
JAAS

PAPER

View Article Online
View Journal | View Issue

Cite this: J. Anal. At. Spectrom., 2021, **36**, 2153

Rapid boron isotope and concentration measurements of silicate geological reference materials dissolved through sodium peroxide sintering†

Yue Cai, 10 *a E. Troy Rasbury, 10 b Kathleen M. Wooton, b Xin Jiang and Di Wang *d

Understanding the movement of fluids in the solid Earth system is crucial for answering a wide range of important questions in Earth science. Boron (B) is a perfect tracer for geofluids because of its high solubility and large isotopic fractionation that depends on both temperature and alkalinity. However, the high volatility of boron in acidic solutions at moderate temperatures presents a significant challenge for accurate measurements of the boron concentration and boron isotopic ratios for silicate rock samples. To circumvent this problem, most laboratories use low-temperature dissolution methods that involve concentrated hydrofluoric acid with or without mannitol. However, hydrofluoric acid is highly hazardous and the controlled temperature condition may be difficult to monitor. As a result, relatively few silicate samples have been analyzed for high precision B concentration and isotopic composition measurements, which hinders our understanding of the behavior of B in the solid earth system and the utility of this powerful tracer. Here we report B concentrations and isotopic compositions of the most commonly used geological reference standards dissolved through sodium peroxide sintering and purified using a rapid single-column exchange chromatographic procedure. This streamlined method effectively removes Na and Si from the sample matrix and generates accurate B concentration and isotopic data in as little as a day without the need for expensive lab equipment and reagents. Sintering is already routinely used to dissolve zircon-bearing silicate samples as it ensures complete dissolution. Besides the analysis of boron, other elemental and isotopic analyses can be performed using aliquots of the same dissolution, which greatly speeds up the chemical processing time and reduces uncertainties associated with sample heterogeneity. Using this method, large amounts of material can be processed for ion-exchange chromatography without the need of splitting each sample into separate beakers for dissolution as is often required for the HF + mannitol dissolution method. This new method can rapidly expand the available dataset of the boron concentration and boron isotopes of silicate materials which will certainly advance our understanding of many geologic problems involving fluids.

Received 6th June 2021 Accepted 20th July 2021

DOI: 10.1039/d1ja00195g

rsc.li/jaas

1. Introduction

Boron (B) is a fluid-mobile element with two naturally occurring stable isotopes ¹⁰B and ¹¹B with relative abundances of 19.8% and 80.2%, respectively. In aqueous environments, boron mainly exists as two species: trigonal boric acid B(OH)₃, and

tetragonal borate $B(OH)_4$. The trigonal species is isotopically heavy relative to the tetrahedrally coordinated species by \sim 27.2 \pm 0.6%. Following tradition, we will use [B] to represent the boron concentration and $\delta^{11}B$ in per mil (%) unit to represent the B isotopic composition which equals 1000 times the difference of ¹¹B/¹⁰B ratios between the sample and the NIST SRM 951 standard. The large variations of [B] and δ^{11} B (0.1– 30 000 ppm, and >90%, respectively) in the terrestrial environment make them powerful tracers in geochemistry.4,5 They are particularly useful in studying subduction zone processes, continental crust evolution, and mantle dynamics as boron is very depleted in the primitive mantle (\sim 0.26 ppm (ref. 6)), but strongly enriched in the continental crust (\sim 17 ppm (ref. 7)), seawater (~4.5 ppm (ref. 8 and 9)), and sediments (up to 132 ppm (ref. 10)). Key endmembers in the subduction system also have very different isotopic signatures (for a review see ref. 11).

^aLamont-Doherty Earth Observatory of Columbia University, 61 Rt. 9W, Palisades, NY 10964, USA. E-mail: cai@ldeo.columbia.edu

^bDepartment of Geosciences, Stony Brook University, 255 Earth and Space Sciences Building, Stony Brook, NY 11794-2100, USA

^cChina University of Geosciences, Wuhan, China

^dState Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, 168 Xianlin Avenue, Qixia District, Nanjing 210046, China. E-mail: diwang@nju.edu.cn

 $[\]dagger$ Electronic supplementary information (ESI) available. See DOI: $10.1039/\mathrm{d1ja00195g}$

JAAS Paper

Table 1 B composition of different batches of sodium peroxide reagents. We note that the sodium peroxide available from these vendors were all made in France. It might be interesting to compare the B composition between French sodium peroxide and those made in other countries

Purchase date	Brand	Lot #	Product #	[B]	$\delta^{11}B$	2SE	Description
April, 2021 March, 2021 July, 2020 July, 2019 March, 2018 December, 2017	Acros Chemicals Sigma-Aldrich Acros Chemicals Acros Chemicals Sigma-Aldrich Sigma-Aldrich	A0410290 MKCL8750 A0404530 A0387690 MKCD6833 BCBR2416V	315761000 223417-100G 207701000 315760250 223417-100G 71883-250G	0.042 0.053 0.060 0.044 0.020 0.021	-5.53 -4.74	0.23 0.97	ACS reagent, 95% ACS reagent, granular, +140 mesh, 97% 96% ACS reagent, 93% ACS reagent, granular, +140 mesh, 97% ACS reagent beads (small) ≥95%

Furthermore, slab dehydration preferentially volatilizes 11 B, which generates are magmas with much higher [B] and δ^{11} B at the arc front than the back-arc. $^{12-15}$ Despite their usefulness, rapid and accurate measurements of [B] and δ^{11} B in silicate materials remain challenging. 16 Recent improvements in analytical precision for *in situ* measurements using SIMS and LA-ICP-MS have greatly expanded the available dataset of B isotopes in silicate materials. $^{17-21}$ However, *in situ* methods have relatively large errors and they are best suited for volcanic glass or minerals and generally not suitable for bulk rock samples unless the sample powders are fused into homogeneous glass beads. 22

Sample dissolution is a big hurdle for precise and accurate B isotope measurements in silicate materials because trigonal boron is more volatile than tetragonal boron during evaporation, which leads to progressively lower [B] and δ^{11} B in the residue.23,24 Even though some studies have come up with smart ways to circumvent this problem by using a heat lamp for evaporation²⁵ or stopping the evaporation before the liquid fully evaporates,26 the necessary conditions are often difficult to control and monitor as most hotplates and heat lamps heat unevenly. Mannitol can be added to acids during silicate digestion to suppress B volatilization.27 However, this method still requires controlled temperature conditions (<60 °C), and the addition of an organic compound in the run solution matrix may incur additional mass fractionation for ICP-MS measurements. For example, Wei et al.28 reported 0.3-0.5 per mil lower δ¹¹B for 951 standards treated with HF + mannitol dissolution. While this systematic error could be corrected by normalizing the unknowns to chemically treated 951 standards, this added complexity significantly decreases sample processing efficiency.

Alkaline fusion is an alternative sample dissolution method for silicate materials. The obvious advantage of alkaline fusion for boron isotopes is that all the boron species would be present as borate in the resulting alkaline solution, which eliminates the risk of boron isotope fractionation due to evaporation. Early studies using NaOH and Na₂CO₃ required a high-temperature (900–1500 °C) and high flux to sample ratios (8 : 1) (for a review see ref. 29). Tonarini *et al.*³⁰ successfully reproduced the boron isotope and concentration of 951 standards and international rock standards using a K_2CO_3 fusion technique. This method also requires a high temperature (900–1000 °C) and, as a result, expensive lab equipment (Pt crucibles).

In this study, we report the [B] and $\delta^{11}B$ data of geological standards dissolved using sodium peroxide (Na₂O₂) sintering

and purified through a rapid single-column exchange chromatographic procedure adapted from the method used by Hemming and Hanson.²⁵ Sodium peroxide sintering is already routinely used for high-field-strength element (HFSE) and rareearth element (REE) measurements of zircon-bearing rocks to ensure complete sample dissolution.31-33 The application of this dissolution method for the [B] and δ11B analyses of silicate materials is yet to be explored in the literature. We demonstrate that sodium peroxide sintering is suitable for the [B] and δ^{11} B measurements of silicate samples because of the relatively low flux to sample ratio (3-5) and the relatively homogeneous [B] and δ^{11} B compositions of the reagent (<60 ppb and \sim -5%, respectively) (Table 1), which allows for accurate blank correction. Additionally, this method uses a moderate temperature (490 °C), which is achievable in most laboratories with inexpensive glassy carbon crucibles and a muffle furnace. We present a streamlined sample dissolution and single-column chromatographic procedure which is very effective in removing salt and the sample matrix. We demonstrate that the small amounts of residual Na and Si in the eluent do not generate any observable difference in boron isotopic ratios or boron signal intensities as measured using the Nu instrument Plasma II MC-ICP-MS (Multicollector Inductively Coupled Plasma Mass Spectrometer).

Finally, this method can be easily scaled up for low-concentration samples without the need for separate dissolutions of the same sample, which is often required for HF + mannitol dissolution. Normally, a batch of 10 silicate samples can be processed and their boron concentration and isotope compositions can be measured on an ICP-MS within 24 hours. We believe that this new method will greatly expand our ability to use boron isotope and boron concentration measurements in solid earth research.

2. Experimental

2.1 Reagents and equipment for sample dissolution

Sodium peroxide. Sigma-Aldrich (223417) granular +140 mesh reagent grade 97% Na₂O₂ is routinely used for this procedure. We also used ACROS organics ACS grade sodium peroxide 95% for some of our concentration measurements. Sodium peroxide absorbs water from air and as a result loses effectiveness over time. Newly purchased peroxide is generally factory sealed in a bottle that had been flushed with nitrogen. After opening the bottles, they should be used within 2 months.

Storing unused peroxide in airtight containers with a desiccant helps to prolong its effectiveness. Sodium peroxide comes in beads that should be powdered right before sintering and mixed thoroughly with the sample powder to ensure complete dissolution, especially for concentration measurements. Generally, extra sodium peroxide is powdered for each sintering session which permits precise measurements of [B] and δ^{11} B of the reagent (Table 1). The B compositions of each batch of reagents are fairly homogeneous and the blank contribution is generally less than 5% (Table 4). Blank corrections are made for each sample based on the weight and composition of the sodium peroxide powder used for each sample.

Water. Deionized water purified using a Millipore system with a resistance of 18.2 Ω was used for ion-exchange chromatography and the dilution of nitric acid.

Nitric acid. Reagent grade nitric acid was mixed with water to generate a 2% (v/v) solution for all aspects of boron measurements, including ion-exchange chromatography and ICP-MS measurements.

Ammonia. Optima grade Aristar® Ultra ammonia is used to adjust the pH of the solutions to > 9 for boron column chemistry reported in this paper. The B concentration for the ammonia is 0.003 $\mu g \ g^{-1}$, which contributes a negligible amount of boron blank to silicate samples and standards reported in this study and therefore no blank correction was made for the ammonia. However, it is safe to assume that each bottle of ammonia is homogeneous in its boron composition and therefore additional cleaning and/or blank quantification is possible.

Glassy carbon crucibles. Sigradur® GAK3 glassy carbon crucibles were preferred because of their added thickness (3 mm) and the small bottom area which prevents the sample and reagent powder mixture from spreading out too much. We recommend covering the crucibles with the matching GAD2 glassy carbon lids during sintering and during water addition afterward to avoid cross contamination and losing sample solutions during the reaction.

Boric acid standard reference material (NBS SRM 951). Standards are first dissolved in Milli-Q water to make a concentrated solution (100 ppm). Aliquots are then made to match the sample concentration using the same 2% nitric acid used for sample elution and blank measurements on the ICP-MS.

Resin. Amberlite® IRA-743 free base resin from Aldrich® is used for boron ion-exchange chromatography. Amerlite® IRA-743 has high affinity for boron, especially when the beads are powdered. A smaller resin size corresponds to more free sites available for B adsorption. Therefore, resin beads are powdered with an alumina mortar and pestle and a few milliliters of water. After powdering, the resin is wet-sieved and the 63–125 μ m size fraction is used for boron column chromatography. This size fraction seems to work well in terms of both the flow rate and B adsorption.

2.2 Sample digestion

We adapted the sintering dissolution methods used by Kleinhanns³² and Meisel *et al.*³¹ These authors mixed 100 mg of

sample powder with 400 mg of Na₂O₂ beads in glassy carbon crucibles and placed them in a preheated muffle furnace at 490 °C for 30 minutes for sintering. After the crucibles cooled to room temperature, water is added dropwise to the sintered cake to dissolve the samples. We've made two modifications to this method: (1) we powdered the sodium peroxide beads as this greatly increases the efficiency of sintering; (2) we tested preheating vs. not preheating the furnace and found that in both cases the samples were completely dissolved. Therefore, to prevent accidental spillage of the powdered sample and peroxide inside the muffle furnace, which is difficult to clean and can create future contaminations, we recommend placing the crucibles with the samples and peroxide powder mixtures inside the muffle furnace first by hand before the furnace is turned on. After all the crucibles have been positioned inside the furnace, the furnace door is shut and the temperature is set to 490 °C for 30 minutes. After 30 minutes, the furnace is turned off and the crucibles can be taken out with metal tongs and placed on heat-resistant surfaces to cool to room temperature. The sintered cake is generally stuck to the bottom of the crucibles after sintering which presents minimal risks of sample spillage. Regardless, it is generally a good idea to place an additional layer of heat-resistant material inside the furnace just in case.

We calculated the minimum amount of sodium peroxide needed for each sample based on stoichiometry and found that generally a 2:1 flux to sample ratio is more than enough for the reaction, provided that the sample powder is thoroughly mixed with the sintering reagent. Based on this knowledge, we tested different flux to sample ratios and found that a ratio of 3:1 is sufficient for most samples, especially when the Na2O2 beads are powdered on the same day of the sintering experiment. We found that powdering the Na₂O₂ greatly increases the efficiency of sintering. However, as the boron composition is fairly homogeneous in the flux reagent and the weights of the sample and the flux reagents can be accurately obtained, the flux to sample ratio should not matter as long as the sample is fully dissolved. Therefore, to demonstrate the accuracy of the method, we've used flux to sample ratios of 5 or higher for the data collected in this paper.

After the crucibles are cooled to room temperature, they can be taken to a clean lab for dissolution and ion-exchange chromatography. In the clean lab, water is slowly added to the sintered cake in a drop-wise fashion and a vigorous reaction occurs. It is important to place the glass coverslip on the crucible as soon as the water is added and throughout this process to prevent sample spillage and cross contamination. Most of the sample should be fully released from the bottom of the crucible as an alkaline suspension after the addition of 3 ml of water. Most of the B, Li, K and Na are in the supernatant while most other cations form hydroxide precipitates.

Concentrated HCl is added to the crucibles after most of the alkaline suspension has been transferred into pre-weighed 50 ml centrifuge tubes. The glass covers can be rinsed using drops of water and the rinse can easily be collected into the crucibles and combined with the rest of the solution. Finally, the crucibles are rinsed with 1 ml of concentrated HCl three times, which

JAAS

should dissolve all the material from the bottom of the crucibles and neutralize most of the hydroxides in the alkaline suspension to form a clear solution. Additional HCl can be added to this solution until all the hydroxide is dissolved in solution. Colloidal silica gel could form in the solution if it is too concentrated, which is easily resolved by dilution with water. We also found that more diluted solutions generate eluents with lower Si/B ratios (Table 3).

After thorough mixing, the tubes with the solutions are weighed and aliquots are taken for boron isotope dilution or other trace element analyses. For high-precision boron concentration measurements, small aliquots of the sample solution are taken from homogenized solutions and mixed with a small amount of ¹⁰B enriched SRM 952.³⁵ The spike + sample mixture is vortexed and its pH was adjusted using ammonia before column chemistry. An Excel spreadsheet used for boron concentration calculations and blank correction is provided in the ESI.†

To achieve accurate results for concentration measurements using isotope dilution (ID), besides accurate weighing and aliquoting of the solutions, one has to ensure the following: (1) complete sample dissolution; (2) complete equilibration between the sample aliquot and the spike. The sodium peroxide sintering method ensures total sample dissolution when performed correctly, i.e., with enough reagent and thorough mixing between the sample and the powdered reagent. To ensure complete equilibration between the sample aliquot and the spike, it is important to dilute the solution sufficiently so that colloidal silica gel does not form in the solution. It is also recommended that the sample solution be vortexed prior to aliquoting for boron concentration measurements. Additionally, after the spike is added to the ID aliquot, the mixture should be to pH adjustment for vortexed prior ion-exchange chromatography.

After taking aliquots for B ID, the remaining solutions are used for B isotope composition (IC) measurements. Their pH is adjusted using ultrapure ammonia until abundant iron hydroxide precipitates form (i.e., pH \sim 10). The supernatant that contains boron can be separated from the hydroxide precipitates, diluted further, and mixed directly with clean Amberlite resin. Boron in the solution can adsorb onto the resin within an hour. We recommend leaving the resin and supernatant mixture on a shaker to ensure thorough equilibration. Afterward, the resin can be loaded directly onto acid cleaned columns for expedited B purification. Large amounts of sample

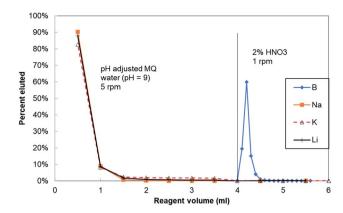


Fig. 1 Elution curve for boron column chemistry. The reagent volumes are in milliliters. The column is calibrated for roughly 70 μ l of 63–125 μ m Amberlite® IRA743 boron specific resin.

can be processed this way without prolonging the sample loading process.

2.3 Column chemistry

Purification of boron through ion-exchange chromatographic columns, or column chemistry, is necessary for both ID and IC measurements on an ICP-MS. We adopted the column chemistry method of Hemming and Hanson²⁵ using 63–125 μ m Amberlite 473 resin and a peristaltic pump. There are a number of advantages of using a peristaltic pump for boron column chemistry: (1) it controls the flow speed, which is important for both sample loading and elution; (2) it minimizes environmental blank because the final eluent containing purified boron is not collected right underneath the columns where samples are loaded; (3) it circumvents the bubble-in-the-resin problem that often occurs due to the change in pH, which could stop a gravity driven column from dripping.

The boron columns are made using 1 ml LDPE pipette tips fitted with a 2 mm thick porous Millipore-Sigma® Supelco® polyethylene frit (manufacturer part #57184) (Fig. 2). Liquids are pumped out using a Watson-Marlow® peristaltic pump and PVC tubing with 1.02 mm ID (accu-rated) 16" length with two clips. The pump speed is set to 5 rpm for sample loading and 1 rpm for sample elution. A low pump speed is utilized to ensure sample-resin equilibration. The eluents are collected into 2 ml centrifuge tubes using a set up with two stacked Eppendorf® 24-place 1.5–2 ml vessel autoclavable clear non-slip tube storage racks (manufacturer part #22364227) (Fig. 2). The PVC tubing

Table 2 Step by step ion-exchange chromatography for $50-70~\mu l$ of $63-125~\mu m$ Amberlite® IRA743 boron specific resin. The pump speeds correspond to flow rates of roughly 0.1~m l min $^{-1}$ at 10~rpm and 0.01~m l min $^{-1}$ at 1~rpm

Pump speed	Reagent
5 rpm	Clean resin and columns with full reservoirs of 2% nitric acid $\times 2$
5 rpm	Condition the columns with 500 µl pH adjusted water ×2
1 rpm 5 rpm	Load the alkaline supernatant of centrifuged sample solutions Elute Na, K, and Li with full reservoirs of pH adjusted water ×3
1 rpm	Elute B with 0.4 ml of 2% nitric acid ×3 (making 1.2 ml total elution)
ı ıhın	Educe b with 0.4 nn of 270 marie acid ×3 (making 1.2 nn total ciution)

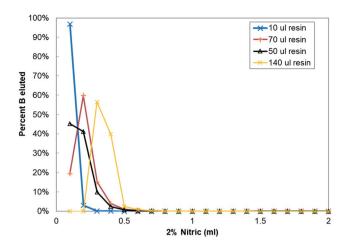


Fig. 2 Elution of boron with different resin volumes showing that 50- $70 \mu l$ of resin is optimal and 1.2 ml of 2% nitric acid is sufficient to wash out 99.9% of B from the column.

should be visually examined prior to column chemistry to ensure that there are no precipitates inside the tubing. In one occasion, we did find unusual boron isotopic fractionation due to carbonate precipitates present in the tubing after the solution was left in the tubing overnight. As a preventive measure, we always recommend completing the column chemistry with water and air, similar to a normal cleaning procedure of ICP-MS tubing after measurements. We recommend changing the tubing whenever the inside of the tubing appears cloudy, which could indicate degradation of the tubing material. Typically, we change the PVC tubing after 5-10 rounds of column chemistry. Making sure that the tubing is dry at the end of a batch of column chemistry can significantly extend the life of the tubing.

Table 3 Measured ¹¹B intensities and ¹¹B/¹⁰B ratios of 100 μl eluents of a column with 50 µl of Amberlite resin and 1 ml of seawater. B1 to B15 correspond to the lab ID of each 100 μ l eluent. The δ^{11} B values of the first 700 μ l and the first 1200 μ l of the eluent are calculated and both agree with published values for seawater

	Intensity	B% eluted	$^{11}{ m B}/^{10}{ m B}$	$\delta^{11} B$
B1	153.20	45.35%	4.713	40.86
B2	139.20	41.21%	4.705	39.09
В3	33.60	9.95%	4.702	38.43
B4	8.00	2.37%	4.693	36.44
B5	2.36	0.70%	4.692	36.22
B6	0.61	0.18%	4.683	34.23
B7	0.40	0.12%	4.702	38.43
B8	0.14	0.04%	4.674	32.24
B9	0.06	0.02%	4.679	33.35
B10	0.04	0.01%	4.658	28.71
B11	0.04	0.01%	4.632	22.97
B12	0.04	0.01%	4.603	16.56
B13	0.03	0.01%	4.617	19.66
B14	0.03	0.01%	4.58	11.48
B15	0.02	0.00%	4.584	12.37
B16	0.02	0.00%	4.576	10.60
Sum	337.79	100%		
First 700 µl		99.88%		39.68
First 1200 µl		99.97%		39.72

Prior to ion-exchange chromatography, pH adjusted solutions are centrifuged and the supernatants are loaded onto acid cleaned and pH adjusted columns with resin for boron column chemistry. In the boron isotope literature, it is generally recommended that the pH of the solution used for ion-exchange chromatography is maintained at 10 or lower to avoid hydroxide precipitates.^{30,36} The excellent agreement in our [B] and δ¹¹B results of geological standards loaded onto Amberlite resin as high pH solutions demonstrates that while some of the boron in the solution is adsorbed to the hydroxide precipitates, the boron of the supernatant has the same isotopic composition as the boron in the precipitate. Therefore, it is advantageous to keep the pH higher rather than lower for boron purification using Amberlite resin.

Amberlite resin contains a hydrophobic polystyrene backbone and a tertiary amine group with two hydroxyls that will only complex with boron under alkaline conditions.³⁷ Darwish et al.34 found that finely fractionized Amerlite IRA743 resin is

Table 4 Instrument parameters used for boron isotope measurements using the Nu instrument Plasma II MC-ICP-MS

Parameter	Value
RF forward power	1300
Ar cooling gas flow	13 L min ⁻¹
Ar auxiliary gas flow	1 L min ⁻¹
Nebulizer pressure	38.8 psi
Cup setting	H7 and L6 Faraday cups
Spray chamber	Peltier cooled Twister®
	spray chamber with Helix®
Injector	Quartz glass
Nebulizer	ARG-1-UM01Q Micro Mist quartz glass
Sample cone	Ni 1.15 mm hole
Skimmer cone	NI WA7 skimmer cone
Instrument resolution	400 (low)
Integration time	5 s
Source V1	59
Source H1	-13
Source H2	65
Source V2	-48
Transfer H1	32
Transfer V2	1
Transfer V2	27
HV 1	5998
HV 2	4120
HV 3	3689
HV 4	1800
HV 5	2350
HV 6	2274
Quad 1	44.2
Quad 2	-142
ESA plates	334.7
ESA V Dell	75
Rotation	-2
Suppressor	-100
MOP	-15
ICO deflector 2	549
ICO quad	-61
ICO quad Dell	80
IC2 deflector 2	-610
IC3 deflector 2	-574

JAAS Paper

much more effective for boron removal than larger resin beads regardless of the reaction time. They also found the high percentage of boron adsorption from dilute solutions at high pH and the concentration of other salt ions (e.g., Na⁺) does not appear to negatively impact boron adsorption onto the resin. These findings are consistent with earlier findings by Lemarchand et al.26 Lemarchand et al.26 found that at a pH of 8, unground Amberlite IRA743 resin has an exchange capacity of about 1.5 mg ml⁻¹ or 1.5 μ g μ l⁻¹, which is lower than earlier estimates of around 10 mg ml⁻¹.38,39 It is evident from these earlier results and our own tests that the amount of acid needed to elute 100% of boron from the resin is proportional to the amount of resin used, which is probably related to the amount of acid required to change the pH of the resin before the majority of boron is eluted (Fig. 2). Therefore, a minimum amount of resin is used to avoid overdiluting the final eluent which is measured directly on the ICP-MS without the need for further evaporation. The column chemistry and elution curve presented in Table 2 and Fig. 1 is for 50-70 µl of ground and sieved resin with particle sizes between 63 µm and 125 µm, which is sufficient for 75–100 μg of boron.

Kakihana *et al.*⁴⁰ found that ¹⁰B preferentially adsorbs on certain anion resins but not on cation resins. This effect is confirmed experimentally by Lemarchand *et al.*²⁶ who found higher δ^{11} B in the first 50% of the eluent and lower δ^{11} B in the last 25% of the eluent. They suggested that the loss of 1% boron

at the end of the elution should cause a shift of 0.2% for the recovered solution. We found that 99.97% of boron is collected in the first 1200 μ l of eluent with our method and both the first 700 μ l of the eluent and the first 1200 μ l of the eluent yielded accurate δ^{11} B values for seawater as very little boron is eluted after 700 μ l of 2% nitric acid wash (Table 3).

Finally, we note that nitric acid had traditionally been avoided in boron purification chemistry as it causes an isobaric interference for PTIMS measurements of boron isotopes due to CsC₂NO⁺. However, this problem does not exist for plasma mass spectrometers that measure boron isotopes directly. A recent study also found that nitric acid generated a smaller mass fractionation effect than HCl and HF.⁴¹ Additionally, nitric acid is routinely diluted in large quantities for various measurements in our labs. This ensures that the same acid is used for sample dilution and blank correction. Therefore, we chose to use nitric acid to elute boron in our work.

3. Instrumentation and measurement strategy

Both isotope dilution and isotopic compositions were measured at the Facility for Isotope Research and Student Training (FIRST) laboratory at SUNY Stony Brook University on a Nu Plasma II MC-ICPMS equipped with 16 Faraday cups and 5 ion counters. ¹¹B is measured on Faraday cup H7 while ¹⁰B is

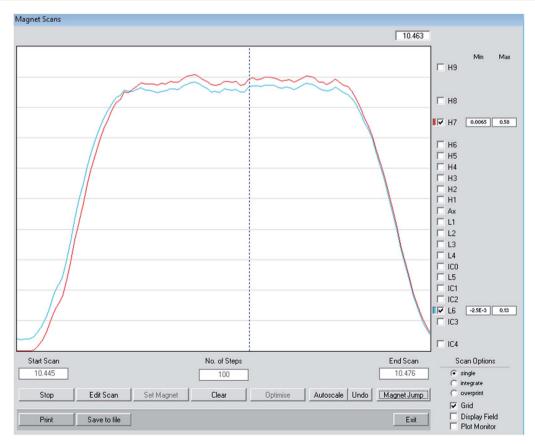


Fig. 3 Example B isotope peaks acquired using the PII Nu instrument MC-ICP-MS at Stony Brook University (SBU).

measured on Faraday cup L6. Each measurement begins with a peak center on B11 and 30 seconds of zero measured by ion deflection. Each analysis contains 25 cycles and takes about 2 minutes. The internal precision is generally better than 0.1% (1SE) and the external precision monitored by repeated 951 analysis is generally better than 0.5% (2SD). A detailed list of the instrument parameters used is provided in Table 4 and a typical peak alignment is shown for 50 ppb of 951 standards (Fig. 3). A Cetac® auto sampler was used for the measurements reported in this study.

Boron is volatile and can condense on the spray chamber, especially when water droplets are present, which makes it difficult to rinse. As a result, people have tried to dissociate boron from the sample introduction system by altering the pH environment of the spray chamber with the introduction of ammonia gas. However, we and others have noticed that this method only temporarily reduces the apparent boron blank in the system, because as soon as acids are introduced, the high boron background returns.²⁸ Alternatively, some people use long HCl and/or HF acid washes in between samples and standards.28 In this study, we use the method of blank subtraction. Instead of bracketing samples directly with SRM 951, we bracket both SRM 951 runs and sample runs with full measurements of the same 2% nitric acid that was used to dilute the standards and the samples. The boron isotope intensities measured on the bracketing nitric acid are subtracted from the standards and the samples first, and then the ¹¹B/¹⁰B values of the samples are normalized to the ¹¹B/¹⁰B values of the SRM 951 standards run before and after the samples to correct for mass fractionation. We find the best stability and reproducibility runs can be achieved with keeping the acid matrix constant throughout the measurements. Therefore, it is important to use the same 2% nitric acid throughout the entire process, including the wash, the sample matrix, the standard matrix, and the acid for blank subtraction. This method also avoids the need for expensive parts such as sapphire injectors and platinum cones. Instead, we found that

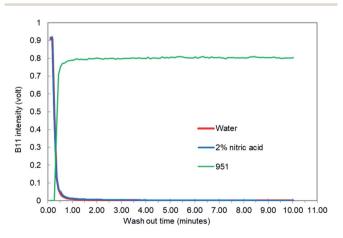


Fig. 4 Boron washout using water and 2% nitric acid, respectively, directly after running 60 ppb of 951 solution, shows that 60 seconds of water wash followed by 60 seconds of nitric acid wash should be sufficient to effectively wash out the residual boron. The sample uptake curve of the 951 solutions is also shown.

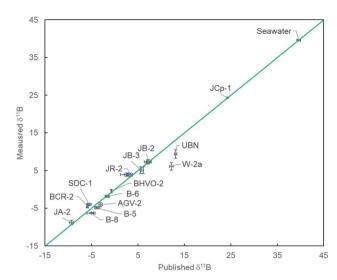


Fig. 5 Comparison between the measured and published boron isotope values for international standards. The green line is the 1:1 line. Error bars shown represent the 2σ combined standard errors of the mean.

routine cleaning of the glass spray chamber with warm tap water and thorough drying of the spray chamber and the glass injector helped to improve both the sensitivity and stability of boron measurements. Fig. 4 demonstrates that 60 seconds of washing using clean water or 2% nitric acid is sufficient to reduce the boron background between samples. This is followed by 60 seconds of nitric acid or sample uptake which further reduces the boron background and ensures the accuracy of the sample measurements (Fig. 4). A full run sequence is 60 s wash - nitric acid - 60 s wash - 951-60 s wash - nitric acid - 60 s wash - sample - 60 s wash - nitric acid - 60 s wash - 951-60 s

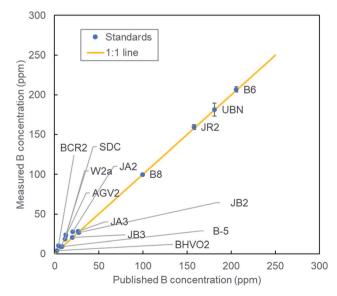


Fig. 6 Measured vs. published boron concentrations of silicate geological reference standards. Error bars shown represent the 2σ combined standard errors of the mean

measurements, relative weighing errors are added to the combined error of IC measurements to generate the combined ID error with methods similar to those reported by Miller and Miller and Miller (eqn (8)). The equations used for these calculations are provided in the ESI. The relative weighing errors are estimated from repeated pipetting and weighing measurements carried out by the IAEA stands for the International Atomic Energy Agency. PTIMS and NTIMS stand for the positive-ion and negative-ion Thermal Ionization Mass Spectrometer, respectively. The IC uncertainties reported in this table are the square root of the sum of the internal errors (2SE of the 25 cycles of analysis) and the external error (2SD of the 951 analyses from the run session). For ID Table 5 Measured and published boron concentrations and isotopic compositions of silicate geological standards, seawater and coral. USGS standards for United States Geological Survey. operator

))))															
		Measured values	ed valu	sər					Published values	ed val	sən				
		$\delta^{11} \mathbf{B}$	2SE	z	[B] ppm	2SE	Z	% B blank	$\delta^{11} B$	2SE	[B] ppm	2SE	Reference	Dissolution method	Analytical method
IAEA-B-5 IAEA-B-5	Basalt Basalt	-4.90	0.3	15	9.45	0.3	H	3.05%	-4 -3.8	0.3	8.42	0.3	Tonarini <i>et al.</i> , 2003 (ref. 48) Brand <i>et al.</i> , 2014 (ref. 49)	K_2CO_3	PTIMS
IAEA-B-5	Basalt	,		,	0	6			-3.6	0.4		ļ	Wei et al., 2013 (ref. 28)	HF + mannitol + H ₂ O ₂	MC-ICP-MS
IAEA-B-6 IAEA-B-6	Obsidian Obsidian	-1.90	0.5	19	206.69	3.28	°	0.13%	-1.6 -1.8	0.4	205.8	15	Tonarını <i>et al.</i> , 2003 (ret. 48) Brand <i>et al.</i> , 2014 (ref. 49)	K_2CO_3	PTIMS
IAEA-B-6	Obsidian								-1.6	0.3			Wei et al., 2013 (ref. 28)	$HF + mannitol + H_2O_2$	MC-ICP-MS
IAEA-B-8	Clay	-6.30	0.2	19	99.94	69.0	3 (0.26%	-4.8	0.3	2.66	33	Tonarini et al., 2003 (ref. 48)	K_2CO_3	PTIMS
IAEA-B-8	Clay								-5.1	6.0			Brand <i>et al.</i> , 2014 (ref. 49) We at all 2013 (ref. 20)	UE + monnitol + U	SM act can
IR-1	Ciay Rhvolite								- 4.0 2.8	2.0			Wei <i>et ut.</i> , 2013 (161: 26) Wei <i>et al.</i> , 2013 (ref. 28)	HF + mannitol + H_2O_2	MC-ICP-MS
JR-2	Rhyolite	3.90	0.4	×	159.3	2.85	3	0.17%	2.8	!	158	5.7	Rosner and Meixner, 2004 (ref. 50)	K,CO ₃	PTIMS
JR-2	Rhyolite								3.4				Rosner and Meixner, 2004 (ref. 50)	HF + mannitol	PTIMS
JR-2	Rhyolite								2.9				Rosner and Meixner, 2004 (ref. 50)	HF + mannitol	PTIMS
JR-2	Rhyolite								2.7	0.2			Wei et al., 2013 (ref. 28)	HF + mannitol + H_2O_2	MC-ICP-MS
JR-2	Rhyolite								2.5	1.3			Kaseman et al., 2001 (ref. 51)	K_2CO_3	NTIMS
JR-2	Rhyolite								2.9	0.5			Kaseman et al., 2001 (ref. 51)	K_2CO_3	PTIMS
JR-2G	Rhyolite								5.6	0.5			Kaseman $et al.$, 2001(ref. 51)	K_2CO_3	PTIMS
JB-2	Basalt	7.30	9.0	6	26.61	0.31	1 (0.86%	7.1	8.0	30.4	3.2	Kaseman $et al.$, 2001(ref. 51)	K_2CO_3	PTIMS
JB-2	Basalt								7.2	0.5	27.5	1.5	Tonarini <i>et al.</i> , 1997 (ref. 30)	K_2CO_3	PTIMS
JB-2	Basalt								7.2	0.3			Brand et al., 2014 (ref. 49)		
JB-2	Basalt								7.1	0.3			Kaseman $et al., 2001(ref. 51)$	K_2CO_3	NTIMS
JB-2	Basalt								7.1	0.1			Nakamura <i>et al.</i> , 1992 (ref. 27)	HF + mannitol	PTIMS
JB-3	Basalt	5.10	6.0	4	20.54	0.15	, , ,	1.31%	6.1	0.0	20	2	Rosner and Meixner, 2004 (ref. 50)	K_2CO_3	PTIMS
JB-3	Basalt								5.6	0.1	18		Wei et al., 2013; ²⁸ USGS	$HF + mannitol + H_2O_2$	MC-ICP-MS
JB-3	Basalt								5.6	0.0			Rosner and Meixner, 2004 (ref. 50)	HF	FTIMS
JA-1	Andesite								5.3	0.0			Rosner and Meixner, 2004 (ref. 50)	HF	PTIMS
JA-2	Andesite	-8.80	9.0	8	27.57	0.39	3 (0.95%	-9.3	0.4	20.7		Wei et al., 2013; ²⁸ USGS	HF + mannitol + H ₂ O ₂	MC-ICP-MS
JA-3	Andesite	5.52	9.0	8	28.38	0.85	1 (0.93%			26.8	7	Rosner and Meixner, 2004 (ref. 50)	K_2CO_3	PTIMS
J Cp-1	Coral	24.30	0.2	22					24.2				Brand et al., 2014 (ref. 49)		
Seawater		39.60	0.2	37					39.6	0.4			Brand et al., 2014 (ref. 49)		
AGV-2	Andesite	-4.10	0.5	3	8.98	0.02	8	2.87%	-3	0.4	7		Wei et al., 2013; ²⁸ USGS	HF + mannitol + H_2O_2	MC-ICP-MS
BCR-2	Basalt	-4.43	0.5	4	10.40	0.20	T	5.94%	-5.9	0.2	4.2		Wei et al., 2013; ²⁸ USGS	$HF + mannitol + H_2O_2$	MC-ICP-MS
BHVO-2	Basalt	-0.53	0.5	11	4.30	0.15		9.58%	-0.7	0.1	2.5		Wei et al., 2013; ²⁸ USGS	HF + mannitol + H_2O_2	MC-ICP-MS
SDC-1	Schist	-4.00	0.3	8	23.40	0.22		2.03%	-5.5	0.4	12.8		Wei et al., 2013; ²⁸ USGS	HF + mannitol + H_2O_2	MC-ICP-MS
UBN	Serpentinite	9.40	11	4	181.20	8.20	7	0.19%	13.1	0.3	140		Wei et al., 2013; ²⁸ USGS	$HF + mannitol + H_2O_2$	MC-ICP-MS
W-2a	Diabase	6.10	10	8	18.62	0.31	Η.	2.16%	12.2	0.4	12		Wei <i>et al.</i> , 2013; ²⁸ USGS	$HF + mannitol + H_2O_2$	MC-ICP-MS

wash - nitric acid - 60 s wash. The concentration of the 951 standards and the sample should be matched with respect to their ¹¹B intensities within 10%. This blank subtraction method should also correct any residual isobaric interferences from ⁴⁰Ar⁴⁺ on ¹⁰B even though this isobaric interference should be sufficiently avoided by aligning the right shoulder of the 11B peak with the right shoulder of the ¹⁰B peak (Fig. 3), and by the peak centering on 11B.

To monitor the external reproducibility of the unknowns, we propose that purified seawater be run as unknowns repeatedly throughout the run session. Seawater has high B concentrations and well-constrained B isotopic ratios, which is very different from silicate materials and 951. Accurate measurements of purified seawater validate both the chromatography and the mass spectrometry. Seawater is included in every batch of column chemistry as an unknown. Repeated measurements of seawater within each session generally yield better than 0.5% 2SD external reproducibility.

A typical ICPMS measurement session begins with thorough cleaning of the sample and skimmer cones, rinsing and drying of the nebulizer and the injector assembly. After tuning for optimal intensity, stability, and the peak shape, the machine is washed in water while it warms up for about 1 hour. After the warm up and further tuning, 20 measurements of 951 are carried out to assess machine stability, which takes about 1.5 hours. Seawater samples that have been purified for B using the same ion-exchange chromatography are run first after this warm up period and an agreement with the long-term seawater average within 95% confidence interval needs to be achieved before the samples are run. Further tuning and troubleshooting are performed until these criteria are met before measuring unknowns.

Results and discussion

4.1 Isotopic compositions of international standards

We analyzed geologic reference materials with vastly different compositions ranging from felsic clay and rhyolite to mafic basalts and ultramafic serpentinite and present the data in Table 2 along with published values. The excellent accuracy and reproducibility of both [B] and $\delta^{11}B$ of these vastly different silicate standards demonstrate the validity of this method (Fig. 5 and 6). The small deviations between measured and published δ¹¹B between some of the standard materials may reflect inherent heterogeneity of boron isotopic compositions in these standards (e.g., W-2a and UBN), which were not prepared specifically for boron isotopes. Finally, we find that the recommended B concentrations from the USGS are generally 20-30% lower than high precision B ID measurements carried out using the alkaline fusion method, which is consistent with boron loss during traditional acid dissolution.

4.2 Potential matrix effects

Matrix effects are an important factor to consider for plasma mass spectrometer measurements. The presence of excessive amounts of salt matrix in the analyte can reduce signal

Table 6 Si/B and Na/B ratios of purified boron for studied reference materials. For 50 ppb solution, the highest Si concentration in the eluent is 0.6 ppm, and the highest Na concentration is 0.25 ppm

Si/B	Na/B
0.02	0.01
11.56	0.45
0.39	0.22
6.46	0.02
6.57	0.04
6.39	0.51
0.93	2.16
1.32	0.73
1.47	4.74
0.03	0.23
0.05	0.02
0.77	0.29
	0.02 11.56 0.39 6.46 6.57 6.39 0.93 1.32 1.47 0.03

intensity, and clog up tubing and cones of the ICPMS. Some matrix elements may also change the mass fractionation behavior of different isotopes, which reduces the effectiveness of the standard-sample bracketing method for mass fractionation correction. The Amberlite resin is very effective in separating B from Na and other salts (Fig. 1). However, trace amounts of Na and Si are still present in the final eluent (Table 5). Therefore, doping tests were carried out to assess the effect of sample matrices. Generally, the Na/B ratio is less than 5 in the eluent after column chemistry, which means for a 50 ppb B solution, there is up to 0.25 ppm of Na. This level of Na does not appear to affect the measurements of boron isotopic ratios or cause any noticeable salt deposit. We found no statistical difference in measurements of seawater B isotopic ratios with the addition of up to 480 ppm of Na.43 These findings are consistent with observations from various earlier studies. 44-46

Similar to B, but to a much lesser extent, metasilicates can adsorb to the Amberlite resin and elute with acids.⁴⁷ These authors suggested that the presence of metasilicates in the eluent could generate elevated δ11B in high Si/B samples due to matrix effects, which could limit the application of alkaline fusion for boron isotope analyses using ICP-MS. We find that the eluents have lower Si/B ratios when the sintered supernatants are more diluted (Table 6). Without additional dilution,

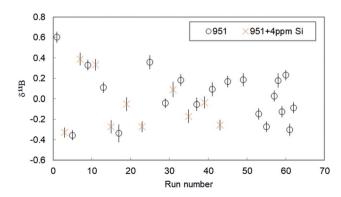


Fig. 7 δ^{11} B values of 50 ppb 951 standards and bracketed 951 standards doped with 4 ppm of Si. Error bars shown represent the 1σ internal errors of each measurement.

JAAS Paper

the eluents of geologic reference materials ranging from rhyolite (JR-2) to clay (B-8) yielded Si/B ratios of up to 12, which means up to 0.6 ppm Si in 50 ppb B. We observed no deviation in measured B isotopic ratios for 951 standards doped with 4 ppm of Si compared with pure 951 standards (Fig. 7), which means that the boron isotopes of samples purified using alkaline fusion can be accurately measured on the ICP-MS, at least for the Nu Plasma II MC-ICPMS.

Conclusion

In this study, we report the first set of boron concentration and boron isotope data on a large set of silicate geological reference materials dissolved through sodium peroxide sintering. We demonstrate that the boron blank level in the sintering reagent is relatively low and homogeneous which permits accurate blank subtraction. We also demonstrate that the single-column exchange chromatographic procedure using a peristaltic pump is highly effective in removal of the sample matrix and the small amounts of residual Na and Si in our samples do not affect the accuracy and precision of our measurements. Our measured [B] and δ¹¹B values of international rock standards agree very well with published values. This method does not require expensive equipment (e.g., platinum crucibles or cones and sapphire injectors) or dangerous reagents (e.g., HF). It is also extremely efficient and easy to scale up. We believe that this method will help to greatly expand our knowledge of boron in the terrestrial system and beyond.

Author contributions

YC conceived the study and wrote the manuscript. TR perfected the column chemistry, steered the development of the methodology, and edited the manuscript. KMW especially, along with XJ and DW, contributed to the method development and data collection. All authors reviewed the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

YC would like to thank Gary Hemming for his friendship and the numerous inspiring conversations about boron, geochemistry, and life in general, no matter when the conversation strikes, be it at a conference or on the subway where the idea for this paper first formed. We thank Sidney Hemming for years of support and encouragement. We would also like to thank Steven Goldstein and Louise Bolge for providing the crucibles and some of the rock standards. This study was supported by EAR-GeoPRISIMS 1457293 and EAR-1714892 to YC, NSF grants EAR-1324725 to TR, and two seed grants from the Lamont Climate Center to YC. TR would also like to acknowledge NSF grant 1324725. The FIRST lab instrumentation was funded through the NSF Major Research Instrumentation grant EAR0959524.

References

- 1 E. J. Catanzaro, *Boric Acid: Isotopic and Assay Standard Reference Materials*, National Bureau of Standards, Institute for Materials Research, 1970.
- 2 K. Klochko, A. J. Kaufman, W. Yao, R. H. Byrne and J. A. Tossell, *Earth Planet. Sci. Lett.*, 2006, 248, 276–285.
- 3 O. Nir, A. Vengosh, J. S. Harkness, G. S. Dwyer and O. Lahav, *Earth Planet. Sci. Lett.*, 2015, **414**, 1–5.
- 4 T. B. Coplen, Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents, US Department of the Interior, US Geological Survey, 2002.
- 5 H. R. Marschall, in *Boron Isotopes*, ed. H. Marschall and G. Foster, Springer International Publishing, Cham, 2018, pp. 189–215.
- 6 H. Palme and H. S. C. O'Neill, *The Mantle and Core*, 2005, vol. 1.
- 7 R. Rudnick, S. Gao, H. Holland and K. Turekian, *The crust*, 2003, vol. 3, pp. 1–64.
- 8 H. Schwarcz, E. Agyei and C. McMullen, *Earth Planet. Sci. Lett.*, 1969, **6**, 1–5.
- A. Spivack and J. Edmond, *Geochim. Cosmochim. Acta*, 1987,
 1033–1043.
- T. Ishikawa and E. Nakamura, *Earth Planet. Sci. Lett.*, 1993,
 117, 567–580.
- 11 J. C. M. De Hoog and I. P. Savov, in *Boron Isotopes*, ed. H. Marschall and G. Foster, Springer International Publishing, Cham, 2018, pp. 217–247.
- 12 T. Moriguti, T. Shibata and E. Nakamura, *Chem. Geol.*, 2004, 212, 81–100.
- 13 T. Ishikawa and F. Tera, Oceanogr. Lit. Rev., 1998, 4, 664.
- 14 T. Ishikawa, F. Tera and T. Nakazawa, *Geochim. Cosmochim. Acta*, 2001, **65**, 4523–4537.
- 15 W. P. Leeman, S. Tonarini and S. Turner, *Geochem., Geophys., Geosyst.*, 2017, **18**, 1126–1162.
- 16 R. Gonfiantini, S. Tonarini, M. Gröning, A. Adorni-Braccesi, A. S. Al-Ammar, M. Astner, S. Bächler, R. M. Barnes, R. L. Bassett, A. Cocherie, A. Deyhle, A. Dini, G. Ferrara, J. Gaillardet, J. Grimm, C. Guerrot, U. Krähenbühl, G. Layne, D. Lemarchand, A. Meixner, D. J. Northington, M. Pennisi, E. Reitznerová, I. Rodushkin, N. Sugiura, R. Surberg, S. Tonn, M. Wiedenbeck, S. Wunderli, Y. Xiao and T. Zack, Geostand. Geoanal. Res., 2003, 27, 41–57.
- 17 C. Martin, E. Ponzevera and G. Harlow, *Chem. Geol.*, 2015, 412, 107–116.
- 18 C. Martin, K. E. Flores and G. E. Harlow, *Geology*, 2016, **44**, 899–902.
- 19 C. Martin, K. E. Flores, A. Vitale-Brovarone, S. Angiboust and G. E. Harlow, *Chem. Geol.*, 2020, 545, 119637.
- 20 H. R. Marschall and B. D. Monteleone, *Geostand. Geoanal. Res.*, 2015, 39, 31–46.
- 21 H. R. Marschall, V. D. Wanless, N. Shimizu, P. A. E. Pogge von Strandmann, T. Elliott and B. D. Monteleone, *Geochim. Cosmochim. Acta*, 2017, 207, 102–138.

- 22 I. P. Savov, W. P. Leeman, C.-T. A. Lee and S. B. Shirey, J. Volcanol. Geotherm. Res., 2009, 188, 162-172.
- 23 B. Chetelat, J. Gaillardet, R. Freydier and P. Negrel, Earth Planet. Sci. Lett., 2005, 235, 16-30.
- 24 R. E. Zeebe and J. W. B. Rae, Chem. Geol., 2020, 550, 119693.
- 25 N. G. Hemming and G. N. Hanson, Chem. Geol., 1994, 114, 147-156.
- 26 D. Lemarchand, J. Gaillardet, C. Göpel and G. Manhès, Chem. Geol., 2002, 182, 323-334.
- 27 E. Nakamura, T. Ishikawa, J.-L. Birck and C. J. Allègre, Chem. Geol., 1992, 94, 193-204.
- 28 G. Wei, J. Wei, Y. Liu, T. Ke, Z. Ren, J. Ma and Y. Xu, J. Anal. At. Spectrom., 2013, 28, 606.
- 29 J. K. Aggarwal and M. R. Palmer, Analyst, 1995, 120, 1301-
- 30 S. Tonarini, M. Pennisi and W. P. Leeman, Chem. Geol., 1997, 142, 129-137.
- 31 T. Meisel, N. Schoner, V. Paliulionyte and E. Kahr, Geostand. Newsl., 2002, 26, 53-61.
- 32 I. C. Kleinhanns, K. Kreissig, B. S. Kamber, T. Meisel, T. F. Nagler and J. D. Kramers, Anal. Chem., 2002, 74, 67-73.
- 33 Y. Cai, M. Rioux, P. B. Kelemen, S. L. Goldstein, L. Bolge and A. R. Kylander-Clark, Earth Planet. Sci. Lett., 2015, 431, 119-126.
- 34 N. B. Darwish, V. Kochkodan and N. Hilal, Desalination, 2015, 370, 1-6.
- 35 NIST, Certificate of analysis: Standard reference material(R) 952, 1999, http://www.nist.gov/.
- 36 X. Y. Chen, F. Z. Teng and D. C. Catling, Rapid Commun. Mass Spectrom., 2019, 33, 1169-1178.
- 37 C. Jacob, Desalination, 2007, 205, 47-52.
- 38 E. Kiss, Anal. Chim. Acta, 1988, 211, 243-256.
- 39 W. P. Leeman, R. D. Vocke Jr, E. S. Beary and P. J. Paulsen, Geochim. Cosmochim. Acta, 1991, 55, 3901-3907.
- 40 H. Kakihana, M. Kotaka, S. Satoh, M. Nomura and M. Okamoto, Bull. Chem. Soc. Jpn., 1977, 50, 158-163.

- 41 X. Chen, L. Zhang, G. Wei and J. Ma, J. Anal. At. Spectrom., 2016, 31, 2410-2417.
- 42 J. C. Miller and J. N. Miller, Analyst, 1988, 113, 1351-1356.
- 43 M. A. Smit, A. Scherstén, T. Næraa, R. B. Emo, E. E. Scherer, P. Sprung, W. Bleeker, K. Mezger, A. Maltese, Y. Cai, E. T. Rasbury and M. J. Whitehouse, Geochemical Perspectives Letters. 2019. 23-26. DOI: 10.7185/ geochemlet.1930.
- 44 J. K. Aggarwal, D. Sheppard, K. Mezger and E. Pernicka, Chem. Geol., 2003, 199, 331-342.
- 45 P. Louvat, J. Bouchez and G. Paris, Geostand. Geoanal. Res., 2011, 35, 75-88.
- 46 M. Y. He, L. Deng, H. Lu and Z. D. Jin, J. Anal. At. Spectrom., 2019, 34, 1026-1032.
- 47 H. Z. Wei, S. Jiang, T. L. Yang, J. H. Yang, T. Yang, X. Yan, B. P. Ling, Q. Liu and H. P. Wu, J. Anal. At. Spectrom., 2014, 29, 2104-2107.
- 48 S. Tonarini, M. Pennisi, A. Adorni-Braccesi, A. Dini, Ferrara, R. Gonfiantini, M. Wiedenbeck M. Gröning, Intercomparison of Boron Isotope Concentration Measurements. Part Selection, I: Preparation and Homogeneity Tests of the Intercomparison Materials, Geostand. Geoanal. Res., 2003, 27, 21-39.
- 49 W. A. Brand, T. B. Coplen, J. Vogl, M. Rosner and T. Prohaska, Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report), Pure Appl. Chem., 2014, 86, 425-467.
- 50 M. Rosner and A. Meixner, Boron Isotopic Composition and Concentration of Ten Geological Reference Materials, Geostand. Geoanal. Res., 2004, 28, 431-441.
- 51 S. Kasemann, A. Meixner, A. Rocholl, T. Vennemann, M. Rosner, A. K. Schmitt and M. Wiedenbeck, Boron and Oxygen Isotope Composition of Certified Reference Materials NIST SRM 610/612 and Reference Materials JB-2 and JR-2, Geostand. Geoanal. Res., 2001, 25, 405-416.