICI, water infrastructures in these areas are highly

397 interdependent and vulnerable to cascading failures from transportation, stormwater, and
398 wastewater infrastructures. However, the most hydraulically vulnerable census block groups
399 regarding reachability to water sources are located in East Tampa, New Tampa, and near the Port
400 of Tampa. They have the highest HVI values because there are non-redundant paths between
401 these locations and the water sources. In addition, there is a lack of redundancy inherent within
402 the census block groups of these locations. It is interesting to note that the same community
403 could have census block groups with both high and low HVI values. This is likely due to the
404 redundancies in connectivity being concentrated in certain census block groups over others. The
405 census block groups with the lowest vulnerability scores are located in New Tampa, South
406 Tampa, Downtown Tampa, Seminole Heights, and University Square.

407

408 ***Environmental, Social, and Water Infrastructure Vulnerabilities***

409 To understand the spatial distribution of water infrastructure vulnerability within the
410 environmental and social context, we aggregated the WIVI and VPI layers in GIS (Fig. 7), which
411 enabled us to identify highly vulnerable areas across the city that were also highly susceptible to
412 water infrastructure failures. The results indicate that 11% of the 309 census block groups had a
413 high WIVI and High VPI. In other words, these block groups were environmentally and socially
414 vulnerable and had a high risk of water infrastructure failure. These block groups were primarily
415 in the eastern neighborhoods of the city, including North Tampa, Sulphur Springs, Old Seminole
416 Heights, Terrace Park, and Temple Crest (to the north), and East Tampa and Ybor City (to the
417 south). We did not find block groups with High WIVI and VPI in South Tampa and New Tampa.

418

419 [insert Figure 7 here]

420

421 The intersection of place vulnerability and water insecurity reveals three key insights about
422 water infrastructure inequalities in marginalized communities in Tampa. First, residents in the
423 eastern parts of the city are disproportionately susceptible to the impacts of environmental
424 hazards. Although the risk of flooding has a northwest and southeast bias, the proximity to
425 brownfields and sites producing hazardous wastes contributes to the overall environmental
426 vulnerability of the neighborhoods in the eastern part of the city, which represent predominantly
427 low-income Black communities. The unequal distribution of environmental risks reveal long-
428 standing environmental injustices where studies have shown that people of color in low-income
429 communities often bear the greatest burden when it comes to environmental pollution and
430 contamination (Mohai et al. 2009).

431 Second, we find that social vulnerability was unequally distributed in the eastern and western
432 areas of the city, which consist of neighborhoods that have been racially segregated following
433 the passing of segregation laws in the late 19th century. One such community is Sulphur Springs,
434 which also has a high level of environmental vulnerability. Although it was once a tourist hub for
435 visitors across the city and state, years of racial segregation and out-migration of wealthy
436 residents in the 1980s turned it into a minority and low-income neighborhood (Jackson 2020).
437 Other areas that have been racially segregated and have a high degree of social vulnerability
438 include West Tampa, West Hyde Park, East Tampa, and Ybor City. Studies have shown that
439 federal housing policies such as Section 8 assistance and the Hope VI project concentrated low-
440 income residents and people of color in these racially segregated communities (Greenbaum et al.
441 2008).

442 Third, our study finds that the overall risk of communities becoming disconnected from
443 water sources in events that require segment isolation (e.g., pipe maintenance, failure, repair, and
444 replacement) is lower in socially vulnerable areas. Environmental and social conditions in
445 Tampa intersect with water infrastructure vulnerabilities to create pockets of infrastructure
446 inequality. In other words, residents in environmentally and socially vulnerable areas such as
447 Sulphur Springs, North Tampa, North Hyde Park, West Tampa, Old Seminole Heights, Terrace
448 Park, Temple Crest, East Tampa, and Ybor City are predisposed to the impacts of segment
449 isolation and potential cascading failures from co-location interdependencies. Densely built areas
450 of the city potentially have highly interdependent infrastructures and are more susceptible to
451 cascading failures. Therefore, addressing water infrastructure inequality in Tampa requires
452 attention to infrastructure interdependencies in the densely built areas of the city.

453 Finally, given the age of the city's water distribution network and years of underinvestment
454 in new water infrastructure, high hydraulic vulnerability might be expected in the oldest
455 neighborhoods of the city. However, due to the high level of redundancies compared to
456 surrounding areas, the results of our hydraulic vulnerability model indicate that some of the
457 oldest communities are less vulnerable to disconnection from water sources in events of segment
458 isolation. In the future, infrastructure improvement efforts should pay close attention to
459 environmentally and socially vulnerable neighborhoods that also have high water infrastructure
460 vulnerability (identified in Fig. 7). At the time of this study, for example, the city began planning
461 for an infrastructure renewal initiative called Progressive Infrastructure Planning to Ensure
462 Sustainability (PIPES, <https://www.tampagov.net/initiatives/pipes>), which includes creation of a
463 \$2.9 billion, 20-year plan to upgrade water and sewer infrastructures (WFTS 2019). Through our
464 National Science Foundation CRISP ("Critical Resilient Interdependent Infrastructure Systems

465 and Processes") project, which supported the research for this study, we are working with the
466 city's water department to share the results of our simulations and modeling with the goal of
467 informing their capital improvement plan, especially as it relates to the city's underserved
468 communities.

469

470 Conclusion

471 Mapping water infrastructure inequalities within environmental and social contexts is crucial
472 for assisting stakeholders in prioritizing resources by identifying areas of low resilience. Our
473 study adds to the growing body of work on environmental and social injustice by showing how
474 the unequal distribution of water infrastructure vulnerability is linked to race, social class, and
475 environmental hazards. The framework we use examines environmental hazards with GIS and
476 uses a factor analytic approach with weighted component scores for computing a cumulative
477 vulnerability score to account for the varied contributions of different variables to social
478 vulnerability in each community. The framework also draws on network analysis of a water
479 distribution network to evaluate the reachability to water sources under failure scenarios to
480 assess vulnerability and uses GIS to examine the physical colocation of infrastructures to identify
481 interdependencies. Taken together, these analyses provide a reproducible, geospatial
482 vulnerability framework that quantifies and maps environmental, social, and infrastructure
483 vulnerability to identify water infrastructure inequality in marginalized urban communities,
484 which can be utilized in the development of a community's capital improvement and asset
485 management plans.

486 **Data Availability Statement**

487 All data, models, and code that support the findings of this study are available from the
488 corresponding author upon reasonable request.

489

490 **Acknowledgments**

491 This research was conducted with support from the U.S. National Science Foundation's Critical
492 Resilient Interdependent Infrastructure Systems and Processes (NSF CRISP) program, Grant No.
493 1638301. Any opinions, findings, and conclusions or recommendations expressed in this material
494 are those of the authors and do not necessarily reflect the views of the National Science
495 Foundation. Support for the Florida Brownfields Redevelopment Atlas was provided by the
496 Florida Department of Environmental Protection through U.S. EPA CERCLA Section 128(a)
497 funding. We gratefully acknowledge the cooperation and assistance of the City of Tampa.

498

499 **References**

500 Abdel-Mottaleb, N., P. Ghasemi Saghand, H. Charkhgard, and Q. Zhang. 2019. "An exact
501 multiobjective optimization approach for evaluating water distribution infrastructure
502 criticality and geospatial interdependence." *Water Resources Research*, 55 (7), 5255–5276.
503 <https://doi.org/10.1029/2018WR024063>.

504 Abdel-Mottaleb, N., and T. Walski. 2020. "Evaluating segment and valve importance and
505 vulnerability." *Journal of Water Resources Planning and Management*,
506 [https://doi.org/10.1061/\(ASCE\)WR.1943-5452.0001366](https://doi.org/10.1061/(ASCE)WR.1943-5452.0001366)

507 Abdel-Mottaleb, N., and Q. Zhang. 2020. "Water distribution-transportation interface
508 connectivity responding to urban geospatial morphology." *Journal of Infrastructure Systems*,
509 26 (3), 04020025. [https://doi.org/10.1061/\(ASCE\)IS.1943-555X.0000563](https://doi.org/10.1061/(ASCE)IS.1943-555X.0000563).

510 Adger, W. N. 2006. "Vulnerability." *Global Environmental Change*, 16, 268–281.
511 <http://dx.doi.org/10.1016/j.gloenvcha.2006.02.006>.

512 Allaire, M., H. Wu, and U. Lall. 2018. "National trends in drinking water quality violations."
513 *Proceedings of the National Academy of Sciences of the United States of America*, 115 (9),
514 2078–2083. <https://doi.org/10.1073/pnas.1719805115>.

515 AWWA (American Water Works Association). 2013. *AWWA J100-10(R13) Risk and Resilience
516 Management of Water and Wastewater Systems*. Denver, CO: American Water Works
517 Association.

518 AWWA (American Water Works Association). 2019. *State of the water industry report*. Denver,
519 CO: American Water Works Association.

520 Bentley Systems. 2019. WaterGEMS, Bentley Systems, Exton, Pa.

521 Bigger, J. E., M. G. Willingham, F. Krimgold, and L. Mili. 2009. "Consequences of critical
522 infrastructure interdependencies: lessons from the 2004 hurricane season in Florida."
523 *International Journal of Critical Infrastructures*, 5 (3), 199–219.
524 <https://doi.org/10.1504/IJCIS.2009.024871>.

525 Bjarnadottir, S., Y. Li, and M. G. Stewart. 2011.
526 "Social vulnerability index for coastal communities at risk to hurricane hazard and a
527 changing climate." *Natural Hazards*, 59, 1055–1075. <https://doi.org/10.1007/s11069-011-9817-5>.

528 Boin, A., and A. McConnell. 2007. "Preparing for critical infrastructure breakdowns: The limits
529 of crisis management and the need for resilience." *Journal of Contingencies and Crisis
530 Management*, 15 (1), 50–59. <https://doi.org/10.1111/j.1468-5973.2007.00504.x>.

531 Borden, K. A., M. C. Schmidlein, C. T. Emrich, W. W. Piegorsch, and S. L. Cutter. 2007.
532 "Vulnerability of US cities to environmental hazards." *Journal of Homeland Security and
533 Emergency Management*, 4 (2), Article No. 5. <https://doi.org/10.2202/1547-7355.1279>.

534 Butler, L. J., M. K. Scammell, and E. B. Benson. 2016. "The Flint, Michigan, water crisis: A
535 case study in regulatory failure and environmental injustice." *Environmental Justice*, 9 (4),
536 93–97. <https://doi.org/10.1089/env.2016.0014>.

537 Butler, D., S. Ward, C. Sweetapple, M. Astaraie-Imani, K. Diao, R. Farmani, and G. Fu. 2017.
538 "Reliable, resilient and sustainable water management: The Safe & SuRe approach." *Global
539 Challenges*, 1 (1), 63–77. <https://doi.org/10.1002/gch2.1010>.

540 Center for Brownfields Research and Redevelopment. 2020. *The Florida brownfields
541 redevelopment atlas*. Digital Heritage and Humanities Collections, University of South
542 Florida, Tampa. <http://www.usf.edu/brownfields>.

543 Christodoulou, S. E., and M. Fragiadakis. 2015. "Vulnerability assessment of water distribution
544 networks considering performance data." *Journal of Infrastructure Systems*, 21 (2),
545 04014040. [https://doi.org/10.1061/\(ASCE\)IS.1943-555X.0000224](https://doi.org/10.1061/(ASCE)IS.1943-555X.0000224).

546 Clar, C. 2019. "How demographic developments determine the management of
547 hydrometeorological hazard risks in rural communities: The linkages between demographic
548 and natural hazards research." *Wiley Interdisciplinary Reviews: Water*, 6 (4), e1378.
549 <https://doi.org/10.1002/wat2.1378>.

550 Clark, A. 2018. *The poisoned city: Flint's water and the American urban tragedy*. New York:

551 Henry Holt and Company.

552 Clark, G. E., S. C. Moser, S. J. Ratick, K. Dow, W. B. Meyer, S. Emani, W. Jin, J. X. Kasperson,
553 R. E. Kasperson, and H. E. Schwarz. 1998. "Assessing the vulnerability of coastal
554 communities to extreme storms: The case of Revere, MA, USA." *Mitigation and Adaptation
555 Strategies for Global Change*, 3 (1), 59–82. <https://doi.org/10.1023/A:1009609710795>.

556 Curley, A. M. 2005. "Theories of urban poverty and implications for public housing policy."
557 *Journal of Sociology and Social Welfare*, 32 (2), 97–119. Available at:
558 <https://scholarworks.wmich.edu/jssw/vol32/iss2/7>.

559 Cutter, S. L. 1996. "Vulnerability to environmental hazards." *Progress in Human Geography*, 20
560 (4), 529–539. <https://doi.org/10.1177/030913259602000407>.

561 Cutter, S. L., L. Barnes, M. Berry, C. Burton, E. Evans, E. Tate, and J. Webb. 2008. "A place-
562 based model for understanding community resilience to natural disasters." *Global
563 Environmental Change*, 18 (4), 598–606. <https://doi.org/10.1016/j.gloenvcha.2008.07.013>.

564 Cutter, S. L., B. J. Boruff, and W. L. Shirley. 2003. "Social vulnerability to environmental
565 hazards." *Social Science Quarterly*, 84 (2), 242–261. [https://doi.org/10.1111/1540-6237.8402002](https://doi.org/10.1111/1540-
566 6237.8402002).

567 Dar, O. A., and M. S. Khan. 2011. "Millennium development goals and the water target: details,
568 definitions and debate." *Tropical Medicine & International Health*, 16 (5), 540–544.
569 <https://doi.org/10.1111/j.1365-3156.2011.02736.x>.

570 Deitz, S., and K. Meehan. 2019. "Plumbing poverty: Mapping hot spots of racial and geographic
571 inequality in US household water insecurity." *Annals of the American Association of
572 Geographers*, 109 (4), 1092–1109. <https://doi.org/10.1080/24694452.2018.1530587>.

573 Emrich, C. T. 2005. *Social vulnerability in US metropolitan areas: Improvements in hazard*
574 *vulnerability assessment*. Ph.D. dissertation, University of South Carolina, Columbia.

575 Flanagan, B. E., E. W. Gregory, E. J. Hallisey, J. L. Heitgerd, and B. Lewis. 2011. "A social
576 vulnerability index for disaster management." *Journal of Homeland Security and Emergency*
577 *Management*, 8 (1), Article No. 3. <https://doi.org/10.2202/1547-7355.1792>.

578 Folkman, S. 2018. *Water main break rates in the USA and Canada: A comprehensive study*.
579 Logan: Utah State University.

580 Graham, S. 2010. *Disrupted cities: When infrastructure fails*. New York: Routledge.

581 Greenbaum, S., W. Hathaway, C. Rodriguez, A. Spalding, and B. Ward. 2008. "Deconcentration
582 and social capital: Contradictions of a poverty alleviation policy." *Journal of Poverty*, 12 (2),
583 201–228. <https://doi.org/10.1080/10875540801973609>.

584 Harlan, S. L., J. H. Declet-Barreto, W. L. Stefanov, and D. B. Petitti. 2012. "Neighborhood
585 effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa
586 County, Arizona." *Environmental Health Perspectives*, 121 (2), 197–204.
587 <https://doi.org/10.1289/ehp.1104625>.

588 Hernandez, E. H., and L. Ormsbee. 2021. "Segment-based assessment of consequences of failure
589 on water distribution systems." *Journal of Water Resources Planning and Management*, 147
590 (4). <https://doi.org/10.1061/9780784480625.053>.

591 Jackson, A. T. 2020. *Heritage, tourism, and race: The other side of leisure*. New York:
592 Routledge.

593 Jepson, W. E., and E. Vandewalle. 2016. "Household water insecurity in the Global North: A
594 study of rural and periurban settlements on the Texas–Mexico border." *The Professional*
595 *Geographer*, 68 (1), 66–81. <https://doi.org/10.1080/00330124.2015.1028324>.

596 Jepson, W. E., A. Wutich, S. M. Collins, G. O. Boateng, and S. L. Young. 2017. "Progress in
597 household water insecurity metrics: A cross-disciplinary approach" *Wiley Interdisciplinary
598 Reviews: Water*, 4 (3), e1214. <https://doi.org/10.1002/wat2.1214>.

599 Laucelli, D., and O. Giustolisi. 2015. "Vulnerability assessment of water distribution networks
600 under seismic actions." *Journal of Water Resources Planning and Management*, 141 (6),
601 04014082. [https://doi.org/10.1061/\(ASCE\)WR.1943-5452.0000478](https://doi.org/10.1061/(ASCE)WR.1943-5452.0000478).

602 Lehigh, G. R., E. C. Wells, and D. Diaz. 2020. "Evidence-informed strategies for promoting
603 equitability in brownfields redevelopment." *Journal of Environmental Management*, 261 (1),
604 110150. <https://doi.org/10.1016/j.jenvman.2020.110150>.

605 Leker, H. G., and J. M. Gibson. 2018. "Relationship between race and community water and
606 sewer service in North Carolina." *PLoS ONE*, 13 (3), e0193225.
607 <https://doi.org/10.1371/journal.pone.0193225>

608 Linton, J., and J. Budds. 2014. "The hydrosocial cycle: Defining and mobilizing a relational-
609 dialectical approach to water." *Geoforum*, 57, 170–180.
610 <https://doi.org/10.1016/j.geoforum.2013.10.008>.

611 Maiolo, M., D. Pantusa, M. Carini, G. Capano, F. Chiaravalloti, and A. Procopio. 2018. "A new
612 vulnerability measure for water distribution network." *Water*, 10 (8), 1005.
613 <https://doi.org/10.3390/w10081005>

614 McFarlane, K., and L. M. Harris. 2018. "Small systems, big challenges: Review of small
615 drinking water system governance." *Environmental Reviews*, 26 (4), 378–395.
616 <https://doi.org/10.1139/er-2018-0033>.

617 Meehan, K., W. Jepson, L. Harris, A. Wutich, M. Beresford, A. Fencl, J. London, G. Pierce, L.
618 Radonic, E. C. Wells, N. Wilson, E. Adams, R. Arsenault, A. Brewis, V. Harrington, Y.

619 Lambrinidou, D. McGregor, R. Patrick, B. Pauli, A. Pearson, S. Shah, D. Splichalova, C.
620 Workman, and S. Young. 2020. "Exposing the myths of household water insecurity in the
621 global North: A critical review." *Wiley Interdisciplinary Reviews: Water*, 7, e1486.
622 <https://doi.org/10.1002/wat2.1486>.

623 Mihelcic, J. R., C. C. Naughton, M. E. Verbyla, Q. Zhang, R. W. Schweitzer, S. M. Oakley, E.
624 C. Wells, and L. M. Whiteford. 2017. "The grandest challenge of all: The role of
625 environmental engineering to achieve sustainability in the world's developing regions."
626 *Environmental Engineering Science*, 34 (1), 16–41. <https://doi.org/10.1089/ees.2015.0334>.

627 Mirabal, N. R. 1993. "The Afro-Cuban community in Ybor City and Tampa, 1886-1910." *OAH*
628 *Magazine of History*, 7 (4), 19–22. <https://doi.org/10.1093/maghis/7.4.19>.

629 Mohai, P., D. Pellow, and J. T. Roberts. 2009. "Environmental justice." *Annual Review of*
630 *Environment and Resources*, 34, 405–430. <https://doi.org/10.1146/annurev-environ-082508-094348>.

632 Mohebbi, S., Q. Zhang, E. C. Wells, T. Zhao, H. Nguyen, M. Li, N. Abdel-Mottaleb, S. Uddin,
633 Q. Lu, M. J. Wakhungu, Z. Wu, Y. Zhang, A. Tuladhar, and X. Ou. 2020. "Cyber-physical-
634 social interdependencies and organizational resilience: A review of water, transportation, and
635 cyber infrastructure systems and processes." *Sustainable Cities and Society*, 62, 102327.
636 <https://doi.org/10.1016/j.scs.2020.102327>.

637 Morrow, B. H. 1999. "Identifying and mapping community vulnerability." *Disasters*, 23 (1), 1–
638 18. <https://doi.org/10.1111/1467-7717.00102>.

639 Ouyang, M. 2014. "Review on modeling and simulation of interdependent critical infrastructure
640 systems." *Reliability Engineering & System Safety*, 121, 43–60.
641 <https://doi.org/10.1016/j.ress.2013.06.040>.

642 Park, S., R. Vega, Z. Choto, and M. Grewe. 2010. "Risk-based asset prioritization of water
643 transmission/distribution pipes for the city of Tampa." *Florida Water Resources Journal*,
644 December, 22–28. Available at: <https://www.fwrj.com/techarticles/1210%20tech%203.pdf>.

645 Patz, J. A., S. J. Vavrus, C. K. Uejio, and S. L. McLellan. 2008. "Climate change and waterborne
646 disease risk in the Great Lakes region of the US." *American Journal of Preventive Medicine*,
647 35 (5), 451–458. <https://doi.org/10.1016/j.amepre.2008.08.026>.

648 Pauli, B. J. 2019. *Flint fights back: Environmental justice and democracy in the Flint water crisis*.
649 Cambridge, MA: The MIT Press.

650 Reid, C. E., M. S. O'Neill, C. J. Gronlund, S. J. Brines, D. G. Brown, A. V. Diez-Roux, and J.
651 Schwartz. 2009. "Mapping community determinants of heat vulnerability." *Environmental
652 Health Perspectives*, 117 (11), 1730–1736. <https://doi.org/10.1289/ehp.0900683>.

653 Rinaldi, S. M., J. P. Peerenboom, and T. K. Kelly. 2001. "Identifying, understanding, and
654 analyzing critical infrastructure interdependencies." *IEEE Control Systems Magazine*, 21 (6),
655 11–25. <https://doi.org/10.1109/37.969131>.

656 Sapir, D. G., and M. F. Lechat. 1986. "Reducing the impact of natural disasters: Why aren't we
657 better prepared?" *Health Policy and Planning*, 1 (2), 118–126.
658 <https://doi.org/10.1093/heapol/1.2.118>.

659 Scheper-Hughes, N. 2005. "Katrina: The disaster and its doubles." *Anthropology Today*, 21 (6),
660 2–4. <https://doi.org/10.1111/j.1467-8322.2005.00392.x>.

661 Sedlak, D. 2014. *Water 4.0: The past, present, and future of the world's most vital resource*.
662 New Haven, CT: Yale University Press.

663 Soldi, D., A. Candelieri, and F. Archetti. 2015. "Resilience and vulnerability in urban water
664 distribution networks through network theory and hydraulic simulation." *Procedia
665 Engineering*, 199, 1259–1268. <https://doi.org/10.1016/j.proeng.2015.08.990>.

666 Steele, W., and C. Legacy. 2017. "Critical urban infrastructure." *Urban Policy and Research*, 35
667 (1), 1–6. <https://doi.org/10.1080/08111146.2017.1283751>.

668 Sweeney, K. A. 2006. "The blame game: Racialized responses to Hurricane Katrina." *Du Bois
669 Review: Social Science Research on Race*, 3 (1), 161–174.
670 <https://doi.org/10.1017/S1742058X06060115>.

671 Switzer, D., and M. P. Teodoro. 2017. "The color of drinking water: Class, race, ethnicity, and
672 safe drinking water act compliance." *Journal-American Water Works Association*, 109 (9),
673 40–45. <https://doi.org/10.5942/jawwa.2017.109.0128>.

674 Tate, E. 2013. "Uncertainty analysis for a social vulnerability index." *Annals of the Association
675 of American Geographers*, 103 (3), 526–543. <https://doi.org/10.1080/00045608.2012.700616>.

676 Tampa Bay Times. 2019. "Tampa has a lot of old water pipes to fix and residents will foot the
677 bill." *Tampa Bay Times*, May 14, 2019. Available at:
678 [https://www.tampabay.com/tampa/tampa-has-a-lot-of-old-water-pipes-to-fix-and-residents-
will-foot-the-bill-20190513](https://www.tampabay.com/tampa/tampa-has-a-lot-of-old-water-pipes-to-fix-and-residents-
679 will-foot-the-bill-20190513).

680 UNESCO. 2019. *The United Nations world water development report 2019—Leaving no one
681 behind*. New York: United Nations. Available at: [en.unesco.org/themes/water-
security/wwap/wwdr/2019](http://en.unesco.org/themes/water-
682 security/wwap/wwdr/2019).

683 UNICEF & WHO (World Health Organization). 2019. *Joint Monitoring Programme (JMP)
684 progress on household drinking water, sanitation, and hygiene, 2000-2017*. New York and

685 Geneva: United Nations and World Health Organization. Available at:
686 washdata.org/sites/default/files/documents/reports/2019-07/jmp-2019-wash-households.pdf.

687 U.S. Census Bureau. 2017. American Community Survey, 2017. Washington, DC: U.S. Census
688 Bureau. Available at: www.census.gov/acs/www/data/data-tables-and-tools/data-
689 profiles/2017.

690 U.S. Census Bureau. 2019. QuickFacts: Tampa, Florida. Washington, DC: U.S. Census Bureau.
691 Available at: www.census.gov/quickfacts/tampacityflorida.

692 U.S. Department of Homeland Security. 2016. National Flood Hazard Layer (NFHL).
693 Washington, DC: U.S. Department of Homeland Security. Available at:
694 www.fema.gov/national-flood-hazard-layer-nfhl.

695 U.S. Environmental Protection Agency. 2016. *EJ 2020 action agenda: Environmental justice*
696 *strategic plan 2016-2020*. Washington, DC: U.S. Environmental Protection Agency.
697 Available at: www.epa.gov/sites/production/files/2017-10/documents/ej_2020_action_agenda.pdf.

699 Wakhungu, M. J. 2020. *An ethnography of WaSH infrastructures and governance in Sulphur*
700 *Springs, Florida*. Ph.D. dissertation, University of South Florida, Tampa.

701 Wang, W., S. Yang, H. G. Stanley, and J. Gao. 2019. “Local floods induce large-scale abrupt
702 failures of road networks.” *Nature Communications*, 10, 2114.
703 <https://doi.org/10.1038/s41467-019-10063-w>.

704 Wéber, R., T. Huzsvár, and C. Hös. 2020. “Vulnerability analysis of water distribution networks
705 to accidental pipe burst.” *Water Research*, 184, 116178.
706 <https://doi.org/10.1016/j.watres.2020.116178>.

707 Weisberg, R. H., and L. Zheng. 2006. "Hurricane storm surge simulations for Tampa Bay."

708 *Estuaries and Coasts*, 29, 899–913. <https://doi.org/10.1007/BF02798649>.

709 Wells, E. C., G. R. Lehigh, S. Combs, and M. Ballogg. 2020. "Diversity improves design:

710 Sustainable place-making in a suburban Tampa Bay brownfield neighborhood." In S.J.

711 Garren and R. Brinkmann, Eds., *Case Studies in Suburban Sustainability*, pp. 131–149.

712 Gainesville: University Press of Florida.

713 Wells, E. C., W. A. Webb, C. M. Prouty, R. K. Zarger, M. A. Trotz, L. M. Whiteford, and J. R.

714 Mihelcic. 2019. "Wastewater technopolitics on the southern coast of Belize." *Economic*

715 *Anthropology*, 6 (2), 277–290. <https://doi.org/10.1002/sea2.12145>.

716 WFTS (2019). "City of Tampa to spend \$3.2 billion replacing aging infrastructure." *WFTS*

717 *Tampa Bay*, August 19. Available at: <https://www.abcctionnews.com/news/region-hillsborough/city-of-tampa-to-spend-3-2-billion-replacing-aging-infrastructure>.

718 Wilson, W. J. 2012. *The truly disadvantaged: The inner city, the underclass, and public policy*.

719 Second edition. Chicago: University of Chicago Press.

720 Wisner, B., J.-C. Gaillard, and I. Kelman. 2012. "Framing disaster: Theories and stories seeking

721 to understand hazards, vulnerability and risk." In B. Wisner, J.-C. Gaillard, and I. Kelman,

722 Eds., *Handbook of hazards and disaster risk reduction*, pp. 47-62. New York: Routledge.

723 Wutich, A., J. Budds, L. Eichelberger, J. Geere, L. M. Harris, J. A. Horney, W. Jepson, E.

724 Norman, K. O'Reilly, A. L. Pearson, S. H. Shah, J. Shinn, K. Simpson, C. Staddon, J. Stoler,

725 M. P. Teodoro, and S. L. Young. 2017. "Advancing methods for research on household water

726 insecurity: Studying entitlements and capabilities, socio-cultural dynamics, and political

727 processes, institutions and governance." *Water Security*, 2, 1-10.

728 <https://doi.org/10.1016/j.wasec.2017.09.001>.

729

730 Yazdani, A., and P. Jeffrey. 2012. "Water distribution system vulnerability analysis using
731 weighted and directed network models." *Water Resources Research*, 48 (6), W06517.
732 <https://doi.org/10.1029/2012WR011897>.

733 Young, S. L., G. O. Boateng, Z. Jamaluddine, J. D. Miller, E. A. Frongillo, T. B. Neilands, S. M.
734 Collins, A. Wutich, W. E. Jepson, and J. Stoler. 2019. "The Household Water InSecurity
735 Experiences (HWISE) scale: Development and validation of a household water insecurity
736 measure for low-income and middle-income countries." *BMJ Global Health*, 4 (5), e001750.
737 <http://dx.doi.org/10.1136/bmjgh-2019-001750>.

738

739 List of Figures

740

741 **Fig. 1.** Analytical framework for assessing the confluence of environmental, social, and
742 infrastructure vulnerability.

743

744 **Fig. 2.** An overlay of segments with volumes on census block groups in Tampa.

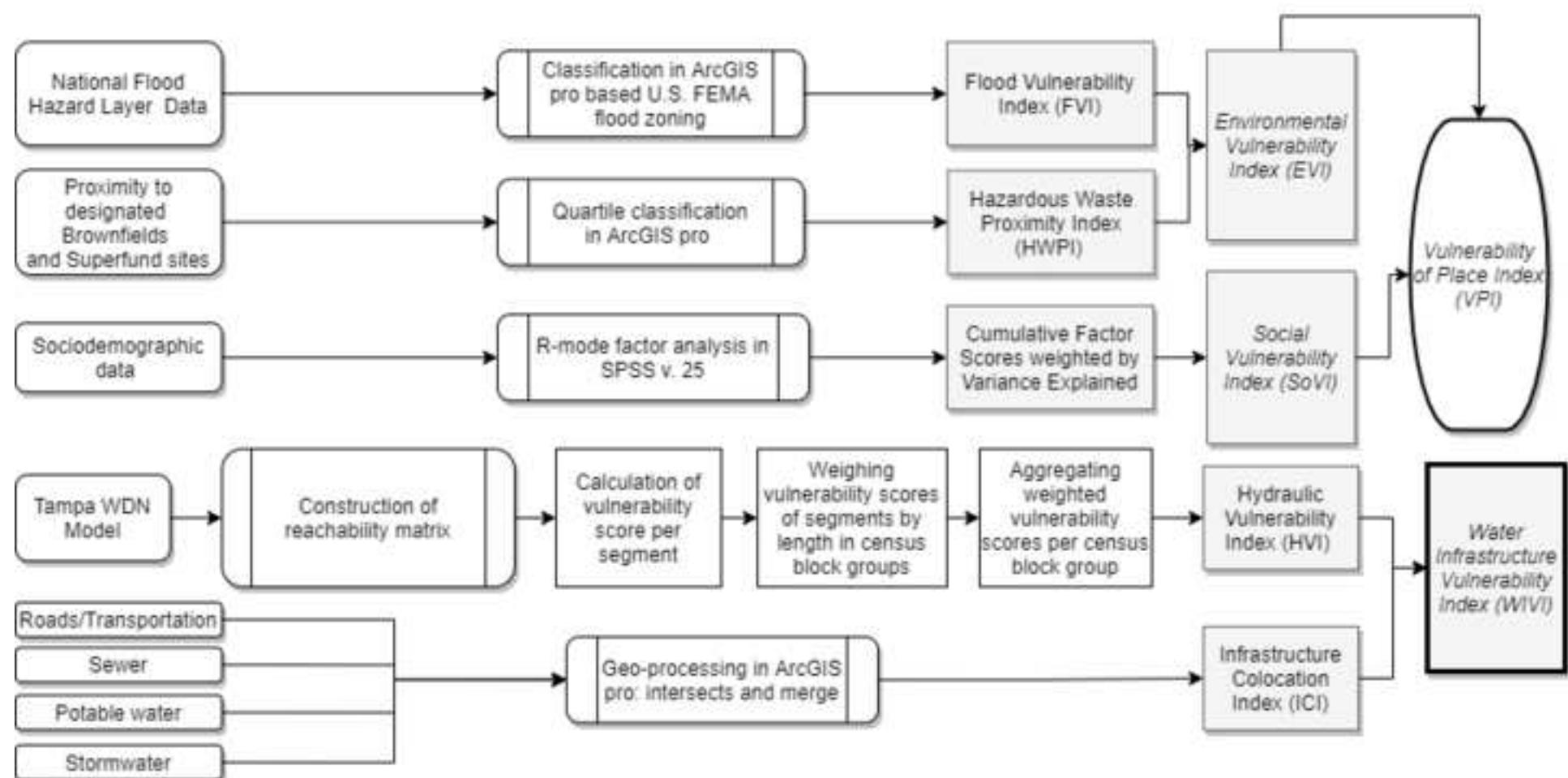
745

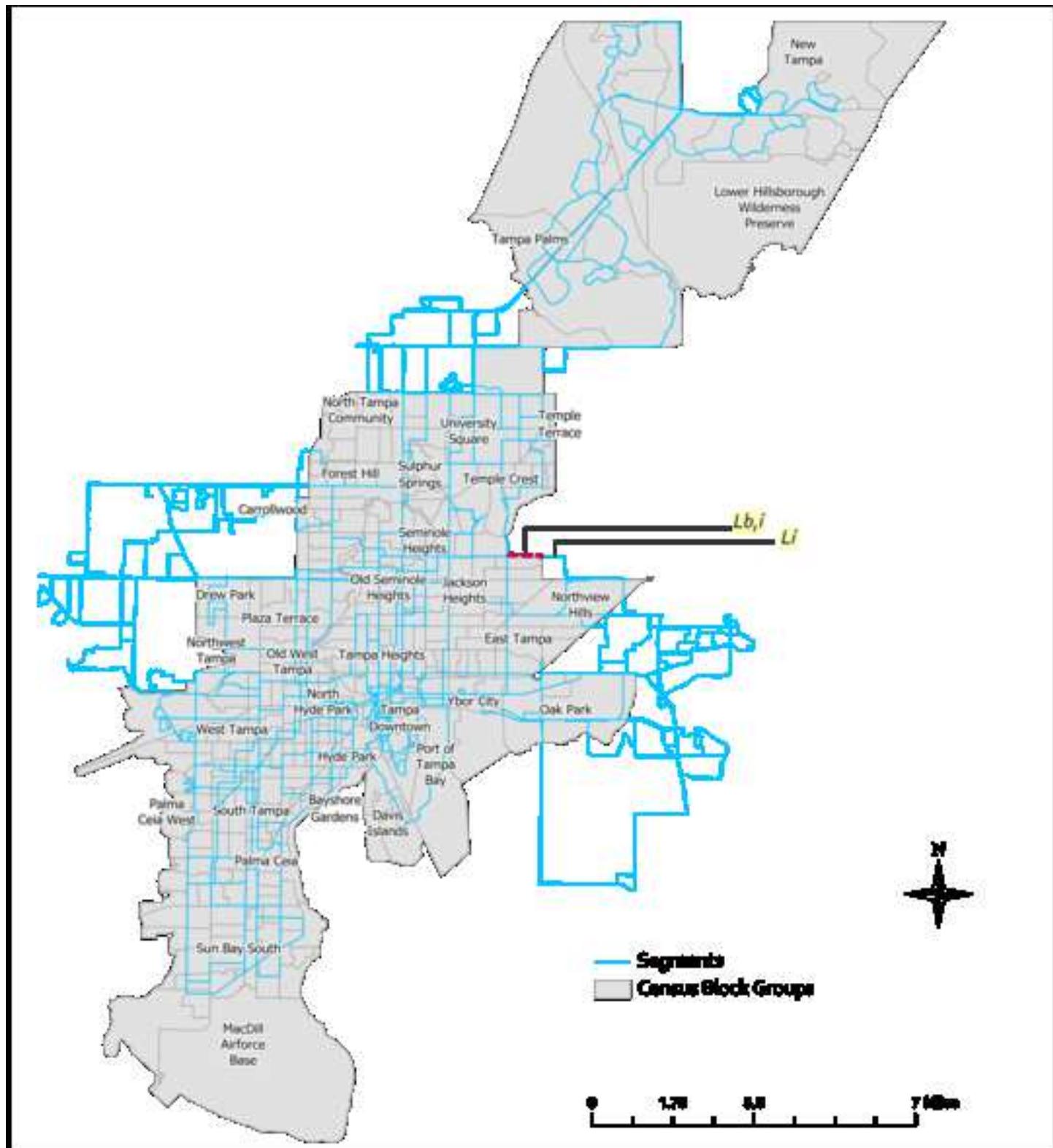
746 **Fig. 3.** Spatial distribution of hazardous waste proximity, flooding, and environmental
747 vulnerability in Tampa.

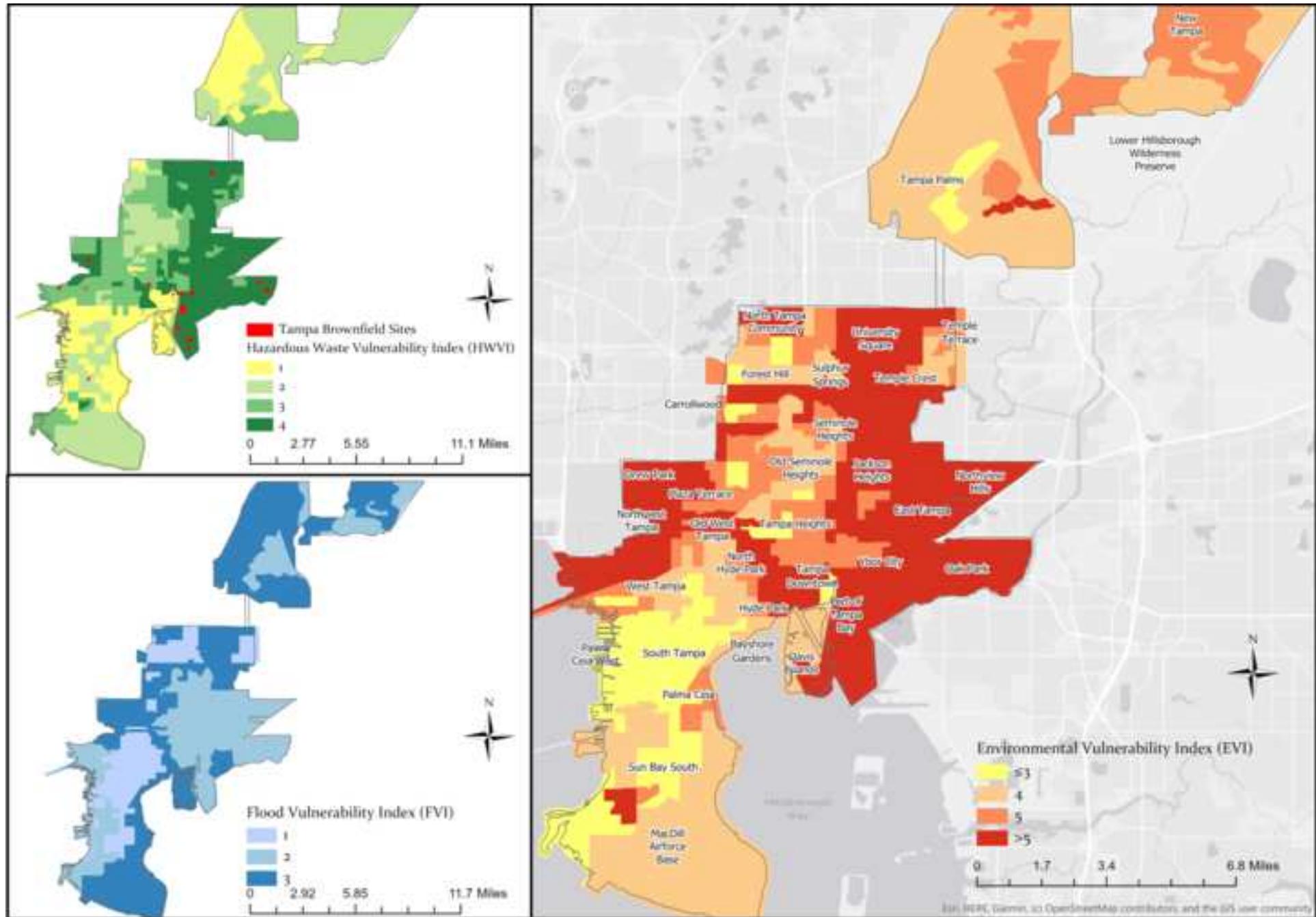
748

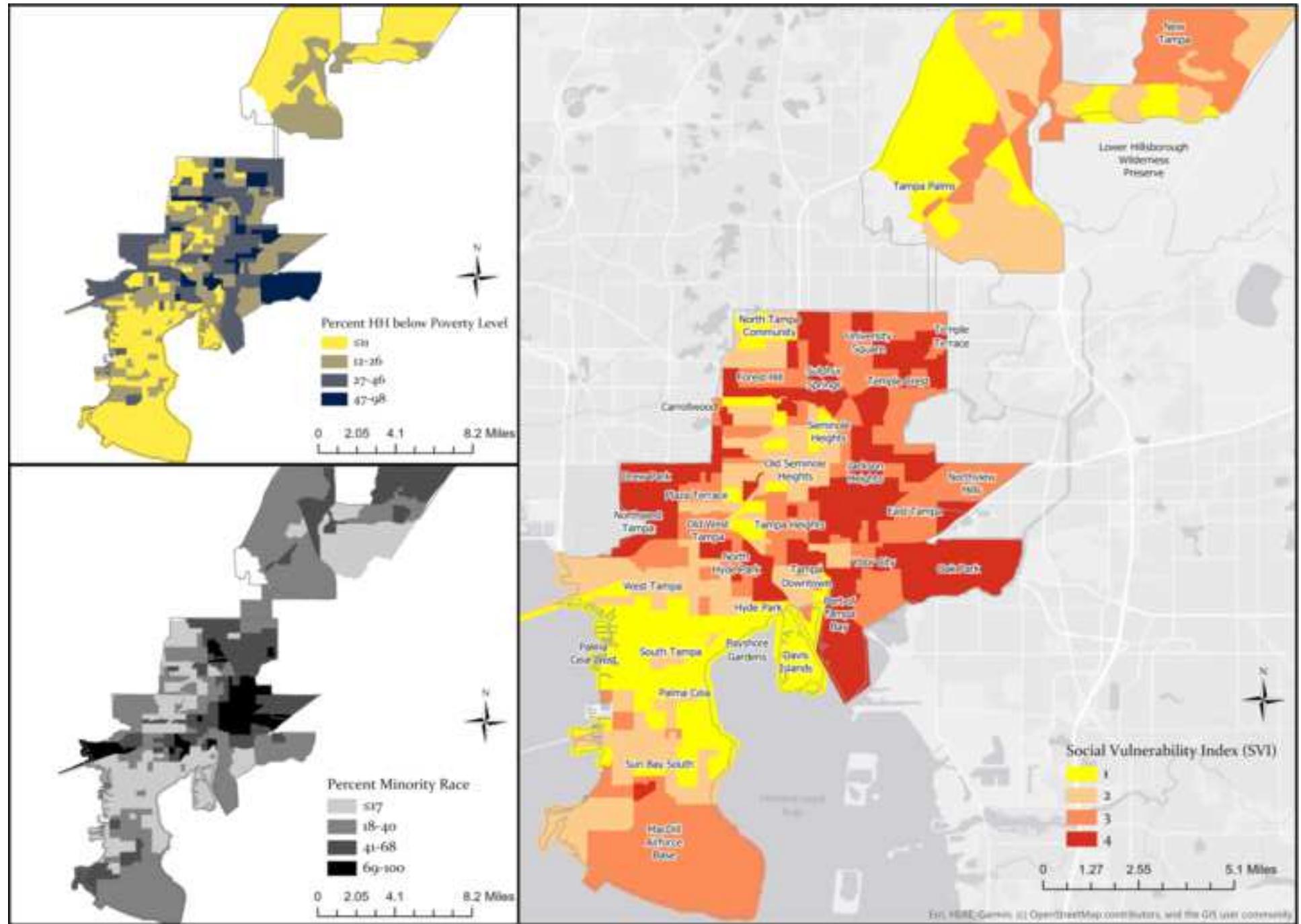
749 **Fig. 4.** Spatial distribution of poverty, minority race, and social vulnerability in Tampa.

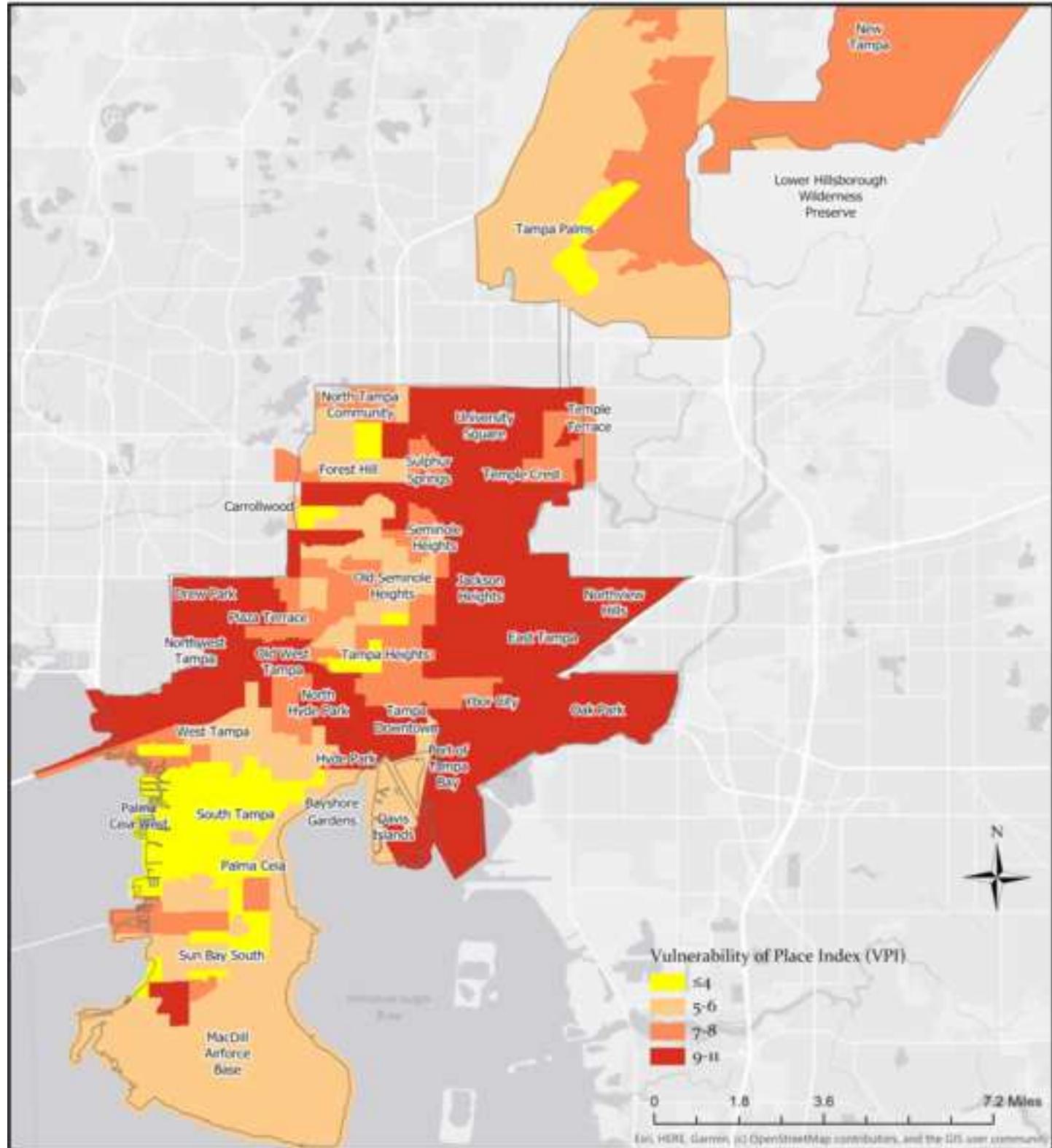
750


751 **Fig. 5.** Vulnerability of Place Index for census block groups in Tampa.


752


753 **Fig. 6.** Spatial distribution of hydraulic vulnerability, infrastructure colocation, and water
754 infrastructure vulnerability in Tampa.


755


756 **Fig. 7.** Environmentally and socially vulnerable census block groups with high water
757 infrastructure vulnerability, revealing the uneven distribution of water infrastructure inequality in
758 Tampa.

