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Abstract—Recent graph neural networks (GNNs) with the
attention mechanism have historically been limited to small-
scale homogeneous graphs (HoGs). However, GNNs handling
heterogeneous graphs (HeGs), which contain several entity and
relation types, all have shortcomings in handling attention. Most
GNNs that learn graph attention for HeGs learn either node-
level or relation-level attention, but not both, limiting their
ability to predict both important entities and relations in the
HeG. Even the best existing method that learns both levels
of attention has the limitation of assuming graph relations
are independent and that its learned attention disregards this
dependency association. To effectively model both multi-relational
and multi-entity large-scale HeGs, we present Bi-Level Attention
Graph Neural Networks (BA-GNN),scalable neural networks
(NNs) that use a novel bi-level graph attention mechanism. BA-
GNN models both node-node and relation-relation interactions
in a personalized way, by hierarchically attending to both types
of information from local neighborhood contexts instead of the
global graph context. Rigorous experiments on seven real-world
HeGs show BA-GNNconsistently outperforms all baselines, and
demonstrate quality and transferability of its learned relation-
level attention to improve performance of other GNNs.
Index Terms—graph neural networks, representation learning

I. INTRODUCTION

Highly multi-relational data are characteristic of real-world
HeGs. Relational data in HeGs are defined as triples of form
(h:head entity, r:relation, t:tail entity), indicating that two entities
are connected by a specific relation type. Figure 1 shows a
HeG formed by such triples. However, even comprehensive
HeGs [1] remain incomplete. Regarding HeGs completion,
despite the recent years’ research progress in developing GNNs
for representation learning in various domains [7], [8], [14] and
adapting the successful attention mechanism [17], [18], most
GNNs face several challenges. They either are ill-equipped to
handle HeGs [9], [18], or do handle HeGs but do not learn
graph attention [4], [6], [13], [23], or learn inaccurate graph
attention [5], [12], [19], [22].

Fig. 1:Partial HeG of AIFB dataset.

Considering the GNNs that learn graph attention, their
architectures are limited to only one level of attention, either
for nodes or relations, but rarely for both, shown in Table I.
This is problematic for modeling HeGs which contain several
different entity and relation types. Bi-level attention is more
powerful in learning compared to uni-level attention, where only
one level of attention is learned by the model. Bi-level attention
learns attention at different levels of granularity in HeGs which
captures more information about graph components than a uni-
level attention mechanism is capable of.HAN, one of the few
models that attempts to use bi-level attention, unsurprisingly
falls short of capturing the associations between the node
and relation levels in the HeG. First,HANplaces unnatural
assumptions on the data because it treats graph relations as
independent from each other, omitting most relation-relation
interactions in HeGs. Second, it requires manually chosen
meta paths that force many node-node and node-relation
interactions to also be left out, and requires domain specific
knowledge to compute. Third,HANlacks a general framework
for systematically studying bi-level attention.

To address the above challenges, in this paper, we presentBi-
LevelAttentionGraphNeuralNetworks (BA-GNN) for HeGs.
To summarize, our work makes the following contributions:

(1)We design a general framework for bi-level attention, and
identify challenges of state-of-art NNs for HeGs.

(2)We propose BA-GNNto model both multi-relational and
multi-entity large-scale HeGs.BA-GNNavoids manually
chosen meta paths, and learns personalized graph prop-
erties by integrating graph entity/relation types, graph
structure, and graph attention using local graph neighbor-
hoods instead of global graph context.BA-GNNimproves
accuracy of state-of-art GNNs and scales to million-
node/edge graphs, like the AM archaeological dataset.

(3)To our knowledge, we are the first to propose efficient
bi-level attention GNNs that learn from dependency
interactions of both nodes/relations and without meta paths.

(4)We rigorously experiment on seven real-world HeGs
showingBA-GNNconsistently outperforms major state-
of-art NN groups, and also demonstrate quality and
transferability ofBA-GNN’s attention-induced change in
graph structure to enrich other GNNs.

The remainder of this paper is organized as follows.
Section II examines preliminaries and related work. Section III
presents a general framework for computing bi-level attention,
and describesBA-GNN’s architecture. Section IV presents
experiment results, ablation studies, and case studies ofBA-
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TABLE I: Properties of GNN and attention-based models, with �

as advantages, and � as disadvantages.

Type Model [A] [B] [C] [D] †[E] [F] [G]

– TRANSFORMER [17] � � � � � � –

TRANSE [2] � � � � � � �

(1) HOLE [10] � � � � � � �

DISTMULT [21] � � � � � � �

COMPLEX [16] � � � � � � �

(2) GCN [9] � � � � � � �

GAT∗ [18] � � � � � � �

METAPATH2VEC [4] � � � � � � �

HEREC [14] � � � � � � �

HIN2VEC [6] � � � � � � �

(3A) HEGAN [7] � � � � � � �

TEMPORALGAT [5] � � � � � � �

HETGNN [23] � � � � � � �

R-GCN∗ [13] � � � � � � �

HAN∗ [19] � � � � � � �

DYSAT [12] � � � � � � �

(3B) TGAT [20] � � � � � � �

HGT [8] � � � � � � �

GTN [22] � � � � � � �

– BA-GNN (ours) � � � � � � �

† Personalized graph attention learns attention using the local graph neighborhood
instead of the global graph context.
*Primary baseline models
Notation: [A]: Does not require HoGs; [B]: Does not require a dynamic graph; [C]:
Learns attention; [D]: Bi-level attention; [E] Personalized attention; [F]: Does not
require meta paths; [G]: Transformer-inspired; (1): Non-GNN-based KGE models
for HeGs; (2): GNNs for HoGs; (3A): Non-TRANSFORMER-based GNNs for HeGs;
(3B): TRANSFORMER-based GNNs for HeGs

GNN models, and section V concludes.

II. PRELIMINARY AND RELATED WORK

Here, we introduce HeG concepts and discuss the achieve-

ment of various state-of-art NNs, summarized in Table I.
Definition 1: Heterogeneous Graph: We define HeGs

as G = (V, E) with nodes vi ∈ V , and edges ei,j ∈ E
connecting source vi and target vj . Nodes in the HeG are

associated with entity types through an entity mapping function

Λ(vi) : V −→ B,B = {b|b ∈ B}, for entity type b. Edges in the

HeG are associated with relation types through a relation map-

ping function Γ(ei,j) : E −→ R,R = {r|r ∈ R} for relation

type r. For efficiency in our model, we compute entity and

relation mapping functions for node and relation neighborhoods

rather than globally such that Λ(vi) : Vi −→ Bi,Bi ⊂ B and

Γ(ei,j) : Ei −→ Ri,Ri ⊂ R. In this paper, we consider local

HeG neighborhoods of a node vi ∈ V consisting of both one-

hop nodes, {vj |vj ∈ Vi} and one-hop relations, {r|r ∈ Ri}.
Definition 2: Meta Relation: The meta relation for ei,j

between source vi and target vj is (Λ(vi),Γ(ei,j),Λ(vj)), and

Γ(ei,j)
−1 = Γ(ej,i) is the inverse of Γ(ei,j). In this paper, we

loosely use the term relation to denote meta relation. Traditional

meta paths are a sequence of such meta relations.
Definition 3: Graph Attention: Graph attention en-

ables NNs to learn useful graph representations by selectively

attending to different nodes and relations. Multiplicative

and additive attention are state-of-art attention mechanisms

used in NNs [17], [18], both of which operate on encoder

states. Multiplicative attention uses an inner product or cosine

similarity of encoder states while additive attention is a linear

combination or concatenation of encoder states.

A. GNNs for Homogeneous Graphs
Successful models in this category, like GAT [18], use

attention-based neural architectures for learning representations.

Graph Attention Networks: GAT [18] are additive

attention-based GNNs that effectively leverage graph structure

and sparsity to compute a node’s attention. GAT models,

however, are limited to HoGs and cannot handle HeGs which

contain different relations that may have varying levels of

importance for different nodes.

B. GNNs for Heterogeneous Graphs

Successful models (1) leverage different graph relations,

like R-GCN, (2) learn bi-level attention, like HAN, and (3)

learn multiplicative attention, like TRANSFORMER-based NNs.

Relational Graph Convolutional Networks: R-

GCNs [13] extend GCNs and GAT, which operate on local

graph neighborhoods of HoGs, to operate on multi-relational

graphs by distinguishing nodes by relation type. R-GCNs,

however, treat all relation-specific nodes as equally important.

Further, R-GCNs do not utilize graph attention as they are

limited to directly learning from weight parameters.

Heterogeneous Graph Attention Networks: To address

limitations of the above models, HAN integrates bi-level

attention, which learns node- and relation-level attention, with

GNNs to learn node embeddings. However, HAN uses a

global learnable weight vector lacking local inter-relation

comparison. Besides, HAN uses pre-defined metapaths which

are computationally expensive to design and compute, and

result in sub-optimal graph components learned by the model.

Transformer: TRANSFORMER models [17], although

successful in natural language processing for small text

sequences, have limitations for multi-relational and multi-entity

HeGs. This is because TRANSFORMER attends to all other

tokens in the sequence, making it infeasible for large-scale

input. While recent works extend TRANSFORMER-like attention

to other graph domains, they have limitations, shown in Table I.

III. BA-GNN ARCHITECTURE

We design a general bi-level attention framework for

computing hierarchical attention and then discuss BA-GNN’s

architecture. Source code and data are at: https://github.com/

roshnigiyer/BA-GNN. READ.md details dataset properties,

data splits, and hyperparameters of BA-GNN models.

A. General Bi-Level Attention Framework
Bi-level attention in HeGs incorporates interactions between

relation-specific nodes for learning lower level attention which

informs the higher level attention that captures inter-relation

interactions. In this way, bi-level attention jointly attends to

node-node, relation-relation and node-relation interactions to

collectively produce a representative node embedding. Uni-

level attention models omit these critical graph interactions and

ability for the two-levels of attention to jointly inform each

other. Eq. 1 describes the general bi-level attention framework

to compute embeddings for each vi in the HeG:

h̃
(l+1)
i = HigherAtt

(
LowerAtt(·),R, h̃(l)

)
(1)

= AGG

({
fψ

({
LowerAtt(·)∣∣r ∈ R, h̃(l)

})∣∣∣∣r ∈ R
})

,
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LowerAtt(·) = AGG
({

gγ(ei,j |r, h̃(l))
∣∣vj ∈ Nr

i

})
, (2)

R = {Γ(ei,j)|vj ∈ V}, (3)

where hi and h̃i are the initial and projected node features

respectively, Ri is the relation set on the edge of vi, and gγ(·)
is a vector-output function of the node-level attention, γ, that

provides a relation-specific embedding summary using learned

node representations from the previous layer, h̃(l), which is

aggregated, AGG(·), over edges ei,j in the relation-specific

neighborhood context of vj ∈ Nr
i . fψ(·) is a vector-output

function of the relation-level attention, ψ, that are attended

relation-specific local context embeddings, LowerAtt(·),
which are aggregated over relations in the neighborhood context

to form the layer’s final node embedding, h̃
(l+1)
i .

In Sections III-B and III-C, we propose a novel semi-

supervised attention-based GCN model, BA-GNN, for multi-

relational and multi-entity HeGs. BA-GNN performs attention

aggregation on node and relation levels, rather than nodes

and edges. For node-level attention, attention is placed on

the edges of neighbor nodes. For relation-level attention,

attention is placed on the relations, which are formed by

grouping edges by relation type. In this way, our model uses

a hierarchical attention mechanism. The higher-order graph

considers relation-type-specific edge groups, and the lower-

order graph considers nodes in their local contexts. Figure 2

summarizes BA-GNN’s attention mechanism. BA-GNN models

use L stacked layers, each of which is defined through Eq. 1,

and for further efficiency, all nodes and relations are restricted

to their neighborhoods. Model input can be chosen as pre-

defined features or as a unique one-hot vector for each node.

Fig. 2: Bi-level attention visualization. (a) Node-level aggregating: A

node’s features is a weighted combination of its prior layer’s relation-

specific embeddings, zri . (b) Relation-level aggregating: Relation-level

attention is learned via multiplicative attention using neighborhood

relational similarity to determine relative relation importance.

B. Node-level Attention
Node-level attention distinguishes different roles of nodes

in the neighborhood context for learning relation-specific node

embeddings. As node-level attentions are target-node-specific,

they are different for different target nodes. Our model learns

node embeddings such that it intrinsically captures graph

attributes and structure in its neighborhood. In HeGs, neighbor

nodes may belong to different feature spaces due to different

node types, so we utilize an entity-specific type transformation

matrix, T Λ(vi), to project all node features to the same space

through h̃i = T Λ(vi) ·hi. T Λ(vi) ∈ R
d×|Ri|,hi ∈ R

|Ri| if the

initial features are chosen to be a one-hot vector of dimension d,

where h̃i is continuously updated to learn the final embedding.

BA-GNN’s node-level attention uses additive attention

inspired by GAT, discussed in Section II, but overcomes GAT’s

limitation by extending the attention to HeGs. GAT performs

projections that do not consider the different relation types

in the HeG. We address this by using a learnable relation-

specific attention vector, a(l)
r ∈ R

2d. For a specific relation r,

the attention is shared for all node pairs, so that each node is

influenced by its neighborhood context. The attention is also

asymmetric since the importance of vj to vi may be different

from the importance of vi to vj . We compute relation-specific

node-level attention at layer l as follows, with a softmax(·)
activation applied to normalize each node-pair attention weight

and where vj , vk ∈ Nr
i and xT (l)

is transpose of x at layer

l: γ
(l),r
i,j =

exp

(
LeakyReLU

(
aT (l)

r

[
h̃

(l)
i

∣∣∣∣h̃(l)
j

]))
∑

vk∈Nr
i
exp

(
LeakyReLU

(
aT (l)
r

[
h̃

(l)
i

∣∣∣∣h̃(l)
k

])) ,

where a(l)r attends over the concatenated, ||, node features of vi
and vj with applied LeakyReLU(·) and softmax(·) activations.

By restricting the attention to within the relation-specific local

context of nodes, sparsity structural information is injected into

the model through adjacency-masked attention layers.

Node vi’s relation-specific embedding, z(l),ri , can then be

learned with AGG(·) from Eq. 1 being a weighted summation

of the neighbor’s projected features as follows:

z
(l),r
i = LowerAtt(·) (4)

= AGG
({

gγ(ei,j |r, h̃(l))
∣∣vj ∈ Nr

i

})
=

∑
vj∈Nr

i

[
gγ(ei,j |r, h̃(l))

]
=

∑
vj∈Nr

i

[
γ
(l),r
i,j h̃

(l)
j

]
,

where z
(l),r
i provides a summary of relation r for vi at layer l.

We also add skip-connections for corresponding LowerAtt(·)
from the previous layer, l − 1, to preserve learned node-level

representations as the depth of the NN is extended.

C. Relation-level Attention

Relation-level attention distinguishes roles of different

relations in the neighborhood context for learning more

comprehensive node embeddings. In HeGs, different relations

may play different roles of importance for vi, in addition to vi’s
relation-specific neighbor nodes. So, we learn relation-level

attention to better fuse vi’s relation-specific node embeddings.

One could design a simple node-relation attention mechanism

to encode the effect of relations between nodes, but this would

fail to capture relation-relation dependencies hidden in HeGs.

We address TRANSFORMER’s inefficiency for large-scale

HeGs through an approximation technique by sampling relation-

specific node embeddings from the local graph context. Further,

instead of using the same single set of projections for all words,

we enable each relation-specific embedding to learn a distinct

set of personalized projection weights, while maximizing

parameter sharing. This technique captures unique relation-

dependent characteristics such that each relation-specific node

embedding is also influenced by its local relation context.
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Node vi’s relation-specific TRANSFORMER-based query q(l)
r,i,

key k(l)
r,i, and value v(l)r,i vectors are computed as follows:

q(l)
r,i; k(l)

r,i; v(l)
r,i = W1,rz(l),ri ;W2,rz(l),ri ;W3,rz(l),ri , such that

z(l),ri is projected onto the learnable weight matrices

W1,r,W2,r,W3,r ∈ R
d×d. The relation-level attention for

relations (r, r′) are computed by iterating over all possible

relation pairs in the neighborhood context, r, r′ ∈ Ri, where

Ri = {Γ(ei,j)|vj ∈ Vi}. The importance of relation r′ of node

vi is as follows, with relation similarity being captured through

ψ
(l),r,r′

i = softmax(qT (l)

r,i k
(l)

r′,i), where the more similar r′ is

to r, the greater the attention weights of r′, which results in

more contribution of r′’s embedding to vi’s final embedding. A

softmax(·) activation is then applied to normalize each relation

pair’s attention weight.

A node’s relation-specific embedding is then informed by

a weighted summation of its similarity to other local context

relations, ψ
(l),r,r′

i . To reduce information loss, we add a self-

connection of a special relation type per node, which is

projected onto Wi, and aggregated to the attended relation-

specific embedding, ψ
(l),r,r′

i v
(l)
r′,i. Lastly, a ReLU(·) activation

is applied to get the overall relation-specific embedding,

δ
(l),r
i = ReLU(

∑
r′∈Ri

ψ
(l),r,r′

i v
(l)
r′,i +Wih̃

(l)
i ).

Node vi’s final embedding is learned with AGG(·) in Eq. 1

being a summation of all attended relation-specific embeddings

through iteration of neighborhood relations, r ∈ Ri. We also

apply multi-head attention of S = {1, ...,K} heads to allow

BA-GNN to jointly attend to different representation subspaces

of nodes/relations, with aggregation, AGG(·), via averaging:

h̃
(l+1)
i = HigherAtt

(
LowerAtt(·),R, h̃(l)

)
(5)

= 1
K

∑K
k=1

∑
r∈R

[
fψ

({
LowerAtt(·)∣∣r ∈ R, h̃(l)

})]
= 1

K

∑K
k=1

∑
r∈Ri

[
fψ

({
LowerAtt(·)∣∣r ∈ Ri, h̃

(l)
})]

= AGG
({∑

r∈Ri

[
δ
(l),r
i

]∣∣k ∈ S}
)
.

We also add skip-connections for corresponding HigherAtt(·)
from the previous layer, l− 1, to preserve learned higher-order

relation-level representations as depth of the NN is extended.

The final representation of a node at layer (l + 1) is:

h̃
(l+1)
i = AGG

({∑
r∈Ri

ReLU
(

∑
r′∈Ri

softmax(qT (l)

r,i k
(l)

r′,i)v
(l)

r′,i +Wih̃
(l)
i

)∣∣∣k ∈ S
})

. (6)

D. Analysis of Proposed Attention

We use multiplicative attention at the relation level, instead

of additive attention, because learning attention through a

concatenation of features does not compute feature similarity

which inner product operations capture. Since relation features

are characterized by single attribute relation types, a relation’s

scaling can be directly determined by its feature similarity to

other relations in its neighborhood. This is unlike node-level

attention, where node features may have several attributes,

making it more difficult to learn latent similarity of nodes

through direct feature comparison such as through inner product

computation. Rigorous evaluation of mixed combinations of

additive/multiplicative attention shown in experiments further

support our bi-level attention combination choice.

IV. EXPERIMENTS

In this section, we evaluate BA-GNN on seven large-scale

heterogeneous datasets (HDs). We conduct experiments on node

classification and link prediction using Pytorch Geometric and

Deep Graph Library frameworks on an Nvidia Tesla V100

GPU cluster, and report model test accuracies.

Datasets: We evaluate on benchmark Resource Descrip-

tion Framework (RDF) format datasets [11] for node classi-

fication: AIFB, MUTAG, BGS, and AM. For link prediction,

we evaluate on FB15k [15], WN18 [3], and FB15k-237 [15].

A. Node Classification

Node classification is the semi-supervised classification of

nodes to entity types. For evaluation consistency against pri-

mary baseline models, we implement BA-GNN with L = 2 and

where the output of the final layer uses a softmax(·) activation

per node. Our model follows the same node classification

evaluation procedure as [13], using cross-entropy loss with

parameters learned from the Adam Optimizer.

Baselines: Table I summarizes our baselines. To adapt

the models to our problem setting of multi-relational, static

HeGs, we made the following modifications. For GAT [18]

and GCN [9], we omit HeG relations. For TEMPORALGAT [5],

we omit the temporal convolutional network used for temporal

interactions. For HETGNN [23], we consider the neighbors

to be the entire set of neighbor nodes and relations. For

DYSAT [12], we omit temporal attention. For TGAT [20], we

omit functional time encoding. For HGT [8], we omit relative

temporal encoding.

Results: Experiment results are in Table II. Results

show BA-GNN significantly and consistently outperforms all

baselines for all tasks on all datasets. For example, on AIFB,

MUTAG, BGS, and AM, against the most competitive NNs per

category, BA-GNN achieves relative performance gains of up to

22%, 25%, 20%, and 24% respectively, and overall performance

gains of up to 32%, 33%, 36%, and 35% respectively. Further,

the Welch t-test of unequal variance shows that BA-GNN’s

relative performance compared to each model per dataset is

statistically significant to be greater, with p-value < 0.001.

Ablation Studies: To further analyze BA-GNN’s bi-

level attention, we design the following BA-GNN variant

models: BA-GNN-NODE, a uni-level attention model using

BA-GNN’s node-level attention; BA-GNN-RELATION, a uni-

level attention model using BA-GNN’s relation-level attention;

BA-GNN(NODE)+HAN(REL.), a hybrid model using BA-GNN’s

node-level attention and HAN’s relation-level attention.

The bi-level attention models outperform the uni-level

attention models, shown in Table II. Further, simply comparing

BA-GNN’s higher-order relation-level attention with HAN’s,

shows a significant relative performance gain on all datasets. For

example on MUTAG, the performance gain is nearly 11.30%
with the replacement of only the relation-level attention. This
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TABLE II: Node classification averaged accuracy (%) over 10 model trains on four datasets. Best results per model group are bold-faced,

with overall best results per dataset underscored. We compute test accuracy improvement of BA-GNN over best NNs, all NNs, and per NN

by the difference of BA-GNN’s average accuracy and NNs per dataset column (e.g., rows 24-25), or the difference of BA-GNN’s average

accuracy and each NN across datasets (col. 7). ANODE, REL./MNODE, REL. are BA-GNN additive/mutliplicative attention at node/relation levels.

Type Model AIFB MUTAG BGS AM BA-GNN (% improve)

TRANSE [2] 66.89 ± 1.26 54.41 ± 0.73 58.46 ± 0.38 61.23 ± 0.57 +[32.05, 36.29]

(1) Non-GNN-based HOLE [10] 67.98 ± 0.42 63.17 ± 0.26 72.74 ± 0.22 65.25 ± 0.38 +[22.01, 31.43]

KGE models for HeGs DISTMULT [21] 73.64 ± 0.10 62.06 ± 0.18 68.19 ± 0.13 69.12 ± 0.24 +[25.3, 27.56]

COMPLEX [16] 77.24 ± 0.15 62.38 ± 0.22 74.72 ± 0.18 72.39 ± 0.16 +[20.03, 25.43]

(2) GNNs for GCN [9] 91.99 ± 0.21 67.02 ± 0.08 78.74 ± 0.16 86.82 ± 0.60 +[6.95, 20.79]

HoGs GAT [18] 92.50 ± 0.29 66.18 ± 0.00 77.93 ± 0.17 88.52 ± 1.65 +[6.44, 21.63]

METAPATH2VEC [4] 89.52 ± 0.12 66.04 ± 0.27 78.34 ± 0.13 85.48 ± 0.11 +[9.42, 21.77]

HEREC [14] 91.03 ± 0.15 66.96 ± 0.18 79.36 ± 0.25 85.98 ± 0.07 +[7.91, 20.85]

HIN2VEC [6] 91.63 ± 0.17 66.29 ± 0.14 79.01 ± 0.12 86.22 ± 0.21 +[7.31, 21.52]

(3A) Non-TRANSFORMER- HEGAN [7] 92.33 ± 0.13 68.07 ± 0.08 81.60 ± 0.27 86.79 ± 0.14 +[6.61, 19.74]

based GNNs for HeGs TEMPORALGAT [5] 93.42 ± 0.11 66.88 ± 0.24 79.14 ± 0.13 89.10 ± 0.13 +[5.52, 20.93]

HETGNN [23] 95.18 ± 0.16 75.64 ± 0.09 82.05 ± 0.25 89.67 ± 0.05 +[3.76, 12.70]

R-GCN [13] 95.31 ± 0.62 73.23 ± 0.48 83.10 ± 0.80 89.29 ± 0.35 +[3.63, 14.58]

HAN [19] 96.25 ± 0.12 76.46 ± 0.07 86.84 ± 0.21 90.68 ± 0.23 +[2.69, 11.35]

DYSAT [12] 92.64 ± 0.21 66.57 ± 0.05 78.02 ± 0.19 88.90 ± 1.05 +[6.30, 21.24]

(3B) TRANSFORMER-based TGAT [20] 92.84 ± 0.14 67.19 ± 0.21 78.35 ± 0.15 89.43 ± 0.28 +[6.10, 20.62]

GNNs for HeGs HGT [8] 95.97 ± 0.15 76.84 ± 0.12 86.01 ± 0.18 90.33 ± 0.13 +[2.97, 10.97]

GTN [22] 96.04 ± 0.17 76.32 ± 0.12 85.38 ± 0.24 90.56 ± 0.10 +[2.90, 11.49]

BA-GNN-NODE 95.46 ± 0.13 73.19 ± 0.25 84.23 ± 0.22 89.45 ± 0.02 –

BA-GNN variants BA-GNN-RELATION 95.28 ± 0.23 76.17 ± 0.22 85.43 ± 0.34 90.52 ± 0.18 –

BA-GNN(NODE)+HAN(REL.) 96.30 ± 0.09 76.48 ± 0.04 86.80 ± 0.24 90.67 ± 0.35 –

BA-GNN (MNODE/AREL.) 96.02 ± 0.13 76.20 ± 0.09 86.90 ± 0.17 90.54 ± 0.11 –

BA-GNN (ANODE/AREL.) 96.38 ± 0.14 76.61 ± 0.22 87.00 ± 0.09 90.73 ± 0.05 –

BA-GNN (MNODE/MREL.) 96.44 ± 0.16 77.01 ± 0.07 86.92 ± 0.12 90.78 ± 0.08 –

BA-GNN (ours) 98.94 ± 0.13 87.81 ± 0.11 94.75 ± 0.08 96.68 ± 0.14 –

BA-GNN (% improve) against best NNs, group 1-3 +[2.69, 21.70] +[10.97, 24.64] +[7.91, 20.03] +[6.00, 24.29] –

against all NNs, group 1-3 +[2.69, 32.05] +[10.97, 33.40] +[7.91, 36.29] +[6.00, 35.45] –

TABLE III: Link prediction results for mean reciprocal rank (MRR), and Hits @ n metrics. For each group of models, the best results are
bold-faced. The overall best results on each dataset are underscored.

FB15k WN18 FB15k-237

MRR Hits @ MRR Hits @ MRR Hits @

Model Raw Filtered 1 3 10 Raw Filtered 1 3 10 Raw Filtered 1 3 10

R-GCN 0.251 0.651 0.541 0.736 0.825 0.553 0.814 0.686 0.928 0.955 0.158 0.248 0.153 0.258 0.414

BA-GNN 0.261 0.702 0.601 0.778 0.857 0.590 0.820 0.698 0.945 0.959 0.195 0.260 0.160 0.268 0.468
TRANSE 0.221 0.380 0.231 0.472 0.641 0.335 0.454 0.089 0.823 0.934 0.144 0.233 0.147 0.263 0.398

R-GCNT 0.252 0.651 0.543 0.738 0.828 0.554 0.815 0.681 0.928 0.956 0.161 0.258 0.159 0.274 0.421

BA-GNNT 0.264 0.700 0.649 0.781 0.858 0.593 0.822 0.692 0.943 0.960 0.200 0.268 0.168 0.275 0.493
HOLE 0.232 0.524 0.402 0.613 0.739 0.616 0.938 0.930 0.945 0.949 0.124 0.222 0.133 0.253 0.391

R-GCNH 0.257 0.659 0.556 0.744 0.839 0.667 0.937 0.935 0.951 0.966 0.159 0.257 0.156 0.272 0.420

BA-GNNH 0.268 0.720 0.670 0.787 0.860 0.670 0.940 0.942 0.955 0.979 0.194 0.266 0.161 0.272 0.488
DISTMULT 0.248 0.634 0.522 0.718 0.814 0.526 0.813 0.701 0.921 0.943 0.100 0.191 0.106 0.207 0.376

R-GCND 0.262 0.696 0.601 0.760 0.842 0.561 0.819 0.697 0.929 0.964 0.156 0.249 0.151 0.264 0.417

BA-GNND 0.272 0.745 0.688 0.792 0.868 0.600 0.825 0.705 0.934 0.977 0.190 0.251 0.155 0.268 0.483
COMPLEX 0.242 0.692 0.599 0.759 0.840 0.587 0.941 0.936 0.945 0.947 0.109 0.201 0.112 0.213 0.388

R-GCNC 0.260 0.712 0.629 0.771 0.845 0.615 0.953 0.937 0.947 0.965 0.158 0.255 0.152 0.268 0.419

BA-GNNC 0.278 0.788 0.731 0.867 0.880 0.671 0.978 0.981 0.988 0.992 0.170 0.262 0.159 0.270 0.485

indicates that BA-GNN’s relation-level attention is more effec-

tive across the different data domains and that its personalized

attention to local graph contexts yields performance gain.
B. Link Prediction

Link prediction involves assigning confidence scores to HeG

triples to determine how likely predicted edges belong to true

relations. Our models follow the same evaluation framework as

[2] and [13] using negative sampling and cross-entropy loss

with parameters learned from the Adam Optimizer. We use

evaluation metrics of mean reciprocal rank (MRR) and Hits @

n, in raw and filtered settings. The same number of negative

samples, w = 1, are used to make datasets comparable.

Baselines: We evaluate standalone GNNs (BA-GNN, R-

GCN), KGE models, and GNN+KGE autoencoder models using

the same setup procedure as [2] and [13]. The autoencoder

models include: BA-GNNx and R-GCNy where x, y are

TRANSE (T ), HOLE (H), DISTMULT (D), and COMPLEX (C).
Results and Ablation Studies: Experiment results are

in Table III. Results show that the best BA-GNN models

outperform R-GCN models on all datasets for all metrics of

both tasks of MRR and Hits @ n = 1, 3, 10. We observe that BA-

GNN outperforms R-GCN when comparing standalone models.

Further, results show that autoencoder models outperform each

of GNN and KGE standalone models, showing that GNNs
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and KGE models can each be benefited by their joint learning.

Results also show that BA-GNN autoencoders outperform R-

GCN autoencoders on all datasets for all tasks and metrics.

C. Case Study
We conduct experiments to determine the quality of relation-

level attention and graph-structure of BA-GNN. We modify

the AM dataset to contain the following relation types, each

with cummulative 10% splits: (1) relations randomly selected,

(2) relations with the highest relation-level attention weights

from BA-GNN, and (3) relations with the lowest relation-level

attention weights from BA-GNN. Experiment figures on node

classification for HAN and BA-GNN models are in Figure 3(a).

(2)’s graph structure yields the highest test accuracy on all

splits of AM compared to (1) or (3), while (3) yields the lowest

test accuracy. (1) is as expected in between test accuracies of

(2) and (3). Models that do not learn relation-level attention

(BA-GNN-NODE) still benefit from the graph structure identified

by (2). This suggests that BA-GNN’s relation-level attention

can selectively identify important graph components and that

its learning of graph structure can enhance other leading GNNs.

(a) BA-GNN’s attention-induced graph structure for HAN, BA-GNN-NODE
,

BA-GNN- RELATION,BA-GNN

(b) pp1 heat map: BA-GNN’s
relation-level attention

(c) pp2 heat map: BA-GNN’s
relation-level attention

Fig. 3: Experiments evaluating learned relation-level attention and
graph structure of BA-GNN.

D. Attention Visualization

We randomly sample two nodes belonging to entity Persons
on AIFB and plot its learned relation-level attention weights

from layer l = L using heat maps, seen in Figures 3(b) and

(c). The corresponding partial graphs of person 1 and person
2 are in Figure 1. In Figure 3(b), author−1 and member−1

have high attention to is_worked_on_by because a person is

likely to have publications and research affiliations in their

research area. name_of has high attention to homepage_of,
observed in both Figures 3(b) and (c), because a homepage may

directly contain personal identifying information. In Figure 3(c),

head−1 and member−1 have high attention to each other, since

head of a research group is a member. Further, members

of the research group are likely to work on the group’s

projects and focus on a particular research domain, explaining

why works_at_project−1 has higher attention to head−1 and

member−1, and works_at_project−1 and members of the

research group also have higher attention to is_worked_on_by.

V. CONCLUSION

We propose Bi-Level Attention Graph Neural Networks (BA-

GNN) for modeling multi-entity and multi-relational large-scale

heterogeneous graphs (HeGs), via entity type and meta relation

information to learn graph structure and properties. Further,

BA-GNN distinguishes nodes and relations using a novel smart-

sampling bi-level attention mechanism to guide the model

when aggregating features in graph neighborhoods. We conduct

extensive experiments on seven real-world heterogeneous

datasets, and show BA-GNN learns effective and efficient

embeddings. We observe that BA-GNN outperforms all state-

of-art GNN baselines on various information recovery tasks.
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