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Abstract—The statistical data from the National Council on
Aging indicates that a senior adult dies in the US from a fall
every 19 minutes. The care of elderly people can be improved by
enabling the detection of falling events, especially if it triggers
the pneumatic actuation of a protective airbag. This work focuses
on detecting impending fall risk of senior subjects within the
geriatric population, towards a planned approach to mitigating
fall injuries through pneumatic airbag deployment. With the
widespread adoption of wearable sensors, there is an increased
emphasis on fall prediction models that effectively cope with
accelerometry signal data. Fall detection and gait classification
are challenging tasks, especially in differentiating falls from near
falls. We propose to apply attention to the deep neural network
(DNN) analysis of acceleration data where a fall is known to
have occurred. We take the maximum value of the sensor signals
to define the observation window of the detector. Powered by
a transformer DNN with word embedding, attention networks
have achieved a state-of-the-art in natural language processing
(NLP) tasks. Besides the success of the transformer for efficiently
processing long sequences, it supports parallel computing with
fast computation. In this paper, we propose a novel transformer
attention network for gait analysis of fall detection modeling
with Time2Vec positional encoding- founded on a Masked Trans-
former Network. Using our dataset, we demonstrate that the
proposed approach achieves better specificity and sensitivity than
the present models.

Index Terms—Attention network, Fall Detection, Gait Analysis,
Transformer.

I. INTRODUCTION

The data from WHO shows that there is around six
hundred thousand death due to falls occurred yearly-
which makes it the second-highest mortality rate following
traffic accidents [1]. The death rate is high in the aging
population (age 65+), which is half of the injury-related
hospitalizations of senior subjects [1]. Consequently, almost
40% of the injury-related deaths are from a fall in the
elderly population [1]. Furthermore, based on the CDC [2]
data, an elder adult, age>65, in the USA suffers from fall

every second. Most fall detection systems use a wearable
device with inertial sensors providing accelerometry as the
main source of data, complemented with other sensors like
gyroscopes and magnetometers. Adding extra parameters
such as angular velocity helps to enhance the algorithm
performance, but affects the computational demand at the
same time. Independently of the device used, various fall
detection methods have high false positives, false negatives,
and computational time cost. We aim to reduce both false
positives and false negatives coupled with low consumption
methods. Our work uses an attention neural network which
has the advantage of parallel computation while reducing
the false positive and false negative rates by giving a high
attention score to the important signal information.

Attention neural networks have recently achieved significant
progress in natural language processing (NLP). They have
enabled models like Transformer [3] and BERT [4] to form
powerful language models that can be used for machine
translation, sentiment analysis, and document detection. With
their recent success in NLP, one would expect an adaptation
of these methods for other time-series data to solve problems
such as fall detection datasets - as both applications involve
processing sequential data. However, attention networks for
time series data are still inadequate [3].

This study proposes a new approach that uses attention-
based networks for sensor signals to create a robust fall
detection system. In his work on attention network applied to
NLP, Cheng [5] emphasized that humans focus on key words
when reading the sentence. It is not difficult for the reader
to relate the word with the other words in the sentence, but
a neural network would need to specifically design parts of
it to replicate this attention to certain words. Similar to the
NLP, in our case, first, we form input features that feed to the
transformer by finding the maximum acceleration magnitude
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vector and the fixed window size around this peak signal
magnitude- to be used as input to our attention networks.

II. RELATED WORKS

In the last decade, many research efforts have been
devoted to the development of efficient and cost-effective
fall detection systems (FDS). FDS help us to differentiate
falls from activities of daily living (ADL), so that an alert
system to a remote monitoring point is automatically emitted
as soon as the patient falls [6]. Commonly, fall detection
systems are categorized into two different classes depending
on the deployed sensor technology: wearable sensors and
ambient sensors (such as cameras, vibration, or infrared
sensors). The ambient–based system, which is expensive, is
restricted to a particular pre-defined area and also affects the
privacy of patients caused by visual sensors. Considering
those limitations, wearable FDS offer a cheaper alternative to
detect falls based on one or several wearable sensors, which
are attached to the user’s body or clothes so that they can be
ubiquitously transported.

Montesinos [7] and Klenk [8] have thoroughly compared
the performance of basic thresholding techniques with a
wide set of supervised-based learning solutions (mainly
Support Vector Machine (SVM) and Convolutional Neural
Network (CNNs)). Simple thresholding techniques are
inapplicable because threshold techniques as we are deciding
the average range of fall and non-fall activity for new test
data. Although CNN networks were mainly used for image
feature extraction, they have been also used in some recent
works for fall detection systems of inertial sensor signals
and action recognition using wearable sensor signals [9],
[10]. Those papers mainly use raw inertial sensors as inputs.
In contrast, the method of Yhdego [11] detects falls by
converting the 1D sensor signals to 2D images consisting of
spectrotemporal footprints and then applying CNN to classify
those converted images.

Many fall detection methods take advantage of the Long
Short-Term Memory (LSTM) architecture, which has the
ability to encode and process sequential data. Other deep
learning models like CNN and conventional machine learning
algorithms like SVM process their data without any notion
of sequential order. Therefore, LSTM models provide a
promising result for modeling fall activities. Sensor fusion
of accelerometer and gyroscope using CNN-LSTM method
by Ruben [12], and LSTM-based activity recognition by
Paolini [13] and Aicha [14], are used for fall recognition.
Aicha [14] employs a single inertial sensor placed on
the trunk and inputted to CNN and LSTM models. The
limitation of Ruben’s model is that he add a KNN last layer
classifier with the CNN-LSTM method which is inefficient
for real-time fall detection due to the computational cost.
Moreover, the use of raw sensor signals for training CNN
and LSTM models might contain noisy data and result in

low specificity, when we have near-fall activities such as a
subject activity into a seated position in a chair, couch, or bed,
which involves relatively large motion in the vertical direction.

Deep neural networks such as RNN and LSTM, which con-
sider the temporal and spatial relationship across the data, have
achieved better results in several sequential tasks. Regardless
of the progress of these models in time series data, parallel
processing for the layer outputs is not possible - thus makes it
difficult to learn long-range dependencies. In the last decade
researchers proposed attention-based models for NLP tasks
and they obtained state-of-the-art results with less computation
time [15]. However, these models have not been frequently
used for sequential data such as fall detection. This paucity is
likely due to several factors such as the difficulty of accurately
encoding positional information; focus on point-wise values,
and lack of research about handling multivariate input features.
Additionally, outside of natural language processing many
researchers are probably not familiar with attention neural
networks and their potential. We use the attention neural
network toward a fall detection system in order to achieve
better specificity and sensitivity performance.

III. METHODOLOGY

Attention models are networks that introduce a weighting
of signals based on importance- which helps the model to
emphasize important pieces in the feature space. To calculate
the output of the attention layer, first score values of the
input windows are calculated using the score function. Next,
the Softmax activation function is used to find the attention
weights for each observation windows computed. Finally,
the output of the attention layer is the weighted sum of the
values [16]. Hence, this weighted sum mechanism allows the
model to focus and place more attention on the relevant parts
of the input sequence.

Therefore, to use this advantage of attention network by
giving the highest attention score to the determinant window
of signal, we start sliding window feature engineering from
the peak magnitude of the acceleration signal (as shown in
algorithm 1) rather than using a conventional sliding window
feature engineering. This kind of windowing helps us to
include the important peak signal value in a single window,
besides giving high attention to the maximum value signal. If
we were using the conventional windowing based on the raw
signal, the important information may be shared in different
windows. For our proposed method, the maximum values of
the acceleration and angular velocity simulated in the datasets
of the accelerometer and gyroscope data, which consist of
3D acceleration data acc(t) = [accx(t), accy(t), accz(t)] and
3D angular velocity gyro(t) = [gyrox(t), gyroy(t), gyroz(t)]
[11], are calculated using the magnitude of these vectors for
the i− th sample as followed:
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‖acci(t)‖ =
√
acc2xi(t) + acc2yi(t) + acc2zi(t) . (1)

‖gyroi(t)‖ =
√
gyro2xi(t) + gyro2yi(t) + gyro2zi(t) . (2)

Next, the maximum magnitude of the signal calculated
above is determined as followed:

‖accmax‖ = max({‖acci‖ : i ∈ [1 :M ]}), (3)

‖gyromax‖ = max({‖gyroi‖ : i ∈ [1 :M ]}), (4)

where M is the number of samples. Using the above two
equations and the window size (which is 1 second in our case),
the sliding window around the peak signal looks like as shown
in the figure 1.

Algorithm 1: Calculating maximum value and la-
beling the window

input : acc(t) = [accx(t), accy(t), accz(t)] and
gyro(t) = [gyrox(t), gyroy(t), gyroz(t)]

output: Observation Windows and its label

for all data sequence activities of FallData do
Calculate the magnitude using equation 1 and 2;
Calculate the maximum value using equation 3
and 4;

if FallData is ADL then
Label all the observation windows as ADL;

else
if the observation window is maximum value
window then

label the window as Fall;
else

Label ADL;

Fig. 1. Sliding window feature engineering based on the maximum signal
(r0).

After we estimate the maximum acceleration and de-
cide the sliding window size, the algorithm above gives

us the input features and its labels, which is formed by
simply concatenating the six features of accelerometer and
gyroscope, {Accxj , Accyj , Acczj , Gyroxj , Gyroyj , Gyrozj |j
∈ [ro−w

2 fs, ro+
w
2 fs]}, where w is the duration of observation

window (1s) and fs the sampling rate of the sensor (200
Hz) [17]. Finally, the size of input features (Ni) which
depends of the duration of the observation window (w) is
Ni = 6 ∗ (w ∗ fs + 1).

After we select the input features to our transformer model,
we have to encode the sequence of time which is hidden in
our signal data. We implement the existing method Time2Vec
[18] for time embedding. This time embedding is a vector
representation just like a normal embedding layer that can be
added to a neural network architecture to improve a model’s
performance and to overcome a transformer’s temporal indif-
ferences. The mathematical representation of Time2Vec for
the ideas of periodic and non-periodic patterns as well as the
invariance to time re-scaling are presented by the following
mathematical formula [18].

Fig. 2. Mathematical formula of Time2Vec [18].

where t2v(τ)[i] is the ith element of t2v(τ), F is a sin
periodic activation function, and ϕis and φis are learnable
parameters of the frequency and the phase-shift of the sine
function.

Now we are going to discuss the transformer architecture
used for our fall detection method as shown in Figure 4.
Since we don’t need the decoder layers for such application,
only the transformer encoder layers similar to the BERT [4]
network, proposed by Devlin, with stacks of multi-head self-
attention are used in this work [3]. Unlike the BERT network
which supports 2D sequence input, our model can process 3D
sequential data- where the dimensions are sequence length,
feature size ( Ni calculated above), and batch size. This
transformer model with stacks of encoder layers contains time
embedding, three attention blocks, and two fully connected
layers. The three identical Attention block layers of our
transformer encoder have two sublayers. The first is a multi-
head self-attention with layer normalization and the second
is a feed-forward neural network. In the self-attention encoder
layer, the matrix of queries, keys, and values are taken from the
outputs of the previous encoder layer. Additionally, between
these sublayers, there is a residual connection followed by
layer normalization. Next, we get a vector representation
output from the transformer encoder model for each input
sequence length. Finally, the last layer- Sigmoid layer, gets
the vector representation output of the transformer encoder
and provides us with a classification- fall or non-fall.

IV. EXPERIMENT RESULTS

Paolini (Co-author) conducted human subjects’ fall
experiments at the neuro-mechanics and neuro-plasticity lab
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Fig. 3. Our Overall Model.

of San Diego State University. We collected the fall dataset,
which contains near-fall activities with a sampling rate of
200 HZ [19] mounted in different parts of our body. The lab
was set up with wireless 3D Motion capture cameras which
record the human subject movements [20]. The data was
collected from thirty subjects between the age of 20-50 years
old. This dataset contains 538 thousand rows of data of which
435 thousand of them involve falls and 103 thousand of
them consist of near-fall activities. The Noraxon myoMotion
research inertial measurement unit (IMU) sensors measure
features like orientation angles, joint angles, and linear
acceleration of the subject’s motion. These data points are
preprocessed using median filtering with a window size of 10
to remove the high-frequency noise. The model used 10-fold
cross-validation and is divided into training and testing with
80% and 20% respectively.

To evaluate our system accuracy, we calculated specificity,
defined as the probability of near-fall activities occurred given
that the classifier predicts non-fall activities. We also computed
sensitivity, defined as the probability of fall activities occurred
given that the classifier predicts fall. It can be seen that our
models performed better in specificity and sensitivity than
Aicha’s CNN-LSTM.

TABLE I
COMPARING THE RESULTS OF DIFFERENT METHODS.

Specificity Sensitivity Accuracy
Our Methods(Transformer) 0.98 0.97 0.98

CNN-LSTM [14] 0.94 0.93 0.93

The table above shows the performance of our model with
the existing method by Aicha [14]. We implemented the
existing method [14] to compare the results on our dataset.
We took the best candidate model to compare with our
model considering the computational time to be used for a
real-time fall detection system. It can be observed that, in
almost all cases, our model obtained better results by taking
advantage of the maximum signal information for windowing.
Our model showed highest performance with 0.98 specificity,
0.98 sensitivity, and 0.97 accuracy. From the results, it can be
concluded that attention-based network which is mostly used
for NLP tasks can be used to detect falls with high specificity
and sensitivity than Aicha’s CNN+LSTM [14].

We also investigate the advantage of peak signal
windowing by implementing the attention-based network with
conventional windowing inputs. As we can see in the bar chart
below, the transformer network with peak signal windowing
gives a better distinction between falls and fall-like activities
than the conventional windowing. Especially, the specificity,
sensitivity, and F1-score results show that our method gets
an advantage from both peak signal windowing and the
attention-based network. Furthermore, an attention-based
network has less computational complexity than CNN and
RNN (LSTM). Such information could be useful for real-time
fall prevention techniques in the future.

Fig. 4. Comparing the results of our peak signal based windowing-
Transformer method, conventional windowing-Transformer Method and CNN-
LSTM proposed by Aicha [14].

V. CONCLUSION

In conclusion, this paper demonstrated the application of
attention network for windows tuned to the peak signal to
predict fall and near-fall events. To our best of knowledge, this
work represents the first attempt to differentiate fall from near-
fall activities based on the transformer encoder architecture
and outperforms in specificity and sensitivity of previous
attempts on wearable sensor signals. Future improvements
will require a more sophisticated design of the attention
network and test on different public datasets, collected using
wearable sensors mounted at different parts of our body.
Using different attention networks in different datasets with
a few modifications and additional research will be essential
to further support the findings to be used for a real-time fall
detection system.
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