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ABSTRACT

Arctic boreal forests are warming at a rate 2-3 times faster than the

global average. It is important to understand the effects of this warm-

ing on the activities of animals that migrate to these environments

annually to reproduce. Acoustic sensors can monitor a wide area

relatively cheaply, producing large amounts of data that need to be

automatically analyzed. In such scenarios, only a small proportion

of the recorded data can be labeled by hand, thus we explore two

methods for utilizing labels more efficiently: self-supervised learn-

ing using wav2vec 2.0 and data valuation using k-nearest neighbors

approximations to compute Shapley values. We confirm that data

augmentation and global temporal pooling improve performance by

more than 30%, demonstrate for the first time the utility of Shapley

data valuation for audio classification, and find that our wav2vec 2.0

model trained from scratch does not improve performance.

Index Terms— Ecoacoustics, data augmentation, data valuation,

self-supervised learning

1. INTRODUCTION

Arctic boreal forests have been warming at a rate 2-3 times that of

the global average as well as experiencing intensification in human

development [1]. These ecosystems are critical for the reproductive

success of numerous species, such as songbirds, waterfowl, and cari-

bou. The long-term monitoring of the affected ecosystem is therefore

very important to understanding the effect of global climate change

on these species and weighing possible interventions and mitigation

strategies. The audio approach for autonomous monitoring of the

environment to detect events of interest has advantages over other

modes, such as lower power, lower data bandwidth, wider field of

view, and longer range than visual sensors. The audio mode can also

be used alongside others to boost recognition performances.

Classifying and categorizing ecoacoustic data, at rates generated

by large sensor networks, requires automated procedures. Develop-

ing supervised models for event classification requires labeled data,

which is costly and sometimes prohibitive. Furthermore, insufficient

training data produces poor performance. This paper explores the

use of several techniques to address these problems: self-supervised

learning, data augmentation, and data valuation. We build upon

previous work [2] by utilizing a much larger unlabeled dataset and

several additional methods for mitigating this limitation.

Unlabeled data can be used in semi-supervised learning tech-

niques to help boost classification performances in cases where there

is a lack of sufficient labeled data. Wav2vec 2.0 (W2V) [3] is a

self-supervised learning method that has been successfully used in
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speech recognition to achieve state-of-the-art results when trained

on only 1% of the labeled data used by fully supervised systems.

W2V learns audio representations by processing speech audio first

followed by a stage that uses transcribed speech.

Data augmentation techniques are used for artificially, but real-

istically increasing the amount of training data [4]. Mixup [5] and

SpecAugment [6] augmentation methods generate different views of

the same data and help deep neural networks to generalize. Mixup

was initially designed for computer vision tasks but has proven to be

effective in sound event detection and used by top-performing teams

in the DCASE 2018 [7]. It enabled a convolutional recurrent neural

network based system to outperform baselines [8]. Mixup has also

been used for creating new samples to even out the number of sam-

ples in an unbalanced dataset [9, 10]. SpecAugment was introduced

for end-to-end speech recognition tasks and achieved state-of-the-art

performance on the LibriSpeech 960 and and Switchboard 300h

tasks. A Conformer-based system using mixup, SpecAugment, time-

shifting, and noise augmentation achieved superior performance in

sound event detection [11]. SpecAugment and mixup alone achieved

the best results in the DCASE 2019 for the audio tagging task [12].

Data valuation quantifies the value of examples used in training

a given supervised learning algorithm. The primary motivation to

date has been to compensate individuals or vendors who provide

examples for data markets (e.g., [13, 14]). Quantifying the value

of data for a model can also, however, be used for data curation

and selection since it provides a method for ranking and selecting a

subset of the data for optimal model performance and faster training.

Data valuation may also hold potential for guiding data collection

efforts or developing heuristics for Active Learning [15, 16]. Audio

data is relatively cheap to acquire but laborious and expensive to

annotate, especially for tasks like acoustic detection where multiple

sounds may be present in short clips. Thus we are interested in

exploring the feasibility of data valuation methods for curating and

selecting already labeled acoustic data that are particularly useful

or misleading for models. In particular, we use the Shapley value,

an idea arising from cooperative game theory [17], and recently

proposed as a fair method of determining the utility of data examples

for a given model [18, 19]. We report the results of experiments with

data augmentation, W2V, and data valuation techniques.

2. METHODS

To address the limited labeled data in our audio classification task

we employ self-supervised learning and data augmentation methods

described in Subsections 2.1 and 2.2. To assess the quality of our

multi-labeled data, potentially indicating the presence of multiple

events, we use Shapley values described in Subsection 2.3.



2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 17-20, 2021, New Paltz, NY

Label Train Validation Test Total

Biophony 1729 472 490 2691
Bird 1461 420 470 2351

Songbird 492 98 84 674
Waterfowl 158 48 78 284
Grouse 93 29 6 128

Insect 222 25 6 253
Anthrophony 162 64 58 284

Aircraft 44 54 22 120
Silence 17 22 14 53

Table 1: Number of clips per label in each division of the dataset, of

3083 clips total. Waterfowl includes ducks, geese, and swans.

2.1. Self-supervised learning: wav2vec 2.0

Self-supervised learning methods take advantage of structure in the

data, like word order in text. Similarly, W2V is trained by predicting

speech units of deformed segments of input data. Raw waveforms

of the speech audio are turned into latent audio representations of

each 25ms segment using a convolutional neural network. Half

of these embeddings are masked and then input into a transformer

module. Transformers summarize the information from the sequence

of embeddings into another sequence of feature vectors, which are

quantized into targets in the self-supervised objective. The objective

of W2V training is to predict the correct quantized speech units for

masked positions. The self-supervised pre-trained model is fine-

tuned on labeled data by removing the quantization module and

using a fully connected layer after the context network.

2.2. Data augmentation for audio classification

We use mixup and SpecAugment for data augmentation, which have

shown good performance in prior work on sound event detection

tasks [12, 11]. The original mixup approach combines two randomly

selected samples (xi, yi) and (xj , yj) from training data linearly.

We modify this slightly, such that the datapoints are still combined

linearly, but their labels are logically OR-ed:

x̃ = γxi + (1− γ)xj

ỹ = max(yi, yj).
(1)

In general, γ ∈ [0, 1] can be chosen by sampling from a beta dis-

tribution Beta(α, α) for α ∈ (0,∞), but for simplicity we fix it

at 0.5. Our modification to the label combination captures the fact

that a linear combination of two sounds contains all of the sounds in

either mixture. This is in contrast to linear combinations of images,

in which it might be argued that partially transparent objects are not

fully representative of their original class.

SpecAugment works by masking a set of consecutive frequency

channels and/or time frames of the log-mel spectrogram. Time

warping may be applied along with the masking deformation.

2.3. Shapley values

In cooperative game theory, a coalition of players collaborates toward

a common goal to earn a reward. The Shapley valuation framework

provides one method of fairly allocating rewards to individual players

based on their relative contributions [17]. In the supervised machine

learning setting, we think of training examples as participants in a

game. The learning algorithm uses these players to achieve a reward,

the performance measured on a held-out set.

Let D = {(xi, yi)}
N
i=1 be the training data and Deval =

{(xj , yj)}
Neval
j=1

be the held-out data used for evaluation, the vali-

dation set in our experiments. Suppose a learning algorithm A trains

on a subset S ⊆ D of training examples. The performance of the

algorithm A using examples S is measured by an evaluation function

UA(S). The Shapley value σ(xi) of training example xi is defined

as the expected marginal contribution of xi to any subset of the

remaining training examples S ⊆ D \ {xi}:

σ(xi) =
1

N

∑

S⊆D\{xi}

1
(

N−1

|S|

)

[

UA(S ∪ {xi})− UA(S)
]

(2)

The Shapley value is an allocation scheme that uniquely satisfies

some rudimentary fairness axioms [17, 19]. This valuation approach

makes no assumptions about the training data distribution D or

whether the examples are independent or identically distributed.

In general, exact calculation of Shapley values is intractable for

realistic dataset sizes. The Truncated Monte-Carlo (TMC) algorithm

provides a method for estimating Shapley values for any model,

A [18]. However, each iteration requires re-training the model,

which can be time-consuming for a CNN. It was recently shown that

Shapley values for deep neural network (DNN) classifiers can be

approximated using proxy K-Nearest Neighbor (KNN) models [20].

We use the neural features from the CNN as inputs to learn a KNN

classifier. Since training and evaluating a KNN is much faster than

training a CNN from scratch, the TMC algorithm can be employed

to estimate Shapley values of the inputs for the KNN proxy classifier.

We use AUC as the performance metric for our valuation, UA(S).

3. EXPERIMENTS

3.1. Data

Our data is comprised of sound recordings collected from the North

Slope of Alaska and neighboring areas in Canada over the summer of

2019. Our partners placed recording devices at 100 sites throughout

an area of 9000 square miles in the Prudhoe Bay region, the 10-02

area of the Arctic National Wildlife Refuge, and the Ivvavik National

Park along with two 400-mile latitudinal transects along the Dalton

and Dempster roads. Each recorder collected data from May through

August in segments of 150 minutes separated by gaps of 120 minutes,

collecting a total of 50,000 hours of recordings.

We selected 34 sites from these locations seeking a diverse set

of acoustic sources based on domain knowledge of their acoustic

characteristics. From each site, one 75-minute excerpt was randomly

chosen across the recording season from those not contaminated

with an undue amount of audio clipping. An expert analyst inspected

the spectrograms of these excerpts to identify all non-background

sound events, which were then labeled based on listening. The

annotated segments ranged from a few seconds to a few minutes.

These labeled segments were split into non-overlapping 10-second

clips. All labeled segments were at least 2 seconds long and those

shorter than 10 seconds were padded with zeros. Since segments

can contain sounds from multiple sources of interest, our task is a

multi-label classification problem.

All recordings were sampled at 48 kHz and collected in stereo.

The audio includes noise due to wind and rain and some data is lost

due to clipping when the sound becomes louder than the recording

device’s dynamic range. Rather than averaging both channels of the

audio, we select the channel with less clipping for each 10s clip. We

take clipped samples to be those with the maximum or minimum



2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 17-20, 2021, New Paltz, NY

integer value. We calculate the clipping rate by dividing the number

of clipped samples in a clip by the total number of samples.

Our annotator created a taxonomy of the sounds present in

recordings, shown in Table 1. We refer to the three taxonomic

ranks in the dataset as coarse, medium, and fine. The coarse level

consists of anthrophony, biophony, and silence; the medium level

consists of aircraft, bird, and insect; and the fine level consists of

songbird, waterfowl, and grouse. All clips annotated with a child

label in the hierarchy are also labeled with the parent label, although

some clips are only annotated with coarse or medium labels. The

final dataset used for our experiments consists of 3083 samples.

For better generalization, we ensure that data from a recording

site occurs in only one of the training, validation, or test sets. We for-

mulate a multiple knapsack problem where sites are items, weights

are the number of samples per site, and knapsacks are the training,

validation, and test sets. Using Google OR-Tools [21], we determine

optimal solutions per class, picking the solution with the lowest total

cost over all classes. Validation and test knapsacks are constrained to

be identically sized holding 10-20%. The solution score is found by

summing the Jensen-Shannon divergence between set distributions

and the 60%-20%-20% target distribution for each label.

3.2. CNN baseline

For these experiments, rather than perform a parameter or architec-

ture search, we chose to use a CNN based architecture [22] similar

to AlexNet [23]. The inputs to our model are mel-spectrograms of

the 10 second clips. We extract log-scale mel-frequency spectro-

grams with a window size of 42 ms, a hop size of 23 ms, and 128

mel-frequency bins. Our model has 4 convolutional layers with a

kernel size of 5 by 5, followed by two FC layers, following archi-

tectures previously found to be successful in sound event detection

[24]. Moreover, after the last convolutional layer we compare the

use of a global max pooling operation over the time dimension to the

averaging of the predictions over time after the softmax [25]. The

CNN is trained for 1500 epochs and the model from the epoch with

the highest minimum AUC across labels is selected to evaluate on

the test set. The performance of the worst label was optimized to

ensure a consistent level of performance across labels.

Data augmentation Given the size of our dataset, neural networks

will be prone to overfitting. We apply data augmentation and dropout

to overcome this problem. We use two augmentation methods: a

modified version of mixup [5] and SpecAugment [6]. For mixup, we

compared picking samples at random with and without replacement

and without replacement worked best on the validation set, so we

report these results.

3.3. Self-supervised learning

The labeled clips make up a small part of our entire collection of

recordings. A large amount of unlabeled data can be leveraged by

using self-supervised learning techniques to generate condensed

representations. W2V encodes inputs with convolutional layers in

time domain and feeds them into a transformer to build a represen-

tation of the entire sequence. These representations are quantized

before being used in the contrastive learning task (pretext-task). We

use the smaller BASE model from the original paper, which has 12

transformer blocks, feed forward network with inner dimension of

3,072 and embedding dimension of 768, and 8 attention heads. The

original experiments train the BASE model on 53k hours of speech

recordings with 64 V100 GPUs for 1.6 days. The output of the

Input Pooling Augmentation Valid Test

— 0.86 0.73
mixup 0.88 0.78

OFF
mixup+SpecAug 0.88 0.76

SpecAug 0.85 0.75
Spect.

— 0.89 0.79
mixup 0.89 0.85

ON
mixup+SpecAug 0.87 0.81

SpecAug 0.91 0.82

— 0.71 0.59
mixup 0.79 0.63

OFF
mixup+SpecAug 0.76 0.62

SpecAug 0.75 0.58
W2V

— 0.77 0.66
mixup 0.80 0.68

ON
mixup+SpecAug 0.81 0.67

SpecAug 0.73 0.59

Table 2: Average AUC across labels for various settings of input

features (Spect.: mel spectrogram, W2V: wav2vec 2.0 embeddings),

global max pooling [25], and data augmentation.

BASE model for 10 seconds sample is 499 by 768 which is bigger

than our log-mel spectogram input.

We train our own version of the BASE model on 300k randomly

sampled 10 second clips from our full dataset. We exclude samples

that have a clipping rate higher than 1%, and are left with 234k

samples, corresponding to 659 hours of recordings in total. Since our

models were already overfitting log-mel spectograms, we reduce the

feature embedding to 144 dimensions. The new model’s parameter

count is 16% of that of the original BASE model (96M). After

training this model for 205 epochs (21 days), it achieved a 29%

validation and 28% training accuracy, which is much lower than the

75% accuracy reported in the original paper.

3.4. Data valuation

We represent examples by extracting 512-dimensional neural fea-

tures from the penultimate fully connected layer, i.e., before the

softmax output layer, of the CNN with the best validation perfor-

mance and use the 9 labels described above as targets. We use the

validation set to tune a multi-label KNN model using scikit-learn

[26] and determine k = 29. The final proxy KNN model achieves

AUC scores of 0.812 and 0.676 on the validation and test sets, respec-

tively. We use the TMC algorithm [18] to estimate Shapley values

of training examples for the KNN proxy model on the validation set.

We sample one permutation per iteration to determine value updates,

and perform 1, 000 iterations per “round.” We repeat the procedure

until convergence, after 10 rounds, with a tolerance of 0.05.

We evaluate the approximated Shapley values by examining the

KNN model’s performance on held out test examples by incremen-

tally adding the lowest- or highest-valued training examples to the

KNN’s training set, as is typical in the data valuation literature. We

also measure the model’s performance when adding examples at

random and record results from three random runs for comparison

with the ordering determined by Shapley values. For multi-label clas-

sification, we compute AUC using macro-averaged values, i.e., we

average per class AUC scores to account for varying class sizes [27].

The results are shown in Figure 1 and discussed in Section 4.
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