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Abstract

Water distribution networks (WDNs) expand their service areas over time. These growth dy-
namics are poorly understood. One facet of WDNs is that they have loops in general, and closing
loops may be a functionally important process for enhancing their robustness and efficiency. We
propose a growth model for WDNs which generates networks with loops and is applicable to
networks with multiple water sources. We apply the proposed model to four empirical WDNs
to show that it produces networks whose structure is similar to that of the empirical WDNs.
The comparison between the empirical and modeled WDNs suggests that the empirical WDNs
realize a reasonable balance between cost, efficiency, and robustness. We also study the design of
pipe diameters based on a biological positive feedback mechanism. Specifically, we apply a model
inspired by Physarum polycephalum to find moderate positive correlations between the empirical
and modeled pipe diameters. This result suggests that the distribution of pipe diameters in the
empirical WDNs is closer to an optimal one than a uniformly random distribution. However, the
difference between the empirical and modeled pipe diameters suggests that we may be able to
improve the performance of WDNs by following organizing principles of biological flow networks.

1 Introduction

Water distribution networks (WDNs) are a critical infrastructure. A WDN consists of intercon-
nected hydraulic elements such as pipes, junctions, reservoirs, and tanks, and conveys water from
sources to consumers [20]. A WDN naturally forms a graph in which the nodes represent sources,
control elements, and consumption points, and the edges represent pipes connecting pairs of nodes.
For assessing the performance of existing WDNs and designing efficient WDNs, we should first
understand structural and hydraulic properties of real-world WDNs and mechanisms behind their
genesis.

Like other infrastructure networks such as transportation networks, power grids, and gas pipeline
networks, WDNs are embedded in space. Previous studies showed that spatial networks are different
from other complex networks that are not associated with space [3, 4]. In particular, one can
naturally measure the cost for spatial networks by the length of edges, and the cost of edges
generally constrains the structure of spatial networks [3]. For example, the degree distribution
of spatial networks is narrow and peaked at small values, which contrasts to fat-tailed degree
distributions observed for various non-spatial empirical networks [12, 32]. In spatial networks, the
degree correlation is generally weak because the physical distance between nodes rather than the
degree of nodes usually governs the existence of edges in spatial networks [2, 49]. Spatial constraints
also induce large fluctuations in the betweenness centrality [23, 24].

Though water distribution networks evolve and expand over time, there is a lack of generative
network models that capture how real-world WDNs emerge and develop. A barrier to the devel-
opment of generative models may be that publicly available information on real-world WDNs is
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limited for security reasons. Existing generative models for WDNs fall into two categories. The
first category lacks relevant urban context (e.g., location of reservoirs and demand junctions). In
particular, this category of models produces networks that cannot be directly compared to the
structure of empirical WDNs. For example, the Modular Design System model can generate WDNs
in which all the pipes have the equal length [37]. The WaterNetGen model can generate WDNs in
which nodes are distributed uniformly at random in a rectangular space [39]. The HydroGen model
can generate WDNs with clusters in each of which nodes (e.g., junctions, reservoirs, and tanks) are
distributed uniformly at random in a disc [18]. In Ref. [62], the authors propose a generative model
for WDNs in which nodes are distributed uniformly at random in a disc and an additional water
source node is located at the center of the disc. These models do not intend to mimic the structure
of empirical WDNs or the spatial configuration of their nodes and pipes.

The second category of models uses urban setting data but does not consider urban development
over time. These models produce realistic network structure because they account for the location
of reservoirs and demand junctions, and limited options for edges given existing road networks.
In Ref. [50], the authors propose a generative model for WDNs based on geographic information
system (GIS) data. They divided a studied area into cells and selected a small network for each cell
from the predefined set of network motifs. In Ref. [35], the authors proposed a different generative
model for WDNs based on GIS data. In this model, one extracts a tree network from street network
data and adds water sources and loops. These models are successful in producing networks similar
to empirical WDNs [35, 50]. However, they are static models and do not explain the evolution
of empirical WDNs over time. In addition, these models require numerous inputs such as street
network data, population density, housing density, and a digital elevation map in the GIS data. In
contrast, the model proposed in Ref. [22] does not require detailed inputs apart from the physical
location of each node. It is a growth model of networks that produces tree networks that are similar
to some empirical infrastructure networks such as gas pipeline networks, sewage networks, and
railway networks. However, an important limitation of this model is to the application to WDNs
because, in contrast to sewer water networks, empirical WDNs usually have an innegligible amount
of loops. Loops in flow networks have been suggested to realize optimal transport efficiency under
fluctuations in flow [16, 26, 30] and some tolerance to damages [19, 30]. Overall, there is not a
generative model of WDNs that produces networks similar in structure to empirical WDNs without
relying on detailed geospatial data of the empirical urban setting.

To address this gap, the research objectives of the present study are two-fold. First, we propose
a growth model for WDNs that produces networks quantitatively similar to empirical WDNs and
do not require detailed input apart from the physical location of each node. The proposed model
is classified as a greedy model, in which one adds edges one by one based on a local optimization
principle. Our model generates networks with loops and is applicable to networks with multiple
root nodes. Note that many empirical WDNs have multiple root nodes (e.g., Modena [7], Col-
orado [33], Pescara [7], and Balerma [42]). Second, we aim to understand the genesis of the
distribution of pipe diameters in the empirical WDNs. The pipe diameter generally varies across
pipes in a WDN. It is not well-known whether the distribution of pipe diameters in empirical WDNs
attains approximate optimality or there is a large room for improving the efficiency by engineering
the pipe diameters under the given constraints. Specifically, we apply a model that is inspired by an
amoeba-like organism, Physarum polycephalum, with which one gradually adjusts the conductance
of each edge [56], to our empirical and synthetic WDNs. In Ref. [51], the authors applied a similar
Physarum polycephalum model to relatively small benchmark WDNs and compared the wiring cost
between the generated and empirical WDNs. Physarum polycephalum has shown various intelligent
behavior such as finding the shortest paths [40], adapting to changing environments [55], and build-
ing high-quality networks that realize a feasible balance between cost, efficiency, and robustness [56].
Previous studies suggested that Physarum polycephalum may inform the design of next-generation,
adaptive, and robust spatial infrastructure networks with decentralized control systems [5, 31, 52].
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2 Structural properties of water distribution networks

2.1 Data

We analyze four WDNs constructed from the empirical data sets, i.e., ZJ, Colorado, Modena,
and Tampa. These networks are WDNs in Zhijiang in China, Colorado Springs in the US, Modena
in Italy, and Tampa in the US, respectively. The data sets include the IDs and the physical location
of junctions, reservoirs, tanks, and pipes, and the diameter of pipes. We model each WDN as a
graph G = G(V,E) in which V is the set of N nodes (i.e., junctions, reservoirs, and tanks) and E
is the set of M edges (i.e., pipes). Each WDN has one or more reservoirs and/or tanks, which act
as source of water and is referred to as root node. We denote the set of the root nodes by VR. We
assume that all the nodes except for the root nodes are demand nodes and denote the set of the
demand nodes by VD.

2.2 Indices to be measured

In addition to the number of nodes and edges, we measure six indices, two of which are the average
degree, denoted by 〈k〉, and the maximum degree, denoted by kmax. The other four indices are
meshedness coefficient, cost, route factor, and robustness.

First, the meshedness coefficient, denoted by m, quantifies the amount of loops for planar
graphs [10] and is defined by

m =
M −N + 1

2N − 5
. (1)

It ranges between zero (for tree graphs) and one (for maximal planar graphs). WDNs are generally
near-planar graphs [61]. In fact, among the aforementioned four WDNs, the ZJ, Colorado, and
Modena networks are planar graphs.

Second, for spatial networks, the cost is usually associated to the length of edges [3]. Therefore,
we define the cost c as the total Euclidean length of all edges [km].

Third, for WDNs, a network should be more efficient if the paths from the root nodes to each
demand node are shorter. For a network with the single root node, denoted by 0, we define the
route factor q by

q =
1

|VD|

|VD|∑
i=1

li0
di0

, (2)

where di0 is Euclidean distance between the root node and demand node i, and li0 is the shortest
Euclidean distance of the path among the paths between the root node and demand node i [22].
The route factor is always greater than or equal to one, and a value close to one implies a high
efficiency. The route factor for networks with multiple root nodes is defined as the average of the
route factor over the root nodes.

Fourth, for WDNs, it is necessary that each node is connected to a root node for the node to
receive water supply. Therefore, we define the robustness R by

R =
1

M

M∑
e=1

s(e) , (3)

where s(e) is the fraction of demand nodes that are connected to any root node after one removes
e edges. A simulation of sequential edge removal starts from the given WDN. At every step of the
edge removal process, we remove an edge selected uniformly at random. We calculate R as the
average over 100 simulations. This index is an adjustment of the one proposed in Ref. [48] to the
case of failures of edges and the connectivity to root nodes.
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2.3 Results

We show the values of the six indices for the four empirical WDNs in Table 1Structural properties
of the empirical WDNs, the synthetic networks generated by our growth model, and the synthetic
networks generated by the Waxman model. N : number of nodes, |VR|: number of root nodes, M :
number of edges, J : Jaccard index for the sets of edges between the empirical and synthetic networks,
Nc: number of connected components, 〈k〉: average degree, kmax: maximum degree, m: meshedness
coefficient, c: cost (i.e., total edge length) [km], q: route factor, and R: robustness.table.caption.1.
We also visualize these networks in Fig. 1Visualization of the networks. The red and blue nodes
represent the root nodes and the demand nodes, respectively. (a) Empirical WDNs. (b) Synthetic
networks generated by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for
Colorado, and γ = 0.5 for Modena. (c) Synthetic networks generated by the Waxman model.
We set β = 0.619 for ZJ, β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256 for
Tampa.figure.caption.2(a). In Fig. 1Visualization of the networks. The red and blue nodes represent
the root nodes and the demand nodes, respectively. (a) Empirical WDNs. (b) Synthetic networks
generated by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for Colorado, and
γ = 0.5 for Modena. (c) Synthetic networks generated by the Waxman model. We set β = 0.619 for
ZJ, β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256 for Tampa.figure.caption.2,
the red and blue nodes represent the root nodes and the demand nodes, respectively. The ZJ and
Tampa networks have one root node. The Colorado and Modena networks have four root nodes.
Each WDN has just one connected component.

All the four WDNs have similar average degrees, 〈k〉 ≈ 2.5. The maximum degree is 4 for ZJ,
Colorado, and Tampa, and is 5 for Modena. These results are reasonable because the spatial
constraints of networks strongly restrict the degree of each node in general [3, 4]. The meshedness
coefficient, m, ranges from 0.0580 to 0.229, which is consistent with the previous observation that
m is generally less than 0.5 for WDNs [27, 61]. The cost c ranges between 6.31 for ZJ and 590 for
Tampa, which depends on the size of the service areas. The four WDNs have similar values of the
route factor, q ≈ 1.3. Finally, Modena has the highest robustness, followed by ZJ, Colorado,
and Tampa. This last result may be related to the number of root nodes per demand node, which
is also the highest for Modena, followed by ZJ, Colorado, and Tampa.

3 Growth Model

3.1 Model

In this section, we propose a growth model for WDNs. The proposed model is classified as a greedy
model where edges are added one by one based on a local optimization criterion [3, 4]. Our model
generates networks with loops and is capable of generating networks with multiple root nodes.

Our model takes the number of nodes N , the number of edges M , the two-dimensional coordinate
of the nodes, and the ID of the root node(s) as input. It has one non-negative parameter γ. The
model consists in the following three steps:

1. Initially, all nodes are isolated.

2. We add an edge to the network as follows. We set Ploop = (M −N + 1)/M .

(a) Expansion of a connected component including a root node : With probability 1 − Ploop,
we add an edge between nodes i and j, which we select as follows. We impose that node
i is in a connected component including a root node and that node j is in a connected
component that is different from the one including the node i. Under this condition, we
select i and j such that the Euclidean distance between i and j, denoted by dij , is the
smallest among all possible node pairs.
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Table 1: Structural properties of the empirical WDNs, the synthetic networks generated by our
growth model, and the synthetic networks generated by the Waxman model. N : number of nodes,
|VR|: number of root nodes, M : number of edges, J : Jaccard index for the sets of edges between
the empirical and synthetic networks, Nc: number of connected components, 〈k〉: average degree,
kmax: maximum degree, m: meshedness coefficient, c: cost (i.e., total edge length) [km], q: route
factor, and R: robustness.

ZJ Colorado
Empirical Our model Waxman Empirical Our model Waxman

N 114 114 114 1,786 1,786 1,786
|VR| 1 1 1 4 4 4
M 164 167 163 1,992 1,980 2,004
J N/A 0.689 0.131 N/A 0.513 0.0670
Nc 1 1 6 1 1 258
〈k〉 2.88 2.93 2.86 2.23 2.22 2.24
kmax 4 4 8 4 5 10
m 0.229 0.242 0.224 0.0580 0.0547 0.0614
c 6.31 5.96 12.2 373 353 1,209
q 1.29 1.28 N/A 1.45 1.36 N/A
R 0.216 0.352 N/A 0.163 0.160 N/A

References [58, 64] N/A N/A [13, 33] N/A N/A

Modena Tampa
Empirical Our model Waxman Empirical Our model Waxman

N 272 272 272 1,658 1,658 1,658
|VR| 4 4 4 1 1 1
M 317 313 319 1,978 1,993 1,967
J N/A 0.628 0.156 N/A 0.538 0.0708
Nc 1 1 52 1 1 628
〈k〉 2.33 2.30 2.35 2.39 2.40 2.37
kmax 5 4 8 4 5 19
m 0.0853 0.0779 0.0891 0.0970 0.101 0.0936
c 71.4 70.8 116 590 600 764
q 1.36 1.42 N/A 1.27 1.25 N/A
R 0.231 0.250 N/A 0.132 0.163 N/A

References [8, 14] N/A N/A N/A N/A N/A

(b) Loop closure: Alternatively, i.e., with probability Ploop, we add an edge to close a loop.
We impose that node i has degree one and that node j is in the same connected component
as the one that contains node i. Under this condition, we select i and j that minimize

wij ≡ dij − γ`ij , (4)

where `ij is the Euclidean distance of the path that is the shortest among the paths
between nodes i and j. Then, we add an edge between i and j. If the number of nodes in
the largest connected component is less than three, we carry out step (a) with probability
1 because we cannot carry out the loop closure without creating a multiple edge (i.e.,
more than one edges directly connecting two nodes). If there is no node with degree one,
we also carry out step (a) with probability 1.

3. Repeat step (ii) until all the nodes are connected as one component.
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Figure 1: Visualization of the networks. The red and blue nodes represent the root nodes and the
demand nodes, respectively. (a) Empirical WDNs. (b) Synthetic networks generated by our growth
model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for Colorado, and γ = 0.5 for Modena.
(c) Synthetic networks generated by the Waxman model. We set β = 0.619 for ZJ, β = 0.193 for
Colorado, β = 0.596 for Modena, and β = 0.256 for Tampa.

Closing loops has been suggested to help realizing optimal transport efficiency under fluctuations
in flow distributions [16, 26, 30] and improving robustness [19, 30]. In our model, parameter γ
controls how loops are closed. On the right-hand side of Eq. (4Modelequation.3.4), the quantity
dij represents the cost of the new edge. The quantity γ`ij represents the gain of closing a path of
Euculidean length `ij to make a loop. In other words, when we connect two nodes with large `ij ,
the Euclidean length of the shortest loop closed by the new edge is large. Parameter γ controls the
trade-off between the Euclidean length of the new edge and the Euclidean length of the shortest
path closed by the new edge. With γ = 0, we always add the shortest edge in terms of the Euclidean
distance. As we will show later, the generated networks with γ = 0 tend to have loops with a small
Euclidean length and easily fall apart into disjoint components if one sequentially removes edges.
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With a large γ, generated networks are expected to be more robust against edge removal because
they tend to have loops with a large Euclidean length, which generally offer multiple paths for many
pairs of nodes.

3.2 Examples of generated networks

We visualize the networks that our growth model generates with γ = 0.35 for ZJ and Tampa,
γ = 0.4 for Colorado, and γ = 0.5 for Modena in Fig. 1Visualization of the networks. The
red and blue nodes represent the root nodes and the demand nodes, respectively. (a) Empirical
WDNs. (b) Synthetic networks generated by our growth model. We set γ = 0.35 for ZJ and
Tampa, γ = 0.4 for Colorado, and γ = 0.5 for Modena. (c) Synthetic networks generated by
the Waxman model. We set β = 0.619 for ZJ, β = 0.193 for Colorado, β = 0.596 for Modena,
and β = 0.256 for Tampa.figure.caption.2(b). The synthetic networks are apparently similar to the
empirical WDNs (Fig. 1Visualization of the networks. The red and blue nodes represent the root
nodes and the demand nodes, respectively. (a) Empirical WDNs. (b) Synthetic networks generated
by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for Colorado, and γ = 0.5
for Modena. (c) Synthetic networks generated by the Waxman model. We set β = 0.619 for ZJ,
β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256 for Tampa.figure.caption.2(a)).
For comparison, we also visualize the synthetic networks generated by the Waxman model, which is
a spatial variant of random graphs (see Appendix AWaxman modelAppendix.1.A for details of the
Waxman model), in Fig. 1Visualization of the networks. The red and blue nodes represent the root
nodes and the demand nodes, respectively. (a) Empirical WDNs. (b) Synthetic networks generated
by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for Colorado, and γ = 0.5
for Modena. (c) Synthetic networks generated by the Waxman model. We set β = 0.619 for ZJ,
β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256 for Tampa.figure.caption.2(c).
The Waxman model produces networks that are apparently dissimilar to the empirical WDNs.

We compare structural properties among the empirical WDNs, our model, and the Waxman
model in Table 1Structural properties of the empirical WDNs, the synthetic networks generated by
our growth model, and the synthetic networks generated by the Waxman model. N : number of
nodes, |VR|: number of root nodes, M : number of edges, J : Jaccard index for the sets of edges
between the empirical and synthetic networks, Nc: number of connected components, 〈k〉: average
degree, kmax: maximum degree, m: meshedness coefficient, c: cost (i.e., total edge length) [km], q:
route factor, and R: robustness.table.caption.1. The synthetic networks generated by our model are
roughly similar to the empirical WDNs in terms of the indices measured. The synthetic networks
generated by the Waxman model are not connected as one component, and therefore we cannot
compute the route factor and the robustness for them. Apart from the route factor and robustness,
the Waxman model is roughly as similar to the empirical WDNs as our model is in terms of the
average degree and meshedness coefficient. However, the Waxman model is substantially more
dissimilar to the empirical WDNs than our model is in terms of the Jaccard index, maximum
degree, and cost.

We show a simulated time course of network growth with our model in the case of Col-
orado in Fig. 2Visualization of the network growth in the case of Colorado. We simulated
our network growth model with γ = 0.4. For visual clarity, we omitted the isolated demand
nodes.figure.caption.3. We observe that the connected component associated with each root node
expands its service area, and such connected components merge at later times.

3.3 Trade-offs between the cost, route factor, and robustness

Our model has parameter γ, which controls the trade-off between the wiring cost and the length
of the added loops. We visualize sample synthetic networks generated by our model with γ = 0,
γ = 0.5, and γ = 1 in the case of Tampa in Fig. 3Visualization of synthetic networks generated by
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Figure 2: Visualization of the network growth in the case of Colorado. We simulated our network
growth model with γ = 0.4. For visual clarity, we omitted the isolated demand nodes.

Figure 3: Visualization of synthetic networks generated by our model in the case of Tampa. (a)
γ = 0. (b) γ = 0.5. (c) γ = 1.

our model in the case of Tampa. (a) γ = 0. (b) γ = 0.5. (c) γ = 1.figure.caption.4. With γ = 0,
we sequentially add the edges that yield the smallest Euclidean distance in each step. As shown in
Fig. 3Visualization of synthetic networks generated by our model in the case of Tampa. (a) γ = 0.
(b) γ = 0.5. (c) γ = 1.figure.caption.4(a), the resulting network has loops with small Euclidean
lengths. For a larger γ, there are more long edges that close loops. We computed the cost, route
factor, and robustness for these three networks. The cost increases as γ increases, i.e., it is equal to
367, 720, and 2,248 when γ = 0, γ = 0.5, and γ = 1, respectively. The route factor decreases as γ
increases, i.e., it is equal to 2.20, 1.24, and 1.23 when γ = 0, γ = 0.5, and γ = 1, respectively. The
robustness increases as γ increases, i.e., it is equal to 0.0184, 0.217, and 0.280 when γ = 0, γ = 0.5,
and γ = 1, respectively. This preliminary result indicates that there are trade-offs between the cost,
route factor, and robustness as we vary γ. In this section, we study these trade-offs.

We start by comparing the cost and route factor for the empirical and synthetic networks. For
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the synthetic networks, we use γ ∈ {0, 0.05, . . . , 1} and generate three networks for each value
of γ. We show the results in Fig. 4Relationships between the cost and route factor. (a) ZJ.
(b) Colorado. (c) Modena. (d) Tampa. The crosses represent the empirical WDNs. The
circles represent synthetic networks. For the synthetic networks, we use γ ∈ {0, 0.05, . . . , 1} and
generate three networks for each value of γ. The dashed lines represent q = 1.figure.caption.5.
First, the cost tends to increase as γ increases. This result is consistent with our observation
with Fig. 3Visualization of synthetic networks generated by our model in the case of Tampa. (a)
γ = 0. (b) γ = 0.5. (c) γ = 1.figure.caption.4. Second, the route factor is the largest when
γ = 0, and it decreases sharply as γ increases. The route factor is largely independent of γ when
γ is approximately larger than 0.5. Third, our growth model generates networks similar to the
empirical WDNs in terms of the cost and route factor when 0.35 ≤ γ ≤ 0.5. The synthetic networks
when 0.35 ≤ γ ≤ 0.5 realize route factor values that are close to the minimum (i.e., less than
≈ 115% of the smallest possible value when one varies γ) and a cost that is less than ≈ 170% of the
minimum for each empirical WDN.

We show in Fig. 5Relationships between the cost and robustness. (a) ZJ. (b) Colorado. (c)
Modena. (d) Tampa. The crosses represent the empirical WDNs. The circles represent synthetic
networks. For the synthetic networks, we use γ ∈ {0, 0.05, . . . , 1} and generate three networks
for each value of γ.figure.caption.6 the trade-offs between the cost and robustness for synthetic
networks across different values of γ. Again, for the synthetic networks, we use γ ∈ {0, 0.05, . . . , 1}
and generate three networks for each value of γ. The robustness increases as a function of γ, and
it does so considerably more when γ is small than when γ is large. Similar to the case of the
route factor, our growth model generates networks similar to the empirical WDNs in terms of the
cost and robustness when 0.35 ≤ γ ≤ 0.5 except for the case of ZJ. The synthetic networks with
0.35 ≤ γ ≤ 0.5 realize robustness values that are more than ≈ 60% of the maximum and a cost that
is less than ≈ 170% of the minimum for each of the empirical WDN. The robustness of ZJ is smaller
than those of the synthetic networks with a similar cost. A possible reason is that the ZJ network
apparently has a strong community structure (see Fig. 1Visualization of the networks. The red and
blue nodes represent the root nodes and the demand nodes, respectively. (a) Empirical WDNs. (b)
Synthetic networks generated by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for
Colorado, and γ = 0.5 for Modena. (c) Synthetic networks generated by the Waxman model.
We set β = 0.619 for ZJ, β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256 for
Tampa.figure.caption.2(a)), which our model does not intend to reproduce.

4 Pipe Diameter

4.1 Background and the Physarum model

We have neglected the diameter of pipes. We visualize the pipe diameters for the Colorado, Mod-
ena, and Tampa networks in Fig. 6Visualization of the networks with pipe diameters. (a) Empirical
networks with the empirical pipe diameters. (b) Empirical networks with the pipe diameters that
are determined by the Physarum model. (c) Synthetic networks generated by our growth model in
which the pipe diameters are determined by the Physarum model. The synthetic networks are the
ones we showed in Fig. 1Visualization of the networks. The red and blue nodes represent the root
nodes and the demand nodes, respectively. (a) Empirical WDNs. (b) Synthetic networks generated
by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for Colorado, and γ = 0.5
for Modena. (c) Synthetic networks generated by the Waxman model. We set β = 0.619 for ZJ,
β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256 for Tampa.figure.caption.2(b).
In the Physarum model used in (b) and (c), we set µ = 1 and I0 = 10.figure.caption.7(a). We
exclude the ZJ network because the diameter of all the pipes in the ZJ network is 600 [cm][58].
The Modena network has five different diameters of pipes ranging from 100 to 400 [cm]. The
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Figure 4: Relationships between the cost and route factor. (a) ZJ. (b) Colorado. (c) Modena.
(d) Tampa. The crosses represent the empirical WDNs. The circles represent synthetic networks.
For the synthetic networks, we use γ ∈ {0, 0.05, . . . , 1} and generate three networks for each value
of γ. The dashed lines represent q = 1.

Colorado network has eight different diameters of pipes ranging from 6 to 24 [inch]. The Tampa
network has 34 different diameters of pipes ranging from 8 to 54 [inch]. Figure 6Visualization of
the networks with pipe diameters. (a) Empirical networks with the empirical pipe diameters. (b)
Empirical networks with the pipe diameters that are determined by the Physarum model. (c) Syn-
thetic networks generated by our growth model in which the pipe diameters are determined by the
Physarum model. The synthetic networks are the ones we showed in Fig. 1Visualization of the
networks. The red and blue nodes represent the root nodes and the demand nodes, respectively. (a)
Empirical WDNs. (b) Synthetic networks generated by our growth model. We set γ = 0.35 for ZJ
and Tampa, γ = 0.4 for Colorado, and γ = 0.5 for Modena. (c) Synthetic networks generated
by the Waxman model. We set β = 0.619 for ZJ, β = 0.193 for Colorado, β = 0.596 for Modena,
and β = 0.256 for Tampa.figure.caption.2(b). In the Physarum model used in (b) and (c), we set
µ = 1 and I0 = 10.figure.caption.7(a) indicates that large-diameter pipes tend to be physically close
to a root node. However, this is not always the case. For example, there are large-diameter pipes
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Figure 5: Relationships between the cost and robustness. (a) ZJ. (b) Colorado. (c) Modena.
(d) Tampa. The crosses represent the empirical WDNs. The circles represent synthetic networks.
For the synthetic networks, we use γ ∈ {0, 0.05, . . . , 1} and generate three networks for each value
of γ.

that are located far from the root node in the upper part of the Tampa network. The diameter
of pipes influences the installation cost and the performance of WDNs such as the flow velocity
and the head loss [11]. Abrupt changes in the pipe diameter may cause rapid variation in head
loss, which may lead to physical damages and failures in pipes [57], and the gradual change of
pipe diameters along flow paths has been shown to increase both energy and path redundancies in
WDNs [1]. Therefore, the distribution of pipe diameters is an indispensable component for assessing
the performance and design of WDNs.

Likewise, edge conductance is an important determinant for various natural flow networks such
as leaf veins of plants [6], vascular systems of animals [21], and river networks [43]. These networks
continuously adapt to the environment and are survivors of evolution. Therefore, they are likely
to attain optimal structure. It is of interest to design optimal transportation networks inspired
by such natural networks. Models inspired by an amoeba-like organism, Physarum polycephalum,
have been used for designing optimal transportation networks [34, 54, 55, 56, 63]. These models
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Figure 6: Visualization of the networks with pipe diameters. (a) Empirical networks with the
empirical pipe diameters. (b) Empirical networks with the pipe diameters that are determined by
the Physarum model. (c) Synthetic networks generated by our growth model in which the pipe
diameters are determined by the Physarum model. The synthetic networks are the ones we showed
in Fig. 1Visualization of the networks. The red and blue nodes represent the root nodes and the
demand nodes, respectively. (a) Empirical WDNs. (b) Synthetic networks generated by our growth
model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for Colorado, and γ = 0.5 for Modena.
(c) Synthetic networks generated by the Waxman model. We set β = 0.619 for ZJ, β = 0.193
for Colorado, β = 0.596 for Modena, and β = 0.256 for Tampa.figure.caption.2(b). In the
Physarum model used in (b) and (c), we set µ = 1 and I0 = 10.

operationalize positive feedback between the conductance of edges and the amount of flow passing
through them. This feedback mechanism is informed by the physiology of Physarum polycephalum
with which plasmodial tubes thicken if the protoplasmic flow through them increases [41]. In this
section, we compare the pipe diameters for the empirical WDNs and the ones determined by the
model proposed in Ref. [56], which we refer to as the Physarum model. We use this specific model
because the networks generated by this model have been suggested to be optimal networks in terms
of the balance between the cost, efficiency, and robustness [56].

Here we briefly describe the Physarum model proposed in Ref. [56]. Under the assumption that
the flow is laminar and follows the Hagen-Poiseuille equation, the flux through pipe (i, j), denoted
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by Qij , is given by

Qij =
πR4

ij(pi − pj)
128η`ij

=
Dij(pi − pj)

`ij
, (5)

where the flow is measured in the direction from the ith to jth nodes; Rij is the diameter of pipe
(i, j); η is the viscosity of the fluid; Dij = πR4

ij/128η is the conductance of pipe (i, j); `ij is the
physical length of pipe (i, j); and pi is the pressure at node i. We consider the conservation law of
flux given by

M∑
j=1

Qij =

M∑
j=1

Dij(pi − pj)
`ij

=

{
I0/|VR| (i ∈ VR) ,
−I0/|VD| (i ∈ VD) ,

(6)

where I0 (with I0 > 0) is the total flux outgoing from the root nodes. We remind that VR and VD
are the set of the root nodes and that of the demand nodes, respectively, such that V = VR ∪ VD.
Equation (6Background and the Physarum modelequation.4.6) assumes that all the root nodes have
the same flux value and that all the demand nodes have the same flux value.

The conductance evolves in time according to

dDij

dt
= f(|Qij |)−Dij . (7)

We assume that the viscosity of the fluid η is constant, which implies that the diameter Rij evolves in

proportion to (Dij)
1/4 asDij evolves. The first term on the right-hand side of Eq. (7Background and the Physarum modelequation.4.7)

describes the increase in Dij in response to the flux, which is a positive feedback effect. In the ab-
sence of flow, Dij exponentially decays over time because of the second term. We use

f(|Qij |) =
|Qij |µ

1 + |Qij |µ
, (8)

where µ(> 0) is a parameter that specifies the nonlinearity of the positive feedback.

4.2 Numerical results

We apply the Physarum model to the three empirical WDNs (i.e., Colorado, Modena, and
Tampa) and the corresponding synthetic networks generated by our growth model. The synthetic
networks are those shown in Fig. 1Visualization of the networks. The red and blue nodes represent
the root nodes and the demand nodes, respectively. (a) Empirical WDNs. (b) Synthetic networks
generated by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for Colorado, and
γ = 0.5 for Modena. (c) Synthetic networks generated by the Waxman model. We set β = 0.619 for
ZJ, β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256 for Tampa.figure.caption.2(b).

We visualize the networks with the pipe diameters, Rij , being obtained by the Physarum model
with µ = 1 and I0 = 10 for the empirical and synthetic networks in Figs. 6Visualization of the
networks with pipe diameters. (a) Empirical networks with the empirical pipe diameters. (b)
Empirical networks with the pipe diameters that are determined by the Physarum model. (c)
Synthetic networks generated by our growth model in which the pipe diameters are determined by
the Physarum model. The synthetic networks are the ones we showed in Fig. 1Visualization of the
networks. The red and blue nodes represent the root nodes and the demand nodes, respectively.
(a) Empirical WDNs. (b) Synthetic networks generated by our growth model. We set γ = 0.35
for ZJ and Tampa, γ = 0.4 for Colorado, and γ = 0.5 for Modena. (c) Synthetic networks
generated by the Waxman model. We set β = 0.619 for ZJ, β = 0.193 for Colorado, β = 0.596
for Modena, and β = 0.256 for Tampa.figure.caption.2(b). In the Physarum model used in (b)
and (c), we set µ = 1 and I0 = 10.figure.caption.7(b) and 6Visualization of the networks with pipe
diameters. (a) Empirical networks with the empirical pipe diameters. (b) Empirical networks with
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the pipe diameters that are determined by the Physarum model. (c) Synthetic networks generated
by our growth model in which the pipe diameters are determined by the Physarum model. The
synthetic networks are the ones we showed in Fig. 1Visualization of the networks. The red and
blue nodes represent the root nodes and the demand nodes, respectively. (a) Empirical WDNs. (b)
Synthetic networks generated by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for
Colorado, and γ = 0.5 for Modena. (c) Synthetic networks generated by the Waxman model.
We set β = 0.619 for ZJ, β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256
for Tampa.figure.caption.2(b). In the Physarum model used in (b) and (c), we set µ = 1 and
I0 = 10.figure.caption.7(c), respectively. In these figures, there are large-diameter pipes physically
close to the root nodes, which is similar to the empirical WDNs shown in Fig. 6Visualization of
the networks with pipe diameters. (a) Empirical networks with the empirical pipe diameters. (b)
Empirical networks with the pipe diameters that are determined by the Physarum model. (c)
Synthetic networks generated by our growth model in which the pipe diameters are determined by
the Physarum model. The synthetic networks are the ones we showed in Fig. 1Visualization of the
networks. The red and blue nodes represent the root nodes and the demand nodes, respectively. (a)
Empirical WDNs. (b) Synthetic networks generated by our growth model. We set γ = 0.35 for ZJ
and Tampa, γ = 0.4 for Colorado, and γ = 0.5 for Modena. (c) Synthetic networks generated
by the Waxman model. We set β = 0.619 for ZJ, β = 0.193 for Colorado, β = 0.596 for Modena,
and β = 0.256 for Tampa.figure.caption.2(b). In the Physarum model used in (b) and (c), we set
µ = 1 and I0 = 10.figure.caption.7(a). In addition, the Physarum model generates large-diameter
pipes in the upper part of the Tampa network (see Figs. 6Visualization of the networks with pipe
diameters. (a) Empirical networks with the empirical pipe diameters. (b) Empirical networks with
the pipe diameters that are determined by the Physarum model. (c) Synthetic networks generated
by our growth model in which the pipe diameters are determined by the Physarum model. The
synthetic networks are the ones we showed in Fig. 1Visualization of the networks. The red and
blue nodes represent the root nodes and the demand nodes, respectively. (a) Empirical WDNs. (b)
Synthetic networks generated by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for
Colorado, and γ = 0.5 for Modena. (c) Synthetic networks generated by the Waxman model.
We set β = 0.619 for ZJ, β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256
for Tampa.figure.caption.2(b). In the Physarum model used in (b) and (c), we set µ = 1 and
I0 = 10.figure.caption.7(b) and 6Visualization of the networks with pipe diameters. (a) Empirical
networks with the empirical pipe diameters. (b) Empirical networks with the pipe diameters that
are determined by the Physarum model. (c) Synthetic networks generated by our growth model in
which the pipe diameters are determined by the Physarum model. The synthetic networks are the
ones we showed in Fig. 1Visualization of the networks. The red and blue nodes represent the root
nodes and the demand nodes, respectively. (a) Empirical WDNs. (b) Synthetic networks generated
by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for Colorado, and γ = 0.5
for Modena. (c) Synthetic networks generated by the Waxman model. We set β = 0.619 for ZJ,
β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256 for Tampa.figure.caption.2(b).
In the Physarum model used in (b) and (c), we set µ = 1 and I0 = 10.figure.caption.7(c)), which is
also consistent with the empirical Tampa network (see Fig. 6Visualization of the networks with pipe
diameters. (a) Empirical networks with the empirical pipe diameters. (b) Empirical networks with
the pipe diameters that are determined by the Physarum model. (c) Synthetic networks generated
by our growth model in which the pipe diameters are determined by the Physarum model. The
synthetic networks are the ones we showed in Fig. 1Visualization of the networks. The red and
blue nodes represent the root nodes and the demand nodes, respectively. (a) Empirical WDNs. (b)
Synthetic networks generated by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for
Colorado, and γ = 0.5 for Modena. (c) Synthetic networks generated by the Waxman model.
We set β = 0.619 for ZJ, β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256
for Tampa.figure.caption.2(b). In the Physarum model used in (b) and (c), we set µ = 1 and

14



I0 = 10.figure.caption.7(a)). However, there are also dissimilarities especially in the case of the
synthetic networks shown in Fig. 6Visualization of the networks with pipe diameters. (a) Empirical
networks with the empirical pipe diameters. (b) Empirical networks with the pipe diameters that
are determined by the Physarum model. (c) Synthetic networks generated by our growth model in
which the pipe diameters are determined by the Physarum model. The synthetic networks are the
ones we showed in Fig. 1Visualization of the networks. The red and blue nodes represent the root
nodes and the demand nodes, respectively. (a) Empirical WDNs. (b) Synthetic networks generated
by our growth model. We set γ = 0.35 for ZJ and Tampa, γ = 0.4 for Colorado, and γ = 0.5
for Modena. (c) Synthetic networks generated by the Waxman model. We set β = 0.619 for ZJ,
β = 0.193 for Colorado, β = 0.596 for Modena, and β = 0.256 for Tampa.figure.caption.2(b). In
the Physarum model used in (b) and (c), we set µ = 1 and I0 = 10.figure.caption.7(c). For example,
the distribution of pipe diameters in Colorado in Fig. 6Visualization of the networks with pipe
diameters. (a) Empirical networks with the empirical pipe diameters. (b) Empirical networks with
the pipe diameters that are determined by the Physarum model. (c) Synthetic networks generated
by our growth model in which the pipe diameters are determined by the Physarum model. The
synthetic networks are the ones we showed in Fig. 1Visualization of the networks. The red and
blue nodes represent the root nodes and the demand nodes, respectively. (a) Empirical WDNs.
(b) Synthetic networks generated by our growth model. We set γ = 0.35 for ZJ and Tampa,
γ = 0.4 for Colorado, and γ = 0.5 for Modena. (c) Synthetic networks generated by the
Waxman model. We set β = 0.619 for ZJ, β = 0.193 for Colorado, β = 0.596 for Modena,
and β = 0.256 for Tampa.figure.caption.2(b). In the Physarum model used in (b) and (c), we set
µ = 1 and I0 = 10.figure.caption.7(c) is not close to that of the WDN shown in Fig. 6Visualization
of the networks with pipe diameters. (a) Empirical networks with the empirical pipe diameters.
(b) Empirical networks with the pipe diameters that are determined by the Physarum model. (c)
Synthetic networks generated by our growth model in which the pipe diameters are determined by
the Physarum model. The synthetic networks are the ones we showed in Fig. 1Visualization of the
networks. The red and blue nodes represent the root nodes and the demand nodes, respectively.
(a) Empirical WDNs. (b) Synthetic networks generated by our growth model. We set γ = 0.35
for ZJ and Tampa, γ = 0.4 for Colorado, and γ = 0.5 for Modena. (c) Synthetic networks
generated by the Waxman model. We set β = 0.619 for ZJ, β = 0.193 for Colorado, β = 0.596
for Modena, and β = 0.256 for Tampa.figure.caption.2(b). In the Physarum model used in (b)
and (c), we set µ = 1 and I0 = 10.figure.caption.7(a).

To quantify the similarity between the empirical and synthetic networks in terms of the dis-
tribution of the pipe diameters, we measure the Pearson correlation coefficient between the pipe
diameter obtained by the Physarum model and the empirical counterpart, where we regard each
pipe as a sample. In the case of synthetic networks, we calculate the Pearson correlation co-
efficient only based on the edges co-present in the empirical and synthetic networks. We show
the Pearson correlation coefficient, denoted by r, for different values of the two parameters of
the Physarum model, µ and I0, in Fig. 7Pearson correlation coefficient, r, between the empirical
and simulated pipe diameters.figure.caption.8. According to a standard, we interpret the Pearson
correlation coefficient to be strong, moderate, or weak when |r| > 0.7, |r| > 0.4, or |r| > 0.1,
respectively [17]. Figure 7Pearson correlation coefficient, r, between the empirical and simulated
pipe diameters.figure.caption.8 suggests that, given the structure of the empirical network, the cor-
relation between the empirical data and the synthetic data obtained from the Physarum model
is moderately positive albeit not strongly positive in a broad parameter region for all the three
WDNs. In contrast, the pipe diameter for the synthetic networks is only weakly correlated with the
empirical data.
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Figure 7: Pearson correlation coefficient, r, between the empirical and simulated pipe diameters.

5 Conclusions

We proposed a growth model for WDNs. Although our model does not require detailed inputs apart
form the physical location of each node, it produces networks whose structure is similar to that of
the empirical WDNs when 0.35 ≤ γ ≤ 0.5. These networks realize route factor values that are
less than ≈ 115% of the smallest possible value when one varies γ, robustness values that are more
than ≈ 60% of the largest possible value, and cost values that are less than ≈ 170% of the smallest
possible value for each of the four empirical WDNs that we have used. When γ ≤ 0.35, the route
factor tends to decrease drastically as one increases γ. On the other hand, when γ ≥ 0.5, the gain
in the robustness when one increases γ is small. Therefore, the empirical WDNs are considered to
realize a reasonable balance between the cost, efficiency, and robustness. These results imply that
our model may inform growth mechanisms of real-world WDNs and design of WDNs. The model
may also be applicable to other spatial flow networks such as gas pipeline networks.

Some studies showed that increasing degree-degree correlations is effective at improving the
network robustness [48, 53, 60]. There is also a strong relation between robustness and loops [9,
15, 19, 25, 30]. In the present study, we have shown that the robustness is highly dependent on the
value of γ for γ ≤ 0.5, which suggests that the distribution of loops may be a key determinant of
the robustness. In Ref. [29], the authors proposed a method for analyzing the distribution of loops
for planar graphs and found that leaf venation networks have hierarchical structure with which
large loops contain small loops. Such a hierarchical structure of loops may allow leaves to maintain
the supply of water and nutrients even when flow through some edges in the network is lost due
to damages [45, 46, 47]. Similarly, in Ref. [1], the authors found that loop nestedness increases
flow path redundancies in WDNs. Our results also show that such hierarchical structure of loops
seems to appear as γ varies (see Fig. 3Visualization of synthetic networks generated by our model
in the case of Tampa. (a) γ = 0. (b) γ = 0.5. (c) γ = 1.figure.caption.4). However, analyzing
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the distribution of loops for non-planar graphs is still an open question [36, 38]. Further studies
are desirable for investigating the correlation between the robustness and hydraulic performance of
WDNs, and clarifying relationships between the robustness and the distribution of loops in non-
planar graphs including many of WDNs.

We also studied the design of pipe diameters based on a biological positive feedback mechanism.
We found moderate positive correlations between the empirical and modeled pipe diameter across
the pipes for all the three WDNs. These results suggest that the distribution of the empirical pipe
diameters may be closer to optimal than to a uniformly random distribution under the assumption
that the Physarum model approximately optimizes the conductance of edges in terms of some
efficiency or robustness criteria. In fact, a similar Physarum model realizes distributions of pipe
diameters that realize a small overall wiring cost in WDNs [51]. At the same time, the lack of
strong correlation between the empirical and modeled pipe diameters suggests that we may be able
to improve the performance of WDNs by designing the distribution of pipe diameters using the
present Physarum model or similar models. Moreover, additional nature-inspired mechanisms such
as the growth of underlying tissues in leaf venation networks [44] and other optimization techniques
such as simulated annealing [30] and combination between biological principles and engineering
control [28] may also be useful for realizing optimal distributions of pipe diameters.

Appendix A Waxman model

The Waxman model is a spatial variant of the ErdősRényi model [59]. In the original Waxman
model, the nodes are uniformly distributed in the two-dimensional space. In contrast, we use the
two-dimensional coordinate of each node informed by the empirical data. One adds each edge
between each pair of nodes, i and j, with probability

Pij = βe−dij/d0 , (9)

where d0 is the typical length of edge, and β controls the density of edges. One determines whether
or not to lay an edge between each pair of the ith and jth nodes independently for different node
pairs. We set d0 to the average Euclidean length of edges in the given empirical WDN. For each
WDN, we determine the β value by

∑N
i=1

∑i−1
j=1 Pij = M , which guarantees that the expected

number of edges generated by the Waxman model is equal to the number of edges in the empirical
WDN. The obtained β values are 0.619 for ZJ, 0.193 for Colorado, 0.596 for Modena, and 0.256
for Tampa.

Data Accessibility
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