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7 ABSTRACT8
9

Infrastructures are interdependent systems and their interdependency can influence their re-10

silience to routine failures and extreme events. Even though infrastructure resilience has been11

widely explored, few studies have considered physical, spatial, and social dimensions simultane-12

ously. In this paper, we propose a resilience assessment framework for interdependent water and13

transportation infrastructures. The framework incorporates the physical network of these infras-14

tructures, social vulnerability indicators, and predictive analytics for a sociotechnical resilience15

assessment. It enables us to measure the impact of random failures due to aging infrastructures,16

natural disasters, and their cascading failures. We applied the proposed framework to the City17

of Tampa, FL. The results indicated that areas with higher social vulnerability are more prone to18

cascading failures caused by both random breakdowns and natural disasters. While natural dis-19

asters affect all land use classes similarly, random failures have a greater impact on residential20

and institutional land use. The findings of this study highlight that infrastructure interdepen-21

dency and the consequences of cascading failures should be taken into account in a coordinated22

infrastructure resilience assessment and planning. Further, socioeconomic factors and land use23

features should be incorporated in interdependent resilience assessment for a more comprehen-24

sive and equitable resilience planning.25

26

1. Introduction27

Urban communities highly rely on critical infrastructures such as power, water, transportation, and communication28

systems. These infrastructures are crucial for the functionality of any community and a failure in these systems can29

threaten safety, security, public health, and economic activity (DHS, 2021). Despite the importance of infrastructures,30

the condition of US infrastructure systems has been poor and the American Society of Civil Engineers infrastructure31

report card gives a D+ score to the entire infrastructure system in the US (ASCE, 2017). The aging infrastructures32

in the US have made these systems fragile to failures. For instance, each year water pipelines experience an average33

of 25 breaks in every 100 miles of pipes (Baird, 2020). These breaks usually bring about service reduction, road34

traffic disruption, and affect communities (Jin Jun et al., 2020). Transportation systems are also in poor condition. For35

example, nearly 40% of operating bridges in the US are over their designed life span of 50 years (Tochaei et al., 2021);36

the collapse of the I-35W Mississippi River bridge in Minneapolis during a rush hour highlighted the catastrophic37

impacts that such failures in the transportation system can have on communities (Zhu et al., 2010).38

Infrastructure aging, poor urban environmental planning and governance, and population growth have also made39

infrastructures and cities more susceptible to natural disasters (Albrito, 2012). Due to climate change, natural disasters40

happenmore frequently and in higher intensity (Song et al., 2016) and this has put evenmore pressure on the unprepared41

aging infrastructure systems which are more critical during emergency situations. In 2017, Hurricane Irma caused a42

power outage to two-thirds of power customers in Florida (Sultan and Hilton, 2020) and Hurricane Harvey resulted43

in a significant disruption in the transportation system of Houston, Texas leaving thousands of people stranded (Gori44

et al., 2020). Therefore, in any community, the resilience of infrastructure systems should be improved to better45

cope with random infrastructure breakdowns and extreme events, quickly recover from them, and learn and adapt to46

future similar disturbances. Resilience enhancement in infrastructures requires assessing the capacity of sub-systems47

within infrastructures to respond to disturbances and how different infrastructures connect and support each other’s48

functionality.49
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Infrastructures are interdependent systems. Two infrastructures are interdependent when their performance de-50

pends on one another. Although interdependencies have increased the efficiency of functions, they can make systems51

more prone to cascading failures (Rinaldi et al., 2001). In interdependent systems, a failure in one system can cascade52

to other systems; these cascading failures can cause greater service disruption, economic impact, and loss of life (Shah53

and Babiceanu, 2015). Specifically, in infrastructures, a failure in one infrastructure can cascade to its interdependent54

infrastructure systems. The unprecedentedWinter Storm Uri in Texas in 2021 crippled the transportation system. This55

failure caused a huge impact on the food infrastructure. At the same time, the power outage by this winter storm dis-56

rupted several interdependent infrastructures such as communication and healthcare. Thus, it is crucial to assess the57

interdependency of infrastructure systems and their resilience to cope with cascading failures caused by both random58

system breakdowns and extreme events like natural disasters.59

The resilience of infrastructure systems to random failures and natural disasters has been analyzed in several stud-60

ies. However, due to the complexity of interdependencies among infrastructures, much fewer studies have explored61

infrastructure interdependency and infrastructure resilience to cascading failures (e.g., Heracleous et al. (2017); Por-62

tante et al. (2017); Zuloaga et al. (2020)). In addition, infrastructures are sociotechnical systems (Walsh et al., 2015)63

and the magnitude of the impact of failures in infrastructures also depends on the socioeconomic characteristics of the64

people using lifelines. However, these factors are often overlooked in infrastructure resilience assessments (Rahimi-65

Golkhandan and Garvin, 2020). For a comprehensive sociotechnical assessment of the resilience of interdependent66

infrastructures to cascading failures, it is essential to take into account the social vulnerability of people. Considering67

the interdependency of infrastructures along with their social and cyber aspects can enhance the resilience of cities68

and communities (Mohebbi et al., 2020).69

In this study, we propose an algorithmic framework for resilience assessment of interdependent water and trans-70

portation infrastructures to cascading failures. Through this framework that also incorporates social vulnerability and71

land use factors, we assess the resilience of these two infrastructures to (i) random failures caused by aging, and (ii)72

failures caused by a natural disaster. Subsequently, we analyze how these infrastructures perform when failures in one73

of them propagate to the other one and how the collective water-transportation network responds to such cascading fail-74

ures. We applied the developed framework to the water and transportation systems in the city of Tampa, Florida (FL) to75

demonstrate its feasibility and efficiency. To the best of our knowledge, the contributions of this study are threefold: (a)76

we propose an algorithmic framework for predicting the resilience of water-transportation infrastructures considering77

both physical and spatial characteristics; (b) the cascading effects of both random failures due to aging infrastructures78

and natural disasters within and across these two infrastructures are modeled; (c) we incorporated social vulnerability79

and community detection algorithms in our approach for a more comprehensive sociotechnical resilience assessment.80

The rest of the paper is structured as follows: In section 2, the relevant literature is analyzed and the gaps are81

identified. Section 3 provides the detailed steps of the proposed framework. Section 4 focuses on the selected case82

study. Section 5 visualizes the results for the case study for both random failure and natural disaster scenarios. The83

design and policy-making implications as well as the limitations are included in section 6. Future directions are also84

discussed in section 7.85

2. Background86

2.1. Infrastructure Interdependency and Cascading Failures87

Interdependency among infrastructures can be generally described by four types: (a) physical, (b) geographical, (c)88

cyber, and (d) logical (Rinaldi et al., 2001). The approaches to analyze these interdependencies are broadly classified89

into five groups (Ouyang, 2014): empirical (identify failure patterns and risk analysis), agent-based, system dynamics,90

economic (input-output and computable general equilibrium), and network (topology and flow). Specifically, network91

approaches have widely been used in the literature, and we focus on this method to investigate the interdependencies92

among infrastructures.93

Among recent studies, Cao et al. (2021) studied the impact of an earthquake on the interdependency of infras-94

tructure networks in Japan using a topological network-GIS approach. They developed a risk map that identifies the95

critical areas of the interdependent network to cascading impacts of seismic hazards. Similarly, Munikoti et al. (2021)96

investigated the robustness of interdependent utility infrastructures by a graph theory approach and highlighted the97

importance of information systems for improved robustness of infrastructure networks. The interdependency security98

and identity among electric and gas networks during instabilities of gas pressure, supply shortage, and gas demand99

surge was analyzed by Antenucci and Sansavini (2018). They proposed automation actions and safety strategies to100
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respond to demand surges and failures in network components.101

Ouyang and Wang (2015) investigated recovery strategies for the interdependent electric power and gas infras-102

tructures after a hurricane. They concluded that while restoration plans result in higher individual resilience in these103

systems, the compromised recovery strategy leads to a higher overall resilience for the electric-gas systems. This high-104

lights that while considering interdependency is critical to respond to a disturbance, it is equally important for efficient105

recovery. The geographical and physical interdependency of the same infrastructures and the cascading failures in them106

due to spatially localized attacks was explored by Ouyang (2016) to identify the most critical locations. The results107

demonstrated that infrastructures interdependency and radius of attacks influence critical locations in the network and108

such spatially localized attacks cause less vulnerability than random attacks. These findings demonstrate that inter-109

dependency among infrastructures changes the most critical/vulnerable locations in infrastructure networks compared110

to when infrastructures are studied separately. Identifying critical/vulnerable locations/components in interdependent111

infrastructure systems permits investigating how they influence the resilience of infrastructure systems and which poli-112

cies can enhance resilience. Ouyang (2017) explored how protecting weak components of the interdependent networks113

or increasing network redundancy can improve the resilience of power and water infrastructures.114

Network metrics were used by Mao and Li (2018) to assess the impact of disturbances on the robustness and115

recovery of power-water-telecommunication infrastructures. The results of their analysis revealed that disregarding116

infrastructure interdependency results in the underestimated impact of extreme events. Similar to Ouyang and Wang117

(2015), they concluded that interdependency among infrastructures should be taken into account for efficient recov-118

ery planning. Adequate budget, resources, and time are crucial for successful recovery plans. Among recent studies,119

Mohebbi et al. (2021) proposed a coalitional game theory approach coupled with an optimization model to address de-120

centralized resource allocation in restoration planning for city-scale interdependent water and transportation networks.121

They demonstrated that the decentralized model outperforms the centralized counterpart in terms of computational122

time and the trajectory of the system performance (met demand) over time. Having strategies to protect vulnerable123

network components as well as plans for a quick and efficient recovery is crucial for the resilience of interdependent124

infrastructures. These prioritized components for system recovery might not be the most vulnerable ones to failure,125

but they are the most critical for service restoration to mitigate the impact of failures.126

The interdependency of water infrastructure has not been fully explored (Abdel-Mottaleb et al., 2019); especially,127

the cascading failures between water-transportation systems have received less attention compared to the interdepen-128

dency between water and other infrastructures. Dong et al. (2020) analyzed the geographic interdependency of trans-129

portation and sewer networks and cascading failures in these networks through percolation. They found that the road130

network is more vulnerable to failures in the collocated sewer system. Further, the robustness of this interdependent131

network decreases as the number of initial failed sources increases. Additionally, nodes in the sewer network either132

have zero or severe risk which results in two-phase percolation caused by failure due to liquefaction.133

Abdel-Mottaleb et al. (2019) analyzed how critical components in the water infrastructure would vary when its in-134

terdependency with the transportation infrastructure is considered compared to when it is considered separately. Their135

findings revealed that when interdependency is considered, the identified critical components significantly vary from136

those when only the water network is analyzed. These findings highlight the importance of water-transportation inter-137

dependency and cascading failures between these systems for resilience enhancement. However, critical components138

might vary given the disturbance that this interdependent network experiences. In other words, the critical components139

to a natural disaster might not necessarily be the same as the critical components to a random failure. Thus, analyzing140

the interdependency of water-transportation infrastructures to both random failures and natural disasters could provide141

a clearer perspective of the most vulnerable components/locations in the network. Further, if other important elements142

such as social vulnerability are factored in for a more comprehensive analysis, the most vulnerable areas for system143

enhancement and recovery planning might change.144

2.2. Social Vulnerability145

Social vulnerability to hazards generally discusses inequalities in the ability of different groups to maintain their146

desired state (Kuhlicke et al., 2011). In the context of hazards and disasters, social vulnerability is the conditions and147

characteristics that reduce the ability of an individual or a group of people to cope with and recover from an environ-148

mental shock (Wisner et al., 2004). Social vulnerability can be described as social inequality through characteristics149

of people (e.g., age, sex, race/ethnicity, income) and geographical inequality that are related to communities and the150

built environment (e.g., economic vitality, urbanization level) (Cutter et al., 2003). In addition, the Social Vulnerability151

Indicator (SoVI) can be used to examine the interaction between infrastructure systems and the social aspect of urban152
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Table 1
Summary of studies with customized SoVI

Author(s) Scope
Cutter et al. (2013) To incorporate simplified SoVI into civil planning and to preserve the robustness.
Armas and Gavris (2013) To reveal patterns of vulnerable communities to post-earthquake coping strategies.
Holand and Lujala (2013) To adopt the existing index developed for the US to municipalities in Norway.
Aksha et al. (2019) To assess the performance on Nepali context by adding new variables such as caste.
Sung and Liaw (2020) To quantify the vulnerability of complex topography to environmental hazards in Taiwan.

communities (Cutter et al., 2003). SoVI can explain the social aspect of community resilience during disturbances153

(Nelson et al., 2015; Tate et al., 2016).154

To tie social vulnerability to infrastructure resilience for sociotechnical assessment, nodes of infrastructure net-155

works (e.g., water junctions, which represent customers’ locations with their respective demand of water) can be con-156

sidered as representative components for SoVI variables. If these nodes are spatially well-distributed across a com-157

munity, socioeconomic factors of residents in each area can be associated with infrastructure nodes in those areas to158

incorporate social vulnerability in infrastructure assessments. This requires community detection that could be costly.159

To overcome unreasonable computational costs, node attribute-based community detection (clustering) methods have160

been implemented (e.g., Jia et al. (2017); Liu and Wang (2018)).161

Communities interact with each other through infrastructures, both dependently and interdependently. For example,162

when a water junction is disrupted near a specific community, other communities might suffer from that failure if it163

propagates to water junctions in other communities. Such a failure could also cause a disturbance in interdependent164

infrastructures. For instance, if a water junction fails to operate properly, either due to a random failure or a natural165

disaster, the co-located interdependent roads might fail to maintain connectivity and transport demands; depending166

on the socioeconomic characteristics the impact of such failures might vary. Thus, incorporating social vulnerability,167

Karakoc et al. (2019) developed a model for the recovery of interdependent infrastructures.168

A share of studies in this research stream adopted the SoVI concept and tailored this index for their case studies169

or tested its applicability in various contexts related to risk management and community resilience. Table 1 provides170

a summary of studies in this area. Socio-demographic variables, including age, sex, income level, and race, are the171

common elements in these studies. In addition, these studies’ results reflected the fact that even though the SoVI172

indicator is an appealing choice for social vulnerability measurement, application and interpretation of the output173

related to an entirely different socioeconomic context outside the U.S. is challenging. For instance, (Holand and Lujala,174

2013) reported that the adjusted index applied to a different socioeconomic context could only explain 19% of variation175

in the data. However, others like Aksha et al. (2019) and Sung and Liaw (2020) only focused on the results without176

any interpretation about the accuracy. Aksha et al. (2019) argued that the social vulnerability is higher in mountainous177

regions populated by Dalit (people belonging to the lowest caste) and minority communities and/or with a history of178

armed conflict. Sung and Liaw (2020) validated the effectiveness of SoVI concept to environmental hazards in Taiwan179

by GWR and provided visualization maps as essential decision-making tool in emergency planning180

Although a significant part of the assessment of social vulnerability is concerned with detecting communities inside181

an area, such methods are not very efficient due to statistical bias, precision, and uncertainty (see Tate (2013) for a182

detailed explanation). Since infrastructures can be usually represented as a network of nodes (e.g., demand/supply183

points) and links between nodes, community detection algorithms can be implemented to identify communities within184

a network. However, these methods are absent in the literature of social vulnerability in the context of interdependent185

infrastructure networks. To bridge this gap, we adopted a well-known community detection method, joint community186

detection criterion (JCDC), to identify the interdependent water and transportation systems based on several social187

variables.188

3. Resilience Assessment Framework189

To assess the resilience of the interdependent water-transportation infrastructures to random failures and natural190

disasters, we propose an algorithmic framework (Figure 1). First, we create an interdependent network of water and191

transportation systems that includes social vulnerability and land use factors. Then, we develop scenarios to analyze192

simultaneous failures in these infrastructures. For random failure scenarios, data is generated through experimental193
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Figure 1: Proposed resilience assessment framework for interdependent water and transportation networks

design. For natural disaster scenario, we simulated the impact of Hurricane Irma. The failures propagate within each194

infrastructure and cascade to the other interdependent infrastructure. Finally, the framework is applied to the water195

and transportation infrastructures in the City of Tampa, FL.196

3.1. Interdependent Network of Infrastructures197

To study the interdependency among water-transportation systems, we focused on geographic co-location of these198

infrastructures. Pipelines and water junctions are the components of the water network, roadways and intersections199

represent the transportation system in our framework. The interdependent network of water-transportation systems200

was developed using the physical network, and geospatial data of these infrastructures. We used this base network to201

detect communities and overlay the built environment features onto the interdependent infrastructures.202

3.1.1. Community Detection203

An urban area can be described by several factors such as urban form, infrastructures, land use, and the socioe-204

conomic characteristics of residents in that area. Here, to detect communities in the interdependent infrastructure205

network, we use census blocks. Census blocks are the US Census Bureau’s smallest geographic unit and help us to206

detect communities at a fine-grained scale. This community detection will allow us to investigate the impact of a failure207

in infrastructures and the highlight community characteristics. The road segments in each census block are assigned208

to their closest water junction. In each census block, the socioeconomic characteristics of residents are assigned to the209

water junctions, which represent customer locations with their respective demand of water, in that block. Incorporating210

the socioeconomic characteristics of people in the network enables us to measure social vulnerability and its relation-211

ship with failures in the infrastructure systems, and the impact of failure propagation on communities with different212

socioeconomic characteristics.213

Cutter et al. (2003) identified 11 factor groups that represent different socioeconomic properties to quantify the214

social vulnerability of a community. These 11 factor groups are categorized mostly around age, gender, race, wealth,215

and occupation of the residents of a community. According to these factor groups, we used 12 socioeconomic variables216

(Table 2). While other factors such as income, poverty rate, educational attainment, school enrolment, and employ-217

ment status could be used to characterize social vulnerability in a community, here our focus is on factors related to218

age, sex, race/ethnicity, and housing that are key for social vulnerability during disasters. We then used JCDC (Zhang219

et al., 2016) to detect communities in the network. The water junctions and road segments in each community in-220

clude the social vulnerability features of those communities. In addition, to take into account the built environment221

characteristics, land use features are incorporated.222
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Table 2
Social vulnerability variables

Median age by sex Total population in occupied housing units
Population of Asian or Pacific Islander Population of females
Percentage of female-headed households Population of renter occupied housing units
Population of Hispanic persons Population living in urban areas
Percentage of black population Percentage of Native American population
Percentage of population under 5 years Percentage of age over 65 years

3.1.2. Land Use Features223

A failure in an infrastructure can have different impacts on areas with different land use characteristics. For instance,224

the consequences of a breakdown in a water pipe in a residential area and an industrial areamight vary since the need for225

water in those areas differ. Thus, to be able to analyze the relationship between land use and failures in infrastructures,226

we incorporate land use features in the water-transportation network. Three general land use types are considered: (a)227

residential, (b) industrial, commercial, and service, and (c) institutional and others. These land use types are assigned228

to the water junctions and road segments in the network.229

3.2. Cascading Failure Algorithm230

The interdependent network of water and transportation infrastructures includes the characteristics of these systems231

as well as social vulnerability indicators and land use features. This network is the foundation for sociotechnical232

resilience assessment of these infrastructures. Here, we describe failure scenarios, resilience assessment metrics, and233

termination criteria of the algorithm. The required inputs and the main steps are outlined in algorithm 1 .234

Algorithm 1 Cascading failure algorithm for interdependent water and transportation networks
Input Data

1: Interdependent Network of Infrastructures
2: Community Detection
3: Failure Scenarios
4: while Termination condition is not met do
5: Collect the set of failed roads and pipes;
6: Water network hydraulic simulation
7: Continue failure propagation based on pressure;
8: Fail interdependent roads with pipes;
9: Road network
10: Continue failure propagation based on traffic load;
11: Fail interdependent pipes if affected by traffic load;
12: end while

3.2.1. Failure Scenarios235

Water distribution networks are prone to different types of failures. Aging and specific pipe materials such as236

Ductile Iron Pipes (DIP) are common sources of failure in this infrastructure (Kabir et al., 2015). In addition, de-237

sign problems such as exposing pipes to constant high hydraulic pressures can also expedite pipe deterioration and238

eventually failures. The majority of components in water distribution networks are typically underground, causing239

accessibility problems for proactive and periodic maintenance. Therefore, inadequate maintenance can be considered240

as another source of failure in the water network (Shirzad and Safari, 2019). In addition, most leakage incidents remain241

undetected until they cause severe consequences in the system. External factors such as temperature and soil features242

also contribute to failures in water components like pipes, valves, reservoirs, and tanks (Renzetti et al., 2013). Random243

failures are another primary source of breakdowns in this complex network. Specifically, water main breaks are a244

common failure factor in urban water distribution networks, generating a spectrum of problems from disrupting the245

routine functionality of this system to contamination and jeopardizing public health (Aslani et al., 2021).246

In a roadway network, if a road segment closes due to excessive congestion, the traffic load will consequently be247
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on the other roadways which could cascade the congestion to the rest of the network (Li et al., 2012). Several factors248

can cause congestion and closure of road segments. The main roadway congestion factors are traffic demand (normal249

traffic fluctuation, special events such as a football game or a concert), traffic-influencing events (weather, work zones,250

traffic incidents), and physical highway features (capacity bottlenecks, traffic control devices) (FHWA, 2005).251

However, the consequences of a disruptive event are much broader than physical damages and service loss in252

critical infrastructures. When communities experience a natural disaster, they could be immediately impacted. In253

these situations, the primary source of social vulnerability is related to the weakness of particular groups of people254

to timely and effectively respond to such events. For example, communities with a higher ratio of children, elderly255

population, and underrepresented communities (e.g., immigrants living in suburban areas) are more prone to severe256

damages. Likewise, residents of more populated areas usually face difficulty for evacuation. In short, the social257

vulnerability adds another layer to the resilience framework and complements it to form a more holistic picture of the258

effects of cascading failures on interconnected community-infrastructure networks.259

In this part, we explain the process of simulating failures in each network individually and in the interdependent260

components. We assumed that the pipe leakage and water main breaks are the primary sources of failure in the water261

network. Hence, we removed the affected pipes/edges from the network and ran the hydraulic simulation algorithm262

to capture these types of failures. Then, by comparing pressures in nodes to the maximum operational threshold, we263

traced the cascading impacts (see Shuang et al. (2014) for more detail on pressure-driven analyses). For transportation,264

we considered road closures due to pavement issues (aging infrastructure) and flooding as the main types of failures.265

Similar to the water network, we removed the affected roads/edges from the network and used the edge betweenness266

centrality to measure the cascading failures. More precisely, if traffic exceeds the capacity of a road segment (i.e.,267

congestion), we consider that road segment as a failed component. Finally, the interactions between networks are268

automatically captured through interdependencies defined in our work.269

As described above, the geospatial interdependency between water and transportation infrastructures might result270

in the propagation of failures from one infrastructure to the other. For instance, water pipe breakage can close roads271

and roadway congestion might cause pipeline breakdown. In general, we can describe the consequences of a failure in272

a component of one of these infrastructures as:273

• failures within the infrastructure: breakdown in the directly connected components and cascading failures in the274

indirectly connected components, and275

• failures in the interdependent infrastructure: cascading failures in the co-located components and propagation276

of that failure to other components.277

To analyze the influence of these failures on the resilience of the water-transportation infrastructures, we develop278

scenarios based on random failures and natural disasters. The resilience of the system will be assessed in four states:279

(a) failures in the water network caused by a breakdown in a pipe, (b) cascading failures in the co-located road segments280

of the broken pipe, (c) failures in the road network due to a road segment closure or flooding, and (d) cascading failures281

in the co-located pipes of the closed road segment. It should be noted that these failures can happen simultaneously282

in both water and transportation networks, particularly during natural disasters. The initial failure in each network283

propagates internally due to cascading failure and spreads to the other network through interdependent components.284

For instance, the cascaded failure in the transportation network results from the propagation of initial road closures285

and can be intensified by the co-located water main break.286

3.2.2. Interdependent Water-Transportation Infrastructures Resilience287

To measure the resilience of the interdependent network to cascading failures, we use a metric that incorporates288

a failure’s impact on both water and transportation systems as the failure propagates. A failure develops in water289

junctions or road segments and step by step propagates to the rest of the network. In the water infrastructure, the met290

demand (McMahon et al., 2006) determines the performance and the resilience of this infrastructure during cascading291

failures. Accordingly, the larger the met demand, the more resilient the system is.292

In the roadway system, the spatial accessibility loss (Cantillo et al., 2019; Ortega et al., 2020) determines the293

resilience of this system. Here, we consider spatial accessibility (Eq. 1) (Golub and Martens, 2014; Kelobonye et al.,294

2020) as the number of road segments that are co-located with a water pipe and are accessible for the maintenance295
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crew with a defined time threshold. It should be noted that this shortest path is for access by vehicles.296

As =
∑

Is(j) (1)
Where As is the total accessibility in state s, j denotes a road segment co-located with a pipe, and Is(j) is an297

indicator function. Is(j) is equal to 1 if the jtℎ road segment is accessible for maintenance crew by vehicle within a t298

time threshold at the step s. Is(j) is equal to 0, otherwise.299

Subsequently, as failures propagate over steps, we can measure the resilience of the interdependent network of300

water and transportation to cascading failures through a step-wise system performance assessment (Eq.2).301

RW T =
∑

s∈S

R(s)
W + R(s)

T
2|S|

(2)

In this equation, RW T is the resilience,W denotes the water infrastructure, T represents the transportation infras-302

tructure, and S ∈ {1, 2, ...} is the set of steps with size of |S| before the termination condition of the algorithm is303

met. R(s)
W andR(s)

T are the proportion of met demand in water, and the proportion of total accessibility in transportation304

at step s, respectively. Hydraulic simulation is used in our framework to evaluate pressure changes in the water net-305

work, identify components with pressure above the threshold, and quantify the met demand at each step. The pressure306

threshold is the pressure above which other components may break.307

3.2.3. Algorithm Termination308

The resilience assessment algorithm is based on the propagation of failures in water-transportation infrastructures309

and it terminates if failure propagation stops. Concretely, failures stop cascading in two conditions:310

(a) One of the infrastructures is completely collapsed or stopped functioning. In other words, the failure is total and311

cannot cascade anymore. This situation happens if all water junctions or road segments fail.312

(b) The infrastructures are not collapsed and the failure does not cascade anymore. In this situation, the failure is313

contained within the system. Therefore, if the failure does not cascade in two consecutive steps, the algorithm314

terminates. We used this standard termination condition for cascading failures (see Shuang et al. (2014) and315

Shuang et al. (2017a)), assuming that when the system reaches a stable state, the failure propagation stops, and316

we do not observe any new failed component. In other words, if new failures are not observed after two iterations,317

we will not have any more failures in any further steps.318

3.3. Data Generation for Random Failures319

The algorithmic framework enables us to analyze the resilience of complex network of infrastructures to failures.320

Although replication of data for analyzing network-specific disruption criteria is feasible, it is time-consuming. More-321

over, analyzing every possible failure scenario is not practical. Thus, to overcome the computational limitations, we322

use Design of Experiment (DOE) to replicate failure data. DOE is a well-known systematic method to determine the323

relationship between factors affecting a process and its output. More precisely, it allows for manipulating multiple in-324

put factors, and determining their effect on the output. DOE has been implemented in designing resilience assessment325

framework for infrastructures. For instance, Najarian and Lim (2019) adopted DOE for presenting a new resilience326

metric for general complex systems. Nan et al. (2014) also used DOE for developing a holistic and integrated metric327

for resilience quantification of interdependent infrastructure systems. DOE was incorporated in Lopez et al. (2019) to328

maximize the resilience of the unbalanced electrical distributions network. In this study, we considered four factors in329

the DOE process with three levels for all of them. Two factors are related to the spatial aspect of the interdependent330

network (communities and land use features). The other two factors are the magnitude of failure in water and trans-331

portation networks to capture cascading failures. This setting accounts for simultaneous failures in both water and332

transportation networks. Table 3 shows the factors and their associated levels in the DOE.333
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Table 3
Factors and levels for design of experiment

Factors Type Levels Values
Land use type Categorical 3 1, 2, 3
Communities Categorical 3 1, 2, 3

Magnitude of failure in water infrastructure Continuous 3 17,50,83
Magnitude of failure in transportation infrastructure Continuous 3 27,54,82

Table 4
Description of predictive models

Predictive Model Description
Bayesian Additive Regression Trees
(BART)

A non-parametric Bayesian regression approach to fitting a variety of re-
gression models while avoiding strong parametric assumptions. BART
enables full posterior inference including point and interval estimates of
the unknown regression function as well as the marginal effects of poten-
tial predictors.

Random Forest (RF) An ensemble machine learning method that consists of many individual
cooperating decision trees. The algorithm adopts bagging and feature
randomness in building individual trees to create an uncorrelated forest of
trees with a more accurate grouped prediction.

Boosted Regression Tree (BRT) BRT is similar to RF in fitting many decision trees to improve prediction
accuracy, but uses boosting to weight the input data in subsequent trees.
BRT is robust to outliers, detects best fit automatically, and it is stochastic
that improves predictive performance results.

Multivariate Adaptive Regression
Splines (MARS)

A non-parametric regression method that builds a piece-wise linear model
across the range of predictors and is based on knots. It automatically
searches for the best spots to place the knots, performs well with many
predictor variables, and automatically detects interactions between vari-
ables.

Artificial Neural Networks (ANN) A computational approach inspired by biological nervous systems process.
ANNs are adaptive and capable of handling complex systems to identify
patterns and learn to make predictions. This method is flexible and learns
in an iterative process by adjusting inputs’ weights and biases.

3.4. Impact Estimation for Natural Disasters (Hurricane Irma)334

To estimate the impact of a natural disaster on the resilience of the water-transportation network in Tampa, we used335

FEMA’s dataset of flooding depth level caused by Hurricane Irma in 2017. First, we assigned a flooding elevation336

level to each section (polygons based on U.S. Census Bureau shapefile) of Tampa based on the nearest neighborhood337

function. Having the estimated levels, we compared the values with the threshold defined by FEMA (FEMAMitigation338

Assessment Team Report Hurricane Irma in Florida) 1. Any region with a level higher than 0.25 ft water height should339

be categorized as an affected area (FEMA). Then, we labeled the pipes and roads that their centers are inside the340

affected areas as the initially failed components. Finally, we executed the cascading failure algorithm to trace the341

impact of these initial disruptions on the networks.342

3.5. Resilience Quantification343

3.5.1. Predictive Analytics for Random Failures344

After identifying the statistically significant interactions among factors as the output of the DOE, we implemented345

several predictive models to quantify resilience in different configurations. Table 4 provides a brief description of each346

predictive model. A detailed description of BART and other predictive models is provided in Tan and Roy (2019) and347

Aslani et al. (2021), respectively.348

1FEMA P-2023 report is available at https://www.hsdl.org/?abstractdid=828548
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3.5.2. Geospatial Predictive Analytics349

To capture the impact of natural disasters, spatial predictive modeling is selected to quantify the resilience of350

different regions across Tampa. In this study, we developed a GWR model as the spatial predictive model. GWR351

has been widely adopted as a powerful tool to capture spatial features in the resilience assessment of interdependent352

infrastructure to natural disasters. For instance, Chun et al. (2017) used GWR and developed an assessment model353

for social resilience by measuring the heterogeneity indicators related to disaster risk. Similarly, Fahy et al. (2019)354

employed GWR in a proposed GIS framework and developed a combined index to test the relationships between355

sociodemographic variables and environmental hazard potential. Using GWR, economic resilience, social resilience,356

and community capital resilience were aggregated into socioeconomic community resilience to investigate the baseline357

resilience to natural hazards Sung and Liaw (2021).358

This method is an extension of multiple linear regression model, in which regression coefficients are local rather
than global estimators. In other words, the coefficients of the regression model form continuous surfaces that are
assessed at certain spatial points:

yi = �0(ui, vi) +
p
∑

n=k
�k(ui, vi)xik + �i (3)

Where (ui, vi) are the geographical coordinates.359

Another important component of GWR is a matrix of weights such that pairwise weights are assigned to every two360

observations. The observations closer to each other are given greater weight than observations further away. Finally,361

a kernel function should be selected as another parameter of the predictive model (see Wang et al. (2013) for more362

detailed explanation). We selected adaptive bandwidth and the Gaussian kernel family as the inputs of the developed363

model. We also adopted a non-spatial Random Forest predictive model to compare the quality of the prediction to a364

geospatial one.365

4. Study Area366

To implement our proposedmethodology, wemodeledwater and transportation infrastructures in the city of Tampa.367

Tampa is a coastal city with nearly a population of 400, 000. It is prone to different natural hazards such as hurricanes,368

floods, and tornadoes; this makes Tampa an ideal place to implement the proposed resilience assessment framework.369

Tampa’s water distribution network has 1,658 junctions (nodes) that are connected by 1,976 pipelines (edges). The road370

network in Tampa has 2,652 nodes and 5,484 vertices. The junctions of the water distribution network and roadways371

are labeled by communities as well as the type of land use. To specify the characteristics of the components of both372

networks, we collected social vulnerability variables for all census blocks in Tampa from the American Community373

Survey (ACS) of the US Census Bureau. The geospatial data of land use was collected from the Florida Department374

of Environmental Protection Geo-spatial Open Data (FDEP, 2021).375

5. Results and Analysis376

5.1. Interdependent Water-Transportation Network377

The social vulnerability and land use factors were assigned to the nodes in the water-transportation network and378

communities were detected. Figure 2 illustrates the three communities in the network overlaid on water junctions.379

Community 1 has 66% of the nodes in the network while communities 2 and 3 have 18% and 16% of nodes, respectively.380

We chose three communities to follow the L9 orthogonal array rule in our design of experiment. Table 5 represents381

the categorical disorderliness of each social vulnerability variable that we used for community detection. These values382

are transformed from continuous values of Entropy to categorical ones ( see Ghahramani (2006)). It can be observed383

that the majority of the variables have less impact to shape the second community. In other words, compared to other384

communities, the disorderliness is relatively higher in the second community. The first community has the lowest385

disorderliness of the majority of variables, which shows that this community is socially more vulnerable compared to386

the other two communities.387

5.2. Infrastructure Failures388

The failure of pipelines and junctions in the water distribution network might propagate over other interconnected389

components of the network (Shuang et al., 2017b). We considered this within infrastructure cascading failure in our390
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Table 6
ANOVA Table for DOE

Source DF Seq SS Adj SS Adj MS F-Value P-Value
Community 2 0.02380 0.02380 0.011898 5.82 0.008

Magnitude of failure in Water 2 0.10590 0.10590 0.052951 25.92 0.000
Magnitude of failure in Transportation 2 0.13632 0.13632 0.068161 33.36 0.000

Land Use 2 0.05735 0.05735 0.028673 14.03 0.000
Error 27 0.05516 0.05516 0.002043 nan nan
Total 35 0.37853 nan nan nan nan

Table 7
ANOVA Table for interactions for DOE

Df SS F value Pr(>F)
Land Use 1 2.81E-03 1.096709 3.04E-01
Community 1 1.39E-02 5.428965 2.72E-02*

Magnitude of failure in Water 1 8.96E-02 34.9102 2.34E-06***
Magnitude of failure in Transportation 1 1.20E-02 4.659513 3.96E-02*

Land Use*Community 1 1.15E-01 44.99883 2.78E-07***
Land Use*Water 1 2.99E-02 11.65247 1.97E-03**

Community *Water 1 4.31E-02 16.8055 3.22E-04***
Residuals 28 7.18E-02 NA NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 8
Performance Measures of predictive models

Performance Measure

Method MAE
train

RMSE
train

MAE
test

RMSE
test

ICOMP AIC CAIC

BART 0.0002 0.0002 0.012 0.015 54.740 100.210 147.234
MARS 0.071 0.094 0.066 0.096 58.608 104.021 151.044
ANN 0.078 0.310 0.091 0.120 58.992 104.448 151.472
RF 0.065 0.093 0.087 0.106 58.798 104.245 151.269
BRT 0.067 0.089 0.087 0.117 58.218 103.682 150.706

practice, we split the data to 70/30 for training and testing the models, and used a 5-fold cross-validation process.427

The performance of the developed predictive models for random failure scenarios is compared (Table 8) based on428

MAE and RMSE measures as well as three information-based criteria (refer to Mohebbi et al. (2019), Akaike’s classic429

Information Criterion (AIC), Information Complexity (ICOMP), and Consistent Akaike’s AIC (CAIC). Based on these430

criteria, BART is selected as the best predictive model.431

5.5. Cascading Impact of Natural Disasters (Hurricane Irma)432

Fig. 4 shows the initial failure inwater and transportation networks and the propagated failures in the interdependent433

network caused by Hurricane Irma. These failures happen simultaneously in both water and transportation networks.434

We calculated the resilience of the interdependent network in each polygon. We considered a similar resilience index435

to that of the random failures (the total met demand in water and transportation networks). A threshold of 0.4 was436

defined to distinguish areas affected by Irma. An area is labeled affected if more than 40% of the total demand is lost.437

Fig. 5 depicts the resilience distribution for the affected region in Tampa. The darker shades in this figure indicate the438

areas with the least resilience. It is clear that the hurricane mainly impacted the southwestern areas of the city which439

are closer to the coastline and were in Irma’s path.440

To capture the spatial autocorrelation and heterogeneity, we first fit a linear regression model and mapped the441

residuals to scrutinize the spatial patterns. Moreover, we calculated the local Moran’s I index to evaluate the spatial442
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Fi g ur e 4: C a s c a di n g f ail ur e f or hi st ori c d at a of h urri c a n e Ir m a

a ut o c orr el ati o n i n t h e st u d y r e gi o n. Fi g. 8 i n t h e A p p e n di x s h o ws t h e r es ults of t h es e pr e- pr o c essi n g t e c h ni q u es. As4 4 3

t h er e ar e n oti c e a bl e s p ati al cl ust ers i n b ot h of t h es e c as es, w e c a n us e G W R as a r eli a bl e pr e di cti v e m o d el t o c a pt ur e4 4 4

t h e s p ati al n o n-st ati o n arit y f e at ur es of o ur c as e st u d y. I niti all y, w e c o nsi d er e d 1 5 v ari a bl es of s o ci al f a ct ors, l a n d us e,4 4 5
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Table 10
Significat variables in GWR model

Description of variables

Failure ratio
Average number of people per household
Percentage of Asian or Pacific Islander
Percentage of females
Percentage of black population
Percentage of population under 5 years

 Water
 Transportation

Resilience Index
 0.0 – 0.2
 0.2 – 0.4
 0.4 – 0.6
 0.6 – 0.8
 0.8 – 1.0

Leaflet | © OpenStreetMap contributors, CC-BY-SA, © OpenStreetMap contributors © CARTO

Figure 6: Predicted resilience map

community, too (Table 5). In other words, areas with higher social vulnerability are more prone to the impact of472

cascading failures caused by both random failures and natural disasters in the water-transportation network.473

As we discussed above, cascading failures in the water-transportation network can inundate roadways, disconnect474

different parts of an urban area, and bring about difficulties for mobility. The higher number of children and females and475

the larger size of households in areas with the least resilience to cascading failures could create evacuation problems.476

In addition, disadvantaged groups such as Asian, black, and Hispanic populations usually have more difficulties for477

evacuations. For instance, the black population was most likely unable to evacuate New Orleans after Hurricane478

Katrina in 2005 (Thiede and Brown, 2013). Thus, the high percentage of black population in the most vulnerable areas479

reveal their high risk of evacuation in case of natural disasters such us Hurricane Irma.480

Moreover, while random failures usually have less impact than natural disasters, cascading failures caused by481

random breakdowns in the most vulnerable areas would cause a higher impact on people with the highest vulnerability.482

Given the aging of water pipelines which are the likely cause of random failures, the consequences of infrastructure483

aging and random failures are disproportionately on the most vulnerable people. This imbalance in the distribution of484
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impacts suggests that infrastructure rehabilitation and resilience planning to random failures should take into account485

the social aspect of infrastructures. The comparison of the cascading impact of random failures and natural disasters486

also showed that while random failures affect residential and industrial land use more, a natural disaster propagates487

uniformly in areas with different land use. This difference underlines the necessity to have resilience plans for both488

random failures and natural disasters and indicates which land use should be prioritized.489

6.1. Resilience-Informed Infrastructure Design490

The results of this study is informative for decision-makers at municipal levels to improve infrastructure design.491

Considering geospatial interdependencies, the design features and specifications of water and transportation infras-492

tructures in vulnerable regions can be explored for network resilience improvements. Increasing network redundancy493

is a key design strategy to enhance the resilience of both water (Matthews, 2016; Di Nardo et al., 2017; Diao, 2020)494

and transportation networks (Chan and Schofer, 2016; Xu et al., 2018; Sun et al., 2020). The approach we used in495

this study pinpoints vulnerable areas in the interdependent water-transportation system and can inform redundancy496

enhancement in both infrastructures. In the water distribution network, decentralization is another effective design497

strategy to improve the efficiency and reliability of water supply and the resilience of the network to random failures498

and natural disasters (Vázquez-Rowe et al., 2017; Leigh and Lee, 2019; Vegas Niño et al., 2021). The impact of failures499

in the water distribution network that we analyzed demonstrates that decentralization and valves can be useful to con-500

tain failures locally and prevent failure propagation to other areas. Our findings also informs transportation resilience501

designs such as pavement designs (Bowers and Gu, 2021) that take into account traffic load (Almeida et al., 2021) and502

flooding (Khan et al., 2017; Lu et al., 2017), roadway intersection design such as roundabouts instead of traffic signals503

(Bengigi, 2020), and implementation of intelligent transportation systems (Dey et al., 2014) to support mobility during504

extreme weather situations.505

Furthermore, geographical and environmental features can be inspected in vulnerable areas to improve resilience.506

Soil characteristics and proximity to a shoreline can result in less resilience to flooding events; hence, different areas507

might need different inspection, monitoring, and fortification planning. For instance, landscape morphology, soil508

moisture, and soil type in vulnerable road sections can be analyzed to identify network sections that need improved509

drainage system and monitoring (Kalantari et al., 2019). Likewise, the type, corrosivity, and moisture of soil around510

the most vulnerable pipelines can be investigated for better pipe inspection and monitoring planning (Yamijala et al.,511

2009).512

System breakdowns in water and transportation infrastructures under normal conditions can cause service dis-513

ruptions. Timely and effective maintenance and rehabilitation of these aging infrastructures are key to decrease the514

likelihood of such disruptions and their impact on routine infrastructure performance. Our approach in analyzing515

water-transportation systems can be implemented to maintain and rehabilitate these infrastructures for more reliable516

service during normal situations. Prioritization of rehabilitation efforts for areas prone to cascading failures will help517

to mitigate cascading failures within each infrastructure and across their interdependent network. Moreover, recov-518

ery plans should focus on the interdependent components as they are the critical points for failure propagation across519

infrastructures. Consequently, these efforts during normal situations eventually contribute to higher infrastructure re-520

silience during extreme events (Levenberg et al., 2017; Boulos, 2017). From the social point of view, we identified521

the profile of vulnerable communities to both types of failures. While prioritizing these communities in evacuation522

plans is a crucial reactive strategy, empowering these communities by assigning financial and social supports before a523

disruptive event will significantly increase their preparedness and their ability to cope with such events.524

The results of cascading failures caused by both random breakdowns and Hurricane Irma confirm that overlooking525

infrastructure interdependency will result in underestimated assessment of the impact of disturbances (Mao and Li,526

2018). These results reinforce previous findings in other infrastructures that resilience assessment and planning for in-527

frastructure systems require considering their interdependencies. Separate resilience planning for water and transporta-528

tion infrastructures might lead to a higher resilience within those infrastructures. However, the analysis of recovery529

strategies in electric power and gas infrastructures (Ouyang and Wang, 2015) indicated that considering infrastructure530

interdependency in a joint infrastructure recovery plan is more effective. Therefore, a compromised resilience plan for531

water-transportation infrastructures that considers their interdepenednecy will likely result in a higher overall resilience532

in these infrastructures. Indeed, such resilience plans should go beyond the traditional technical strategies that focus533

on the physical aspect of these infrastructures and incorporate community profiles based on social vulnerability. This534

sociotechnical approach enables decision makers to strategize targeted fortification plans to improve the resilience of535

the interdependent infrastructures and to support more vulnerable communities to improve the overall preparedness536
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for future incidents that could also expedite recovery from such incidents.537

6.2. Policy-Making Implications538

Top-down approaches have traditionally been the common strategy of governments for community resilience plan-539

ning (Fitzpatrick and Molloy, 2014; Ashmawy, 2021). However, each urban community is a unique sociotechnical540

system, and local stakeholders that are directly involved in the everyday functioning of a community and its chal-541

lenges can make more effective community-specific resilience decision-making. These local stakeholders could be542

city officials, legislators, planners, and community representatives. The involvement, cooperation, and collaboration543

of these stakeholders have been a challenge for resilience planning (Bostick et al., 2017) as they have different interests544

(McConnell and Drennan, 2006). This could also be partly due to the confusion of stakeholders on how infrastruc-545

tures should be improved and what the risks of disturbances are on infrastructure performance (Macaskill and Guthrie,546

2018; Chester et al., 2019, 2021). Identifying infrastructure vulnerabilities to different types of failures and their im-547

pact on society is fundamental for resilience decision-making. These decision-makings can get complicated when548

stakeholders from each infrastructure domain compete for limited resources. The approach we presented in this study549

for the resilience assessment of interdependent water and transportation infrastructures supports stakeholders of these550

infrastructures for collaborative decision-making. Our approach enables stakeholders to understand and identify vul-551

nerable sections of both water and transportation infrastructures to random failures and natural disasters. In addition,552

it highlights the interdependent components in these infrastructures that can trigger cascading failures.553

A city can entirely be resilient if social equity is considered in its resilience planning (Meerow et al., 2019). There-554

fore, the impact of infrastructure failures on residents, as a key stakeholder in infrastructure and community resilience,555

should be taken into account in resilience decision-making. Our sociotechnical approach in this study offers residents556

stakeholders and representatives a clear picture of the social vulnerability of communities to random failures and nat-557

ural disasters in water-transportation infrastructures. This social vulnerability dimension provides means for a more558

holistic and equitable infrastructure resilience decision-making.559

A large number of critical infrastructures in theUS are owned and operated by private entities (Boin andMcConnell,560

2007). However, private sectors and the role they can play in resilience planning are usually overlooked (McKnight561

and Linnenluecke, 2016; Ashmawy, 2021). Engaging private sectors is necessary for successful resilience decision-562

making (Marana et al., 2018). This engagement could be more successful if private entities have knowledge about the563

fragility of their infrastructure and the cascading failures triggered in other interdependent infrastructures. Another564

key private-sector stakeholder for infrastructure and community resilience is insurance. Data-driven approaches for565

infrastructure resilience assessment can also inform insurance companies of climate insurance actions (Rumson and566

Hallett, 2019). Thus, the interdependent infrastructure resilience approach proposed in this study can be adopted567

by city officials and insurers to facilitate more strategic financial protection of government facilities, businesses, and568

individuals rather than unreliable and insufficient post-disaster funding (see Surminski et al. (2016)). Such climate569

insurance actions will support reducing disaster losses and quicker recovery (Tonn et al., 2021).570

6.3. Limitations571

This study proposed an adaptable framework to assess the resilience of interdependent water-transportation in-572

frastructures. We showed and tested its applicability through a case study in the City of Tampa. The framework can573

be applied to other case studies and scenarios for further analyses. For instance, we used FEMA’s flooding data af-574

ter Hurricane Irma for natural disaster scenarios. While hurricanes are one of the main natural disasters threatening575

Tampa, other natural disasters might have a different impact on the water-transportation network. Further, hurricanes576

with varying intensities and trajectories might cause different levels of flooding in different areas of a city; in the case577

of Tampa, these flooding levels might be different from what Hurricane Irma caused. Thus, a sensitivity analysis578

of the impact of hurricanes with different intensities will likely provide a clearer perspective of the resilience of the579

water-transportation network in Tampa.580

Additionally, our analysis indicated that areas with higher social vulnerability are more prone to cascading failures581

caused by both random failures and natural disasters. While this finding provides valuable information for a more582

equitable resilience planning in the water-transportation network of Tampa, we recognize that other cities should be583

analyzed to determine if a similar relationship exists in other communities.584

In this study, based on the characteristics andmaterials of water pipelines in Tampa, the failures that road congestion585

(traffic load) can cause on pipelines were small and negligible. However, it should be noted that in larger cities such586

as Washington, New York City, Los Angeles, and Boston that experience the highest level of congestion in the nation587
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(INRIX, 2021), heavy traffic especially in areas with low roadway resilience to congestion (Khaghani et al., 2019) can588

cause cascading failures in the water network.589

7. Conclusions590

Infrastructure resilience studies generally analyze a single infrastructure and its response, recovery, or adapta-591

tion to a disturbance which is mainly an extreme event such as a natural disaster. These studies have improved our592

understanding of infrastructure systems and their capacities to cope with disturbances. However, infrastructures are593

interdependent systems, and this interdependency influences infrastructure resilience. In this study, we presented a594

comprehensive algorithmic framework and analyzed the resilience of the water and transportation infrastructures to595

extreme events and random failures. The contributions of this study can be described in three areas.596

First, we developed an algorithmic framework to assess the resilience of water-transportation infrastructures. We597

created an interdependent network of these infrastructures that allowed us to investigate the impact of failures on both598

infrastructures. Since infrastructures experience both random failures and natural disasters, we analyzed the impact of599

these disturbances on the resilience of the interdependent water-transportation network. For both infrastructures, we600

measured resilience as the maintained level of service after a disruption. The analysis of the impact of both random601

failures and natural disasters on this interdependent network highlighted the similarities and differences between these602

failures and provided a clearer understanding of the resilience of these infrastructures.603

In addition, we studied the cascading effects of failures caused by both random failures and Hurricane Irma within604

and across infrastructures and identified areas that are more vulnerable to cascading failures. For random failures,605

we used the Taguchi method for the experimental design of failure scenarios. For the impact of Hurricane Irma, two606

predictive models were designed to quantify resilience. We developed geospatial GWR and non-spatial RF models607

and compared the results. The GWRmodel performed better than RF, meaning it can appropriately capture the spatial608

autocorrelation and heterogeneity of data. This geospatial model can help the administrators to predict the level of609

damage from future natural disasters and strengthen the weak spots to mitigate the impact. Besides, by estimating the610

residual water heights of flooding in different parts of Tampa, we distinguished the regions that were impacted the most.611

Pinpointing these areas underlines the necessity of coordinated and joint resilience planning for these infrastructures612

to mitigate the impact of failures and their propagation. The approach we used in this study can be extended to other613

infrastructures, other types of interdependencies, and other disturbances for a more complete resilience assessment614

among the entire critical infrastructure systems in an urban area and a more comprehensive resilience planning for615

infrastructures and communities.616

The resilience of infrastructures and communities are entangled and a comprehensive resilience assessment and617

planning should incorporate community features. Therefore, in this study, we took a sociotechnical approach and618

incorporated social vulnerability and land use factors in our interdependent resilience assessment framework. The619

results showed the disproportionately greater impact of random failures and natural disasters in areas with higher social620

vulnerability and in residential land use. These findings confirm the intertwined relationship between infrastructure and621

community resilience and emphasize the incorporation of socioeconomic and land use factors in resilience assessment622

for thorough, rigorous, and equitable resilience planning. Moreover, the resilience assessment approach we used in623

this study can be extended to include the consequent costs incurred to the systems by failures, which could provide624

more insights for decision-makers.625
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A. Appendix833

Figure 7: Interaction plots for DOE
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