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A B S T R A C T

Large scale geophysical modeling uses high performance computing systems to expedite the solutions of very
large, complex systems. High disk latencies, low IOPS, and low read/write data transfer rates are relegating
many numerical simulations to I/O bound jobs, where the run time is bound not by CPU rate, but by I/O rate. In
this paper we seek to improve the I/O of two geophysical modeling applications and take full advantage of the
parallel nature of the programs, as well as the file management system for the large output files. Parallelizing
output for these programs is achieved using PnetCDF, a parallel implementation of the netCDF format, and
BeeGFS, an open-source parallel file system. Using these solutions, we have significantly decreased the amount
of time spent saving data to disk, and give analysis of the features used in relation to PnetCDF with BeeGFS
I/O optimization.
1. Introduction

Large spatial and temporal scale geophysical simulations require
very large data sets which must be read from and written to. Addi-
tionally, these large files may be striped across multiple hard drives
requiring the use of a parallel file system (PFS). This I/O can become
a significant bottleneck when running a simulation across multiple
compute nodes in a high performance computing (HPC) environment.
These are all currently areas of interest for us at SDSU and our geo-
physical models. We have two models, the General Curvilinear Coastal
Ocean Model (GCCOM) and Subflow, which are large scale simulations
designed to run across hundreds of compute nodes, yet process I/O se-
rially using the netCDF API interfaces. As domain sizes increase to tens
of millions of data points, the I/O becomes a bottleneck for scalability
of both models. The netCDF format is the standard file format used
by many organizations in the climate community for storing large data
sets [1,2]. In its native format, netCDF does not support parallel reading
and writing of its files, but has a parallel implementation PnetCDF that
does [3].

While PnetCDF allows for almost unlimited file size capability, this
leads to a typical situation in HPC of large files not being stored
on a single physical drive. When implementing a new large parallel
I/O scheme, the file system management must also be considered.
A PFS acts as an intermediary between multiple physical drives and
an overlying operating system. Lustre [4], GPFS [5], DeltaFS [6],
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and BeeGFS [7] are all variations of a PFS manager, whereby large
files are broken into pieces and kept track of across multiple hard
drives. A separate client manages this file tracking, allowing users to
treat the multiple hard drives as one storage unit. Many of these PFS
systems are fee based, which can be a limiting factor for educational
organizations. BeeGFS is an open source (free) PFS that is touted as
easy to deploy and maintain on existing HPC systems, which makes it
the most cost-effective strategy for education institutions. There are a
number of configuration options for each PFS, usually specific to the
system running it and the general data being written.

This paper describes the implementation, analysis, and performance
tuning specific to PnetCDF with BeeGFS and provides a framework for
others working with similar programs and I/O conditions. While both
PnetCDF and BeeGFS have been analyzed individually, we hope that
studying them together will add insight into what realistic I/O patterns
manifest from both systems and what options can be used to optimize
I/O.

The paper is organized as follows. We start with a brief overview of
PnetCDF and the BeeGFS standards, as well as the models Subflow and
GCCOM in Section 2. Specifics about file I/O requirements, processing,
and computing overhead will give a context to the results we find in
Sections 4 and 5 . We introduce the testing system and timing protocols
in Section 3, as well as the HPC benchmarks used to get the baseline
performance and how we tracked improvements. BeeGFS file structure
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Fig. 1. BeeGFS system structure. Client nodes operate as if multiple drives are mounted
as one. Bookkeeping is done by the BeeGFS metadata service to track file name,
locations, permissions, and stripe and chunk settings.

and the impact on the benchmarks is also described here. Specifics
about implementation as well as results for the individual models are
given in Sections 4 and 5, where we discuss what specific PnetCDF calls
ere used and what MPI tuning was used to minimize the run time
nd maximize I/O for our specific models. Finally, we summarize the
indings and discuss future work in Section 6.

2. Background

2.1. BeeGFS

BeeGFS is an open source parallel file system manager designed for
flexibility and ease of administration [7]. It is designed to be used on
any style of computing system, with little change to the underlying
operating system configuration. BeeGFS is divided into four systems:
management, metadata, client, and storage. The management service
controls, and is a watchdog for, the other services. The metadata system
retains all information about the directory and file structure. A single
metadata service can be in charge of the entire file system, or multiple
metadata services can be in charge of smaller portions of the file
system. The storage system controls the writing and reading of files,
and maintains the striping and chunking of the data, to accurately track
files across multiple physical locations and multiple RAID structures.
The client service manages the interface between BeeGFS and a Linux
OS, to make reading and writing files no different than if the native OS
were operating alone. A visual diagram of this relationship is given in
Fig. 1.

While BeeGFS is currently deployed in European super computing
centers and globally on private clusters, not much research is done
2

specific to the BeeGFS file system. Optimization of stripe and chunk size
for BeeGFS has been explored for small I/O packet size [8], but has not
been formally explored for large file size simulations, especially cou-
pled with another parallel I/O API. Research on MPI and BeeGFS has
shown that using MPI decreased transmission time for large files [9].
File cacheing and TCP optimizations have been looked at [10,11], as
well as the basic I/O speed of BeeGFS compared to other PFS [12].
However, specifics about the PFS settings and MPI parameters were not
studied. Other PFS have been extensively tested [13–15], and some
have MPI options specific to them [16]. The effects of MPI tuning
options specific to BeeGFS has not been explored and is one of the main
goals of this paper.

2.2. PnetCDF

Parallel netCDF is an I/O library for reading and writing netCDF
files using parallel I/O. netCDF is a self describing data format, where
variables stored in an array like structure have information about each
variable in a header, with the multidimensional arrays following [1].
The header file describes the variables, how many dimensions they
have, the units of measure, and the dimension of the variables. PnetCDF
was chosen as the most likely candidate for parallel I/O because
PnetCDF provides a similar interface to the serial netCDF API, but
harnesses MPI-IO for concurrent reading and writing of data from
multiple nodes [3]. PnetCDF has been used to parallelize output of
the largest geophysical running models including the Global Cloud
Resolving Model (GCRM) [17], WRF [18] and NCAR [19]. The API
gives the user many different ways to output the data in parallel, giving
it flexibility to be used regardless of the parallelized structure of the
host program. PnetCDF allows for buffering of the reads and writes,
allowing the underlying MPI structure to decide the best time to read
or put data to disk. Some of the functions allow for blocking read and
write operations, as well as optimized accessing of the same variable
multiple times. PnetCDF can also simplify multiple I/O requests for a
single variable by either queuing the entire variable, a sub-array, or a
sub-selection of array indices. PnetCDF can be used in a purely serial
mode, allowing one node to output data while the other nodes idle
until I/O has completed. Exabyte file sizes, which are becoming more
prevalent, required a new netCDF file format, CDF-5, which uses 64-bit
indices and allows data structures that support greater than 232 indices.
netCDF provides the ability to use parallel file access with the netCDF-4
framework. This framework eases the transition to parallel file access
with minor changes to netCDF commands. Building netCDF-4 includes
the PnetCDF library and utilize a large number of the PnetCDF features.
While possibly easier to implement, netCDF-4 does not include some
features of PnetCDF, like the flexible, nonblocking, vard and
varn APIs. It was decided to use PnetCDF for the possible utilization of
all features and the trivial amount of code rewriting essentially matched
that for a similar implementation using netCDF-4.

Because PnetCDF is built upon MPI_IO libraries, it allows hints to
be passed to the underlying MPI_IO structures. These can be PnetCDF
specific hints, or the more general ROMIO hints [16]. Hints for PFS
striping, chunk sizes, and cache sizes can be passed, as well as PFS
specific hints for Lustre and GPFS, and some of these MPI_IO hints
can significantly change the I/O response of a program [16]. BeeGFS
utilizes no ROMIO specific hints, so testing must be done to find the
optimum hints for PnetCDF usage.

2.3. Subflow

At San Diego State University, we have developed a distributed
parallel application named Subflow [20,21] to model subsurface CO2
and hard, alkaline waste water injection into porous sandstone and
shale reservoir systems. Subflow models the physical, mineralogical,
and geochemical effects associated with CO2 sequestration. As CO2 is
injected into deep geologic formations, the chemical and physical prop-
erties of the underlying rock are changed. As the processes can occur
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Fig. 2. Example of I/O for a work cluster. Fig. 2A: All nodes return values to the main
node for writing out. Fig. 2B: All nodes each write their own data out to separate files,
which are collected later. Fig. 2C: All nodes write their data to one file, using PnetCDF
s the broker between the workers and the file system.

ver many years, modeling of this phenomenon allows experimentation
nd analysis that are otherwise too time consuming and costly to occur
n the field. Subflow’s geophysical model [22] couples porosity, fluid
ressure, fluid flux and poroelastic effects, together with mineral and
olute reactions using a reactive transport and water–rock interaction
odel [23] based on elemental mass conservation.
Pressure, fluid flux, and rock displacements are calculated using

onstitutive relations from equations for fluid density, porosity and
tress, then solving for a quasi-equilibrium state for each time step [22].
Rock stress and strain is determined by poroelastic relations. Chemical
and physical reactions are modeled by applying a water–rock interac-
tion and reactive-transport formalism [23], which provides elemental
mass conservation equations. Fluid flux and conservation are solved
using a finite element method (FEM) on a structured hexahedral grid.
Rock displacements are solved using a standard continuous Galerkin
FEM [24]. The FEM equations are solved using the Deal.ii finite element
software library [25]. The resulting matrix equation is then solved
using the PETSc [26] linear system solvers. This computation is done
in parallel, and the resulting solution is passed back to the primary
process.

The reactive transport model is solved using a finite difference based
numerical formalism [23]. The data structures that store information on
fluid and solid properties of the reservoir are initialized to match the
quadrilateral grid used in our FEM formulation. Porosity, pressure, and
fluid flux values in the reactive transport model are coupled with the
results of the reservoir flow and poromechanical models. This is solved
only by the primary process, and the results are distributed back to the
parallel processes for the next time step calculation. All I/O in Subflow
is serial (Fig. 2A). The primary process reads the initial netCDF file,
and distributes it to the parallel processes. This is the only significant
read operation. At each time step, data is aggregated by the serial
chemistry solver, then the chemistry solution is redistributed to the
parallel physical solvers. If this coincides with a writing time step, the
primary process will write the data to the netCDF file, before continuing
with the chemistry solution distribution. Currently there is an effort to
parallelize the chemistry solver of Subflow. As such, any parallelization
of output will necessarily be limited by the serial chemistry solver.

2.4. GCCOM model

The General Curvilinear Coastal Ocean Model (GCCOM) is a large
eddy simulation Navier–Stokes solver that is fully curvilinear in a three
dimensional coordinate system. GCCOM uses a Boussinesq approxima-
tion to find the computational non-hydrostatic pressure solving the
3D full Navier–Stokes equations. The run time discretization uses a
Runge–Kutta 3rd order time scheme (RK3). GCCOM has been expanded
over many years to resolve gravity waves [27], internal bores [28,
29], and internal waves [28,30], and is currently using the Portable
Extension Toolkit for Scientific Computing (PETSc) [31] for work dis-
3

tribution [32]. To resolve finer features, GCCOM has also been coupled F
ith ROMS [28] to resolve turbulence and SWASH [33] to resolve
urface features.
A driving force behind this project was the amount of time spent

riting large data sets in GCCOM. Currently for GCCOM all I/O is
erial, with the primary process reading and writing all data to a hard
rive (see Fig. 2A). After the initial reading of the input conditions,
ll of the following I/O consists of writing data to disk, with reads
nly to confirm the write occurred. As problem size increases, time
pent in I/O becomes the main use of computational resources. Not
nly did this increase as the size of the problem grew, but also as
he number of compute nodes increased. For large simulations across
ultiple nodes, MPI processes and writing out data uses 90% of the
omputational time [32]. This is particularly frustrating because the
ode is fully parallelized with respect to solving the NS equations, so
sing parallel I/O is the next natural step for this model.

. I/O benchmarking

Timings and analysis was done on the mixcoatl.sdsu.edu cluster in
he College of Engineering at San Diego State University. It is a Linux
ased cluster with the following features:

• 256 Intel Xeon E5-2680 Processors
• 16 Nodes of 16 processors and 64GiB RAM per node
• 40 Gb/s Mellanox Infiniband MT4099 interconnects
• BeeGFS PFS, 2 manager, 2 metadata, 4 storage nodes
• 312 8TB Hitachi 7.2 K HDDs on BeeGFS storage nodes
• 12 1TB Intel 850 Pro SSDs on BeeGFS metadata nodes
Benchmarking the cluster gives a baseline for comparison to the

rite speeds of the geophysical programs. There are currently many
tandardized tests to benchmark I/O on HPC clusters [34] including
OZone [35], IOR [36], FLASH-IO [37] and WRFIO [38]. IOR was
hosen for the ability to control data chunk size that could either match
r mismatch with the PFS chunk size. This ability to match the size of
he data sent with the chunking size of the PFS allows the I/O speed
o approach its theoretical maximum. Knowing also that not all data
s perfectly chunked, a more realistic benchmark is also used. FLASH-
O uses the PnetCDF based I/O routines of the FLASH stellar model
rogram [39] to give a realistic speed for I/O with respect to the
netCDF format [40].
Initial benchmarking with IOR was run on a variety of folders with

ifferent chunking and striping settings from 64 KiB to 2 MiB. IOR was
etup to send a typical size file of 512 GiB from one node to the BeeGFS
luster using a transmission size that varied over 32, 64, 128, 256, and
12 KiB (Fig. 3). Previous work has shown that there is an optimum
umber of segments to choose to maximize I/O [41], but for simplicity
he number of segments was set to one. The file size was chosen such
hat the entire file could not be stored across the write nodes total
emory to prevent artificial speedup from cacheing. Write speeds are
f most interest to us due to the nature of Subflow and GCCOM, so
rite speeds were prioritized over read speeds. 256 KiB transfer sizes
as the fastest overall speeds at 2662 MiB/s, and the 64 KiB chunk size
ad better overall performance regardless of the transmission size of
he packet sent from IOR. The 64 KiB transfer size was chosen even
hough it was slower (2658 MiB/s), it performed better than the 256
iB transfers sizes across the different chunking sizes. The read and
rite speeds for sending 64 KiB packets to the different striping patterns
s shown in Fig. 4.
An important part of parallel I/O are the MPI subroutines that are

sed. There are hints, based on the ROMIO_HINTS package that give
xtra information to the MPI calls. These can have a significant effect on
/O speeds. PFS such as Lustre and GPFS have specific hints optimized
or use on those types of file systems [13,14]. Using the optimal chunk-
ng and striping patterns found from the IOR benchmark, different hints
ere tested to see if I/O speeds using BeeGFS could improve for the

LASH-IO benchmark as well as the geophysical models.
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Fig. 3. Max write speeds for IOR with transfer sizes of 32, 64, 128, and 256KiB. The
ighest write speed is for sending 256 KiB packets to 64KiB chunked BeeGFS folder
t 2662 MiB/s. Transfer sizes of 512, 1024 and 2048 KiB were tested as well, but fell
ar below the values here, mostly around 2000 MiB/s. The 64 KiB transfer size (2658
iB/s) was chosen because it had better performance versus 256 KiB across different
hunking sizes.

The FLASH-IO benchmark was run on 10 nodes of 8 cores each,
ith a variety of ROMIO and PnetCDF hints given as command line
rguments (Table 1). The block size was set to 16 × 16 × 16. FLASH-
IO will create approximately 80 blocks per process, slightly varying the
number to replicate real world data. A full explanation is found in [42].
Total I/O was 9661 MiB. The tests were run 5 times for each of the
MPI hint combinations. Maximum throughput was significantly lower
than the IOR benchmark, approximately 675MiB/s, which reflects the
cost of writing non optimal data sets. Shown in Fig. 5 are the results
of varying ROMIO hints across the same benchmark test. The most
impacting ROMIO writing hints are romio_cb_write, which allows
for collective buffering of the write data, and romio_ds_write,
which allows for data sieving, a technique by which MPI can more
easily handle disparate data [16]. These hints have three settings,
automatic, enabled and disabled, represented by (A), (E), and (D) in
Table 1. The first letter indicates the setting for romio_cb_write and
the second letter is the setting for romio_ds_write. Reading settings
were not changed due to the write heavy nature of the models tested.
Striping settings can also be passed, setting striping_unit equal to
the BeeGFS chunk size and striping_factor equal to the number
of storage targets. Because BeeGFS does not have its own standard of
interfacing with ROMIO, an additional hint cb_nodes was also used,
which indicates the number of storage targets to use. Setting all three of
these is indicated in figures with the (S). PnetCDF has hints of its own,
in regards to how the variables are offset in the .nc file, and how big of
a container should be used for transporting the data for the variables.
Aligning these with the chunking size of BeeGFS could increase the I/O
bandwidth. We set nc_var_align_size equal to the chunk size,
and set nc_header_align to 512. These hints were passed together
and are indicated with a (P) in figures.

The scale of the modeled system and its memory requirements is the
main limiting factor to our model specific tests. Subflow and GCCOM
are both very memory intensive models, with very large matrices being
held in memory. Subflow tracks 73 different chemical and physical
variables, while GCCOM utilizes over 100 matrices to solve its system
of equations. For Subflow, a fully occupied node of 16 processes could
run a maximum problem size of 1.6 million points, while GCCOM could
run a problem size of 7.7 million points. While not optimal, these are
sufficient to show speedup, PnetCDF implementation, and optimization
of MPI and BeeGFS such that large scale tests can be run later on larger
4

clusters.
Fig. 4. IOR 64 KiB transmission size with speeds across different BeeGFS chunking
values. I/O write speeds are given for reading and writing to 1, 2, or 4 storage targets.

Fig. 5. Results for FLASH-IO run on 80 cores (16 nodes) with different ROMIO and
PnetCDF hints used. See Table 1 for explanation of the code. Default values (no hints)
is the leftmost column with the maximum write speed of 632 MiB/s. Disabling the
romio_cb_write reduces write speed by about 1/3. There does not appear to be a
great influence of giving PFS hints or PnetCDF hints to the program, but this could
change with GCCOM or Subflows PnetCDF implementation.

Table 1
Hint code description for writing to a file location with 64 KiB
chunks and four storage targets. Hint keys for collective buffering,
data sieving, PnetCDF alignments, and folder settings of BeeGFS PFS.
ROMIO MPI_IO hint Value(s) used Key

romio_cb_write
(A)utomatic (A)-A, P+S
(E)nable (E)-A, P+S
(D)isable (D)-A, P+S

romio_ds_write
(A)utomatic A-(A), P+S
(E)nable A-(E), P+S
(D)isable A-(D), P+S

nc_var_align_size 65536 A-A, (P)+Snc_header_align_size 512

cb_nodes 4
A-A, P+(S)striping_unit 65536

striping_factor 4
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4. Subflow implementation and results

Subflow utilizes different solvers for chemistry and physical pro-
cesses. The physical solver is done in parallel, the chemistry solver
is serial. Therefore, only the physical solution data write could be
parallelized. An additional set of functions were written in C and
the Subflow executable was compiled with both netCDF and PnetCDF
libraries. Utilizing a command line switch -parrallel_out, the parallel
output functions are called by the physical solvers to output data using
the PnetCDF API. The parallel output subroutine is essentially a copy
of the serial I/O routine, with some optional PnetCDF descriptions for
in dependent and collective I/O. Code changes mostly came down to
changing ncf90_put_var to ncf90mpi_put_var or equivalent.
he use of a finite element solver for the physical parameters made
iscretizing the domain different between each step of the computation.
ust because one core solved for a point on the domain it does not
ean the core would solve for the same point in the next iteration. This
ocation information is stored as an array in Subflow, and three for
oops read it into the netCDF I/O routine. The parallel I/O subroutine
ses the PnetCDF ncmpi_put_varn function. It is a single call,
hereby you give the function an array of indices that corresponds
o the physical location of the indices of the data you are sending.
cmpi_put_varn takes the location array from Subflow as-is, and
ses it as the location data in the netCDF file for the data. And while
his is a single call, this is equivalent to many individual single write
alls in PnetCDF and saves iterating through those three for loops the
serial I/O subroutine had to do.

The chemistry solver remained a serial solver, as it requires physics
information from all worker nodes. This posed the most significant
bottleneck in terms of run time and I/O optimization and parallelizing
the chemistry solver is currently the subject of ongoing work. Because
of the robustness of the PnetCDF API, the chemistry solver was still
able to output in serial without the need for extensive code rewriting.
This was done by putting PnetCDF in independent mode, and letting
the main process write out the chemistry solutions, which could occur
independently of the parallel writes. This allowed the chemistry solver
to begin before the parallel data had been written to disk.

Subflow was run using a 100 × 100 × 16 domain size running
or one week simulated time. CO2 was injected for the first day and
hen allowed to diffuse the remaining time. Timing of the I/O routines
as done using calls to MPI_Wtime around each PnetCDF call, and

summing and retaining this value at the end of each iteration. Timing
and speedup are shown in Fig. 6 for processes between 2 and 64.

Comparing a pure serial I/O with the PnetCDF implementation, the
time saved, while not apparent in Fig. 6, is effectively the difference
between serial and parallel time savings in Fig. 7.

The plateauing effect of I/O time is due to the serial I/O, and the
ame number of MPI calls being made by the main process for the
hemistry solver. MPI tuning identified two functions that could be
ptimized, MPI_Bcast and MPI_Barrier, yet neither yielded any
ppreciably different results from the non-tuned program. The write
peed has a maximum of 332 MB/s, as is likely due to the problem
ize, not limitations of BeeGFS. Subflow read speed scales well as more
rocesses are added. This is reflected by the structure of the function
hat reads in data. This function could make full use of the parallel
tructure of Subflow. The write speeds for Subflow are essentially
nchanged above 16 processors, mostly due to the large amount of
ata that must be written out in serial by the chemistry solver. The
utput of the model shows no apparent difference to the totally serial
odel, Fig. 8, but small differences in the initial steps of the simulation
ropagate as the model increases.
Fig. 9 shows these differences correspond to the domain discretiza-

ion of the finite element solver. The serial Subflow relied on CDF-1
ormat files, which are 32 bit based. The newer parallel output lever-
ges the CDF-5 format file, which is 64 bit, and required using some
igher precision variables in Subflow. These error could be the result
5

Fig. 6. Subflow timings showing the decrease in time as number of processors is
increased. The decrease in I/O time is not apparent at this scale, but resolves in Fig. 7.

Fig. 7. Subflow I/O timings. A significant decrease is consistently seen. Many chem-
istry variables are solved in serial, shown by the consistent times across increasing
processors.

Fig. 8. Output for Subflow, showing pressure over the domain after 2.33 days. The
wellhead is located on the left hand side, as the high source of pressure.
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Fig. 9. Difference between the parallel and serial versions of Subflow. The differences
correspond to the domain discretization and which compute process has been assigned
to them from the finite element solver. The differences shown are on the order of
10−11. The small differences are possibly representative of recasting to higher precision
variables in Subflow.

Fig. 10. Subflow I/O write speeds for different ROMIO MPI_IO hints. Default values (no
hints) is the leftmost column. Differences are negligible unless data sieving is disabled,
which leads to the four very low write speeds. Max I/O rate is 79.7 MiB/s for collective
buffering set to automatic, data sieving enabled, and PnetCDF hints used (A-E, P). See
Table 1 for full decoding.

f recasting those variables. Using the CDF-5 format with the original
erial Subflow netCDF for comparison was not possible.
Varying the MPI hints given showed no appreciable difference in

ptimum writing speeds. If write caching was disabled, there was a
ignificant reduction in writing speeds. The difference between send-
ng PnetCDF hints and striping hints had no appreciable effect over
he standard I/O speeds when MPI used the automatic settings for
omio_ds_write and romio_cb_write (see Fig. 10).

5. GCCOM implementation and results

In GCCOM, I/O routines are run on all processes, with a switch
in place for the main node to read or write out. In most cases,
parallelizing the I/O entailed changing a few letters in a command.
For example, inquiries to existing netCDF variables changed from
6

Fig. 11. Total time spent by GCCOM using serial and parallel I/O. The red lines are
the serial runs. As the speedup scales with the number of cores used, the I/O stays
constant. The difference between the times of the serial and parallel GCCOM is captured
by the difference in I/O for serial netCDF versus PnetCDF.

Fig. 12. Normalized percentage of time spent doing I/O, for the original serial I/O
GCCOM model (top), and for the parallel I/O GCCOM (bottom).

nf90_inq_varid to nf90mpi_inq_varid. Writing to the netCDF
variables code changes from ‘nf_put_var’ command to a nfmpi_put_
var. Outside of the initial writing of the coordinate and latitude and
longitude values, which was done in independent mode, all I/O is
done in parallel. PETSc discretizes the domain into rectangular chunks,
which leads to nice ordered arrays that remain consistent throughout
the computation process. The arrays for the variable to be written are
stored and indexed according to PETSc. Using these already stored
values allowed directly giving the variable arrays to PnetCDF for
writing with nfmpi_put_vara, using the indices from PETSc. This
saved three for loops previously used for the x, y and z of each variable
to order the indices, along with the associated gather and scatter calls
PETSc would have used to get those variables onto the main process.
An additional set of vectors needed to be created to store the size and
count of the netCDF variable arrays for each processes sub-domain, but
since the discretization does not change during the simulation, it only
needed to be set once. The results of the PnetCDF implementation on
run time are shown in Fig. 11 and as a percentage of run time in Fig. 12.

The problem tested had 7.6M points (1601 × 6 × 801), and each
run output 10 times over one simulated second. The time savings
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Fig. 13. Result from GCCOM for the lock release experiment comparing the parallel
(top) output with the serial output (bottom) showing the result at 24 s of simulation.
The numerical difference between these is exactly zero.

in the parallel I/O model using 160 cores is roughly equivalent to
the reduction in time to write the data. The separation between the
parallel and serial run times in Fig. 11 matches the relative percent
used for I/O from Fig. 12. Some simple changes like removing a call to
nfmpi_sync every write call saved an additional 20% of the parallel
I/O time. Additionally, MPI features were tuned to decrease the run
time, dependent on the number of processors, by an additional 1%–
10%. MPI tuning was done by running mpi-tune on the executable
file. To shorten the possible list of MPI functions to tune, a list of most
used MPI functions was generated by enabling MPI_STATS and just
using the most frequently used MPI commands. The two biggest users
of MPI time were calls to MPI_AllReduce and MPI_Waitall. The
MPI_Allreduce function had 6.6M calls in each execution, and used
81% of the time used by all MPI functions. The difference between the
serial and parallel outputs is shown in Fig. 13, and the difference in
outputs calculated by Paraview was exactly zero.

Further tuning was done using ROMIO hints, and PnetCDF specific
hints which were passed as either command line arguments or environ-
ment variables during run time. The chunking of the folder where all
I/O took place was set to 64 KiB chunks and striped across four targets.
By varying the hints used, large differences could be seen in I/O speeds,
as shown in Fig. 14.

As with Subflow, no major advantage could be seen at first in pass-
ing hints. The automatic output settings for ROMIO gives a write speed
of 511 MiB/s, but there are major consequences when romio_cb_
write is disabled. When disabled, write speeds dropped to 8 MiB/s.
Again, like Subflow, this seems to negate the collective write of
PnetCDF, resulting in an explosion of individual writes to disk. There
also seem to be disadvantages to passing striping setting (S) to the
model. When only stripe settings were passed, a drop averaging 25
MiB/s was observed (Fig. 14). To further explore the behavior of
GCCOM, different hints were passed for different chunks sizes to see
if other striping or chunking settings of BeeGFS resulted in better write
speeds.

GCCOM was run in different folders of varying chunk and stripe
7

settings. The simulation was run on 80 processes across 5 compute
Fig. 14. Results for GCCOM run on 80 cores with different ROMIO and PnetCDF hints
used. See Table 1 for explanation of the code. Default values (no hints) is the leftmost
column. Disabling the romio_cb_write has a drastic effect on write speed. The
max I/O rate is 545 MiB/s for collective buffering set to automatic, and data sieving
enabled, with no hints passed.

Fig. 15. GCCOM I/O, running on 5 nodes with 80 processes. The number of stripes
and chunking was varied in BeeGFS, and hints were passed to the program. Bold lines
represent the inclusion of PnetCDF hints. In general, ROMIO hints and PnetCDF hints
resulted in the optimal speed for most BeeGFS chunking and striping sizes. Even when
hints were passed that did not match the actual striping or chunking settings, results
were generally better than no hints at all.

nodes. A baseline value for I/O speed was made for reading and writing
data to folders of chunk sizes varying from 64 KiB to 2048 KiB by
powers of two, and with the number of write targets being one, two
or four. The same simulation was run passing ROMIO hints only to
GCCOM including the number of write nodes, striping unit, and strip-
ing factor. A third run passed PnetCDF hints nc_var_align_size
and nc_header_read_chunk_size about the writing directories
to GCCOM. A fourth run passed the wrong hints to PnetCDF, con-
sistently underestimating the number of nc_var_align_size and
with ROMIO hints of striping unit and factor to match the PnetCDF
hints. The results of this are in Fig. 15. It shows that for most scenarios,
passing the PnetCDF hints about the striping and chunking performs
better than no hints, or just the ROMIO hints alone.

The time savings in the parallel model was very close to the differ-
ence in I/O times between the models. I/O as a percentage of total run
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time was also calculated. Here, computational time is given as 𝑇𝑡𝑜𝑡𝑎𝑙 =
𝑇𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙+𝑇𝐼∕𝑂. The stacked bar charts of Fig. 12 show the serial I/O
model compared to the parallel I/O model. Using 160 processors, the
serial models spends 35% of the time doing I/O. This includes reading
in the file and writing out each time step. Implementing PnetCDF
reduces this down to 7.2% for the tuned optimum MPI model. As
Fig. 12 shows, output time stays fairly consistent through the increase
in processors. The small increases in time can be attributed to the
increased number of MPI communications. Write speeds were measured
and are shown in Fig. 14. Limitations of the size of the problem
prevented testing larger file sizes but we expect this I/O performance
to scale well to larger problems.

6. Conclusions and future work

Implementing parallel netCDF shows a significant decrease in I/O
times versus a serial netCDF implementation. This scales well to two
diverse geophysical models with different underlying architectures.
Results show that a decrease in I/O time over serial can be achieved.
It also shows that partial parallelization of I/O can yield significant
results, and that PnetCDF has the capacity to do both serial and parallel
I/O. While the ease of implementation cannot be expressed in charts or
graphs, transitioning from netCDF to PnetCDF is relatively straightfor-
ward, and we hope this serves as a recommendation to transition any
parallel code with serial I/O into full parallel I/O.

The interplay between BeeGFS and PnetCDF with the underlying
MPI_IO routines seems to work well ‘‘out of the box’’. Disabling col-
lective buffering has a detrimental effect on all tested programs, and
should be avoided when using PnetCDF. Based on Fig. 15, passing
PnetCDF hints about the underlying file structure generally results
in better I/O for GCCOM, but had little effect for Subflow. This has
many interesting features concerning performance. Of note is that the
combination of ROMIO and PnetCDF hints is optimal regardless of
BeeGFS chunking and striping settings. The effect is smallest when the
chunk size is small, but for larger chunks, especially at 1024 KiB, the
difference is as high as 75 MiB/s. There may be adjustments when
dealing with large numbers of small reads and writes [8], but for
general use and write speed optimization, this recommendation seems
best.

It has also been shown that the GCCOM model scales well for larger
problem sizes in terms of number of processors used. Previous results
showed deadlock due to increased MPI and I/O traffic [32]. It remains
to show this scaling continues for very large problems with GCCOM
> 100M points, but this is reserved for future work as limitations
of the RAM of the cluster prevented running larger problem sizes.
Fig. 14 shows GCCOM gets roughly 5/6 the write speed of FLASH-
IO. FLASH-IO uses cached writing exclusively yet does not suffer as
badly the effects when collective buffering is disabled as much as
GCCOM. However, Subflow only experiences a drop of 41% by dis-
abling collective buffering and this could be due to the serial output.
Further research into this difference is needed and possibly improving
the memory handling in GCCOM to allow fully cached PnetCDF writes
could improve the write speeds to be on equal that of FLASH-IO.

Implementation of PnetCDF to Subflow has shown a decrease in run
time commensurate with the ability to parallelize output. Rewriting
the code was straightforward, mostly involving translating netCDF
commands into PnetCDF commands by adding an ‘mpi’ to them. Small
differences using a finite element domain discretization has shown
to have an impact on reproducibility, but could be fixed by storing
the variables as higher precision throughout the solution. Further par-
allelization of the Subflow model continues, in order to run larger
simulations, and these will be sure to use parallel I/O. It is unclear if
the lack of impact of PnetCDF hints to the I/O speed is due to the serial
nature of some of the output, or something else. Future work intends
to try and implement both serial and parallel output as buffered writes,
8

to allow PnetCDF to write while Subflow continues its calculations.
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