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ABSTRACT Here, we report the genomic sequence of Aureococcus anophagefferens
virus, assembled into one circular contig from both Nanopore and Illumina reads.
The genome is 381,717 bp long with a GC content of 29.1%, which includes an addi-
tional
5-kb region between the previously predicted polar ends of the reference genome.

We sequenced the genome of Aureococcus anophagefferens virus (AaV), a member
of the family Mimiviridae, within the phylum Nucleocytoviricota. AaV has been

propagated on its pelagophyte host, Aureococcus anophagefferens, since its isolation in
the early 2000s and was first sequenced and assembled using Illumina reads in 2014
(1–3). Since then, the virus has been maintained via coculture with A. anophagefferens
CCMP 1984. The original assembly was predicted to have terminal ends rich in leucine
repeat-containing coding sequences (3, 4). As repetitive regions can lead to improper
assemblies when exclusively employing short-read sequencing exclusively, we rese-
quenced AaV using short- and long-read sequencing (5).

Viral DNA was extracted from a lysed, xenic A. anophagefferens culture as described
by Truchon et al. (6). Briefly, virions were concentrated using tangential flow filtration
and ultracentrifugation to enrich for virus particles. Particles were digested in agarose
CHEF plug molds (Bio-Rad, Hercules, CA, USA) with proteinase K before being run on a
low-melting point agarose gel. High-molecular-weight DNA was excised from the gel
and purified using a phenol-chloroform method (6).

Long-read sequencing was performed using the Oxford Nanopore Technologies
(ONT; Oxford, UK) platform. Genomic DNA libraries generated using the ligation
sequencing kit (ONT) were sequenced on a MinION R9.4 flow cell (ONT), producing
284,000 reads that averaged 2,503 bp. Bases were called using the Guppy version 3.0.3
base caller using the config file dna_r9.4.1_450bps_fast.cfg (7). Adapter sequences
were removed using Porechop version 0.2.4 (8), and the reads were trimmed with a
quality score of 9 and a minimum length of 500 bp using NanoFilt version 2.7.1 (9). The
reads were aligned to the AaV reference genome using BBMap version 38.90 (10) and
used in the assembly, performed using Canu version 2.1 (11).

DNA was also extracted for short-read sequencing by treating concentrated virions
with proteinase K for 1 h at 37°C and extraction via standard phenol-chloroform meth-
ods (12). The DNA library was prepared and sequenced on a NextSeq 2000 instrument
(Illumina, San Diego, CA, USA) by the Microbial Genome Sequencing Center, generating
12,378,846 reads in 150-bp paired-end format. The Illumina short reads were trimmed
for quality using the default settings in CLC Genomics Workbench (Qiagen, Hilden,
Germany) and mapped to the Canu-assembled contig using Bowtie 2 version 2.2.3 (13).
The assembly was polished with the Illumina reads using Pilon version 1.23 (14), which
generated a closed, circular contig of 381,717 bp. The quality and completeness were
assessed using CheckV (15). Coding sequences and tRNAs were predicted using Prodigal
version 2.6.3 (16) and tRNAscan-SE version 2.0 (17), respectively.
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A total of 384 coding sequences (CDS) were predicted. Functions were pre-
dicted from translated amino acid sequences using the eggNOG-mapper Web
server (18). One novel CDS encodes for a putative DNA-dependent RNA polymer-
ase subunit (Rpb2). Only 1 of the 11 RNA polymerase genes encoded by AaV is ho-
mologous to the novel subunit, though the two sequences have an amino acid
identity below 30%. This supports the hypothesis that two copies of this gene
arose from an ancestral duplication among mimiviruses of eukaryotic phototrophs
(19). Among other changes to the genome are apparent duplications, gene elon-
gations, and gene combinations missed during the initial assembly (Fig. 1).

FIG 1 Genomic maps (created in Circos [20]) comparing the original AaV assembly (i.e., 2013) to the updated assembly (i.e., 2022). The complete
genome sequences of the two assemblies were aligned, and the coding densities were compared. The rings (from inner to outer) indicate the GC
content (2013), minus-strand coding sequences (2013), genomic sequence (2013), plus-strand coding sequences (2013), minus-strand coding
sequences (2022), genomic sequence (2022), plus-strand coding sequences, and GC content (2022). Coding sequences present in only one
genome are highlighted in yellow, and tRNAs are represented on the genomic sequence (2022) by black bands. Novel and known Rpb2 coding
sequences are marked with an asterisk.
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Data availability. The raw data and the assembled genome have been indexed at
NCBI under the BioProject accession number PRJNA809211. The assembled genome
has been assigned the GenBank accession number OM876856.1. The raw MinION and
Illumina reads have been archived under the Sequence Read Archive accession num-
bers SRR16764708 to SRR16764709.
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