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ARTICLE INFO ABSTRACT

Keywords: Infrastructures are interdependent systems and their interdependency can influence their re-
Infrastructure systems silience to routine failures and extreme events. Even though infrastructure resilience has been
Interdependency widely explored, few studies have considered physical, spatial, and social dimensions simultane-
Social vulnerability ously. In this paper, we propose a resilience assessment framework for interdependent water and
Predictive analytics transportation infrastructures. The framework incorporates the physical network of these infras-
Natural disasters tructures, social vulnerability indicators, and predictive analytics for a sociotechnical resilience
Cascading random failure assessment. It enables us to measure the impact of random failures due to aging infrastructures,
Community detection natural disasters, and their cascading failures. We applied the proposed framework to the City

of Tampa, FL. The results indicated that areas with higher social vulnerability are more prone to
cascading failures caused by both random breakdowns and natural disasters. While natural dis-
asters affect all land use classes similarly, random failures have a greater impact on residential
and institutional land use. The findings of this study highlight that infrastructure interdepen-
dency and the consequences of cascading failures should be taken into account in a coordinated
infrastructure resilience assessment and planning. Further, socioeconomic factors and land use
features should be incorporated in interdependent resilience assessment for a more comprehen-
sive and equitable resilience planning.

1. Introduction

Urban communities highly rely on critical infrastructures such as power, water, transportation, and communication
systems. These infrastructures are crucial for the functionality of any community and a failure in these systems can
threaten safety, security, public health, and economic activity (DHS, 2021). Despite the importance of infrastructures,
the condition of US infrastructure systems has been poor and the American Society of Civil Engineers infrastructure
report card gives a D+ score to the entire infrastructure system in the US (ASCE, 2017). The aging infrastructures
in the US have made these systems fragile to failures. For instance, each year water pipelines experience an average
of 25 breaks in every 100 miles of pipes (Baird, 2020). These breaks usually bring about service reduction, road
traffic disruption, and affect communities (Jin Jun et al., 2020). Transportation systems are also in poor condition. For
example, nearly 40% of operating bridges in the US are over their designed life span of 50 years (Tochaei et al., 2021);
the collapse of the I-35W Mississippi River bridge in Minneapolis during a rush hour highlighted the catastrophic
impacts that such failures in the transportation system can have on communities (Zhu et al., 2010).

Infrastructure aging, poor urban environmental planning and governance, and population growth have also made
infrastructures and cities more susceptible to natural disasters (Albrito, 2012). Due to climate change, natural disasters
happen more frequently and in higher intensity (Song et al., 2016) and this has put even more pressure on the unprepared
aging infrastructure systems which are more critical during emergency situations. In 2017, Hurricane Irma caused a
power outage to two-thirds of power customers in Florida (Sultan and Hilton, 2020) and Hurricane Harvey resulted
in a significant disruption in the transportation system of Houston, Texas leaving thousands of people stranded (Gori
et al., 2020). Therefore, in any community, the resilience of infrastructure systems should be improved to better
cope with random infrastructure breakdowns and extreme events, quickly recover from them, and learn and adapt to
future similar disturbances. Resilience enhancement in infrastructures requires assessing the capacity of sub-systems
within infrastructures to respond to disturbances and how different infrastructures connect and support each other’s
functionality.

<] arahimig@gmu.edu (A. Rahimi-Golkhandan); baslani@gmu.edu (B. Aslani); smohebbi@gmu.edu (S. Mohebbi)
ORCID(S):
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Short Title of the Article

Infrastructures are interdependent systems. Two infrastructures are interdependent when their performance de-
pends on one another. Although interdependencies have increased the efficiency of functions, they can make systems
more prone to cascading failures (Rinaldi et al., 2001). In interdependent systems, a failure in one system can cascade
to other systems; these cascading failures can cause greater service disruption, economic impact, and loss of life (Shah
and Babiceanu, 2015). Specifically, in infrastructures, a failure in one infrastructure can cascade to its interdependent
infrastructure systems. The unprecedented Winter Storm Uri in Texas in 2021 crippled the transportation system. This
failure caused a huge impact on the food infrastructure. At the same time, the power outage by this winter storm dis-
rupted several interdependent infrastructures such as communication and healthcare. Thus, it is crucial to assess the
interdependency of infrastructure systems and their resilience to cope with cascading failures caused by both random
system breakdowns and extreme events like natural disasters.

The resilience of infrastructure systems to random failures and natural disasters has been analyzed in several stud-
ies. However, due to the complexity of interdependencies among infrastructures, much fewer studies have explored
infrastructure interdependency and infrastructure resilience to cascading failures (e.g., Heracleous et al. (2017); Por-
tante et al. (2017); Zuloaga et al. (2020)). In addition, infrastructures are sociotechnical systems (Walsh et al., 2015)
and the magnitude of the impact of failures in infrastructures also depends on the socioeconomic characteristics of the
people using lifelines. However, these factors are often overlooked in infrastructure resilience assessments (Rahimi-
Golkhandan and Garvin, 2020). For a comprehensive sociotechnical assessment of the resilience of interdependent
infrastructures to cascading failures, it is essential to take into account the social vulnerability of people. Considering
the interdependency of infrastructures along with their social and cyber aspects can enhance the resilience of cities
and communities (Mohebbi et al., 2020).

In this study, we propose an algorithmic framework for resilience assessment of interdependent water and trans-
portation infrastructures to cascading failures. Through this framework that also incorporates social vulnerability and
land use factors, we assess the resilience of these two infrastructures to (i) random failures caused by aging, and (ii)
failures caused by a natural disaster. Subsequently, we analyze how these infrastructures perform when failures in one
of them propagate to the other one and how the collective water-transportation network responds to such cascading fail-
ures. We applied the developed framework to the water and transportation systems in the city of Tampa, Florida (FL) to
demonstrate its feasibility and efficiency. To the best of our knowledge, the contributions of this study are threefold: (a)
we propose an algorithmic framework for predicting the resilience of water-transportation infrastructures considering
both physical and spatial characteristics; (b) the cascading effects of both random failures due to aging infrastructures
and natural disasters within and across these two infrastructures are modeled; (c) we incorporated social vulnerability
and community detection algorithms in our approach for a more comprehensive sociotechnical resilience assessment.

The rest of the paper is structured as follows: In section 2, the relevant literature is analyzed and the gaps are
identified. Section 3 provides the detailed steps of the proposed framework. Section 4 focuses on the selected case
study. Section 5 visualizes the results for the case study for both random failure and natural disaster scenarios. The
design and policy-making implications as well as the limitations are included in section 6. Future directions are also
discussed in section 7.

2. Background

2.1. Infrastructure Interdependency and Cascading Failures

Interdependency among infrastructures can be generally described by four types: (a) physical, (b) geographical, (c)
cyber, and (d) logical (Rinaldi et al., 2001). The approaches to analyze these interdependencies are broadly classified
into five groups (Ouyang, 2014): empirical (identify failure patterns and risk analysis), agent-based, system dynamics,
economic (input-output and computable general equilibrium), and network (topology and flow). Specifically, network
approaches have widely been used in the literature, and we focus on this method to investigate the interdependencies
among infrastructures.

Among recent studies, Cao et al. (2021) studied the impact of an earthquake on the interdependency of infras-
tructure networks in Japan using a topological network-GIS approach. They developed a risk map that identifies the
critical areas of the interdependent network to cascading impacts of seismic hazards. Similarly, Munikoti et al. (2021)
investigated the robustness of interdependent utility infrastructures by a graph theory approach and highlighted the
importance of information systems for improved robustness of infrastructure networks. The interdependency security
and identity among electric and gas networks during instabilities of gas pressure, supply shortage, and gas demand
surge was analyzed by Antenucci and Sansavini (2018). They proposed automation actions and safety strategies to
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respond to demand surges and failures in network components.

Ouyang and Wang (2015) investigated recovery strategies for the interdependent electric power and gas infras-
tructures after a hurricane. They concluded that while restoration plans result in higher individual resilience in these
systems, the compromised recovery strategy leads to a higher overall resilience for the electric-gas systems. This high-
lights that while considering interdependency is critical to respond to a disturbance, it is equally important for efficient
recovery. The geographical and physical interdependency of the same infrastructures and the cascading failures in them
due to spatially localized attacks was explored by Ouyang (2016) to identify the most critical locations. The results
demonstrated that infrastructures interdependency and radius of attacks influence critical locations in the network and
such spatially localized attacks cause less vulnerability than random attacks. These findings demonstrate that inter-
dependency among infrastructures changes the most critical/vulnerable locations in infrastructure networks compared
to when infrastructures are studied separately. Identifying critical/vulnerable locations/components in interdependent
infrastructure systems permits investigating how they influence the resilience of infrastructure systems and which poli-
cies can enhance resilience. Ouyang (2017) explored how protecting weak components of the interdependent networks
or increasing network redundancy can improve the resilience of power and water infrastructures.

Network metrics were used by Mao and Li (2018) to assess the impact of disturbances on the robustness and
recovery of power-water-telecommunication infrastructures. The results of their analysis revealed that disregarding
infrastructure interdependency results in the underestimated impact of extreme events. Similar to Ouyang and Wang
(2015), they concluded that interdependency among infrastructures should be taken into account for efficient recov-
ery planning. Adequate budget, resources, and time are crucial for successful recovery plans. Among recent studies,
Mohebbi et al. (2021) proposed a coalitional game theory approach coupled with an optimization model to address de-
centralized resource allocation in restoration planning for city-scale interdependent water and transportation networks.
They demonstrated that the decentralized model outperforms the centralized counterpart in terms of computational
time and the trajectory of the system performance (met demand) over time. Having strategies to protect vulnerable
network components as well as plans for a quick and efficient recovery is crucial for the resilience of interdependent
infrastructures. These prioritized components for system recovery might not be the most vulnerable ones to failure,
but they are the most critical for service restoration to mitigate the impact of failures.

The interdependency of water infrastructure has not been fully explored (Abdel-Mottaleb et al., 2019); especially,
the cascading failures between water-transportation systems have received less attention compared to the interdepen-
dency between water and other infrastructures. Dong et al. (2020) analyzed the geographic interdependency of trans-
portation and sewer networks and cascading failures in these networks through percolation. They found that the road
network is more vulnerable to failures in the collocated sewer system. Further, the robustness of this interdependent
network decreases as the number of initial failed sources increases. Additionally, nodes in the sewer network either
have zero or severe risk which results in two-phase percolation caused by failure due to liquefaction.

Abdel-Mottaleb et al. (2019) analyzed how critical components in the water infrastructure would vary when its in-
terdependency with the transportation infrastructure is considered compared to when it is considered separately. Their
findings revealed that when interdependency is considered, the identified critical components significantly vary from
those when only the water network is analyzed. These findings highlight the importance of water-transportation inter-
dependency and cascading failures between these systems for resilience enhancement. However, critical components
might vary given the disturbance that this interdependent network experiences. In other words, the critical components
to a natural disaster might not necessarily be the same as the critical components to a random failure. Thus, analyzing
the interdependency of water-transportation infrastructures to both random failures and natural disasters could provide
a clearer perspective of the most vulnerable components/locations in the network. Further, if other important elements
such as social vulnerability are factored in for a more comprehensive analysis, the most vulnerable areas for system
enhancement and recovery planning might change.

2.2. Social Vulnerability

Social vulnerability to hazards generally discusses inequalities in the ability of different groups to maintain their
desired state (Kuhlicke et al., 2011). In the context of hazards and disasters, social vulnerability is the conditions and
characteristics that reduce the ability of an individual or a group of people to cope with and recover from an environ-
mental shock (Wisner et al., 2004). Social vulnerability can be described as social inequality through characteristics
of people (e.g., age, sex, race/ethnicity, income) and geographical inequality that are related to communities and the
built environment (e.g., economic vitality, urbanization level) (Cutter et al., 2003). In addition, the Social Vulnerability
Indicator (SoVI) can be used to examine the interaction between infrastructure systems and the social aspect of urban
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Table 1
Summary of studies with customized SoVI
Author(s) Scope
Cutter et al. (2013) To incorporate simplified SoVI into civil planning and to preserve the robustness.

Armas and Gavris (2013)  To reveal patterns of vulnerable communities to post-earthquake coping strategies.
Holand and Lujala (2013)  To adopt the existing index developed for the US to municipalities in Norway.

Aksha et al. (2019) To assess the performance on Nepali context by adding new variables such as caste.
Sung and Liaw (2020) To quantify the vulnerability of complex topography to environmental hazards in Taiwan.

communities (Cutter et al., 2003). SoVI can explain the social aspect of community resilience during disturbances
(Nelson et al., 2015; Tate et al., 2016).

To tie social vulnerability to infrastructure resilience for sociotechnical assessment, nodes of infrastructure net-
works (e.g., water junctions, which represent customers’ locations with their respective demand of water) can be con-
sidered as representative components for SoVI variables. If these nodes are spatially well-distributed across a com-
munity, socioeconomic factors of residents in each area can be associated with infrastructure nodes in those areas to
incorporate social vulnerability in infrastructure assessments. This requires community detection that could be costly.
To overcome unreasonable computational costs, node attribute-based community detection (clustering) methods have
been implemented (e.g., Jia et al. (2017); Liu and Wang (2018)).

Communities interact with each other through infrastructures, both dependently and interdependently. For example,
when a water junction is disrupted near a specific community, other communities might suffer from that failure if it
propagates to water junctions in other communities. Such a failure could also cause a disturbance in interdependent
infrastructures. For instance, if a water junction fails to operate properly, either due to a random failure or a natural
disaster, the co-located interdependent roads might fail to maintain connectivity and transport demands; depending
on the socioeconomic characteristics the impact of such failures might vary. Thus, incorporating social vulnerability,
Karakoc et al. (2019) developed a model for the recovery of interdependent infrastructures.

A share of studies in this research stream adopted the SoVI concept and tailored this index for their case studies
or tested its applicability in various contexts related to risk management and community resilience. Table | provides
a summary of studies in this area. Socio-demographic variables, including age, sex, income level, and race, are the
common elements in these studies. In addition, these studies’ results reflected the fact that even though the SoVI
indicator is an appealing choice for social vulnerability measurement, application and interpretation of the output
related to an entirely different socioeconomic context outside the U.S. is challenging. For instance, (Holand and Lujala,
2013) reported that the adjusted index applied to a different socioeconomic context could only explain 19% of variation
in the data. However, others like Aksha et al. (2019) and Sung and Liaw (2020) only focused on the results without
any interpretation about the accuracy. Aksha et al. (2019) argued that the social vulnerability is higher in mountainous
regions populated by Dalit (people belonging to the lowest caste) and minority communities and/or with a history of
armed conflict. Sung and Liaw (2020) validated the effectiveness of SoVI concept to environmental hazards in Taiwan
by GWR and provided visualization maps as essential decision-making tool in emergency planning

Although a significant part of the assessment of social vulnerability is concerned with detecting communities inside
an area, such methods are not very efficient due to statistical bias, precision, and uncertainty (see Tate (2013) for a
detailed explanation). Since infrastructures can be usually represented as a network of nodes (e.g., demand/supply
points) and links between nodes, community detection algorithms can be implemented to identify communities within
a network. However, these methods are absent in the literature of social vulnerability in the context of interdependent
infrastructure networks. To bridge this gap, we adopted a well-known community detection method, joint community
detection criterion (JCDC), to identify the interdependent water and transportation systems based on several social
variables.

3. Resilience Assessment Framework

To assess the resilience of the interdependent water-transportation infrastructures to random failures and natural
disasters, we propose an algorithmic framework (Figure 1). First, we create an interdependent network of water and
transportation systems that includes social vulnerability and land use factors. Then, we develop scenarios to analyze
simultaneous failures in these infrastructures. For random failure scenarios, data is generated through experimental
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Figure 1: Proposed resilience assessment framework for interdependent water and transportation networks

design. For natural disaster scenario, we simulated the impact of Hurricane Irma. The failures propagate within each
infrastructure and cascade to the other interdependent infrastructure. Finally, the framework is applied to the water
and transportation infrastructures in the City of Tampa, FL.

3.1. Interdependent Network of Infrastructures

To study the interdependency among water-transportation systems, we focused on geographic co-location of these
infrastructures. Pipelines and water junctions are the components of the water network, roadways and intersections
represent the transportation system in our framework. The interdependent network of water-transportation systems
was developed using the physical network, and geospatial data of these infrastructures. We used this base network to
detect communities and overlay the built environment features onto the interdependent infrastructures.

3.1.1. Community Detection

An urban area can be described by several factors such as urban form, infrastructures, land use, and the socioe-
conomic characteristics of residents in that area. Here, to detect communities in the interdependent infrastructure
network, we use census blocks. Census blocks are the US Census Bureau’s smallest geographic unit and help us to
detect communities at a fine-grained scale. This community detection will allow us to investigate the impact of a failure
in infrastructures and the highlight community characteristics. The road segments in each census block are assigned
to their closest water junction. In each census block, the socioeconomic characteristics of residents are assigned to the
water junctions, which represent customer locations with their respective demand of water, in that block. Incorporating
the socioeconomic characteristics of people in the network enables us to measure social vulnerability and its relation-
ship with failures in the infrastructure systems, and the impact of failure propagation on communities with different
socioeconomic characteristics.

Cutter et al. (2003) identified 11 factor groups that represent different socioeconomic properties to quantify the
social vulnerability of a community. These 11 factor groups are categorized mostly around age, gender, race, wealth,
and occupation of the residents of a community. According to these factor groups, we used 12 socioeconomic variables
(Table 2). While other factors such as income, poverty rate, educational attainment, school enrolment, and employ-
ment status could be used to characterize social vulnerability in a community, here our focus is on factors related to
age, sex, race/ethnicity, and housing that are key for social vulnerability during disasters. We then used JCDC (Zhang
et al., 2016) to detect communities in the network. The water junctions and road segments in each community in-
clude the social vulnerability features of those communities. In addition, to take into account the built environment
characteristics, land use features are incorporated.
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Table 2

Social vulnerability variables
Median age by sex Total population in occupied housing units
Population of Asian or Pacific Islander Population of females
Percentage of female-headed households  Population of renter occupied housing units
Population of Hispanic persons Population living in urban areas
Percentage of black population Percentage of Native American population
Percentage of population under 5 years ~ Percentage of age over 65 years

3.1.2. Land Use Features

A failure in an infrastructure can have different impacts on areas with different land use characteristics. For instance,
the consequences of a breakdown in a water pipe in a residential area and an industrial area might vary since the need for
water in those areas differ. Thus, to be able to analyze the relationship between land use and failures in infrastructures,
we incorporate land use features in the water-transportation network. Three general land use types are considered: (a)
residential, (b) industrial, commercial, and service, and (c) institutional and others. These land use types are assigned
to the water junctions and road segments in the network.

3.2. Cascading Failure Algorithm

The interdependent network of water and transportation infrastructures includes the characteristics of these systems
as well as social vulnerability indicators and land use features. This network is the foundation for sociotechnical
resilience assessment of these infrastructures. Here, we describe failure scenarios, resilience assessment metrics, and
termination criteria of the algorithm. The required inputs and the main steps are outlined in algorithm 1 .

Algorithm 1 Cascading failure algorithm for interdependent water and transportation networks

Input Data
1: Interdependent Network of Infrastructures

2: Community Detection

3: Failure Scenarios

4: while Termination condition is not met do

5:  Collect the set of failed roads and pipes;

6:  Water network hydraulic simulation

7 Continue failure propagation based on pressure;

8: Fail interdependent roads with pipes;

9:  Road network
10: Continue failure propagation based on traffic load;
11: Fail interdependent pipes if affected by traffic load;

12: end while

3.2.1. Failure Scenarios

Water distribution networks are prone to different types of failures. Aging and specific pipe materials such as
Ductile Iron Pipes (DIP) are common sources of failure in this infrastructure (Kabir et al., 2015). In addition, de-
sign problems such as exposing pipes to constant high hydraulic pressures can also expedite pipe deterioration and
eventually failures. The majority of components in water distribution networks are typically underground, causing
accessibility problems for proactive and periodic maintenance. Therefore, inadequate maintenance can be considered
as another source of failure in the water network (Shirzad and Safari, 2019). In addition, most leakage incidents remain
undetected until they cause severe consequences in the system. External factors such as temperature and soil features
also contribute to failures in water components like pipes, valves, reservoirs, and tanks (Renzetti et al., 2013). Random
failures are another primary source of breakdowns in this complex network. Specifically, water main breaks are a
common failure factor in urban water distribution networks, generating a spectrum of problems from disrupting the
routine functionality of this system to contamination and jeopardizing public health (Aslani et al., 2021).

In a roadway network, if a road segment closes due to excessive congestion, the traffic load will consequently be
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on the other roadways which could cascade the congestion to the rest of the network (Li et al., 2012). Several factors
can cause congestion and closure of road segments. The main roadway congestion factors are traffic demand (normal
traffic fluctuation, special events such as a football game or a concert), traffic-influencing events (weather, work zones,
traffic incidents), and physical highway features (capacity bottlenecks, traffic control devices) (FHWA, 2005).

However, the consequences of a disruptive event are much broader than physical damages and service loss in
critical infrastructures. When communities experience a natural disaster, they could be immediately impacted. In
these situations, the primary source of social vulnerability is related to the weakness of particular groups of people
to timely and effectively respond to such events. For example, communities with a higher ratio of children, elderly
population, and underrepresented communities (e.g., immigrants living in suburban areas) are more prone to severe
damages. Likewise, residents of more populated areas usually face difficulty for evacuation. In short, the social
vulnerability adds another layer to the resilience framework and complements it to form a more holistic picture of the
effects of cascading failures on interconnected community-infrastructure networks.

In this part, we explain the process of simulating failures in each network individually and in the interdependent
components. We assumed that the pipe leakage and water main breaks are the primary sources of failure in the water
network. Hence, we removed the affected pipes/edges from the network and ran the hydraulic simulation algorithm
to capture these types of failures. Then, by comparing pressures in nodes to the maximum operational threshold, we
traced the cascading impacts (see Shuang et al. (2014) for more detail on pressure-driven analyses). For transportation,
we considered road closures due to pavement issues (aging infrastructure) and flooding as the main types of failures.
Similar to the water network, we removed the affected roads/edges from the network and used the edge betweenness
centrality to measure the cascading failures. More precisely, if traffic exceeds the capacity of a road segment (i.e.,
congestion), we consider that road segment as a failed component. Finally, the interactions between networks are
automatically captured through interdependencies defined in our work.

As described above, the geospatial interdependency between water and transportation infrastructures might result
in the propagation of failures from one infrastructure to the other. For instance, water pipe breakage can close roads
and roadway congestion might cause pipeline breakdown. In general, we can describe the consequences of a failure in
a component of one of these infrastructures as:

o failures within the infrastructure: breakdown in the directly connected components and cascading failures in the
indirectly connected components, and

e failures in the interdependent infrastructure: cascading failures in the co-located components and propagation
of that failure to other components.

To analyze the influence of these failures on the resilience of the water-transportation infrastructures, we develop
scenarios based on random failures and natural disasters. The resilience of the system will be assessed in four states:
(a) failures in the water network caused by a breakdown in a pipe, (b) cascading failures in the co-located road segments
of the broken pipe, (c) failures in the road network due to a road segment closure or flooding, and (d) cascading failures
in the co-located pipes of the closed road segment. It should be noted that these failures can happen simultaneously
in both water and transportation networks, particularly during natural disasters. The initial failure in each network
propagates internally due to cascading failure and spreads to the other network through interdependent components.
For instance, the cascaded failure in the transportation network results from the propagation of initial road closures
and can be intensified by the co-located water main break.

3.2.2. Interdependent Water-Transportation Infrastructures Resilience

To measure the resilience of the interdependent network to cascading failures, we use a metric that incorporates
a failure’s impact on both water and transportation systems as the failure propagates. A failure develops in water
junctions or road segments and step by step propagates to the rest of the network. In the water infrastructure, the met
demand (McMabhon et al., 2006) determines the performance and the resilience of this infrastructure during cascading
failures. Accordingly, the larger the met demand, the more resilient the system is.

In the roadway system, the spatial accessibility loss (Cantillo et al., 2019; Ortega et al., 2020) determines the
resilience of this system. Here, we consider spatial accessibility (Eq. 1) (Golub and Martens, 2014; Kelobonye et al.,
2020) as the number of road segments that are co-located with a water pipe and are accessible for the maintenance
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crew with a defined time threshold. It should be noted that this shortest path is for access by vehicles.

Ag= Y 10G) )

Where A; is the total accessibility in state s, j denotes a road segment co-located with a pipe, and I(j) is an
indicator function. I,(j) is equal to 1 if the j* road segment is accessible for maintenance crew by vehicle within a ¢
time threshold at the step s. I,(j) is equal to 0, otherwise.

Subsequently, as failures propagate over steps, we can measure the resilience of the interdependent network of
water and transportation to cascading failures through a step-wise system performance assessment (Eq.2).
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In this equation, Ry, 7 is the resilience, W denotes the water infrastructure, T' represents the transportation infras-
tructure, and .S € {1,2,...} is the set of steps with size of |.§| before the termination condition of the algorithm is
met. Rg,) and R;f) are the proportion of met demand in water, and the proportion of total accessibility in transportation
at step s, respectively. Hydraulic simulation is used in our framework to evaluate pressure changes in the water net-
work, identify components with pressure above the threshold, and quantify the met demand at each step. The pressure
threshold is the pressure above which other components may break.

3.2.3. Algorithm Termination
The resilience assessment algorithm is based on the propagation of failures in water-transportation infrastructures
and it terminates if failure propagation stops. Concretely, failures stop cascading in two conditions:

(a) One of the infrastructures is completely collapsed or stopped functioning. In other words, the failure is total and
cannot cascade anymore. This situation happens if all water junctions or road segments fail.

(b) The infrastructures are not collapsed and the failure does not cascade anymore. In this situation, the failure is
contained within the system. Therefore, if the failure does not cascade in two consecutive steps, the algorithm
terminates. We used this standard termination condition for cascading failures (see Shuang et al. (2014) and
Shuang et al. (2017a)), assuming that when the system reaches a stable state, the failure propagation stops, and
we do not observe any new failed component. In other words, if new failures are not observed after two iterations,
we will not have any more failures in any further steps.

3.3. Data Generation for Random Failures

The algorithmic framework enables us to analyze the resilience of complex network of infrastructures to failures.
Although replication of data for analyzing network-specific disruption criteria is feasible, it is time-consuming. More-
over, analyzing every possible failure scenario is not practical. Thus, to overcome the computational limitations, we
use Design of Experiment (DOE) to replicate failure data. DOE is a well-known systematic method to determine the
relationship between factors affecting a process and its output. More precisely, it allows for manipulating multiple in-
put factors, and determining their effect on the output. DOE has been implemented in designing resilience assessment
framework for infrastructures. For instance, Najarian and Lim (2019) adopted DOE for presenting a new resilience
metric for general complex systems. Nan et al. (2014) also used DOE for developing a holistic and integrated metric
for resilience quantification of interdependent infrastructure systems. DOE was incorporated in Lopez et al. (2019) to
maximize the resilience of the unbalanced electrical distributions network. In this study, we considered four factors in
the DOE process with three levels for all of them. Two factors are related to the spatial aspect of the interdependent
network (communities and land use features). The other two factors are the magnitude of failure in water and trans-
portation networks to capture cascading failures. This setting accounts for simultaneous failures in both water and
transportation networks. Table 3 shows the factors and their associated levels in the DOE.
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Table 3
Factors and levels for design of experiment
Factors Type Levels  Values
Land use type Categorical 3 1,23
Communities Categorical 3 1,2, 3
Magnitude of failure in water infrastructure Continuous 3 17,50,83
Magnitude of failure in transportation infrastructure ~ Continuous 3 27,54,82
Table 4
Description of predictive models
Predictive Model Description
Bayesian Additive Regression Trees | A non-parametric Bayesian regression approach to fitting a variety of re-
(BART) gression models while avoiding strong parametric assumptions. BART

enables full posterior inference including point and interval estimates of
the unknown regression function as well as the marginal effects of poten-
tial predictors.

Random Forest (RF) An ensemble machine learning method that consists of many individual
cooperating decision trees. The algorithm adopts bagging and feature
randomness in building individual trees to create an uncorrelated forest of
trees with a more accurate grouped prediction.

Boosted Regression Tree (BRT) BRT is similar to RF in fitting many decision trees to improve prediction
accuracy, but uses boosting to weight the input data in subsequent trees.
BRT is robust to outliers, detects best fit automatically, and it is stochastic
that improves predictive performance results.

Multivariate Adaptive Regression | A non-parametric regression method that builds a piece-wise linear model
Splines (MARS) across the range of predictors and is based on knots. It automatically
searches for the best spots to place the knots, performs well with many
predictor variables, and automatically detects interactions between vari-
ables.

Artificial Neural Networks (ANN) A computational approach inspired by biological nervous systems process.
ANNs are adaptive and capable of handling complex systems to identify
patterns and learn to make predictions. This method is flexible and learns
in an iterative process by adjusting inputs' weights and biases.

3.4. Impact Estimation for Natural Disasters (Hurricane Irma)

To estimate the impact of a natural disaster on the resilience of the water-transportation network in Tampa, we used
FEMA'’s dataset of flooding depth level caused by Hurricane Irma in 2017. First, we assigned a flooding elevation
level to each section (polygons based on U.S. Census Bureau shapefile) of Tampa based on the nearest neighborhood
function. Having the estimated levels, we compared the values with the threshold defined by FEMA (FEMA Mitigation
Assessment Team Report Hurricane Irma in Florida) . Any region with a level higher than 0.25 ft water height should
be categorized as an affected area (FEMA). Then, we labeled the pipes and roads that their centers are inside the
affected areas as the initially failed components. Finally, we executed the cascading failure algorithm to trace the
impact of these initial disruptions on the networks.

3.5. Resilience Quantification
3.5.1. Predictive Analytics for Random Failures

After identifying the statistically significant interactions among factors as the output of the DOE, we implemented
several predictive models to quantify resilience in different configurations. Table 4 provides a brief description of each
predictive model. A detailed description of BART and other predictive models is provided in Tan and Roy (2019) and
Aslani et al. (2021), respectively.

IFEMA P-2023 report is available at https://www.hsdl.org/?abstractdid=828548
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3.5.2. Geospatial Predictive Analytics

To capture the impact of natural disasters, spatial predictive modeling is selected to quantify the resilience of
different regions across Tampa. In this study, we developed a GWR model as the spatial predictive model. GWR
has been widely adopted as a powerful tool to capture spatial features in the resilience assessment of interdependent
infrastructure to natural disasters. For instance, Chun et al. (2017) used GWR and developed an assessment model
for social resilience by measuring the heterogeneity indicators related to disaster risk. Similarly, Fahy et al. (2019)
employed GWR in a proposed GIS framework and developed a combined index to test the relationships between
sociodemographic variables and environmental hazard potential. Using GWR, economic resilience, social resilience,
and community capital resilience were aggregated into socioeconomic community resilience to investigate the baseline
resilience to natural hazards Sung and Liaw (2021).

This method is an extension of multiple linear regression model, in which regression coefficients are local rather
than global estimators. In other words, the coefficients of the regression model form continuous surfaces that are
assessed at certain spatial points:

P
Yi = Polu;, v;) + 2 Bi(uy, v)xy + € G)
n=k

Where (u;, v;) are the geographical coordinates.

Another important component of GWR is a matrix of weights such that pairwise weights are assigned to every two
observations. The observations closer to each other are given greater weight than observations further away. Finally,
a kernel function should be selected as another parameter of the predictive model (see Wang et al. (2013) for more
detailed explanation). We selected adaptive bandwidth and the Gaussian kernel family as the inputs of the developed
model. We also adopted a non-spatial Random Forest predictive model to compare the quality of the prediction to a
geospatial one.

4. Study Area

To implement our proposed methodology, we modeled water and transportation infrastructures in the city of Tampa.
Tampa is a coastal city with nearly a population of 400, 000. It is prone to different natural hazards such as hurricanes,
floods, and tornadoes; this makes Tampa an ideal place to implement the proposed resilience assessment framework.
Tampa’s water distribution network has 1,658 junctions (nodes) that are connected by 1,976 pipelines (edges). The road
network in Tampa has 2,652 nodes and 5,484 vertices. The junctions of the water distribution network and roadways
are labeled by communities as well as the type of land use. To specify the characteristics of the components of both
networks, we collected social vulnerability variables for all census blocks in Tampa from the American Community
Survey (ACS) of the US Census Bureau. The geospatial data of land use was collected from the Florida Department
of Environmental Protection Geo-spatial Open Data (FDEP, 2021).

5. Results and Analysis

5.1. Interdependent Water-Transportation Network

The social vulnerability and land use factors were assigned to the nodes in the water-transportation network and
communities were detected. Figure 2 illustrates the three communities in the network overlaid on water junctions.
Community 1 has 66% of the nodes in the network while communities 2 and 3 have 18% and 16% of nodes, respectively.
We chose three communities to follow the Lqg orthogonal array rule in our design of experiment. Table 5 represents
the categorical disorderliness of each social vulnerability variable that we used for community detection. These values
are transformed from continuous values of Entropy to categorical ones ( see Ghahramani (2006)). It can be observed
that the majority of the variables have less impact to shape the second community. In other words, compared to other
communities, the disorderliness is relatively higher in the second community. The first community has the lowest
disorderliness of the majority of variables, which shows that this community is socially more vulnerable compared to
the other two communities.

5.2. Infrastructure Failures
The failure of pipelines and junctions in the water distribution network might propagate over other interconnected
components of the network (Shuang et al., 2017b). We considered this within infrastructure cascading failure in our
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algorithm using WNTR hydraulic simulation engine (Klise et al., 2017; Ka et al., 2017; Klise, 2018). If a cascading

failure spreads within an infrastructure, it could cause failures after several steps that might result in the collapse of
the whole system. We monitored these consequential failures to assess infrastructure resilience through our proposed
algorithm. For example, Figures (3a) and (3b) illustrate how failures in the components of Tampa’s water and trans-
portation network propagate over these networks. This scenario demonstrates failures triggered in the residential area
in the second community where 50 water junctions and 54 roads failed. The yellow color represents initially failed

components and the red color shows the cascading failed components.

In Tampa’s water network, the majority of pipelines (85%) are DIP pipes. DIP pipes are stable against breakage
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Figure 3: Failure propagation in infrastructure networks

w1 5.3. Generated Random Failures

a0z We implement a Taguchi-based DOE method to generate data for random failures. We selected the 1.9 Taguchi
.03 design, which includes 9 experiments for 4 factors with 3 levels for all of them. Each experiment was replicated four
«0s times to improve the accuracy of DOE and the consequent predictive models. Table 6 and 7 are the outputs of the
«0s DOE process. The first table indicates that the effects of all of the chosen factors are statisti¢Ally Siptrificamt (hased o ===
ws p-values). The interaction table also.seveals.that.the-three.interactions.ameng factors are statistically significant and
w7 these interaction terms should be added to the predictive models.

a08 Figure 7 in the Appendix provides more information about the interactions among factors. First, the transportation
w00 variable has interactions with all the other three variables, but they are not statistically significant. Second, residential
a0 (0) and industrial (1) land use are more vulnerable to extreme failure scenarios in the water network. However, medium
.11 failure in the water network has a higher impact on institutional (2) land use. Furthermore, communities 1 and 2 are
a1z more vulnerable to higher degrees of failure in the water network. This effect is significantly lower for the Level 1
a3 failure scenario in water for community 2. The interaction among land use and communities shows that in residential
a1 and institutional land use, higher vulnerability is associated with community 2, while for industrial land use, the first
a1s  community is related to higher degrees of vulnerability. On the other hand, the low-level failure scenario for water has
a1 a greater impact on community 1 and institutional land use. Medium and extreme situations are more disruptive for
.17 institutional and residential land use, respectively. Finally, community 2 is the most vulnerable to medium and high
as  degrees of failure in the water network.

a0 5.4. Cascading Impact of Random Failures

a20 We used a data set of 70 randomly generated failures by different settings as the input for the proposed cascading
.21 failure algorithm. The output of the algorithm, the system resilience, is considered as the response variable for the
.2z machine learning algorithms. The predictor variables are the factors and their interactions identified as significant in
.23 the DOE process in Table 7. As a result, we used 6 predictor variables for random failures, including community,
=2 the magnitude of failure in both networks, and the interactions of land use and community, land use and water, and
.2s community and water. We adopted the one-hot-encoding technique to handle the categorical variables in the modeling
.26 phase and used caret and dbarts packages in R to develop the predictive models for random failures. As a common
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Table 6
ANOVA Table for DOE
Source DF SeqSS AdjSS Adj MS  F-Value P-Value
Community 2 0.02380 0.02330 0.011898 5.82 0.008
Magnitude of failure in Water 2 0.10590 0.10590 0.052951  25.92 0.000
Magpnitude of failure in Transportation 2 0.13632 0.13632 0.068161 33.36 0.000
Land Use 2 0.05735 0.05735 0.028673 14.03 0.000
Error 27 0.05516 0.05516 0.002043 nan nan
Total 35 0.37853 nan nan nan nan
Table 7
ANOVA Table for interactions for DOE
Df SS F value Pr(>F)
Land Use 1 2.81E-03 1.096709 3.04E-01
Community 1 1.39E-02 5.428965 2.72E-02*
Magnitude of failure in Water 1 8.96E-02 34.9102  2.34E-06***
Magnitude of failure in Transportation 1  1.20E-02 4.659513 3.96E-02*
Land Use*Community 1 1.15E-01 44.99883 2.78E-Q7***
Land Use*Water 1 299E-02 11.65247  1.97E-03**
Community *Water 1 431E-02 16.8055  3.22E-04***

Residuals 28 7.18E-02 NA NA
Signif. codes: 0 "***' 0.001 "**' 0.01 '*' 0.05 ‘" 0.1 "'"'1

Table 8
Performance Measures of predictive models

Performance Measure

Method MAE RMSE MAE RMSE ICOMP AIC CAIC
train train test test

BART 0.0002 0.0002 0.012 0.015 54.740 100.210 147.234

MARS 0.071 0.094 0.066 0.096 58.608 104.021 151.044

ANN 0.078 0.310 0.091 0.120 58.992 104.448 151.472

RF 0.065 0.093 0.087 0.106 58.798 104.245 151.269

BRT 0.067 0.089 0.087 0.117 58.218 103.682 150.706

practice, we split the data to 70/30 for training and testing the models, and used a 5-fold cross-validation process.
The performance of the developed predictive models for random failure scenarios is compared (Table 8) based on
MAE and RMSE measures as well as three information-based criteria (refer to Mohebbi et al. (2019), Akaike’s classic
Information Criterion (AIC), Information Complexity (ICOMP), and Consistent Akaike’s AIC (CAIC). Based on these
criteria, BART is selected as the best predictive model.

5.5. Cascading Impact of Natural Disasters (Hurricane Irma)

Fig. 4 shows the initial failure in water and transportation networks and the propagated failures in the interdependent
network caused by Hurricane Irma. These failures happen simultaneously in both water and transportation networks.
We calculated the resilience of the interdependent network in each polygon. We considered a similar resilience index
to that of the random failures (the total met demand in water and transportation networks). A threshold of 0.4 was
defined to distinguish areas affected by Irma. An area is labeled affected if more than 40% of the total demand is lost.
Fig. 5 depicts the resilience distribution for the affected region in Tampa. The darker shades in this figure indicate the
areas with the least resilience. It is clear that the hurricane mainly impacted the southwestern areas of the city which
are closer to the coastline and were in Irma’s path.

To capture the spatial autocorrelation and heterogeneity, we first fit a linear regression model and mapped the
residuals to scrutinize the spatial patterns. Moreover, we calculated the local Moran’s I index to evaluate the spatial
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Figure 4: Cascading failure for historic data of hurricane Irma

autocorrelation in the study region. Fig. 8 in the Appendix shows the results of these pre-processing techniques. As
there are noticeable spatial clusters in both of these cases, we can use GWR as a reliable predictive model to capture
the spatial non-stationarity features of our case study. Initially, we considered 15 variables of social factors, land use,
community data, and failure ratio as the predictors for GWR. Then, we implemented a bi-directional stepwise model
selection by AIC (stepAIC) to select the best group of predictors. The result of this step is 6 significant predictor
variables summarized in Table 10. “The-response-variable for GWR is the resilience index for each polygon. We

Lesaiflat | € Cpen Sty . © OpanStreetMap contributors © CART

developed the GWR model for cascading failures of the natural disaster using the spgwr package in R.

Table 9 presents the performance measures for these models. We can see that GWR outperforms the RF model
in all performance measures. Therefore, GWR is the best predictive model to capture the spatial aspects of the data
related to this natural disaster. However, this specific geospatial predictive model can be also applied to other similar
cases with various sizes.

We used the developed GWR predictive model to provide the resilience map in the study area. Fig. 6 shows the
overlaid map of water and transportation networks and the predicted resilience in Tampa. Darker shades in this figure
show the areas with the least resilience.
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Figure 5: Resilience map of the affected area of Tampa by Hurricane Irma

Table 9
Performance measures of GWR and non-spatial RF predictive models

Performance Measure
Model MAE MSE RMSE R-squared
GWR 0.087 0.013 0.114 0.899
RF 0.113 0.024 0.154 0.839

6. Discussion
The performance of infrastructure systems can be disrupted by random failures and natural disasters, These dis-

ruptions can cascade to interdependent infrastructures and cause greater damage. Thus, it is crucial to analyze the
resilience of interdependent infrastructures to cascading failures. In general, the results of our study showed that while
the nature of random failures and natural disasters differ, they might have a similar impact on areas with specific so-
ciotechnical characteristics. For both water and transportation networks, higher degrees of random failures in an area,
propagate more rapidly in that area. Likewise, areas closer to the origin of Hurricane Irma had a higher rate of failure.
These findings indicate that identifying the most vulnerable areas in the interdependent water-transportation network
and resilience planning to timely respond to failures in this network will likely mitigate failure propagation and service
disruption in the rest of the network.

The results of random failures showed that nodes in community 2 are the most vulnerable ones to medium and high
degrees of failure in the water network. In the natural disaster scenario, areas closer to the shore are the most vulnerable.
However, incorporating social vulnerability indicators in the final GWR model in the natural disaster scenario showed
that spatial proximity to the origin of the hurricane was not the only important factor in the vulnerability of areas
to Hurricane Irma. Interestingly, the level of all significant social variables in the final GWR model is high in this
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Table 10
Significat variables in GWR model

Description of variables

Failure ratio
Average number of people per household
Percentage of Asian or Pacific Islander

Parrantaca Af famalac

. Water \]
Transportation
P —l_ o

Resilience Index

B oo-o02

B 02-04
04-0.6
0.6-0.8
0.8-1.0

Figure 6: Predicted resilience map

community, too (Table 5). In other words, areas with higher social vulnerability are more prone to the impact of
cascdding faihires catised by both random failures and natural disasters in the water-transportation network.

As we discussed above, cascading failures in the water-transportation network can inundate roadways, disconnect
different parts of an urban area, and bring about difficulties for mobility. The higher number of children and females and
the larger size of households in areas with the least resilience to cascading failures could create evacuation problems.
In addition, disadvantaged groups such as Asian, black, and Hispanic populations usually have more difficulties for
evacuations. For instance, the black population was most likely unable to evacuate New Orleans after Hurricane
Katrina in 2005 (Thiede and Brown, 2013). Thus, the high percentage of black population in the most vulnerable areas
reveal their high risk of evacuation in case of natural disasters such us Hurricane Irma.

Moreover, while random failures usually have less impact than natural disasters, cascading failures caused by
random breakdowns in the most vulnerable areas would cause a higher impact on people with the highestLg;;LpF@;glp)ein]éggémp contribute
Given the aging of water pipelines which are the likely cause of random failures, the consequences of infrastructure
aging and random failures are disproportionately on the most vulnerable people. This imbalance in the distribution of
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impacts suggests that infrastructure rehabilitation and resilience planning to random failures should take into account
the social aspect of infrastructures. The comparison of the cascading impact of random failures and natural disasters
also showed that while random failures affect residential and industrial land use more, a natural disaster propagates
uniformly in areas with different land use. This difference underlines the necessity to have resilience plans for both
random failures and natural disasters and indicates which land use should be prioritized.

6.1. Resilience-Informed Infrastructure Design

The results of this study is informative for decision-makers at municipal levels to improve infrastructure design.
Considering geospatial interdependencies, the design features and specifications of water and transportation infras-
tructures in vulnerable regions can be explored for network resilience improvements. Increasing network redundancy
is a key design strategy to enhance the resilience of both water (Matthews, 2016; Di Nardo et al., 2017; Diao, 2020)
and transportation networks (Chan and Schofer, 2016; Xu et al., 2018; Sun et al., 2020). The approach we used in
this study pinpoints vulnerable areas in the interdependent water-transportation system and can inform redundancy
enhancement in both infrastructures. In the water distribution network, decentralization is another effective design
strategy to improve the efficiency and reliability of water supply and the resilience of the network to random failures
and natural disasters (Vazquez-Rowe et al., 2017; Leigh and Lee, 2019; Vegas Nifo et al., 2021). The impact of failures
in the water distribution network that we analyzed demonstrates that decentralization and valves can be useful to con-
tain failures locally and prevent failure propagation to other areas. Our findings also informs transportation resilience
designs such as pavement designs (Bowers and Gu, 2021) that take into account traffic load (Almeida et al., 2021) and
flooding (Khan et al., 2017; Lu et al., 2017), roadway intersection design such as roundabouts instead of traffic signals
(Bengigi, 2020), and implementation of intelligent transportation systems (Dey et al., 2014) to support mobility during
extreme weather situations.

Furthermore, geographical and environmental features can be inspected in vulnerable areas to improve resilience.
Soil characteristics and proximity to a shoreline can result in less resilience to flooding events; hence, different areas
might need different inspection, monitoring, and fortification planning. For instance, landscape morphology, soil
moisture, and soil type in vulnerable road sections can be analyzed to identify network sections that need improved
drainage system and monitoring (Kalantari et al., 2019). Likewise, the type, corrosivity, and moisture of soil around
the most vulnerable pipelines can be investigated for better pipe inspection and monitoring planning (Yamijala et al.,
2009).

System breakdowns in water and transportation infrastructures under normal conditions can cause service dis-
ruptions. Timely and effective maintenance and rehabilitation of these aging infrastructures are key to decrease the
likelihood of such disruptions and their impact on routine infrastructure performance. Our approach in analyzing
water-transportation systems can be implemented to maintain and rehabilitate these infrastructures for more reliable
service during normal situations. Prioritization of rehabilitation efforts for areas prone to cascading failures will help
to mitigate cascading failures within each infrastructure and across their interdependent network. Moreover, recov-
ery plans should focus on the interdependent components as they are the critical points for failure propagation across
infrastructures. Consequently, these efforts during normal situations eventually contribute to higher infrastructure re-
silience during extreme events (Levenberg et al., 2017; Boulos, 2017). From the social point of view, we identified
the profile of vulnerable communities to both types of failures. While prioritizing these communities in evacuation
plans is a crucial reactive strategy, empowering these communities by assigning financial and social supports before a
disruptive event will significantly increase their preparedness and their ability to cope with such events.

The results of cascading failures caused by both random breakdowns and Hurricane Irma confirm that overlooking
infrastructure interdependency will result in underestimated assessment of the impact of disturbances (Mao and Li,
2018). These results reinforce previous findings in other infrastructures that resilience assessment and planning for in-
frastructure systems require considering their interdependencies. Separate resilience planning for water and transporta-
tion infrastructures might lead to a higher resilience within those infrastructures. However, the analysis of recovery
strategies in electric power and gas infrastructures (Ouyang and Wang, 2015) indicated that considering infrastructure
interdependency in a joint infrastructure recovery plan is more effective. Therefore, a compromised resilience plan for
water-transportation infrastructures that considers their interdepenednecy will likely result in a higher overall resilience
in these infrastructures. Indeed, such resilience plans should go beyond the traditional technical strategies that focus
on the physical aspect of these infrastructures and incorporate community profiles based on social vulnerability. This
sociotechnical approach enables decision makers to strategize targeted fortification plans to improve the resilience of
the interdependent infrastructures and to support more vulnerable communities to improve the overall preparedness
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for future incidents that could also expedite recovery from such incidents.

6.2. Policy-Making Implications

Top-down approaches have traditionally been the common strategy of governments for community resilience plan-
ning (Fitzpatrick and Molloy, 2014; Ashmawy, 2021). However, each urban community is a unique sociotechnical
system, and local stakeholders that are directly involved in the everyday functioning of a community and its chal-
lenges can make more effective community-specific resilience decision-making. These local stakeholders could be
city officials, legislators, planners, and community representatives. The involvement, cooperation, and collaboration
of these stakeholders have been a challenge for resilience planning (Bostick et al., 2017) as they have different interests
(McConnell and Drennan, 2006). This could also be partly due to the confusion of stakeholders on how infrastruc-
tures should be improved and what the risks of disturbances are on infrastructure performance (Macaskill and Guthrie,
2018; Chester et al., 2019, 2021). Identifying infrastructure vulnerabilities to different types of failures and their im-
pact on society is fundamental for resilience decision-making. These decision-makings can get complicated when
stakeholders from each infrastructure domain compete for limited resources. The approach we presented in this study
for the resilience assessment of interdependent water and transportation infrastructures supports stakeholders of these
infrastructures for collaborative decision-making. Our approach enables stakeholders to understand and identify vul-
nerable sections of both water and transportation infrastructures to random failures and natural disasters. In addition,
it highlights the interdependent components in these infrastructures that can trigger cascading failures.

A city can entirely be resilient if social equity is considered in its resilience planning (Meerow et al., 2019). There-
fore, the impact of infrastructure failures on residents, as a key stakeholder in infrastructure and community resilience,
should be taken into account in resilience decision-making. Our sociotechnical approach in this study offers residents
stakeholders and representatives a clear picture of the social vulnerability of communities to random failures and nat-
ural disasters in water-transportation infrastructures. This social vulnerability dimension provides means for a more
holistic and equitable infrastructure resilience decision-making.

A large number of critical infrastructures in the US are owned and operated by private entities (Boin and McConnell,
2007). However, private sectors and the role they can play in resilience planning are usually overlooked (McKnight
and Linnenluecke, 2016; Ashmawy, 2021). Engaging private sectors is necessary for successful resilience decision-
making (Marana et al., 2018). This engagement could be more successful if private entities have knowledge about the
fragility of their infrastructure and the cascading failures triggered in other interdependent infrastructures. Another
key private-sector stakeholder for infrastructure and community resilience is insurance. Data-driven approaches for
infrastructure resilience assessment can also inform insurance companies of climate insurance actions (Rumson and
Hallett, 2019). Thus, the interdependent infrastructure resilience approach proposed in this study can be adopted
by city officials and insurers to facilitate more strategic financial protection of government facilities, businesses, and
individuals rather than unreliable and insufficient post-disaster funding (see Surminski et al. (2016)). Such climate
insurance actions will support reducing disaster losses and quicker recovery (Tonn et al., 2021).

6.3. Limitations

This study proposed an adaptable framework to assess the resilience of interdependent water-transportation in-
frastructures. We showed and tested its applicability through a case study in the City of Tampa. The framework can
be applied to other case studies and scenarios for further analyses. For instance, we used FEMA’s flooding data af-
ter Hurricane Irma for natural disaster scenarios. While hurricanes are one of the main natural disasters threatening
Tampa, other natural disasters might have a different impact on the water-transportation network. Further, hurricanes
with varying intensities and trajectories might cause different levels of flooding in different areas of a city; in the case
of Tampa, these flooding levels might be different from what Hurricane Irma caused. Thus, a sensitivity analysis
of the impact of hurricanes with different intensities will likely provide a clearer perspective of the resilience of the
water-transportation network in Tampa.

Additionally, our analysis indicated that areas with higher social vulnerability are more prone to cascading failures
caused by both random failures and natural disasters. While this finding provides valuable information for a more
equitable resilience planning in the water-transportation network of Tampa, we recognize that other cities should be
analyzed to determine if a similar relationship exists in other communities.

In this study, based on the characteristics and materials of water pipelines in Tampa, the failures that road congestion
(traffic load) can cause on pipelines were small and negligible. However, it should be noted that in larger cities such
as Washington, New York City, Los Angeles, and Boston that experience the highest level of congestion in the nation
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(INRIX, 2021), heavy traffic especially in areas with low roadway resilience to congestion (Khaghani et al., 2019) can
cause cascading failures in the water network.

7. Conclusions

Infrastructure resilience studies generally analyze a single infrastructure and its response, recovery, or adapta-
tion to a disturbance which is mainly an extreme event such as a natural disaster. These studies have improved our
understanding of infrastructure systems and their capacities to cope with disturbances. However, infrastructures are
interdependent systems, and this interdependency influences infrastructure resilience. In this study, we presented a
comprehensive algorithmic framework and analyzed the resilience of the water and transportation infrastructures to
extreme events and random failures. The contributions of this study can be described in three areas.

First, we developed an algorithmic framework to assess the resilience of water-transportation infrastructures. We
created an interdependent network of these infrastructures that allowed us to investigate the impact of failures on both
infrastructures. Since infrastructures experience both random failures and natural disasters, we analyzed the impact of
these disturbances on the resilience of the interdependent water-transportation network. For both infrastructures, we
measured resilience as the maintained level of service after a disruption. The analysis of the impact of both random
failures and natural disasters on this interdependent network highlighted the similarities and differences between these
failures and provided a clearer understanding of the resilience of these infrastructures.

In addition, we studied the cascading effects of failures caused by both random failures and Hurricane Irma within
and across infrastructures and identified areas that are more vulnerable to cascading failures. For random failures,
we used the Taguchi method for the experimental design of failure scenarios. For the impact of Hurricane Irma, two
predictive models were designed to quantify resilience. We developed geospatial GWR and non-spatial RF models
and compared the results. The GWR model performed better than RF, meaning it can appropriately capture the spatial
autocorrelation and heterogeneity of data. This geospatial model can help the administrators to predict the level of
damage from future natural disasters and strengthen the weak spots to mitigate the impact. Besides, by estimating the
residual water heights of flooding in different parts of Tampa, we distinguished the regions that were impacted the most.
Pinpointing these areas underlines the necessity of coordinated and joint resilience planning for these infrastructures
to mitigate the impact of failures and their propagation. The approach we used in this study can be extended to other
infrastructures, other types of interdependencies, and other disturbances for a more complete resilience assessment
among the entire critical infrastructure systems in an urban area and a more comprehensive resilience planning for
infrastructures and communities.

The resilience of infrastructures and communities are entangled and a comprehensive resilience assessment and
planning should incorporate community features. Therefore, in this study, we took a sociotechnical approach and
incorporated social vulnerability and land use factors in our interdependent resilience assessment framework. The
results showed the disproportionately greater impact of random failures and natural disasters in areas with higher social
vulnerability and in residential land use. These findings confirm the intertwined relationship between infrastructure and
community resilience and emphasize the incorporation of socioeconomic and land use factors in resilience assessment
for thorough, rigorous, and equitable resilience planning. Moreover, the resilience assessment approach we used in
this study can be extended to include the consequent costs incurred to the systems by failures, which could provide
more insights for decision-makers.
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