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ABSTRACT

Arctic boreal forests are warming at a rate 2-3 times faster than the
global average. It is important to understand the effects of this warm-
ing on the activities of animals that migrate to these environments
annually to reproduce. Acoustic sensors can monitor a wide area
relatively cheaply, producing large amounts of data that need to be
automatically analyzed. In such scenarios, only a small proportion
of the recorded data can be labeled by hand, thus we explore two
methods for utilizing labels more efficiently: self-supervised learn-
ing using wav2vec 2.0 and data valuation using k-nearest neighbors
approximations to compute Shapley values. We confirm that data
augmentation and global temporal pooling improve performance by
more than 30%, demonstrate for the first time the utility of Shapley
data valuation for audio classification, and find that our wav2vec 2.0
model trained from scratch does not improve performance.

Index Terms— Ecoacoustics, data augmentation, data valuation,
self-supervised learning

1. INTRODUCTION

Arctic boreal forests have been warming at a rate 2-3 times that of
the global average as well as experiencing intensification in human
development [1]. These ecosystems are critical for the reproductive
success of numerous species, such as songbirds, waterfowl, and cari-
bou. The long-term monitoring of the affected ecosystem is therefore
very important to understanding the effect of global climate change
on these species and weighing possible interventions and mitigation
strategies. The audio approach for autonomous monitoring of the
environment to detect events of interest has advantages over other
modes, such as lower power, lower data bandwidth, wider field of
view, and longer range than visual sensors. The audio mode can also
be used alongside others to boost recognition performances.

Classifying and categorizing ecoacoustic data, at rates generated
by large sensor networks, requires automated procedures. Develop-
ing supervised models for event classification requires labeled data,
which is costly and sometimes prohibitive. Furthermore, insufficient
training data produces poor performance. This paper explores the
use of several techniques to address these problems: self-supervised
learning, data augmentation, and data valuation. We build upon
previous work [2] by utilizing a much larger unlabeled dataset and
several additional methods for mitigating this limitation.

Unlabeled data can be used in semi-supervised learning tech-
niques to help boost classification performances in cases where there
is a lack of sufficient labeled data. Wav2vec 2.0 (W2V) [3] is a
self-supervised learning method that has been successfully used in
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speech recognition to achieve state-of-the-art results when trained
on only 1% of the labeled data used by fully supervised systems.
W2V learns audio representations by processing speech audio first
followed by a stage that uses transcribed speech.

Data augmentation techniques are used for artificially, but real-
istically increasing the amount of training data [4]. Mixup [5] and
SpecAugment [6] augmentation methods generate different views of
the same data and help deep neural networks to generalize. Mixup
was initially designed for computer vision tasks but has proven to be
effective in sound event detection and used by top-performing teams
in the DCASE 2018 [7]. It enabled a convolutional recurrent neural
network based system to outperform baselines [8]. Mixup has also
been used for creating new samples to even out the number of sam-
ples in an unbalanced dataset [9, 10]. SpecAugment was introduced
for end-to-end speech recognition tasks and achieved state-of-the-art
performance on the LibriSpeech 960 and and Switchboard 300h
tasks. A Conformer-based system using mixup, SpecAugment, time-
shifting, and noise augmentation achieved superior performance in
sound event detection [11]. SpecAugment and mixup alone achieved
the best results in the DCASE 2019 for the audio tagging task [12].

Data valuation quantifies the value of examples used in training
a given supervised learning algorithm. The primary motivation to
date has been to compensate individuals or vendors who provide
examples for data markets (e.g., [13, 14]). Quantifying the value
of data for a model can also, however, be used for data curation
and selection since it provides a method for ranking and selecting a
subset of the data for optimal model performance and faster training.
Data valuation may also hold potential for guiding data collection
efforts or developing heuristics for Active Learning [15, 16]. Audio
data is relatively cheap to acquire but laborious and expensive to
annotate, especially for tasks like acoustic detection where multiple
sounds may be present in short clips. Thus we are interested in
exploring the feasibility of data valuation methods for curating and
selecting already labeled acoustic data that are particularly useful
or misleading for models. In particular, we use the Shapley value,
an idea arising from cooperative game theory [17], and recently
proposed as a fair method of determining the utility of data examples
for a given model [18, 19]. We report the results of experiments with
data augmentation, W2V, and data valuation techniques.

2. METHODS

To address the limited labeled data in our audio classification task
we employ self-supervised learning and data augmentation methods
described in Subsections 2.1 and 2.2. To assess the quality of our
multi-labeled data, potentially indicating the presence of multiple
events, we use Shapley values described in Subsection 2.3.
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Label Train ~ Validation  Test Total
Biophony 1729 472 490 2691
Bird 1461 420 470 2351
Songbird 492 98 84 674
Waterfowl 158 48 78 284
Grouse 93 29 6 128
Insect 222 25 6 253
Anthrophony 162 64 58 284
Aircraft 44 54 22 120
Silence 17 22 14 53

Table 1: Number of clips per label in each division of the dataset, of
3083 clips total. Waterfowl includes ducks, geese, and swans.

2.1. Self-supervised learning: wav2vec 2.0

Self-supervised learning methods take advantage of structure in the
data, like word order in text. Similarly, W2V is trained by predicting
speech units of deformed segments of input data. Raw waveforms
of the speech audio are turned into latent audio representations of
each 25ms segment using a convolutional neural network. Half
of these embeddings are masked and then input into a transformer
module. Transformers summarize the information from the sequence
of embeddings into another sequence of feature vectors, which are
quantized into targets in the self-supervised objective. The objective
of W2V training is to predict the correct quantized speech units for
masked positions. The self-supervised pre-trained model is fine-
tuned on labeled data by removing the quantization module and
using a fully connected layer after the context network.

2.2. Data augmentation for audio classification

We use mixup and SpecAugment for data augmentation, which have
shown good performance in prior work on sound event detection
tasks [12, 11]. The original mixup approach combines two randomly
selected samples (z;,y;) and (x;,y;) from training data linearly.
‘We modify this slightly, such that the datapoints are still combined
linearly, but their labels are logically OR-ed:

I=qzi+ (1 -7z

_ M
¥ = max(yi, y;)-
In general, v € [0, 1] can be chosen by sampling from a beta dis-
tribution Beta(a, a) for a € (0, 00), but for simplicity we fix it
at 0.5. Our modification to the label combination captures the fact
that a linear combination of two sounds contains all of the sounds in
either mixture. This is in contrast to linear combinations of images,
in which it might be argued that partially transparent objects are not
fully representative of their original class.
SpecAugment works by masking a set of consecutive frequency
channels and/or time frames of the log-mel spectrogram. Time
warping may be applied along with the masking deformation.

2.3. Shapley values

In cooperative game theory, a coalition of players collaborates toward
a common goal to earn a reward. The Shapley valuation framework
provides one method of fairly allocating rewards to individual players
based on their relative contributions [17]. In the supervised machine
learning setting, we think of training examples as participants in a
game. The learning algorithm uses these players to achieve a reward,
the performance measured on a held-out set.
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Let D = {(xz,yl)}f\;l be the training data and Deva =
{(z;, yj)}j-v:”i‘l be the held-out data used for evaluation, the vali-
dation set in our experiments. Suppose a learning algorithm A trains
on a subset S C D of training examples. The performance of the
algorithm .A using examples S is measured by an evaluation function
U.A(S). The Shapley value o (x;) of training example z; is defined
as the expected marginal contribution of z; to any subset of the
remaining training examples S C D \ {z;}:

o (ws) = % 3

SCD\{z;} (1\(5_\1)

L asUe)) -Ua®)] @

The Shapley value is an allocation scheme that uniquely satisfies
some rudimentary fairness axioms [17, 19]. This valuation approach
makes no assumptions about the training data distribution D or
whether the examples are independent or identically distributed.

In general, exact calculation of Shapley values is intractable for
realistic dataset sizes. The Truncated Monte-Carlo (TMC) algorithm
provides a method for estimating Shapley values for any model,
A [18]. However, each iteration requires re-training the model,
which can be time-consuming for a CNN. It was recently shown that
Shapley values for deep neural network (DNN) classifiers can be
approximated using proxy K-Nearest Neighbor (KNN) models [20].
We use the neural features from the CNN as inputs to learn a KNN
classifier. Since training and evaluating a KNN is much faster than
training a CNN from scratch, the TMC algorithm can be employed
to estimate Shapley values of the inputs for the KNN proxy classifier.
We use AUC as the performance metric for our valuation, U4(S).

3. EXPERIMENTS

3.1. Data

Our data is comprised of sound recordings collected from the North
Slope of Alaska and neighboring areas in Canada over the summer of
2019. Our partners placed recording devices at 100 sites throughout
an area of 9000 square miles in the Prudhoe Bay region, the 10-02
area of the Arctic National Wildlife Refuge, and the Ivvavik National
Park along with two 400-mile latitudinal transects along the Dalton
and Dempster roads. Each recorder collected data from May through
August in segments of 150 minutes separated by gaps of 120 minutes,
collecting a total of 50,000 hours of recordings.

We selected 34 sites from these locations seeking a diverse set
of acoustic sources based on domain knowledge of their acoustic
characteristics. From each site, one 75-minute excerpt was randomly
chosen across the recording season from those not contaminated
with an undue amount of audio clipping. An expert analyst inspected
the spectrograms of these excerpts to identify all non-background
sound events, which were then labeled based on listening. The
annotated segments ranged from a few seconds to a few minutes.
These labeled segments were split into non-overlapping 10-second
clips. All labeled segments were at least 2 seconds long and those
shorter than 10 seconds were padded with zeros. Since segments
can contain sounds from multiple sources of interest, our task is a
multi-label classification problem.

All recordings were sampled at 48 kHz and collected in stereo.
The audio includes noise due to wind and rain and some data is lost
due to clipping when the sound becomes louder than the recording
device’s dynamic range. Rather than averaging both channels of the
audio, we select the channel with less clipping for each 10s clip. We
take clipped samples to be those with the maximum or minimum
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integer value. We calculate the clipping rate by dividing the number
of clipped samples in a clip by the total number of samples.

Our annotator created a taxonomy of the sounds present in
recordings, shown in Table 1. We refer to the three taxonomic
ranks in the dataset as coarse, medium, and fine. The coarse level
consists of anthrophony, biophony, and silence; the medium level
consists of aircraft, bird, and insect; and the fine level consists of
songbird, waterfowl, and grouse. All clips annotated with a child
label in the hierarchy are also labeled with the parent label, although
some clips are only annotated with coarse or medium labels. The
final dataset used for our experiments consists of 3083 samples.

For better generalization, we ensure that data from a recording
site occurs in only one of the training, validation, or test sets. We for-
mulate a multiple knapsack problem where sites are items, weights
are the number of samples per site, and knapsacks are the training,
validation, and test sets. Using Google OR-Tools [21], we determine
optimal solutions per class, picking the solution with the lowest total
cost over all classes. Validation and test knapsacks are constrained to
be identically sized holding 10-20%. The solution score is found by
summing the Jensen-Shannon divergence between set distributions
and the 60%-20%-20% target distribution for each label.

3.2. CNN baseline

For these experiments, rather than perform a parameter or architec-
ture search, we chose to use a CNN based architecture [22] similar
to AlexNet [23]. The inputs to our model are mel-spectrograms of
the 10 second clips. We extract log-scale mel-frequency spectro-
grams with a window size of 42 ms, a hop size of 23 ms, and 128
mel-frequency bins. Our model has 4 convolutional layers with a
kernel size of 5 by 5, followed by two FC layers, following archi-
tectures previously found to be successful in sound event detection
[24]. Moreover, after the last convolutional layer we compare the
use of a global max pooling operation over the time dimension to the
averaging of the predictions over time after the softmax [25]. The
CNN is trained for 1500 epochs and the model from the epoch with
the highest minimum AUC across labels is selected to evaluate on
the test set. The performance of the worst label was optimized to
ensure a consistent level of performance across labels.

Data augmentation Given the size of our dataset, neural networks
will be prone to overfitting. We apply data augmentation and dropout
to overcome this problem. We use two augmentation methods: a
modified version of mixup [5] and SpecAugment [6]. For mixup, we
compared picking samples at random with and without replacement
and without replacement worked best on the validation set, so we
report these results.

3.3. Self-supervised learning

The labeled clips make up a small part of our entire collection of
recordings. A large amount of unlabeled data can be leveraged by
using self-supervised learning techniques to generate condensed
representations. W2V encodes inputs with convolutional layers in
time domain and feeds them into a transformer to build a represen-
tation of the entire sequence. These representations are quantized
before being used in the contrastive learning task (pretext-task). We
use the smaller BASE model from the original paper, which has 12
transformer blocks, feed forward network with inner dimension of
3,072 and embedding dimension of 768, and 8 attention heads. The
original experiments train the BASE model on 53k hours of speech
recordings with 64 V100 GPUs for 1.6 days. The output of the
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Input  Pooling Augmentation Valid  Test

— 0.86 0.73
mixup 0.88 0.78
OFF mixup+SpecAug  0.88 0.76
SpecAug 0.85 0.75
Spect.
— 0.89 0.79
ON mixup 0.89 0.85
mixup+SpecAug  0.87 0.81
SpecAug 0.91 0.82
— 0.71 0.59
mixup 0.79 0.63
OFF mixup+SpecAug  0.76 0.62
SpecAug 0.75 0.58
w2v
— 0.77 0.66
ON mixup 0.80 0.68
mixup+SpecAug  0.81 0.67
SpecAug 0.73 0.59

Table 2: Average AUC across labels for various settings of input
features (Spect.: mel spectrogram, W2V: wav2vec 2.0 embeddings),
global max pooling [25], and data augmentation.

BASE model for 10 seconds sample is 499 by 768 which is bigger
than our log-mel spectogram input.

We train our own version of the BASE model on 300k randomly
sampled 10 second clips from our full dataset. We exclude samples
that have a clipping rate higher than 1%, and are left with 234k
samples, corresponding to 659 hours of recordings in total. Since our
models were already overfitting log-mel spectograms, we reduce the
feature embedding to 144 dimensions. The new model’s parameter
count is 16% of that of the original BASE model (96M). After
training this model for 205 epochs (21 days), it achieved a 29%
validation and 28% training accuracy, which is much lower than the
75% accuracy reported in the original paper.

3.4. Data valuation

We represent examples by extracting 512-dimensional neural fea-
tures from the penultimate fully connected layer, i.e., before the
softmax output layer, of the CNN with the best validation perfor-
mance and use the 9 labels described above as targets. We use the
validation set to tune a multi-label KNN model using scikit-learn
[26] and determine k£ = 29. The final proxy KNN model achieves
AUC scores of 0.812 and 0.676 on the validation and test sets, respec-
tively. We use the TMC algorithm [18] to estimate Shapley values
of training examples for the KNN proxy model on the validation set.
We sample one permutation per iteration to determine value updates,
and perform 1, 000 iterations per “round.” We repeat the procedure
until convergence, after 10 rounds, with a tolerance of 0.05.

We evaluate the approximated Shapley values by examining the
KNN model’s performance on held out test examples by incremen-
tally adding the lowest- or highest-valued training examples to the
KNN’s training set, as is typical in the data valuation literature. We
also measure the model’s performance when adding examples at
random and record results from three random runs for comparison
with the ordering determined by Shapley values. For multi-label clas-
sification, we compute AUC using macro-averaged values, i.e., we
average per class AUC scores to account for varying class sizes [27].
The results are shown in Figure 1 and discussed in Section 4.
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Label Val.  Test A
Biophony 092 082 0.10
Bird 090 0.80 0.10

Songbird 0.80 0.77 0.03
Waterfowl 0.85 0.83 0.02

Grouse 095 0.76 0.19
Insect 092 083 0.09
Anthrophony 092 084 0.08
Aircraft 093 084 0.09
Silence 099 094 0.05
Average 091 082 0.09

Table 3: AUC per label of the best model on the validation and test
sets along with the generalization gap between them (A).

4. RESULTS AND DISCUSSION

Table 2 shows the average AUC across classes on the validation
and test sets for the various model settings. The results on the
validation set show that systems using mel spectrogram features and
global temporal pooling consistently outperform the alternatives. In
terms of augmentations, results are less consistent, although the best
validation performance is achieved by SpecAugment alone. This
best system achieves a relative improvement (in 1 — AUC) of 37%
on the validation set and 33% on the test set over the baseline system
using no global pooling on augmentation. While we do not show
detailed results per label due to space limitations, we find that mixup
tends to improve performance more in classes with fewer examples,
while for specAugment it is in classes with more examples.

Table 3 shows the AUC per label of the single best model, using
mel spectrogram features, global temporal pooling, and specAug-
ment only. For this model, the “songbird” label has the lowest AUC
on the validation set and one of two lowest on the test set. However,
the small generalization gap between the validation and test sets for
“songbird” suggests that it is a difficult class to learn. This motivates
our Shapley value analysis of this class below.

Unfortunately, wav2vec 2.0 did not help us take advantage of
this large amount of unlabeled data. This is potentially due to the
small size of the subset of our data that we trained it on or the small
number of updates with which we trained it, as these models perform
best with huge amounts of data and compute.

The first plot in Figure 1 shows test set scores of average AUC
across labels for the multi-label KNN classifier as we add training
data in batches of size 32 ordered by the Shapley values computed
from the validation set. As we include the examples with high-
est Shapley values in the training set, the best-first curve quickly
achieves the highest AUC of about 0.75 with about 20% of the data.
This is well above the performance achieved using the same amount
of data selected at random, which remains close to the performance
of using all of the data, 0.68. As we add more examples, with lower
Shapley values, we note that performance degrades down to this
level. Similarly, the worst-first curve shows that as we train with the
lowest-valued (worst) examples, the classifier performance does not
improve much until we begin adding high-valued examples at the
end. This demonstrates how well Shapley values capture the relative
contribution of examples to the classifier’s performance, and that
performance can be improved by identifying and discarding certain
examples that are actively misleading to the model.

Listening to the worst-valued examples, we note a number of
clips have songbirds present, but are missing the “songbird” label.
Labels for birds and songbirds comprise 76% and 26% of the ex-
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Multi-label classifier Songbird classifier

0.0 0.2 04 06 08 10 0.0 02 0.4 06 08 1.0
Fraction of data used for training

Data Ordering
= worst-first best-first random

Figure 1: Test set performance of KNN as training data is added in
order determined by Shapley values. The random curves depict mean
performance from three runs. Left: Average AUC for multi-label
classifier. Right: AUC for binary “songbird” classifier.

amples, respectively. We suspect that our multi-label classifier may
not be performing as well due to a substantial number of missed
examples for songbirds. To examine this further, we train a binary
KNN classifier to detect songbirds and determine the Shapley values
of the training examples for the binary classifier as above. The sec-
ond figure in Figure 1 shows the performance evaluation for Shapley
values of examples used for training the songbird classifier. We see
a similar trend for the best-first curve, but notice that the worst-first
curve performs well then degrades after adding about 15-20% of the
data. This confirms that some examples are actively misleading for
the songbird classifier. Overall, we find 104 examples (5.4% of the
data) with negative Shapley values, implying that these examples
hurt model performance. About 69% (72) of these examples are
labeled as not containing songbirds. To test our hypothesis on the
original CNN model, we flip the songbird labels (0s to 1s, and 1s
to 0s) of the 100 lowest valued examples and re-train the CNN. We
find that this improves mean-AUC from 0.92 to 0.928 and min-AUC
from 0.804 to 0.822. This lends further support for our hypothesis
and demonstrates a potential application of Shapley values.

5. CONCLUSIONS AND FUTURE WORK

This paper has explored several approaches to improving classifier
performance on large ecoacoustic datasets with small amounts of
labeled data. We confirmed that data augmentation and global pool-
ing can lead to significant improvements in performance and has
demonstrated for the first time the utility of Shapley values in data
valuation for audio classification. These techniques will be useful in
managing our labeling efforts as well as analyzing large amounts of
unlabeled data still remaining. Unfortunately, we did not observe any
utility of wav2vec 2.0 for this task, but in the future we will explore
the utility of training on more data and for longer. We also plan
to explore improvements to the main classifier’s performance once
Shapley values have been computed using the KNN proxy as well
as investigating the use of Shapley values to identify high quality
unlabeled data for active learning.
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