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Abstract 9 

Traffic signal failures could result in significant local and system-level performance degradation. 10 
Sequencing the restoration of failed signals with limited resources is a challenging problem—11 
capturing dynamic changing transportation system performance following a feasible solution 12 
requires tedious computation, and the short time frame for restoring failed signals makes these 13 
decisions time-sensitive and should be determined in a timely manner. Feasible Signal Restoration 14 
Sequence Ordering (SRSO) problem, as a critical building block to optimize the restoration 15 
sequence, has not been well-studied in the existing literature, nor have solutions to address the 16 
computational burden issue. In this work, a machine learning model based on Structural Recurrent 17 
Neural Network (SRNN) is proposed to predict system performance, i.e., aggregated accumulated 18 
total delay, following a given restoration sequence, to address the computational burden of the 19 
simulation-based performance evaluation. Spatio-temporal (ST) graph representation is leveraged 20 
in this methodology to take the topological information, i.e., how adjacent movements interact 21 
with each other, into consideration. Although microscopic simulation is used to obtain the ground 22 
truth performance, which is still time-consuming for a group of signal failure scenarios, a trained 23 
machine learning model can surrogate the tedious computation in the decision-making process in 24 
a timely manner. The challenges to build this machine learning model effectively and efficiently 25 
are two-folds. First, a transportation system is a typical dynamic system whose behavior is 26 
constrained by the topology of the network. Therefore, both spatial and temporal interactions 27 
between road sections should be captured to predict system performance effectively. Second, in 28 
the context of signal failure, system performance is exposed to a disrupted control strategy, which 29 
makes it even more challenging to predict system performance effectively. The original SRNN 30 
model could address the first challenge, and the movement feature representation and its 31 
integration to the SRNN model proposed in this work could address the second. A case study was 32 
conducted to demonstrate the operability and effectiveness of the proposed methodology. It is 33 
demonstrated that the signal restoration sequence could impact system performance during and 34 
after the restoration process significantly. Then, both Aggregated Accumulated Total Delay 35 
(AATD) prediction accuracy and the performance of restoration sequence ordering is evaluated 36 
for the case study network. Outcomes of the case study show that the learning-based model can 37 
help identify sequences ranked in top 8% of optional sequences referring to ground truth 38 
information. Furthermore, in terms of the fine-tune of the learning rate, the Cosine-Annealing-LR 39 
strategy leads to both lower loss value, better ordering performance, and shorter delay experienced 40 
in the restoration process, compared to the Step-LR strategy. 41 
Keywords: Traffic management systems; Emergency response; Machine learning; Learning-42 
based optimization; Ordinal Optimization  43 



 2 

1 Introduction 44 

Transportation management systems are typical cyber-physical systems, with sensing, 45 
communicating, and computing components integrated to support the efficient operation of 46 
transportation systems. These systems are termed as Transportation Cyber-Physical Systems (T-47 
CPS) in this study for convenience. The smooth operation of T-CPS relies on electric power supply 48 
and the functionality of sensing and computing components, as premise (Emtenan and Day, 2020). 49 
The failure of these supporting components could lead to the failure of a T-CPS system and even 50 
cascading failure phenomena in a transportation system. In addition, with the increasing presence 51 
of extreme weather conditions (Sadler et al., 2018) such as flooding, thunderstorms, and extreme 52 
hot temperature, especially in coastal areas, and emerging cyber security concerns (Ernst and 53 
Michaels, 2017; Ghena et al., 2014), there is an increasing number of power outages (Wang et al., 54 
2018), sensing and computational component failures, leading to even more frequent traffic signal 55 
failures in real cases, which emphasizes the urgent need to enhance T-CPS system resilience 56 
(Mohebbi et al., 2020).  57 

 It is well-recognized that the failure of traffic signals, as a critical type and widely existing 58 
component of a T-CPS system, could lead to significant transportation system performance 59 
degradation and, consequently, significant economy and social functionality loss for society 60 
overall. For example, a computer crash disrupted 750 traffic lights in Montgomery County, 61 
Maryland, in 2009 and locked traffic in the entire region, which, in turn, increased travel time and 62 
the greenhouse gas (GHG) emissions of thousands of vehicles (Halsey, 2009). At a smaller scale, 63 
another example is the malfunction of traffic lights at a single intersection in Wellington City, New 64 
Zealand, in 2015, that caused severe traffic congestion throughout the main corridor. Even single 65 
intersection failures should be taken seriously, as they can create severe traffic congestion if the 66 
affected intersections are critical to network performance (Wright and Roberg, 1998) and can 67 
cause traffic safety concerns. A signal failure may not cause cascading failure through the 68 
transportation management system itself, but its impact on traffic flow propagates through the 69 
transportation network. Therefore, the failure of critical signals may lead to congestion in a larger 70 
area, i.e., cascading failure in the transportation system. These impacts can be exaggerated if the 71 
affected area has severe congestion in its normal condition. These facts highlight the importance 72 
of enhancing the resilience of the transportation system against traffic signal failure to support 73 
community resilience eventually through countermeasures in the mitigation, preparedness, 74 
response, and recovery phases (NGA, 1979).  75 

This study focuses on the failure of multiple traffic signals that occur simultaneously or 76 
consecutively in a very short time frame caused by multi-site hazards or cascading failure of the 77 
supporting power supply system, sensors, or communication systems. There could be various 78 
causes for traffic signal failure; however, the focus of this work is not to investigate the cause of 79 
signal failures but rather the post-event phase to evaluate the consequences of traffic signal failures 80 
on mobility service and the operational strategy to recover system performance efficiently. As 81 
noted, the resources to restore a failed signal could be limited to a great extent, such as a shortage 82 
of technical personnel with desired expertise, shortages of equipment or device to repair the failed 83 
component, etc. Therefore, although multiple signals must be fixed as quickly as possible, 84 
transportation managers must prioritize the restoration effort in reality. Meanwhile, the restoration 85 
sequence can impact system performance during and after the restoration process significantly. 86 
This statement is consistent with both specialists’ understanding and their real-field experience, 87 
according to an interview with local transportation management agency. It is also verified in the 88 
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case study in Section 4 and further illustrated through the Macroscopic Fundamental Diagram 89 
point of view in the appendix of this paper. 90 

In this work, we study the consequences of signal failures at multiple intersections in the 91 
post-event phase and propose restoration strategies to recover system performance efficiently 92 
given limited labor resources. The objective is to rank optional restoration sequences of multiple 93 
failed signals to reduce the impact on system performance, called the Signal Restoration Sequence 94 
Ordering (SRSO) problem. To rank the optional restoration sequences of failed traffic signals, 95 
system performance under various restoration sequences should be evaluated in a timely manner 96 
to support a prompt response to the failure and minimize the potential impact on the system’s level 97 
of service. In the literature, Accumulated Total Delay has been widely used to evaluate the impact 98 
of signal failure on system performance (Ganin et al., 2019). SRSO problem is a critical building 99 
block to optimize the signal restoration sequence eventually, especially for heuristic algorithms. 100 
Taking Genetic Algorithm (GA) as an example, the ranking, i.e., ordering, of optional restoration 101 
sequences is a critical repetitive process embedded in the workflow of the overall solution 102 
algorithm. 103 

Compared with the restoration of road infrastructure from a severe nature disaster such as 104 
an earthquake, landslide, etc., the time frame to repair failed signals is much shorter. Therefore, it 105 
is necessary to capture the dynamic behavior of the system after the signal failure and during the 106 
overall restoration process. Either Dynamic Traffic Assignment (Zou and Chen, 2019), 107 
mesoscopic (Reilly et al., 2016) or microscopic traffic simulation (Oricchio et al., 2008) could be 108 
adopted to conduct a system performance evaluation to address the need to capture the system’s 109 
dynamic behavior. In this work, the network performance measure, i.e., Aggregated Accumulated 110 
Total Delay (AATD), is evaluated through running a microscopic traffic simulation in VISSIM. 111 
However, the computational efficiency of running microscopic traffic simulations to obtain 112 
performance evaluation results cannot support solving the SRSO problem in a timely manner to 113 
promptly respond to signals’ failure. In existing literature, metamodels (or surrogate models) are 114 
proposed to address the tight computational budget issue in solving simulation-based optimization 115 
problems for transportation systems (Juan et al., 2015; Osorio and Bierlaire, 2013; Osorio and 116 
Chong, 2015; Osorio and Wang, 2017), although not for exactly the same research context. 117 
Generally speaking, metamodels (or surrogate models) are used to get an approximation of the 118 
objective function, such as total delay in the system, obtained by simulation. For instance, in 119 
Osorio et al.’s work, the metamodels leveraging the queueing network models are fitted to a set of 120 
simulated observations (Osorio and Chong, 2015; Osorio and Wang, 2017). Inspired by these 121 
existing metamodeling efforts, with the rapid developing of machine learning techniques, we are 122 
interested in exploring learning models’ potential to server as a similar role, i.e., a metamodel (or 123 
surrogate model), for solving simulation-based optional sequence ordering problem, i.e., SRSO 124 
problem in this work.   125 

Therefore, machine learning techniques are leveraged in this study to address the 126 
computational challenge in order to capture the dynamic system behavior in a timely manner. 127 
Based on the understanding that the traffic status of road sections—more specifically, movements 128 
at intersections—are closely related to each other if they are connected topologically, a Structural 129 
Recurrent Neural Network (SRNN) model (Jain et al., 2016) leveraging Spatio-temporal (ST) 130 
graph representation is used to capture the spatio-temporal interaction between adjacent 131 
movements among multiple intersections. A case study of the road network in downtown Boise, 132 
Idaho (a built-in example network in VISSIM) is conducted to demonstrate and verify the 133 
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effectiveness and efficiency of the proposed methodology. The selection of SRNN among various 134 
machine learning models is based on the following considerations. Firstly, transportation road 135 
network can be modeled as a directed graph and the topological information of the graph is helpful 136 
for modeling transportation system behavior and also for predicting the system performance. 137 
Secondly, the connection between adjacent movements is directional and the directional features 138 
matter while building up learning models in this research context. Thirdly, in the SRSO problem, 139 
the network structure is dynamic as there are both failure and restoration of signals at intersections. 140 
It is challenging to frame the learning model to capture the correspondent system dynamic 141 
behavior. More discussion on how SRNN could help us fully utilize the “features” (useful 142 
information to build up the learning model) to address these challenges of SRSO problem will be 143 
given in Section 3 after the comparative methodologies are reviewed in Section 2. 144 

The remainder of this paper is organized as follows. Section 2 reviews the literature on 145 
related topics, including the resilience of transportation systems against cyber failure and learning-146 
based performance prediction for the transportation systems. In this section, more detailed 147 
discussion on how SRNN serves better for the research purpose of this study will be given based 148 
on literature review. Section 3 presents the proposed learning based AATD prediction framework 149 
and the Structural Recurrent Neural Network (SRNN) model developed for solving this problem. 150 
Section 4 presents a case study to verify the effectiveness and efficiency of the proposed 151 
methodology. In this section, the significance of selecting proper signal restoration sequence is 152 
illustrated through two typical failure scenarios before the learning-based sequence ordering 153 
results are presented and evaluated. Different impacts of failure scenarios on system performance 154 
are further interpreted from a Macroscopic Fundamental Diagram (MFD) perspective in the 155 
appendix. Finally, key findings are summarized in the Conclusions, and the limitations of this 156 
study and future research directions to better solve the SRSO problem are also discussed.  157 

2 Literature Review 158 

2.1 Resilience of transportation system against cyber failure  159 

Resilience, the concept introduced by Holling for ecological systems (Holling, 1973), has been 160 
studied widely in various fields and different contexts. It is usually defined as the ability of a 161 
system to retain the same functionality after a disruption and the capability of self-organization to 162 
the changes caused by a disturbance (Walker et al., 2002). Cyber failure is inevitable with the 163 
increasing number of cyber components involved in the monitoring and operation of modern 164 
Critical Infrastructure (CI) systems as a complex, integrated and evolving process (Guo et al., 165 
2017). It is one of the most—if not the most—critical types of failure in a CI system, highlighting 166 
the importance of studying cyber failure impacts on system performance and the need for 167 
countermeasures to reduce these impacts. Various countermeasures can be implemented to 168 
improve the response of infrastructure systems to cyber failures, such as improving cyber 169 
components’ adaptation to changes, improving the tolerance level of cyber components, and 170 
optimizing restoration efforts after disruptions (Mattsson and Jenelius, 2015).  171 

 Transportation is recognized as the third most vulnerable sector exposed to cyber-failure, 172 
according to a recent white paper released by Gallagher (Gallagher, 2018). As reported, there are 173 
at least 100,000 intersections in the US and Canada (Ghena et al., 2014), and 200,000 traffic 174 
sensors deployed worldwide that are exposed to cyber vulnerability (Cerrudo, 2015). Given the 175 
criticality of transportation systems to the functionality and efficiency of daily economic activities 176 
of a city, the U.S. Department of Transportation has developed the Cyber Security Evaluation 177 



 5 

Program and Cyber Resilience Review Process to better assess the cyber security of transportation 178 
systems (DHS, 2015). Recently, there are some emerging literature modeling the potential impacts 179 
of cyber failures on transportation system performance. Reilly et al. studied freeway networks 180 
instrumented with coordinated ramp metering and the potential of well-designed antagonistic 181 
cyber-attacks targeting such control systems to induce arbitrarily complex congestion patterns in 182 
the system (Reilly et al., 2016). They discussed various types of cyber-attacks (e.g., direct physical 183 
access, virtual access) to transportation ramp metering management systems; however, how to 184 
enhance transportation system performance against cyber-attack is not mentioned in their work. 185 
Oricchio et al. also studied the effect of traffic signal malfunction—yellow/red (flash yellow on a 186 
major road and flash red on all other movements) or red/red (flash red on all approaches)—on the 187 
delay at intersections for vehicles on major and minor roads (Oricchio et al., 2008). Some existing 188 
literature studied signal priority and/or preemption, which can be considered a disturbance in 189 
traffic signal normal pattern and demonstrated its impact on travel cost (Mei et al., 2019).  190 

It should be noted that most studies on the effects of signal failure were conducted at 191 
microscopic or mesoscopic level. For example, Reilly et al. (Reilly et al., 2016) applied a cell-192 
transmission-model (CTM) with on-ramps modeled as queue buffers to examine the efficacy of 193 
control schemes from a cyber attacker’s standpoint. Oricchio et al. conducted a simulation in 194 
VISSIM to obtain data for analyzing the impact of signal malfunction (Oricchio et al., 2008). A 195 
simulation-based system performance evaluation has been adopted widely for signal failure 196 
studies, as it provides the flexibility to model various signal failure patterns. Also, as the 197 
transportation system is a complex, nonlinear, dynamic system with various driver behaviors, 198 
vehicle types, and infrastructure geometries interweaving with each other, it is nearly impossible 199 
to get a closed-form formulation to capture the impact of signal failure on system performance 200 
(Osorio and Chong, 2015). Therefore, in this study, system performance under the context of signal 201 
failure is also evaluated through simulation. However, the performance evaluation based on 202 
simulation could not meet the time efficiency requirement to support online decision-making for 203 
prompt response after signal failure. Therefore, the existing literature on learning-based 204 
performance evaluation for transportation system is also reviewed, as noted in the next subsection.  205 

In summary, although there are some recent research efforts on modeling the impacts of 206 
signal failures on transportation system performance, this problem has not been thoroughly 207 
studied. Also, it lacks signal failure-related transportation system resilience studies, especially 208 
from restoration planning perspectives. In this work, we focus on post-failure restoration of a 209 
transportation system—more specifically, the impact of restoration sequence of failed signals on 210 
transportation system performance—and propose a learning-based method to rank the optional 211 
restoration sequences for multiple failed signals.  212 

2.2 Learning-based performance prediction for transportation system 213 

Performance evaluation or prediction for a transportation system is the prerequisite for conducting 214 
effective and efficient traffic monitoring, management, and deploying practical control strategies. 215 
Traditional models, either parametric, such as Autoregressive Integrated Moving Average 216 
(ARIMA) (Shekhar and Williams, 2007) and Kalman filtering (Guo et al., 2014), or 217 
nonparametric, such as k-nearest neighbor (K-NN) method, Support Vector Regression (SVR), 218 
etc., are limited in accommodating a relatively large dataset in a systematic and flexible way with 219 
network-wide performance prediction as the target. Also, they do not have the capability to capture 220 
the topological information embedded in the transportation network, which is actually very helpful 221 
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and informative, as traffic flow is highly constrained by roadway structure and the traffic status of 222 
adjacent links are interacting with each other, both temporally and spatially.  223 

The rapid development and widespread application of artificial intelligence, especially 224 
machine learning techniques, triggered by the increasingly powerful computing and storage 225 
capabilities, has attracted more and more research efforts on learning-based performance 226 
prediction for transportation systems. Observing the time-varying properties of traffic data, RNN 227 
was applied in various architectures to capture the time-scale interdependencies among traffic data 228 
with different gating mechanisms, such as Long Short-Term Memories (LSTM) (Ma et al., 2015; 229 
Zhang et al., 2017) and Gated Recurrent Unit (GRU) (Wu et al., 2018). RNN models are designed 230 
for modeling a temporal sequence using its internal state (memory) to process sequences of inputs 231 
with variable length (Abiodun et al., 2018; Dupond, 2019; Tealab, 2018), which makes them 232 
suitable for tasks such as unsegmented, connected handwriting recognition (Graves et al., 2009; 233 
Ho et al., 2008) or speech recognition (Li and Wu, 2015; Sak et al., 2014). Therefore, RNN models 234 
are appropriate to capture the time-scale interdependencies among traffic data. However, the RNN 235 
models lack the capability of modeling spatial interdependencies among multiple road sections or 236 
movements, not to mention representing the topological information in road networks that is very 237 
helpful and informative for performance evaluation or prediction of a transportation system as 238 
noted. 239 

Recently, more efforts have focused on depicting the spatial features embedded in a 240 
transportation network to address the spatial interaction in traffic data. Existing works include the 241 
adoption of Convolutional Neural Network (CNN) (Lv et al., 2014; Ma et al., 2017; Zhang et al., 242 
2017), capsule network (CapsNet) (Kim et al., 2018), Generative Adversarial Network (GAN), 243 
etc. However, instead of explicitly using the topological information—more specifically, upstream 244 
and downstream adjacency information—most existing works adopted spatial information in 245 
analogy with pixels in images (Ma et al., 2017). In this way, the learning methods developed for 246 
image processing, which is a major application area for machine learning, could be leveraged in a 247 
more straightforward way. However, these methods cannot fully use the topological information, 248 
which is very helpful to infer the spatio-temporal interactions among traffic data. Also, the 249 
computational complexity of these image-based methods increases along with the size of the 250 
network, which limits their scalability to large transportation networks (Kim et al., 2019).  251 

Most recently, the spatio-temporal feature extraction keeping topological information to 252 
some extent is attracting more attention of researchers. Cui et al. applied a Graph Wavelet Neural 253 
Network (Xu et al., 2019) to capture the localized topological information to improve prediction 254 
accuracy. However, in Cui et al.’s work, the transportation networks are represented as an 255 
undirected graph consisting of vertices and edges representing sensing locations and connecting 256 
links, respectively, with graph wavelet operators acting as filters in the gates of the recurrent neural 257 
network (Cui et al., 2020). To capture the directional interactions, the SRNN method derived from 258 
spatio-temporal graphs as an effective approach for factor graph representation is adopted in 259 
several efforts recently (Kim et al., 2019); (Brendel and Todorovic, 2011; Jain et al., 2016; 260 
Koppula and Saxena, 2013). SRNN method can capture the spatial and temporal information 261 
explicitly in its feature extraction.  262 

Road network can be represented as a directed graph under this SRNN methodological 263 
framework. More specifically, for the delay estimation at an intersection, the movement direction, 264 
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either in or out of the intersection, should be differentiated, which can be realized by applying 265 
SRNN method. In addition to the capability of capturing directional topological information 266 
explicitly, SRNN method has the potential to be tailored to build up the learning model for a road 267 
network with different types of nodes. This characteristic, which will be explained with more 268 
details in Section 3, is critical for achieving the goal of this research as there are two alternative 269 
modes of signals in the system, i.e. “normal” or “failed”. Therefore, to address the challenges of 270 
capturing directional topological information and modeling various types of nodes in the system, 271 
our research modified the original SRNN method and applied it in solving the restoration sequence 272 
ordering problem.  273 

3 Problem Statement and Research Approach  274 

3.1 Problem statement 275 

In this study, we assume that signal failure at a specific intersection causes all signal heads at that 276 
intersection to fail and, similar to a previous study (Oricchio et al., 2008), that signal failures make 277 
traffic signals go into the emergency state, namely the malfunctioning flash mode. The 278 
malfunctioning flash mode works functionally similar to stop signs following priority rules, which 279 
must be incorporated in the design of any signalized intersection, including both yellow/red 280 
manner (flash yellow on a major road and flash red on all other movements) and red/red manner 281 
(flash red on all approaches) in practice (Oricchio et al., 2008). Although the meaning of a yellow 282 
flash and a red flash is regulated by the legal code of each state, drivers are generally required to 283 
stop at a flashing red signal indication and to proceed with caution at a flashing yellow indication. 284 
Thus, in this work, we assumed that during flash mode, approaching vehicles from any direction 285 
make a stop and then follow priority rules to proceed. In reality, misunderstanding of the flashing 286 
mode may occur and lead to crashes, which could further deteriorate transportation network 287 
performance. However, in this study, we assume there is no such misunderstanding.  288 

When a set of traffic signals fail (go into flash mode), we assume that, due to the limited 289 
number of traffic technicians, the signals can be fixed one by one following a restoration sequence. 290 
In reality, even when more traffic technicians are available for a larger area, they would be assigned 291 
to subareas of the network to repair signals in their assigned area. Therefore, within each subarea, 292 
the assumption that signals will be fixed one by one remains reasonable when focusing on subarea 293 
restoration planning. Therefore, this study aims to find a restoration sequence that results in less 294 
disruption to system performance caused by traffic signal failures. The Accumulated Total Delay 295 
(ATD), the total delay through restoration, used widely in the existing literature (Ganin et al., 296 
2019) is adopted herein to evaluate signal failure impact on the performance of the corresponding 297 
intersection. Fig. 1 shows the pre-event, response, and recovery phases of a restoration process 298 
and also indicates the performance evaluation metric, ATD. The studied area consists of 299 
intersections with several movements at composing approaches. Therefore, the system level 300 
performance metric, Aggregated ATD (AATD), is defined as the aggregation of total delay in all 301 
movements in the studied area accumulated during the restoration process. 302 

Although, given a specific restoration sequence, AATD could be calculated based on 303 
individual vehicle delay information simulated in microscopic simulation software such as 304 
VISSIM, the time efficiency of running simulations is not sufficient to support restoration 305 
sequence ordering in an online manner. Therefore, in this work, the SRNN method (Kim et al., 306 
2019) is leveraged to predict system performance, i.e., AATD, during the restoration process, in 307 
the context of multiple signals’ failure and restoration. This problem setting exposes extra 308 
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challenges, as the network status, i.e. traffic signal status, is interrupted and time varying. Although 309 
there are also randomness and uncertainty in the dataset collected for traffic flow status prediction, 310 
such as volume, speed, etc., for a normal transportation system, there are no severe interruptions 311 
to the network configuration in existing works. In this work, traffic signal failure can be viewed 312 
as an interruption to the node of the transportation network, which makes the network 313 
configuration unstable and predicting system performance thereafter even more difficult. 314 
Similarly, each restoration effort changing the signal status from failure back to normal status will 315 
trigger an “interruption” to the network configuration once again. Furthermore, to evaluate feasible 316 
restoration sequences, the total delay at each intersection at multiple consecutive time steps should 317 
be predicted, which makes it even more challenging to solve this problem effectively. 318 

With historical traffic data, i.e., travel delay at movements, obtained through simulation, 319 
and the topological information expressed as an adjacency matrix, the objective of the learning-320 

based approach is to predict the total travel delays at movements in consecutive time steps. In this 321 
research, as the signals could fail and then go back to normal after restoration, the signal mode 322 
could impact the movement status and eventually impact the interaction pattern between adjacent 323 
movements. Therefore, movement status should be taken into consideration in the learning model 324 
and the feature set extracted to feed into the learning model. Hence, the historical data includes 325 
not only the delay of each movement at intersections but also the signal status, i.e., corresponding 326 
movement status. The prediction for the consecutive time steps will be conducted under the 327 
circumstances with a given restoration sequence and the specified restoration time for each failed 328 
signal. 329 

3.2 Research Approach 330 

The overall framework of the proposed learning-based SRSO solution method is illustrated in Fig. 331 
2. To capture the spatial-temporal features in the context of multiple signals’ failure and 332 
restoration, a SRNN learning model is adopted to predict system performance under various 333 
restoration sequences. More specifically, the first step is to sample signal failure scenarios and 334 
then randomly select corresponding restoration sequences to generate the dataset. Then, the ground 335 
truth AATD for these selected restoration sequences are evaluated through simulation in VISSIM. 336 
The overall dataset is separated to serve different purposes, i.e. training, evaluation for delay 337 
prediction, and evaluation for ordering performance. For the training dataset, feature sets extracted 338 
from the simulation results are fed into the SRNN framework to train parameters of the model. 339 

 
Fig. 1. Accumulated system performance measurement for  
restoration sequence ordering for multiple signals’ failure 
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Then, the trained signal restoration sequence ordering model can be integrated with Genetic 340 
Algorithm to support the restoration sequences optimization eventually, as GA relies heavily on 341 
the ranking of optional sequences either generated as the first generation of solution or obtained 342 
through the selection, crossover, and mutation processes in the following up generations. In this 343 
work, we are focusing on building, training, and evaluating the SRNN model for the ordering of 344 
optional sequences, whereas leaving the integration of the SRNN based ordering model into the 345 
GA based sequence optimization to be future effort. More details of the proposed methodological 346 
framework are illustrated in the following subsections. 347 

Failure Scenario 
Generation and 

Sampled Restoration 
Sequence Generation 

Ground Truth 
AATD Evaluation 

through 
Simulation 

Feature 
Extraction 
and SRNN 
Modeling

Training and 
Evaluation of the 

SRNN model

GA based 
Restoration 
Sequence 

Optimization 

 348 
Fig. 2. Framework illustration of the proposed SRSO method 349 

3.2.1 Introduction of Structural Recurrent Neural Network (SRNN) method 350 

RNN architectures demonstrate remarkable capability in terms of modeling sequences that could 351 
be applied in natural language processing (Yin et al., 2017), image recognition (Lev et al., 2016), 352 
etc. However, traditional RNN cannot incorporate the spatio-temporal structure embedded in some 353 
other problems, as exemplified later (Jain et al., 2016). Spatio-temporal structures are both 354 
prevalent and of great help in solving learning problems, such as the recognition of interaction 355 
between human and environment, object trajectory prediction in video processing (Jain et al., 356 
2016), and the performance prediction for systems with explicit spatio-temporal structure, such as 357 
transportation networks (Kim et al., 2019), etc. Therefore, the SRNN method was proposed by 358 
Jain et al. in 2016 to bridge the gap between traditional RNN methods and the effective use of 359 
spatio-temporal structure in learning problems. In a SRNN model, the connected components in a 360 
system of interest whose performance are going to be predicted or labels are pending to be 361 
recognized are modeled as nodes in a spatio-temporal (ST) graph. ST-graph is a type of factor 362 
graph (Kschischang et al., 2001) in which all the components, either nodes or edges, contributing 363 
to the performance prediction of the system represented by the graph are termed as “factors.” 364 
Hence, the interactions between nodes in transportation system, either temporal or spatial, are 365 
represented by edges in the factor graph (Kschischang et al., 2001). Edges indicating temporal or 366 
spatial interactions are different types of edge factors. The Spatio-temporal (ST) graph could also 367 
have different types of node factors if there are different types of nodes in the system, such as 368 
human and objects in the recognition of interaction between human and environment problem (Jain 369 
et al., 2016). The SRNN model is designed to be applicable to various systems that could be 370 
represented by ST graphs (Jain et al., 2016); it is also demonstrated to be differentiable and scalable 371 
in the literature (Jain et al., 2016; Kim et al., 2019). Hence, it has been widely used in solving 372 
human action detection (Yan et al., 2018), visual question answering (Teney et al., 2017), human 373 
contact tracing in crowds (Vemula et al., 2018), and driver maneuver anticipation (Jain et al., 2016) 374 
problems.  375 

3.2.2 ST graph representation for Aggregated Accumulated Total Delay (AATD) prediction  376 

In this work, the original SRNN model is modified to predict the AATD in the system, which is 377 
the aggregation of the delay of all movements at studied intersections accumulated over the 378 
restoration process. More specifically, movements at intersections are modeled as nodes in the ST 379 
graph. As shown in Fig. 3, given a transportation network, each intersection is expanded to its 380 

GA based 
restoration 
sequence 

optimization 
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componential movements. Then, the interactions between movements, i.e., upstream and 381 
downstream adjacency, are modeled as spatial edges in the ST graph to capture the directed spatial 382 
interaction between movements, which is constrained by both the topology of the network and the 383 
intersection operation status, i.e., at normal mode or failure mode. As stated in Subsection 3.1, 384 
malfunctioning flash mode works functionally similar to stop signs following priority rules. The 385 
modified SRNN model, proposed in this work, can capture the different spatial interaction 386 
“patterns” under different “modes” of the componential movements associated with signals under 387 
normal or failed condition, by specifying the “mode” of the movement in the node feature 388 
extraction explicitly. Furthermore, the delay of one movement is also affected by the delay of this 389 
movement at the previous time step. Therefore, the temporal edges between nodes are used to 390 
model this impact in time scale. 391 

More specifically, M  is the set of movements in the network of interest, M N= . t
ux  denotes 392 

the delay of movement u at time step t , with u M . t
u  denotes the movement status which is a 393 

binary variable with 0 indicates normal mode and 1 indicates failure mode. Given time series of 394 
travel delay dataset { }t

uy  and movement status dataset  tu  at time steps 1, ,c ct t l t= − +  for all 395 
the movements 1, 2, ,u N= , the travel delay at the next time step 1ct

uy +  will be predicted, where 396 

ct and l  represent the current time step and the length of the historical data to be used for the 397 
prediction respectively. Similarly, the prediction could be rolled over to the following up time 398 
steps denoted as 2 3, ,c ct t

u uy y+ +  with a given restoration sequence to be evaluated, i.e. given  tu  399 
for the following up time steps.  400 

Given the set of nodes, i.e., movements, denoted as M , the spatial edges are represented 401 
by the directed adjacency matrix A  between connected nodes. For instance, u and v  are two 402 
adjacent movements in the network. If traffic flow comes from movement u  to movement v , 403 
then 

( ),( , ) 1and su vA u v e =  , where 
( ),u ve is the edge directed from node u to node v  in the 404 

network, and s is the spatial edge set in the network. As the ST graph is used to capture both 405 
spatial and temporal interactions, the spatially connected graph represented by ( ), sG M =  is 406 
unrolled to the ST graph represented by ( ), ,ST S TG M  = , where T  denotes the temporal edge set 407 
in the network. As noted, the delay of one movement is affected by the delay of this movement at 408 
the previous time step. The temporal edge ( , )

t
u ue  directed from node 1tu −  to node tu  is used to 409 
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model this impact in time scale. t
ux  denotes the feature of node u M at time step t , i.e., the total 410 

delay of all vehicles experienced in movement u at time step t , with the delay of a specific vehicle 411 
calculated as the real travel time subtracting free flow travel time. In Fig. 3, both the spatial and 412 
temporal edges are labeled with the associated edge factors.  413 

( , )
t
u ux  is the feature set associated with the temporal edge ( , )

t
u ue , which is used to implement 414 

the temporal impact from node 1tu −  to node tu in the SRNN model. ( , )
t
u ux  is also termed as 415 

“temporal edge factor” . More specifically, 1
( , ) [ , ]t t t
u u u ux x−=x  is the concatenation of node features 416 

of node u at time step 1t − and node u  at time step t . ( , )
t
w ux  is the feature set associated with the 417 

spatial edge ( , )
t
w ue  which is used to implement the spatial impact from node tw  to node tu in the 418 

SRNN model. Similarly, ( , )
t
w ux  is also termed as “spatial edge factor” and obtained by 419 

( , ) [ , ]t t t
w u w ux x=x , i.e., the concatenation of node features of node w and node u  at time step t . 420 

Thereafter, the spatio-temporal interactions between movements could be captured by the ST 421 
graph representation effectively. The modeling of transportation network as a ST graph is 422 
illustrated in Fig. 3, within which w is the upstream movement of movement u , whereas v  is the 423 
downstream movement of movement u . Furthermore, in Fig. 3, the superscript t  for each node is 424 

omitted for simplicity, i.e., tu and 1tu + are not differentiated explicitly and are shown as two nodes 425 
connected by a temporal edge factor 1

( , )
t
u u
+x .   426 

3.2.3 Modified SRNN model for AATD prediction  427 

After extracting the ST graph representation and the associated feature sets for the studied 428 
transportation network, we modify SRNN model for AATD prediction so that it can be used to 429 
solve SRSO problem. Fig. 4 illustrates the SRNN framework for one movement performance 430 
prediction in the forward-path. It could be expanded to the SRNN model for multiple node 431 

 
 

Fig. 3. Modeling the transportation network as a spatio-temporal (ST) graph. Each movement at an 
intersection corresponds to a node in the ST graph. The adjacent movements with traffic flow 

connecting each other are connected by spatial edges in the ST graph. The nodes representing the 
status of one movement at two consecutive time steps are connected by temporal edges in the ST 

graph. Note that the superscript t for each node is omitted for simplicity. 
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performance prediction according to its associated ST graph. The componential RNNs associated 432 
with the node factors are termed as “Node-RNNs” and denoted as MR . The RNNs associated with 433 
the spatial edge factors are termed as “Spatial Edge-RNNs” and denoted as 

S
R .The RNNs 434 

associated with the temporal edge factors are termed as “Temporal Edge-RNNs”, denoted as 
T

R . 435 
LSTMs are used for all componential RNNs in the network; however, the Node-RNNs and Edge-436 
RNNs could have different hyperparameter settings.  437 

Take node u  in Fig. 4 as an example. According to the adjacency matrix A , describing 438 
the network topology, there are two nodes ,v w connected to node u . The spatial edges connected 439 

to node u is identified as ( )  ( , ) ( , ),t t
u v S w u Su e e =   . The time series of node features, i.e., 440 

historical movement delay data  
1

c

c

tt
u t t l

x
= − +

,  
1

c

c

tt
v t t l

x
= − +

,  
1

c

c

tt
w t t l

x
= − +

 are fed into this SRNN 441 

architecture to predict the total delay in movement u . Then, the edge features can be extracted 442 
according to Section 3.2.2 with associated combinations of  

1

c

c

tt
u t t l

x
= − +

,  
1

c

c

tt
v t t l

x
= − +

,  
1

c

c

tt
w t t l

x
= − +

and 443 

 1
1

c

c

tt
u t t l

x −

= − +
. After extracting node features and edge features, the spatial edge features are fed into 444 

the Spatial Edge-RNN, whereas the temporal edge features are fed into the Temporal Edge-RNN. 445 
Then, the node features are concatenated together with hidden states of the Temporal Edge-RNN, 446 
hidden states of the Spatial Edge-RNN, and the movement status (failure or normal), to be fed into 447 
the Node-RNN to predict the node performance, i.e., total delay for this movement. The 448 
introduction of movement status makes it possible to capture two different modes of movements, 449 
i.e. normal or failed. As noted, the spatial interaction pattern among movements is different under 450 
different mode, which can be modeled by the modified SRNN model. It is worth mentioning that 451 
the modeling framework shown in Fig. 4 for movements are not isolated, but connected with each 452 
other according to the ST graph shown in Fig. 3. In this way, all nodes in the system are connected 453 
and their spatial-temporal interactions are modeled so that eventually the AATD can be predicted 454 
as the aggregation of total delay in all movements in the studied area accumulated during the 455 
restoration process.  456 

Similar as Kim et al.’s work (Kim et al., 2018), in our study, the modified SRNN model 457 
integrates the node and edge features of target nodes nonlinearly to predict the performance of the 458 
target nodes.  However, the integration of movement status is unique for this post disruptive event 459 
SRSO problem. Moreover, we extend one step prediction to the prediction for several consecutive 460 
time steps in this study. More details regarding the components of the SRNN architecture for the 461 
forward path are introduced as follows. The loss function and backward propagation are introduced 462 
in the next subsection.    463 

1) Input features’ embedding layer 464 
Determined by the network topology, there could be different length of feature sets as inputs 465 
for Node-RNNs or Edge-RNNs of different nodes in the network. To obtain fixed-length 466 
vectors as inputs to the RNNs, embedding functions are applied as a linear transformation of 467 
the original input features, denoted as ( )  . More specifically, it is implemented as a linear 468 
layer with a rectified linear unit (ReLU) activation and dropout. 469 
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 470 
Fig. 4. Modified Structural Recurrent Neural Network framework for one movement performance  471 

(total delay) prediction in the forward path  472 

2) Spatial Edge-RNN 473 

The size of the Spatial Edge-RNN, denoted as 
S

 , is configurable as a hyperparameter to fine-474 

tune the SRNN model. In addition to the spatial edge features  
S

t
e e 

x , the hidden states of the 475 

Spatial Edge-RNN at time step 1t − , 1t
Sh − , with a dimension of 

SS    are also fed into the 476 

Spatial Edge-RNN. The spatial edge features  
S

t
e e 

x are converted into a fixed length vector 477 
t
Sa  as output of the embedding layer. Then, t

Sa  is concatenated with 1t
Sh −  to be fed into the 478 

LSTM cell. In this way, the time-scale impact is also captured by the connection between 479 
LSTM cells of consecutive Edge-RNNs.  480 

 481 

  ( );
S

t t E
S e Se

W





=a x  (1.1) 482 
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 ( )1LSTM , ;t t t L
S S S Sh h W−= a  (1.2) 483 

where E
SW and L

SW are the weights of the embedding layer and the LSTM cell, respectively.   484 
 485 

3) Temporal Edge-RNN 486 

Similarly, for the Temporal Edge-RNN, the temporal edge features are fed into the embedding 487 
layer and resulting in a fixed length vector t

Ta . Then, it is concatenated with 1t
Th −  to be fed into 488 

the LSTM cell, where 1t
Th −  has the dimension of 1

T TT     =  with 
T

 denoting the size of 489 
the Temporal Edge-RNN that is also configurable. Actually, 1T = , as for each node, there is 490 
one temporal edge representing the impact from its previous time step, which is also illustrated 491 
in Fig. 3.  492 

  ( );
T

t t E
T e Te

W





=a x  (1.3) 493 

 ( )1LSTM , ;t t t L
T T T Th h W−= a  (1.4) 494 

where E
TW and L

TW are the weights of the embedding layer and the LSTM cell for the Temporal 495 
Edge-RNN respectively.  496 

4) Node-RNN 497 

In addition to the node features, the Node-RNN also takes the hidden states and the outputs of 498 
the Spatial Edge-RNN and the Temporal Edge-RNN as inputs.  499 
Given each node u M , the spatial edges connected to it are identified as ( )u . Then, the 500 
corresponding rows of the hidden state matrix of the Spatial edge-RNN are extracted as 501 

( ) ( )( )t t
Suh h u= with the dimension of ( )

S
u  . A row vector of the hidden state of the 502 

Temporal Edge-RNN associated with node u denoted as 
u

t
Th is also going to be fed into the 503 

model. Then, the row vectors of 
( )

t
uh  are aggregated to get the spatial edges’ total contribution 504 

to the Node-RNN, which is calculated as: 505 

 ( )( )( )sum
u

t t
S Sh h u=  (1.5) 506 

The motivation to conduct this aggregation is two-fold. First, converting the ( )
t

uh with 507 
dimension ( )

S
u   to 

u

t
Sh with dimension 1

S
  facilitates the follow-up concatenation 508 

with 
u

t
Th that has dimension 1

T
 . Second, with the objective defined as predicting total delay 509 

of the studied movement, the connected movement with higher total delay has a more 510 
significant impact on the studied movement, and the total number of movements connected to 511 
the studied movement also matters. Therefore, the aggregation of spatial impacts of all the 512 
connected movements is more reasonable compared to taking the average of the spatial 513 
impacts.  514 
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Then, 
u

t
Th and 

u

t
Sh are concatenated to ( )concat ,

u u

t t t
u T SH h h=  with dimension of ( )1

T S   + . The 515 
row vectors for all nodes in the node set M  are vertically concatenated to serve as the input to 516 
the Node-RNN, denoted as tH , representing the impact of spatio-temporal edges to the node 517 
performance prediction. The node feature,  t

u u M
x


, the concatenated hidden state, tH , and the 518 

movement status variable tu u M



, are fed into the embedding layer and converted to a fixed-519 

length vector to be sent to the LSTM cell as follows. 520 

    ( )( ), ;t t t E
u uu M u M

concat x W 
 

=a  (1.6) 521 

 ( );t t E
H HH W=a  (1.7) 522 

 ( )( )1, , , ;t t t t L
Hh LSTM concat h W−= a a  (1.8) 523 

   tt O
uy W h=  (1.9) 524 

where EW and E
HW are the weights of the embedding layer for the node features and that for the 525 

concatenated hidden state respectively. LW is the weight of the LSTM cell for the Node-RNN. 526 
The hidden state of the LSTM cell is the input of the linear output layer with weight OW . The 527 
output of this final layer is the prediction for each node, i.e., predicted delay of movements, 528 
 t

uy More specifically,  t
uy is the predicted total delay for movement u based on all the 529 

information available at time step t . Therefore,  t
uy  is actually for the next time step 1t + .  530 

3.2.4 Loss function and backward propagation of the SRNN model for AATD prediction  531 

After recording the total delay for each movement at each time step during the restoration process 532 
which is evaluated through simulation, the node features and edge features are extracted according 533 
to Subsection 3.2.2. Then, all these features go through the forward path explained in Subsection 534 
3.2.3, with  t

uy as the output of the forward path, i.e., the predicted total delay for movement u535 
for the time step 1t +  based on all the information available until time step t . Therefore, the 536 
prediction error is calculated according to the difference between    1 ,t t

u ux y+ , where  1t
ux +  is the 537 

ground truth evaluated through data collected from simulation. More specifically, Mean Squared 538 
Error (MSE), i.e. SE averaged over all the movements in the studied area, is adopted as the loss 539 
function to be backpropagated in the training phase which is calculated as follows: 540 

 ( )
21

1

1MSE
N

t t
i i

i
x y

N
+

=

= −  (1.10) 541 

During the training phase, the errors in prediction are back-propagated through the Node-542 
RNN, the Spatial Edge-RNN, and the Temporal Edge-RNN involved in the forward-path (Jain et 543 
al., 2016). The trainable parameters of this SRNN model, summarized as  544 
 , , , , , , ,E L E L E E L O

S S T T HW W W W W W W W , will be optimized in the training phase through the Stochastic 545 
Gradient Descent (SGD) method. SGD is a stochastic approximation of gradient descent 546 
optimization. It replaces the actual gradient calculated from the entire data set by an estimate 547 
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calculated from a randomly selected subset of the data (Bottou, 1998), which helps reduce the 548 
computational burden (Sra et al., 2012).  549 

To support restoration sequence ordering, multiple time step performances are predicted 550 
and then aggregated to be the prediction of the AATD in the system following a given restoration 551 
sequence. In addition to the prediction loss measured by MSE, another evaluation metric is 552 
proposed in terms of the ordering of various feasible restoration sequences, defined and explained 553 
in Section 4 along with the case study.  554 

In summary, the proposed modeling framework applies Spatial Edge-RNN and Temporal 555 
Edge-RNN to model the spatial and temporal interactions, respectively. The node and edge 556 
features integrated with the movement status are fed into the trained learning model to predict the 557 
target node performance nonlinearly. Then, the system-level performance is aggregated through 558 
all movements and all the time steps during the restoration process for each given restoration 559 
sequence. The case study in Section 4 further demonstrates the effectiveness of the proposed 560 
feature extraction based on the ST graph, the modified SRNN modeling framework, and the 561 
learning-based sequence ordering method. In the following up work, the predicted system-level 562 
performance AATD can be utilized to support the GA based restoration sequence optimization.  563 

4 Case Study 564 

The proposed methodology is applied to a case study network to demonstrate its effectiveness and 565 
efficiency. The configuration of the case study network is presented, and the importance of 566 
selecting proper restoration sequence is illustrated through two typical failure scenarios in 567 
Subsection 4.1 and 4.2. The performance of the proposed SRNN model on predicting the AATD 568 
in the case study network and on supporting the restoration sequence ordering is evaluated in 569 
Subsection 4.3.  570 

4.1 Case study network configuration 571 

A case study of downtown Boise, Idaho (see Fig. 5(a)) is performed to demonstrate the proposed 572 
research approach and solution algorithm. The transportation network of downtown Boise is a 573 
built-in example in VISSIM with the input data, including lane configurations, volume inputs and 574 
routing, signal timings, and model settings, collected based on real field information and provided 575 
by local agency, i.e. Ada County Highway District (ACHD). This Boise case study network was 576 
calibrated by ACHD based on the volume estimates provided by COMPASS and the average travel 577 
times that were measured in the field. The network contains both regular and irregular grid-shaped 578 
road networks with multiple road types such as principal arterials, minor arterials, and major 579 
collectors (see Fig. 5(b)), with different traffic volumes and patterns at each intersection. The 580 
classification of roads is retrieved from Idaho's statewide road system map (Waze-Maps, 2018), 581 
which follows road functional classification defined by the Federal Highway Administration 582 
(FHWA, 2013). A sub-area of downtown Boise, as shown inside the blue dashed line in Fig. 5(a), 583 
is chosen as the region prone to signal failure and it consists of 19 intersections. As the impact of 584 
the failed signal could propagate in the system, system performance is evaluated for a larger area 585 
inside the red dashed line, which includes 34 intersections, with 135 movements in total connecting 586 
the road sections between intersections. 587 

For all signalized intersections, the VISSIM Ring Barrier Controller (RBC) module is used 588 
to control signals, and signal timings are predefined in the built-in example according to the 589 
calibrated model based on the real field collected data. Unsignalized intersections in the network 590 
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are regulated by stop signs and priority rules. Traffic flow injecting patterns for nodes at the 591 
boundary of the network and the turning proportions of the traffic flow at each intersection are 592 
predefined according to the calibrated model for the Boise downtown area.  593 

In VISSIM simulation, once a signal fails, the control mode at the affected signalized 594 
intersection changes to flashing mode, acting as priority rules, which changes the signalized 595 
intersection into a four-way stop intersection. These priority rules in VISSIM prevent conflicts in 596 
traffic by letting vehicles move only if a gap exists between them. A minimum of 3-second gap 597 
time and 16.4 feet (5 m) distance were set for priority rules in this case study. It is also worth 598 
mentioning that the driver behavior setting in VISSIM prevents drivers from occupying 599 
intersections when there is congestion ahead, which guarantees the movement of other approaches 600 
at that intersection.  601 

Road sections between intersections are connected by movements at adjacent intersections. 602 
In VISSIM, delay is defined as the travel time increase caused by the difference between desired 603 
speed and actual speed. Note that the desired speed is the maximum free-flow speed allowed under 604 
the imposed speed limit. To calculate the delay, a time step is specified, and the distance traveled 605 
in that time step under actual speed is recorded. Thereafter, the time it takes a vehicle to travel that 606 
recorded distance at the desired speed is calculated. The difference between these two times is the 607 
vehicle delay. Total delay at a movement is the aggregation of the delay experienced by vehicles 608 
that are moving in this movement during the evaluation time interval. Total delay in the studied 609 
area is calculated as the sum of total delays of all movements in that area.  610 

The simulation is started with 20 minutes of warm-up followed by 30 minutes of all signals 611 
functioning properly; these first 50 minutes are identical in the simulation for different restoration 612 
sequences. At the end of the 50 minutes, for a given failure scenario, all chosen intersections are 613 
failed simultaneously. It is assumed that the time needed to repair a failed signal is 20 minutes in 614 
this case study; therefore, the simulation ran for 20 minutes before one failed signal is restored, 615 

  

(a)      (b) 

Fig. 5. (a) Simulation network in VISSIM for case study (subarea indicated by dashed line – red = area 
for system performance evaluation, blue = region prone to signal failure);  

(b) downtown section of Boise, with road types represented by different colors – red = principal 
arterials, green = minor arterials, purple = major collectors.  
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and the failed signals are restored one by one following the restoration sequence. Therefore, the 616 
total simulation time varied with respect to the number of failed signals. For example, for a 617 
scenario with 4 signals failed, the total simulation time is 150 minutes; for a scenario with 6 signals 618 
failed, the total is 190 minutes. The time interval for data collection in VISSIM to evaluate system 619 
performance is 10 minutes. Accordingly, the total delay for each movement is predicted for every 620 
10 minutes following a given restoration sequence in Subsection 4.3.  621 

4.2 Empirical analysis to demonstrate the importance of restoration sequence optimization 622 

Two failure scenarios with six signals failed are studied—Scenario I [2,6,7,13,14,16] and Scenario 623 
II [2,7,8,13,14,24]—to demonstrate the importance of restoration sequence optimization 624 
empirically. For Scenario I and Scenario II, 290 restoration sequences are randomly selected and 625 
multiple runs of each restoration are simulated in VISSIM to obtain performance evaluation 626 
outcomes. Total delay curves of these restoration sequences for these two scenarios are shown in 627 
Fig. 6(a) and Fig. 6(b). Observations based on the total delay curves of the case study are 628 
summarized as follows:  629 

• Depending on the layout of the failed signals, the combinations of the same number of 630 
failed signals could lead to significantly different network performance during restoration. 631 
As shown by comparing Figs. 6(a) and 6(b), a large portion of restoration sequences for 632 
Scenario II leads to more delay than those for Scenario I. This observation is further 633 
interpreted in the appendix from a Macroscopic Fundamental Diagram point of view.  634 

• There is a set of restoration sequences that can help dissipate congestion in the system after 635 
signal failure and reduce the AATD in the restoration process effectively. The restoration 636 
sequences with worse performance result in a highly congested network with much higher 637 
delay curves for both failure scenarios.  638 

The first observation demonstrates the importance of following optimized or near-optimal 639 
restoration sequences to avoid cascading failure and gridlock in the network. However, a set of 640 
restoration sequences can help achieve this goal, referring to the second observation. As achieving 641 
the global optimal is computationally expensive, the research objective is set up to be achieving 642 

   
  

Fig. 6. Total delay curves under various traffic signal restoration sequences for two scenarios with  
six signals failed—(a) Scenario I [2,6,7,13,14,16] and (b) Scenario II [2,7,8,13,14,24] .  
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near-optimal solutions in a timely manner for this study. Although inevitably there is error between 643 
the AATD predicted by the learning model and that obtained through running simulation, the 644 
predicted performance could result in restoration sequences leading to near-optimal solutions 645 
which still can solve the SRSO in a cost-efficient way with “good enough” restoration 646 
performance. As stated in Ordinal Optimization (Ho et al., 2008), “To quickly narrow the search 647 
for optimum performance to a ‘good enough’ subset in the design universe is more important than 648 
to estimate accurately the values of the system performance during the process of optimization.” 649 
This statement is not only for the design of systems but also is applicable for the operational stage. 650 
Therefore, the concept of Ordinal Optimization is borrowed to evaluate the performance of the 651 
learning-based SRSO problem solution in Subsection 4.3.3.  652 

4.3 Evaluation of SRNN-based AATD prediction and restoration sequence ordering  653 

4.3.1 Data preparation and simulation-based ground truth performance evaluation 654 

For the studied network shown in Fig. 5, the total delays of 135 movements composing 34 655 
intersections are predicted according to the SRNN model illustrated in Section 3. The historical 656 
data length is set to be 3 in the SRNN model ( 3l = ), i.e., the total delays of the 135 movements of 657 
the previous 3 time-intervals are used to predict the total delays of the 135 movements in the 658 
following time interval. The training dataset is composed of failure scenarios with 2, 3, or 4 signals 659 
failed simultaneously. All combinations of two-signal failure for the 19 intersections prone to 660 
signal failure are enumerated with all feasible restoration sequences evaluated through simulation. 661 
For failure scenarios and restoration sequences with three or four signals failed, a subset of 662 
scenarios and restoration sequences are generated randomly. In total, the generated feasible 663 
restoration sequences are evaluated through simulations and served as the dataset with ground truth 664 
information. More specifically, 9975 pairs of ( )ˆ,X Y  are taken as the training dataset, 3255 pairs as 665 
the evaluation dataset, and 9765 pairs as the ordering performance evaluation dataset, with X  666 
indicating the input feature set obtained through the historical movement delay data with length 667 

3l =  and Ŷ indicating the ground truth of the output of the model, i.e., total delays at 135 668 
movements evaluated by running simulation in VISSIM. That is, the dataset and its corresponding 669 
scenarios used for the training, evaluation, and ordering performance evaluation purposes are 670 
different from each other. The overall input delay data are scaled to range [0, 1] before feeding 671 
into the learning model. The adjacency matrix between the movements of interest and the ST graph 672 
are extracted according to Subsection 3.2.2 673 

4.3.2 SRNN model configuration  674 

The SRNN learning model is built up according to Subsection 3.2.3. All componential RNN 675 
networks adopt the MSE loss function and Stochastic Gradient Descent (SGD) optimizer.  676 

Based on grid search results compared for different settings, the following 677 
hyperparameters’ setting is selected for further investigation. The size of the Node-RNNs and the 678 
Edge-RNNs are all set to be 32, and the gradient clipping value is set to be 5. The exponential 679 
decay rate for the optimizer is 0.99, and the dropout rate is 0.5. Then, the learning rate of the model 680 
is further fine-tuned using two strategies, i.e., step-based adjustment Step-LR and Cosine-681 
Annealing-LR, as the learning rate has significant impact on the performance of the model trained. 682 
The implementation of the SRNN model refers to the model developed in the literature (Kim et 683 
al., 2019; Vemula et al., 2018). In the Step-LR strategy, the learning rate decays exponentially 684 
with the index of epochs, which could also be set to keep the same for several consecutive epochs. 685 
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For the Cosine-Annealing-LR, the learning rate changes as a cosine function with the index of 686 
epochs, with the cycle of the cosine function and the maximum and minimum learning rate 687 
configurable. The performance of these two fine-tune strategies for learning rate is also presented 688 
and compared in the next subsection.  689 

4.3.3 Results Analysis  690 

The performance of the proposed SRNN model on predicting the AATD in the case study network 691 
and on supporting the restoration sequence ordering is evaluated in this subsection. 692 

As MSE is adopted as the loss function for backpropagation, Root Mean Squared Error 693 
(RMSE) is used as the loss to be aggregated through batches to obtain the average performance 694 
metric for each epoch, calculated as follows: 695 

 ( )
21

1

1RMSE
N

t t
i i

i
x y

N
+

=

= −  (1.11) 696 

In addition to the RMSE indicating prediction accuracy, ordering performance metrics, 1P , 2P  and 697 

1 2,L L   are introduced as follows borrowing the idea from Ordinal Optimization. We denote the set 698 
of the top %k  of the given sequences identified by the predicted AATD derived by the SRNN 699 
model as *

%kI , whose predicted AATD fall into the lowest %k  of all the given sequences to be 700 
ranked. Whereas the set of the top %q of sequences identified by the real AATD according to the 701 
simulation results is denoted as %q̂I . The two parameters %k  and %q  can be configurated in 702 
different settings to have different ordering performance metrics. The ordering performance 703 
evaluation metrics in our case study are defined as follows. 1P  indicates the possibility of the 704 
predicted top 1%k  sequences overlapping with the real top 1%q  sequences. 2P  indicates the 705 
possibility of the predicted top 2 %k  sequences overlapping with the real top 2 %q  sequences. 706 
Then, the length L  of the intersection between *

%kI  and %q̂I is defined as follows to futher quantify 707 
the ordering performance. 708 

1 1 2 2

* *
1 % % 2 % %

ˆ ˆ,k q k qL I I L I I=  =                              (1.12) 709 

In the case study, for the ordering performance evaluation dataset, i.e. 9765 pairs of ( )ˆ,X Y710 
, there are 651 sequences (each sequence has 15 pairs of data) evaluated first through simulation, 711 
then based on the learning model trained. We randomly sample 336 sequences from these 651 712 
sequences for 400 times. Then, P  is evaluated by the frequency of the predicted top %k  713 
sequences overlapping with  the real top %q  sequences among 400 samples. The length L  of the 714 
intersection between *

%kI  and %q̂I is calculated as the average L  over all 400 samples. 715 

Fig. 7 shows the RMSE for the training and evaluation phase in each epoch which is firstly 716 
aggregated over all movements, and then averaged over the batches in the corresponding epoch. 717 
Note that the AATD aggregated over all movements and then averaged over all the simulations is 718 

46.3607 10 s. Therefore, the RMSE converging to around 1000 s corresponds to less than 2% 719 
error. Another observation is that Step-LR results in a relatively consistent decreasing loss curve. 720 
Whereas, the Cosine-Annealing-LR strategy leads to fluctuating loss with the overall declining 721 
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trend of the loss curve. This is consistent with the expectation as the Cosine-Annealing-LR strategy 722 
is designed with the learning rate changing as a cosine function on purpose to help the model exit 723 
a local minimum and continue exploring the loss landscape. Therefore, compared to Step-LR, the 724 
Cosine-Annealing-LR strategy can help further reduce the loss at the cost of sacrificing the 725 
performance of some intermediate epochs. Then, 1 1% 6%, % 10%k q= = and 2 2% 4%, % 8%k q= =  are 726 
set for the ordering performance evaluation in this case study. 1P  and 2P , for each epoch under 727 
Step-LR and Cosine-Annealing-LR tuning strategies are shown in Fig. 8. Note that, the 728 
performance of the Step-LR strategy converges around Epoch 60, whereas the performance of 729 
Cosine-Annealing-LR strategy can be further improved with more epochs of training and 730 
converges around Epoch 100 in our experiments. However, to make a fair comparison between 731 
these two strategies, the results from Epoch 1 to Epoch 71 is illustrated and compared. For the 732 
Step-LR strategy, the best performance is obtained from Epoch 66, with 733 

1 2 1 21, 1, 8.125, 4.882P P L L= = = = ; whereas the Cosine-Annealing-LR strategy performs best at 734 
Epoch 69, with 1 2 1 21, 1, 9.19, 5.05P P L L= = = = . Meanwhile, the 869.125evalRMSE = obtained by the 735 
Cosine-Annealing-LR strategy at Epoch 69, is much lower compared to 1015.868evalRMSE =  736 
obtained by the Step-LR strategy at Epoch 66.  737 

 738 
Fig. 7. RMSE for the training and evaluation phase in each epoch 739 
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 740 
Fig. 8. 1P  and 2P  for each epoch under Step-LR and Cosine-Annealing-LR tuning strategies  741 

 742 

To quantify the performance of the sequence ordering based on estimated AATD, we 743 
propose an evaluation metric, AATDDiff  and conducted a test to compare the performance of Step-744 
LR and Cosine-Annealing-LR strategies. All the restoration sequences in this test have real 745 
AATDs from simulation and estimated AATDs from learning based method. The restoration 746 
sequences are ordered according to real (simulated) AATDs and estimated AATDs respectively, 747 
which we call them Order 1 and Order 2. Note that in these two orders, the restoration sequences 748 
at same position, e.g. No. 10 in Order 1 and 2 could be different from each other. The metric 749 

AATDDiff  is calculated as the difference between the real AATDs of the restoration sequences at 750 
same positions of the two orders and divided by the real AATD of the restoration sequence in 751 
Order 1 (see below 1.13). For simplification purpose, the superscript indicting the position of the 752 
restoration sequence is omitted in the equation.     753 

 r e
AATD

r

AATD AATD
Diff

AATD
−

=  (1.13) 754 

Furthermore, the cumulated AATDDiff  of the 50th, 65th, and 75th percentile of restoration 755 
sequences followed Step-LR and Cosine-Annealing-LR strategies are computed and listed in Table 756 
1. It is observed that, for 75% of the evaluated sequences, the Cosine-Annealing-LR strategy can 757 
identify the restoration sequences with AATD performance approximate to the optimal solution 758 
identified by simulation results, with less than 0.71% performance difference, which is much better 759 
than the Step-LR strategy. 760 

Table 1. Performance difference between sequences ordered by the real and estimated AATDs 761 

Metrics Step-LR Cosine-Annealing-LR 

50th Percentile of AATDDiff  0% 0% 
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65th Percentile of AATDDiff  0.38% 0% 

75th Percentile of AATDDiff  49.87% 0. 71%  

 762 

In summary, the Cosine-Annealing-LR strategy leads to both lower loss value, better 763 
ordering performance, and shorter delay experienced in the restoration process compared to the 764 
Step-LR strategy.  765 

5 Conclusions  766 

Recognizing the significance of a resilient traffic management system against traffic signal failure, 767 
this study proposes a learning-based performance evaluation method to support the post-event 768 
optional restoration sequence ordering. The need to capture the dynamic behavior of a system in a 769 
timely manner limits the use of traditional simulation-based system performance evaluation during 770 
the online decision-making process. In the proposed method, simulation is used to obtain the 771 
ground truth performance evaluation in the data preparation phase. In the context of restoration, 772 
system performance is disrupted by the failure of control signals, which exposes an extra challenge 773 
to predict system performance effectively and efficiently. Observing the importance of capturing 774 
spatial-temporal interactions between movements in the roadway system, the SRNN leveraging 775 
the ST-graph representation of complex systems is adopted. Furthermore, the movement feature 776 
representation and its integration to the SRNN model are proposed in our study to help address the 777 
challenges. Specifically, the hyperparameter of the model, learning rate, is fine-tuned according to 778 
Step-LR and Cosine-Annealing-LR strategies.  779 

A case study in downtown Boise leveraging a built-in model in VISSIM is conducted to 780 
exemplify the effectiveness and efficiency of the proposed methodology and reveals that the signal 781 
restoration sequence could impact system performance during and after the restoration process 782 
significantly. Furthermore, both AATD prediction accuracy and the performance of restoration 783 
sequence ordering are evaluated for the case study network. Outcomes show that the proposed 784 
methodology can effectively identify restoration sequences with less total delay experienced in the 785 
restoration process, i.e., AATD, ranked in top 8% of optional sequences in reverse order referring 786 
to ground truth information. Furthermore, in terms of the fine-tune of the learning rate, the Cosine-787 
Annealing-LR strategy leads to both lower loss value, better ordering performance, and shorter 788 
delay experienced in the restoration process, compared to the Step-LR strategy.  789 

It is worth mentioning that this study made an assumption that signals were fixed one by 790 
one, and the experiments and results analysis were based on that assumption. Such an assumption 791 
can be relaxed to allow multiple teams act simultaneously. On one hand, by partitioning the service 792 
area into subareas, the proposed methodology can still be used to solve the SRSO problem in each 793 
subarea. On the other hand, the learning-based performance evaluation is extendable to the 794 
circumstances with multiple teams act simultaneously. To further evaluate the performance of the 795 
proposed methodology under these generalized settings is part of our future work plan.  796 

Limited by the functions and setting of the simulation tool that we used in this study, some 797 
scenarios that may occur in the real world during post-failure could not be reflected in the 798 
simulation, e.g., demand change due to trip cancellation based on real-time traveler information, 799 
vehicle rerouting, possible human interference with policemen deployed to congested intersections 800 
to direct traffic, etc. In future research, if a more powerful simulation platform is available, 801 
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researchers may include these scenarios in the study. In addition, in the future work, the system-802 
level performance AATD predicted through learning model can be utilized to support the GA 803 
based restoration sequence optimization. Furthermore, in real application, given traffic patterns 804 
varying from peak-hours to non-peak hours, more simulations with different signal failure start 805 
times need to be performed to train different learning-based models for determining optimal 806 
restoration sequences for different time periods of the day. Moreover, due to limited field data 807 
collection under signal failure and restoration circumstances, the case study in this work is based 808 
on microscopic simulation. Further investigation and evaluation of the proposed methodology 809 
based on field collected data will also be of great interest with more and more data source 810 
becoming available in the future. Last but not least, as there is a vast literature of MFD based traffic 811 
signal control methodologies, working either in a modeling or a data-driven manner (Mercader 812 
and Haddad, 2021; Ren et al., 2020; Sirmatel et al., 2021; Zhong et al., 2017; Zhou and Gayah, 813 
2021), the integration or comparison between the method proposed in this work and this literature  814 
in the future, in the context of traffic signal control resiliency, will also be a promising direction 815 
to be explored.  816 
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Appendix 974 

Based on the total delay curves of the case study presented in Section 4, it is observed that the 975 
combinations of the same number of failed signals could lead to significantly different network 976 
performance during restoration. This appendix further illustrates this observation from a 977 
Macroscopic Fundamental Diagram (MFD) point of view. Geroliminis and Daganzo (Geroliminis 978 
and Daganzo, 2008) proved the existence of MFDs in urban road networks, revealing the 979 
relationship between outflow and accumulation in a network. For a given failure scenario Si =[ I1, 980 
I2, I3, …, Ik] with k signals failed (Ij is the index of the jth failed signal; The scenarios are studied 981 
with all k signals failed simultaneously), and MFD is constructed by running simulations with 982 
various demand levels (multiplying a coefficient [120%, 115%, 110%, … 70%] to the original 983 
input flows into the studied network) and obtaining the observations of outflow and accumulation 984 
in the network every 10 mins after 50 minutes of warm-up.  985 

As shown in Fig. A.1, the horizontal axis is the accumulation of vehicles, i.e., the total 986 
number of vehicles in the system at the middle of one time interval, and the vertical axis is the 987 
weighted flow, i.e., the weighted average flow by the length of the lane that follows the calculation 988 
method in Geroliminis and Daganzo’s work (Geroliminis and Daganzo, 2008). Specifically, i   is 989 
the index for a road lane and il  is its length; iq  is the flow measured by a detector on this lane in a 990 
particular time interval. The weighted average flow is calculated as  991 

( ) /w
i i ii i

q q l l=     992 

   993 
 994 

Fig. A.1. MFDs of the case study network with 6 signals failed.  995 
(a) Scenario I [2,6,7,13,14,16]; (b) Scenario II [2,7,8,13,14,24]  996 

The As is the “sweet spot” of MFD, i.e., the accumulation (vehicles) in the system when the 997 
outflow is the maximum. A0, the accumulation (vehicles) at the end of 50 minutes of warm-up for 998 
a normal network (without signal failure), is also shown in Fig. A.1. Therefore, As is the “sweet 999 
spot” of the MFD for the network with selected signals failed and indicates the network level 1000 
capacity of the deteriorated network. A0 is the accumulation of vehicles at the end of normal status, 1001 
i.e., just before signal failure occurring, and indicates the number of vehicles that need to be served 1002 
by the deteriorated network. Two types of failure scenarios are defined according to the 1003 
comparison between As and A0 to facilitate further discussion, i.e., Type I scenario with A0 < As 1004 
and Type II scenario with A0 >As.  1005 

(a)                                                                                                  (b) 
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Fig. A.1 shows the MFD of Scenarios I and II, indicating that Scenario I is a typical Type I 1006 
scenario, with As > A0, and Scenario II is a typical Type II scenario, with As < A0. The basic idea is 1007 
that the comparison between As and A0 can help determine whether the deteriorated network can 1008 
serve the accumulation of vehicles efficiently, recalling the three representative regions on 1009 
MFDs—“free flow region,” “maximum flow region,” and “congested flow region” (Geroliminis 1010 
and Daganzo, 2008). Cross-referencing to Fig. 6, Scenario I, as a Type I scenario, can better serve 1011 
the accumulation of vehicles, compared to the Scenario II, as a Type II scenario. Furthermore, the 1012 
restoration sequence optimization is more critical for Type II scenario as less portion of the feasible 1013 
sequences, compared to Type I scenario, could mitigate the congestion caused by the signal failure, 1014 
as shown in Fig. 6. Therefore, the MFD perspective can help to understand the difference of the 1015 
impacts on system performance between the two types of scenarios, as exemplified in Fig. 6. 1016 

 1017 


	Learning-based Restoration Sequence Ordering for  Multi-site Traffic Signal Failure
	Abstract
	1 Introduction
	2 Literature Review
	3 Problem Statement and Research Approach
	4 Case Study
	5 Conclusions
	References
	OLE_LINK10
	OLE_LINK31
	OLE_LINK171
	OLE_LINK170
	OLE_LINK3
	OLE_LINK4
	OLE_LINK9
	OLE_LINK8
	OLE_LINK7
	OLE_LINK26
	OLE_LINK21
	OLE_LINK2
	OLE_LINK1
	OLE_LINK6
	OLE_LINK5
	OLE_LINK30
	OLE_LINK29
	OLE_LINK28
	OLE_LINK27
	OLE_LINK12
	OLE_LINK11
	OLE_LINK25
	OLE_LINK34
	OLE_LINK35
	OLE_LINK19
	OLE_LINK18
	OLE_LINK17
	OLE_LINK16
	OLE_LINK15
	OLE_LINK14
	OLE_LINK13
	OLE_LINK22
	OLE_LINK20
	OLE_LINK24
	OLE_LINK23
	OLE_LINK33
	OLE_LINK32
	OLE_LINK37

