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ABSTRACT

Several researchers have developed fall detection using wearable sensors due to their flexibility and nature of
privacy. Most of those developed methods are supervised deep learning methods. However, data annotation
is expensive because we use camera video recording and playback of each participant’s recorded video to
label the data. This paper presents how to use unlabeled data to pre-train FCN and ResNet models, and
use labeled data to fine-tune those pre-trained weights. We collected unlabeled and labeled data and applied
self-supervised learning to detect falls. The experiment in this study suggested that the best performance can
be achieved by using pre-trained weights of unlabeled data from the accelerometer and gyroscope sensors.
Furthermore, oversampling and modified loss functions are used to handle the dataset’s imbalance classes.
With the ResNet pre-trained weights and training using the labeled data, the experiments achieved an F1-
Score of 0.98.
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1 INTRODUCTION

The population of senior adults older than 65 years old is growing worldwide, and the US seniors have
shown rapid growth in population since 1950 (Statista 2021). In 2019, approximately 16 percent of adults
aged 65 or over are expected to reach 22 percent in the next thirty years (Statista 2021). One-third of the
aging population (age 65) falls each year, and all senior adults above 80 years fall annually. USA statistics
show that about 36 million falls happen annually, and one-fourth (28%) of the elders above 65 years old
falls yearly (Moreland et al. 2020). Of those falls, 37 percent (8 million) were injured and needed medical
treatment (Moreland et al. 2020). Furthermore, wearing a fall alert system helps to alleviate a fear of
falling. Not fearing to fall, seniors don’t curtail their activities, allowing them to remain physically active
and preventing functional decline. It can also help other pre-defined anomalous or predictive behavior and
can alert third parties for intervention in advance or after a fall, thus remediating impact (Yhdego et al.
2021). Due to these reasons, a national imperative is to develop a cost-effective real-time fall detection
underpinned by new sensor technologies and methods.

There are many issues regarding the technology used for fall detection systems in the geriatric center of se-
nior patients. The fall detection system used should examine the privacy of the patients and the flexibility of
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the system. Wearable sensor device with inertial sensors of accelerometer and gyroscope used as the primary
data source helps us avoid those issues. The analysis of the signals obtained from human body-mounted
wearable sensors are commonly used to monitor the health status of older patients with movement assistive
devices (Bright and Coventry 2013). These sensors usually generate complex hip motion signals, which
are difficult to interpret without expert intervention. A computationally efficient fall detection modelling
technique that will provide a meaningful characterization of the sensor data is required to automatically
analyze the sensor readings to infer the kind of human activity performed by a user. Many researchers have
been developing supervised-based fall detection methods in the last decades. However, there are still some
limitations to the manual annotation of the dataset collected using wearable sensors.

Meta’s Yann LeCun proposed self-supervised learning (Yann LeCun 2021). Self-supervised learning obtains
supervisory signals from its dataset, often leveraging the underlying structure in the data. The general
technique of self-supervised learning is to predict any unobserved or hidden part (or property) of the input
from any observed or unhidden part of the input (Yann LeCun 2021). Self-supervised learning can learn
complex patterns using unlabeled data, achieving many state-of-the-art results in different applications.
Inspired by the success of BERT: pre-training (self-supervised) for language understanding (Devlin et al.
2019) in natural language processing (NLP), this paper explores pre-trained-based fall detection systems on
wearable sensor datasets. Two different deep learning models are used as a baseline model-fully connected
networks (FCN) (Wang et al. 2017) and a residual neural network (ResNet) (He et al. 2016). To balance the
minor classes’ data sampling, we use random oversampling methods.

2 RELATED WORKS

Deep learning algorithms have been applied to several areas, such as computer vision, image recognition,
human activity recognition, and fall detection systems. Fall detection system development mainly uses
simulated fall data sets by well-protected non-patient subjects to be then used and validated by real patients
( Bagala et al. 2012, Klenk et al. 2011). A fall detection system based on simulated falls of such young
subjects was developed by Chaudhuri et al. (2015). Other fall detection devices based on real patients are
developed by Lipsitz et al. (2016), but the false positive and false negative are high.

Many researchers have developed classical machine learning based fall detection systems (Ramachandran
and Karuppiah 2020). Different classifiers methods are used with hand-crafted feature extractions for real
time fall detection systems, such as logistic regression (Putra et al. 2017), Naive Bayes ( Liu et al. 2018, Pu-
tra et al. 2017), decision tree ( Putra et al. 2017, Liu et al. 2018), support vector machines (Putra et al.
2017), and k-nearest neighbors ( Medrano et al. 2014, Putra et al. 2017, Liu et al. 2018).

Recurrent neural network (RNN) and long short-term memory (LSTM) are popular algorithms used in se-
quence models to encode and process sequential data. As a wearable sensor-based fall detection method
generates sequential datasets, it has the advantage of using these sequential models. Sensor fusion of ac-
celerometer and gyroscope data streams using a hybrid CNN-LSTM method proposed by Delgado-Escafio
et al. (2020), and LSTM-based activity recognition by Paolini et al. (2019) and Aicha et al. (2018), are
used for fall recognition. The study by Aicha et al. (2018) employs a single inertial sensor placed on the
trunk. The CNN and LSTM model inputs are the raw acceleration and angular velocity signals. The problem
with Ruben’s approach is that he uses KNN classifiers- which it is challenging to use such algorithms for
real-time fall detection due to the computational time of KNN classifiers. We need enough labeled data to
train the supervised deep learning methods proposed above.

BERT is a pre-training learning model that obtains state-of-the-art results in various NLP tasks ( Chen, Zhuo,
and Wang 2019, Vig and Ramea 2019). Our approach is based on learning language representation self-
supervised BERT (Devlin et al. 2019). We collected unlabeled and labeled fall datasets and pre-processed
and balanced the minor class data samples. Fall events rarely occur in relation to other daily activities, so
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the dataset collected from actual patients is imbalanced. Using imbalanced data for training deep learning
models fail when we try to test on the minority class of imbalanced datasets, which happens in actual
patient fall events. Thus, an essential requirement of the analysis is the consideration of methodologies for
compensating for an imbalanced dataset in deep learning methods. We use modified weighted focal loss and
random oversampling to handle the dataset’s imbalanced nature.

3 MATERIALS AND METHODS

We use two base models-Fully Convolutional Neural Networks (FCNs) and Deep Residual Network
(ResNet) for pre-training and fine-tuning wearable sensor signals. First, we discussed the labeled and un-
labeled datasets we collected and then explained the required pre-processing and slide windowing steps.
Lastly, the pre-training and fine-tuning of the baseline deep learning models are explained.

3.1 Data

The human subjects’ fall experiment is carried out with safety measures at the neuromechanics and neuro-
plasticity lab of San Diego State University by Dr Paolini. Each subject walked straight (back and forth) by
wearing the VR headset to a path in the laboratory. The VR headset would depict a straight sidewalk for the
participant with no obstacles or deviations in the middle of the track, ensuring that the participant is familiar
with his virtual environment while walking. Mattresses were placed at the front and along the side of the
path to prevent injuries. Up on falling, the sensors are checked for dislocation and adjusted accordingly be-
fore performing the next fall experiment. The collected fall dataset has a sampling rate of 100 HZ, mounted
in the shank (Shinbone) (Noraxon 2019). The lab was set up with wireless 3D Motion capture cameras
which record the human subject movements (San Diego State University 2018) for annotating the labeled
data only. The data were collected from sixteen subjects between the ages of 20-50; two were females, and
the rest were males.

Many fall detection studies (Casilari et al. 2020) utilize an accelerometer as a primary sensor to determine
falls. However, using only the acceleration measurements can result in many false positives and false nega-
tives caused by near-fall activities such as sitting down fast on a mattress. Near fall and fall activities have
almost the same vertical signal variation, making it difficult to differentiate. False-positive and false nega-
tives caused by the near-fall activities can be reduced significantly using the gyroscope’s angular velocity
measurements. Hence, to detect falls with low energy consumption, we use the acceleration along the x,
y, and z-axis and angular velocity along the X, y, and z-axis. The Noraxon myoMotion research inertial
measurement unit (IMU) sensors are used to measure those features. These feature values were saved as
comma-separated value (CSV) files accessed using the Noraxon MR3 Software and exported to the com-
puter (Paolini et al. 2019). A clean fall is considered a proper fall event, labelled with a binary value *1’
in each test case. At the same time, non-fall activities (standing, walking) and near-fall activities (slipping,
stumbling, and sitting) are non-fall events labeled with a binary value *0’. Our deep learning models use
these CSV files of different human subjects as train and test datasets.

3.2 Data Pre-processing

First, the data points of each feature (Feat)- x, y, and z of the accelerometry and gyroscope, are normalized
(Feat_Norm) using the maximum and minimum values of the features, as shown in the equation below.
Most real-time fall detection applications should respond within less than 1 second. Therefore, we segment
into a 1-second (100 sample signal) for each label (labeled data only) using a fixed-size overlapping sliding
window. The size window overlapping (stride) is 0.5 seconds. If we got a single row of falls in this 1-second
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The dataset contains 30% of labeled dataset and 70% of unlabeled dataset. The labeled dataset collected has
13% of the fall dataset and 87% of non-fall (ADL) activities; it is highly imbalanced data, as shown in Figure
1. The main problem of not considering such imbalanced datasets is that our deep learning models make
our minor label classes suffer from low results. However, the accuracy of those minority classes is the most
important one. Common approaches to resolving this problem are data-centric and model-centric. The most
common and straightforward data-centric sampling methods are random over-sampling, which randomly
selects examples from the minority class with replacement and adds them to the training dataset and random
under-sampling, which removes the random sample signals from the majority class. We use random over-
sampling rather than under-sampling because under-sampling for the majority class loses some information,
whereas oversampling for the minority class does not lose any data. We use a modified loss function- a
weighted focal loss for the model-centric.

3.3 Baseline Models

Self-supervised learning is a good technique for learning features in the absence of enough labeled datasets.
It is very efficient where labeling data is expensive, as in our case, we need to install a camera for manually
annotating. In this work, we propose a self-supervised fall detection model, as shown in Figure 2 that
extracts representative features learned from unlabeled data. During pre-training, the base models leverage
features learned on unlabeled data. After we pre-trained, we will fine-tune the learned weights to the labeled
fall dataset. We use FCN and ResNet deep learning models as base models for pre-training and fine-tuning
our dataset.

Fully Convolutional Networks (FCN)

Fully Convolutional Neural Networks (FCNs) have proven to be an effective learning model for sensor
signal sequence data (Wang et al. 2017). FCNs are the same as the standard convolutional neural networks
(CNN) without the local pooling layers - the sensor signal’s input size will not change when it goes further
into the deep layers of the convolutions (Wang et al. 2017). Moreover, the main difference between CNN
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Figure 2: The self-supervised architecture

and FCNs models is that the last fully connected layer is replaced by global average pooling in FCNs one
of the main characteristics of this architecture is the replacement of the traditional final fully-connected
layer. Hence, avoiding the fully connected layer helps us decrease the number of parameters learned in
the neural network. Our model adapted from (Wang et al. 2017) as shown in Figure 2 consist of three
stacked convolution layers of block where a single block has a convolution, batch normalization (Ioffe and
Szegedy 2015), and ReL.U sub-layers. As we can see from the model, there are no sub-sampling (pooling)
and dropout (regularization) layers. The three convolution layers have 512 filters with a kernel size of 5,
256 filters with a kernel size of 5, and 128 filters with a kernel size of 3 consecutively. Each convolution
layers use a stride length of 1 with zero paddings to keep the sequence length of the input signal after the
convolution operation. Each convolution layer is followed by batch normalization and then passes through
the ReLU activation function. The global average pooling layer was applied to the result found from the last
convolution. Finally, a sigmoid classifier is used for classifying falls from non-fall activities.

Deep Residual Network (ResNet)

The second baseline model used for our self-supervised learning is called deep Residual Network (ResNet)
(Wang et al. 2017). The ResNet model has eleven layers-nine of which are convolution, followed by global
average pooling that calculates the average of the input sensor signal dimension. The main difference be-
tween ResNet and other convolution-based deep learning models is that they introduce a residual connection
between successive convolutional layers. And, the ResNet makes the deep learning training fast by decreas-
ing the vanishing gradient problem. ResNet achieves this fast training by using a linear shortcut between the
successive residual blocks that direct the gradient flow through these residual connections (He et al. 2016).
The ResNet model has three stacked residual blocks, and each residual block has three convolutions. The
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result of each residual block is added to the input of each residual block. The output of the last residual
block is then followed by a global average pooling layer and then a sigmoid classifier. In all the residual
blocks, the three convolutions have kernel lengths of 8, 8, and 5 with 64, 128, and 128 filters for three of the
convolution as shown in Figure 3. The convolution layers are followed by batch normalization and ReLu
operations. All the layers have an invariant number of parameters, similar to FCN.
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Figure 3: ResNet model architecture (Wang et al. 2017) with respective filter sizes to be used for pre-training
and fine-tuning by replacing FCN in the framework above.

3.4 Pre-Training (Training on unlabeled data)

Transfer learning from a pre-trained model is one type of self-supervised learning method. Self-supervised
learning aims to extract the useful underlying representation of unlabeled data and transfer these learned
data representations to downstream tasks. In this way, it can solve the problem of labeled data shortage. Our
work exploits FCN, ResNet base models, which solve the self-supervised task by forcing the models to learn
filters to solve the gait analysis of fall and non-fall activities. To get the pre-trained weights of the unlabeled
data, we use mixup data augmentation (Zhang et al. 2018) for generating synthetic data and calculate the
cosine similarity between the original and generated data. When training is finished, the pre-trained weights
will be automatically saved and fine-tuned or trained in the same architecture using datasets with labels.

We use pre-trained weights of unlabeled fall datasets to establish a self-supervised critical feature extraction
method that helps us get better results. This process avoids recording the subjects using cameras for manual
annotations and does not require any prior knowledge. The pre-training weights are fine-tuned with small
labeled data and trained with a linear classifier on top of the model’s trained layers. The details of pre-
training are as shown in Algorithm 1.

Algorithm 1: Function [P]=Pre-training

input : Unlabeled acc(t) = [accy(t),accy(t),acc,(t)] and gyro(t) = [gyrox(t), gyroy(t),gyro.(t)]
output: Pre-trained FCN/ResNet model weights

for all data sequence activities of the dataset do
Normalize all feature columns using equation 1;

L Perform overlapping slide window with 100 samples window size and 50 samples stride ;
Transform the input data in to 3D format of Keras(num of samples * num of features * num steps)
Perform data augmentation using Mixup (Zhang et al. 2018).

Train the unlabeled data using cosine similarity.
Save the pre-trained weights
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3.5 Fine-Tuning and Training (Training on labeled data)

In this case, there are two options for using the pre-trained weights: fine-tuning and training. In fine-tuning,
we train the last layer of the model, freeze the other layers, and train for half of the epochs used during pre-
training (50/100 epochs). However, we train the whole network in "training" as we did the same strategy
during pre-training, except we use the labeled data.

Algorithm 2: Function [F]=Fine-tuning or training

input : Pre-trained weights and Labeled acc(t) = [accy(t),accy(t),acc,(t)] and
gyro(t) = [gyrox(t), gyroy(t),gyro-(t)]

output: Classes of Fall and ADL (Non-Fall)
for all data sequence activities of the dataset do
Normalize all feature columns using equation 1;
Perform overlapping slide window with 100 samples window size and 50 samples stride ;
if there is a single sample out of the 100 samples labeled as fall then

‘ Label the whole observation window as Fall;
else

| Label ADL (Non-Fall);

Perform over-sampling by duplicating the minor classes

Transform the input data in to 3D format of Keras(num of samples * num of features * num steps)
Apply the weighted focal loss function of equation 2

Classify using Sigmoid classifier

Get the classes of Fall and ADL (Non-Fall)

Using the labeled dataset, we test training and fine-tuning using the method shown in Algorithm 2. To
re-train or fine-tune the labeled datasets, we modify the focal loss presented by (Lin et al. 2020). During
supervised training of the labeled dataset, FCN and ResNet networks are optimized end-to-end using a
modified weighted focal loss in Eq. 2:

c=2
LFocalLoss = Z Wi(l —pi)ylog(l?i)y (2)
i=1

where
L otm

! 2 x n;
and ng is number of non-fall class, n| is number of fall class, and Y is a focusing parameter whose value is
Y >= 0. This focusing parameter specifies to reduce the influence of higher-confidence classified samples
in the loss. The higher the 7, the higher the rate at which easy-to-classify examples are down-weighted. If

Y =0, a weighted focal loss is equivalent to a weighted binary cross-entropy loss.

We use balanced accuracy and F1 score performance metrics for comparing the different methods. Balanced
accuracy is a raw accuracy, where each sample is weighted according to its actual class’s inverse prevalence.
It helps us to deal with imbalanced datasets by avoiding inflated performance estimates on the datasets. If
the classifier performs equally well on either class, this term reduces to the standard accuracy. In contrast, if
the classical accuracy is above chance only because the classifier takes advantage of an imbalanced test set,

then the balanced accuracy, as appropriate, will drop to - cl; e

2 (precision * recall)

Flscore = —
precision + recall
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specificity + sensitivity

Balancedaccuracy = 5 ,
where Precision = %, Specificity = TNTiVFP and Sensitivity(Recall) = TPZ%.

4 RESULTS AND DISCUSSION

This paper evaluated self-supervised learning for fall detection based on acceleration and angular velocity
sensors. The experiment has been implemented using the Keras framework. The labeled datasets used
for training and fine-tuning are divided into training, validation and testing with 50%, 20%, and 30%,
respectively. We ran the training twenty times to get the average results with a learning rate of 0.001, a
batch size of 64, and 100 epochs. The performance of those different classifiers is shown in Tables 1 and
2. FCN model is slightly better than the ResNet model in supervised learning. This indicates that FCN
network size works better than ResNet with small datasets. However, the balanced accuracy and F1 score of
ResNet based self-supervised model are higher than those of the FCN self-supervised model. Furthermore,

the self-supervised methods performed better than supervised learning for both baseline models- FCN and
ResNet.

Table 1: Comparing the different base models of fall detection.

Metrics Supervised Self-supervised
training Fine-Tuning Training
ResNet | FCN | ResNet | FCN | ResNet | FCN
Balanced Accuracy | 0.91 0.93 0.95 0.94 0.98 0.96
F1-Score 0.83 080 | 086 | 086 | 096 | 0.89

Table 2: Comparing the different methods of ResNet models for fall detection.

Metrics Supervised ResNet | Self-supervised ResNet | Self-supervised ResNet with
Random Over-sampling
Balanced Accuracy 0.91 0.98 0.99
F1-score 0.83 0.96 0.98

Actual
Actual
Actual

Actual

E — E E

Predicted Predicted

E}

Predicted Predicted

Figure 4: Confusion matrix for the ResNet Model a) Supervised Learning b) Self-supervised (Fine-tuning)
¢) Self-supervised (Training) d) Self-supervised (Training) + Random Over-sampling

Regarding the self-supervised methods, training the pre-trained baseline models from scratch provides bet-
ter performance in most of the results than fine-tuning the pre-trained baseline model. Even though random
oversampling does not add new datasets as it simply duplicates random examples, the results are slightly
better. ResNet base model outperforms FCN base model in most results as shown in Table 1. Furthermore,
random over-sampling with the training of the pre-trained ResNet baseline model outperformed other com-
binations of methods in both of the performance metrics, as we can see in Table 2 and the confusion matrix
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in Figure 4. Lastly, we compared the results of the models based on sex characteristics. The performance of
ResNet model on the female datasets is almost the same as on the male datasets, with an F1 score of 0.95
and 0.96, respectively.

5000

-10000

-15000

0 mn a0 (] a0

Figure 5: Sample predicted classes using the pre-trained ResNet model. Non-fall activity (class 0), fall
activity (class 1), and True, Pred are the actual and predicted classes, respectively.

We try to visualize the actual and predicted classes of the self-supervised ResNet model for sample data
points. As shown in Figure 5, the visualization shows the data points, and their corresponding predicted
and actual classes. In the third column of the first row, the ADL, a near-fall activity, is correctly classified
as non-fall activity. It shows that our self-supervised ResNet model pre-trained using unlabeled datasets is
stable even for near-fall events.

5 CONCLUSION

This work proposed a fall detection study using self-supervised learning that pre-trains unlabeled data and
fine-tunes using small labeled data. We use overlapping sliding windows for feature extraction, modified
weighted focal loss function, and random over-sampling methods to balance class data samples. The pro-
posed ResNet self-supervised deep learning method with random over-sampling identified the falls against
the non-fall activity with an average F-1 score of 0.98. The performance shows that our proposed approach
improves the results by using pre-trained models and modified loss function with random over-sampling for
balancing the datasets.

Even though we are using a weighted focal loss function for FCN and ResNet, we inspect that ResNet
network learned weights strongly correlate due to an over-parameterized network. In our future work, we
plan to use the decorrelation of filter regularization for both networks. We will calculate the total loss, which
is the summation of the weighted focal loss and decorrelation loss. Besides this, we will further explore and
improve the experimental data, model architecture, and hyperparameters.
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