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Abstract—Approximate computing (AC) techniques have been
leveraged to improve computing performance and energy effi-
ciency with minor degradation in accuracy. Recent literature in-
dicates that some AC mechanisms could be exploited by attack-
ers to implement new attack surfaces. To address the emerging
attacks in AC systems, we propose to obfuscate the approximate-
precise boundary (APB) with entry-blurring and boundary-
broadening schemes. The proposed entry-blurring scheme lever-
ages a hidden quality metric, which has a strong correlation
with approximation errors, to obscure the entrance of APB and
eliminate the explicit transition between approximate and pre-
cise modes, thus improving AC systems’ resilience against APB
attacks. The proposed boundary-broadening scheme enlarges
the transition zone between approximate and precise modes by
expanding a single APB threshold to two comparison thresholds,
and it further enables a random selection of approximate
computing modules in the candidate library. The protection
mechanisms provided by our obfuscation method strengthens
AC systems’ resilience against APB attacks. Our case studies
show that the proposed entry-blurring scheme improves the
application quality by up to 168% over the baseline and
successfully achieves the desired accuracy. The latency overhead
of our method is negligible and the increase on area and power
cost can be minimized to 6% and 8%, respectively.

I. INTRODUCTION

Approximate computing (AC) techniques trade precision
with better processing speed and energy efficiency, benefit-
ing the applications such as signal processing, data mining,
and machine learning [1]. In the era of big data, advanced
approximation mechanisms will play an increasingly impor-
tant role. However, as reported in recent articles [2]-[5], at-
tackers could leverage various approximation mechanisms
to create new attacks and then compromise AC systems. For
example, approximate computation and storage modules
could be manipulated to create a covert channel, through
which critical information is leaked [2], [4], [6]. Attackers
can also tamper with the built-in error resilience mech-
anisms to accumulate more errors than what the system
can tolerate [7], [8]. If the errors induced by approximation
are collected and propagated throughout the entire system
maliciously, an attack in the AC module could lead to
a catastrophic effect in the entire computing system [2],
[4], [9]. Consequently, it is imperative to address the new
security threats brought by the utilization of approximation
techniques.
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To facilitate the development of countermeasures against
various attacks in AC systems, different models are pro-
posed to characterize those attacks. The work [10] high-
lights the security threats from a malicious modification on
the control logic of approximate memory. The attacks in
approximate arithmetic modules are demonstrated in [7].
The survey [2] introduces the attacks that build covert
channels, compensate approximation errors, terminate er-
ror resilience mechanisms, and propagate errors.

Although the existing efforts [2], [7], [10] have com-
prehensively demonstrated the key features of the attacks
conducted in AC systems, those works mainly focus on
individual approximate arithmetic/memory modules. There
still lacks the investigation that examines the interaction
between approximate and precise modules from a system
point of view. To fill this gap, this work studies the security
threats from the unprotected boundary between approx-
imate and precise modules, explores the feasible defense
methods to strengthen the boundary and thus secure AC
systems, and assesses the efficiency of proposed counter-
measures in practical applications. More specifically, we
make the following contributions in this work:

- We propose the concept of approximate-precise
boundary (APB) and demonstrate three kinds of APBs
that can be commonly observed in AC systems. Practi-
cal applications are provided to demonstrate the press-
ing need of protecting AC systems from APB attacks.

. While existing countermeasures protect the approx-
imate modules, we propose high-level obfuscation
mechanisms to secure the transition zone between
precise and approximate operations. Our countermea-
sure is composed of entry-blurring and boundary-
broadening schemes, which harden APBs and mitigate
the attack that breaches the AC system via APBs.

. The proposed countermeasures are evaluated in two
case studies —approximate image edge detection and
approximate memory. Our experimental results con-
firm that our method can effectively mitigate APB
attacks and meet the desired quality requirement.

The rest of this work is organized as follows. Section II
summarizes the related work. Section III introduces the
attack model interested in this work. In Section IV, we
define APBs and provide an example for each APB. In
Section V, we propose two obfuscation schemes to harden
APBs. Experimental results are available in Section VI. We
conclude this work in Section VII.
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II. RELATED WORK
A. Approximate Computing Techniques

The main principle of approximate computing is trading
accuracy with performance and power consumption. The
approximate computing techniques can be applied at var-
ious levels: circuit, microarchitecture, algorithm, compiler,
system, and application [11]-[13].

At circuit level, approximation techniques reduce the
computation precision or shorten the critical delay path
to improve performance and energy efficiency [14], [15].
Approximate techniques deployed in memory include re-
ducing the refresh interval [16], [17], overscaling the supply
voltage [18], and narrowing the guard band [19]. To save
power consumption of memory, researchers [20] also pro-
pose to discard the least significant bits (LSB) and store er-
ror correcting codes in the LSB positions. In an approximate
computing system, there exists both approximate and pre-
cise instructions [21]. To execute both types of instructions,
the instruction set architecture (ISA) and compiler need
to be changed accordingly [22], [23]. For instance, certain
bits are added to the ISA to facilitate the differentiation of
the instruction type and guide the precise or approximate
execution [22]. At algorithm level, approximate computation
can be realized by the techniques such as reducing the loop,
replacing the repeatedly executed arithmetic functions with
look-up tables (LUTs) [24], and skipping the execution of
the functions in a predicted part of the code [25], [26].
The approximation techniques employed at software level
mainly aim at reducing computational power [27].

Approximate computing has been widely applied to im-
age processing, where the application can tolerate errors.
Many Tools are developed to automate the process of
selecting an appropriate approximate level for the desired
quality requirement. The tool in the work [28] developed
an algorithm to choose the best approximate computing
intellectual property (IP) for image edge detection.

B. Attacks in Approximate Computing Systems

In spite of facilitating to improve performance and energy
efficiency, approximation techniques could be manipulated
to conduct new attacks. Recent studies [2]-[6], [29], [30]
report that approximation mechanisms can be exploited to
perform stealthy attacks, which suddenly cause significant
degradation in accuracy and lead to unpredictable outputs.
The works [4], [7] predict that a misused approximation
mechanism could exaggerate the error propagation or leak
some critical information. The work [10] projects that at-
tackers could (1) modify the original memory allocation
map for precise and approximate memory blocks and then
transfer the confidential data to the approximate mem-
ory block, (2) exploit the relaxed guard band in multi-
bit memory cells to cause quantization errors, and (3)
tamper with the memory controller to alter the DRAM
refresh rate. The follow-up work [6] proposes some new
vulnerabilities in approximate data. Two practical attacks
on the AC systems for multi-layer perceptron and Sobel
algorithm based image edge detection are presented in [31].
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Fig. 1: Multiple entities involved in AC system design and
deployment.

The works aforementioned urge us to investigate effective
countermeasures against various attacks in AC systems.

C. Attack Detection and Mitigation for Approximate Com-
puting Systems

Some researchers [3], [4], [6] exploit approximate com-
puting mechanisms to address the hardware security issues
and they also envision that there is an urgent need of
managing the security threats in AC systems. The work [7]
analyzes the impact of malicious interconnect and Boolean
logic on approximate arithmetic units. The work [7] also
presents a logic defense mechanism to thwart the attack
that tampers with the input and output of approximate
arithmetic units. However, that defense mechanism only
works for small approximate arithmetic modules, instead
of protecting the computing system from a higher level.
That approach will not be able to thwart the attack that
replaces the approximate IP with a malicious one.

To secure the data in AC systems, the recent work [6] in-
troduces some information hiding mechanisms. To save the
power consumption, some of the approximation techniques
neglect some LSBs of the data. The positions for those LSBs
are utilized to hide the critical information or implement
abnormal checking mechanisms. That approach may lead
to a new attack surface. As indicated in the works [2],
[4], the approximate techniques can be manipulated to
create a covert channel. The unused LSB positions could
be leveraged to form a covert channel to leak information.

The follow-up work [31] indicates that the clear bound-
ary between the precise and approximate modules makes
approximate systems vulnerable to attacks. The framework
proposed in [31] suggests obfuscating the time, location,
and the mean of approximation. However, that work only
uses simple examples to prove the concept.

III. ATTACK MODEL

The design and deployment of AC systems involve mul-
tiple entities as shown in Fig. 1. We assume that attacks
are conducted in the stages of hardware manufacturing
and system assembly and initialization. Although hardware
manufacturers have access to the physical implementation,
it is difficult for them to fully recover all the design details.
We assume that manufacturing attackers can recognize
the instances of major functional modules. The system
assembly team has the knowledge of system specification
and limited test cases for verification. The AC system
will be a gray box to an adversary in the assembly and
testing team, who could manipulate the control knobs for
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TABLE I: Definition of APB and its applications.

Category of APBs Applications
APB-1: Positions for approximate bits Arithmetic unit,
Memory
Memory,

APB-2: Data block for approximate computation Communication network

Adaptive computation,
Adaptive storage

APB-3: Mode-switching threshold for approximation

system configuration. In this work, we abstract the attack
as high-level design tampering, instead of specific hardware
modification. The primary attack goal is to degrade the AC
system’s computation accuracy. To address the attacks, we
apply the proposed countermeasures to the early design
stages of AC systems.

IV. NEW ATTACK SURFACE: APPROXIMATE-PRECISE
BOUNDARY (APB)

A. Definition of APB

High-performance computing systems are highly de-
manded in computation-intensive applications. An AC sys-
tem leverages its inherent error resilience to trade reduced
accuracy with higher speed and lower power consumption.
Typically, a computing system will integrate precise and
approximate operations together to obtain the degraded
(but still acceptable) accuracy/precision. Regardless of the
approximation mechanism at different abstraction levels,
we can observe an explicit boundary between precise and
approximate operations/logic/storage zones. The definition
of APB is explicitly established in the system specification
phase. Based on the existing literature [11], we categorize
the boundaries between precise and approximate opera-
tions in Table L. In the following section, we introduce the
specific attack that exploits the APB as a new attack surface.

B. Attacks on APBs
1) APB-1 Attack: Altering Approximate Bit Positions

In precision-scaling based approximation techniques,
users need to decide how many bits and which bits will
be processed approximately. The first type of APB refers
to the dedicated bit position for approximation. As preci-
sion scaling is one of the approximation techniques often
applied in Fast Fourier Transform (FFT), we demonstrate
the impact of precision loss due to APB-1 attack in a
256-point approximate FFT. In our case study, we applied
approximate additions to the FFT, where several LSBs in
the mantissa of the addition operands were discarded. The
APB-1 attack ignored more LSBs than what were allowed in
the original approximate FFT. As an example, we performed
the approximate FFT on a sinusoidal signal. The APB-1
attack muted 50 mantissa bits in the addition operation
at the first stage of FFT. As shown in Figs. 2(a) and (b),
although the APB-1 attack does not cause a significant
change on the magnitude, it results in numerous spikes
in the phase spectrum.

2) APB-2 Attack: Sabotaging Approximate Data Blocks

Dynamic approximation techniques adapt the precise
and approximate operations based on the nature of data.
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Fig. 2: Effect of the attack on APB-1: (a) magnitude and
(b) phase spectra for a sinusoidal signal processed by a
tampered approximate FFT.
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Fig. 3: Effect of the attack on APB-2: critical data blocks of
images stored in a compromised approximate memory.

Critical data that carries important features will be pro-
cessed by precise computation and stored in precise mem-
ory blocks; on the contrary, non-critical data will be handled
by approximate arithmetic and saved in an approximate
memory. The second type of APB separates the data blocks
for critical and non-critical information. Attacks on APB-2
could happen during the data blocks being transferred over
a hybrid precise/approximate storage media. We assume
that two images shown on the first row in Fig. 3 are
compressed and decompressed in an application of image
processing, in which a hybrid precise/approximate memory
is used to store the intermediate files. If the APB-2 attack
alters the storage location of the critical pixels (in the
highlighted zone) from precise memory to approximate
memory, the feature (e.g., darkness) of those images will
be changed. If image classification is further performed on
those images, the classification error could increase due to
the APB attack. Thus, the explicit indication of approximate-
precise data boundary will become an attack target and ease
the attack in AC systems.

3) APB-3 Attack: Modifying Mode Switching Threshold

An AC system tunes its configurations (e.g., precision pa-
rameters, control knobs to switch the precise/approximate
operation mode) to achieve its desired accuracy. Al-
though varying with applications, the common system-
configuration options include voltage, frequency, bit-width
for precision control, and the number of repetitive iter-
ations. In an AC system, there may exist one or more
thresholds to determine to what extent the approximate
operations can be deployed in the system. Unlike other two
APBs, the third type of APB is a threshold in the format of
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Fig. 5: Effect of the attack on APB-3: (a) voltage threshold
for precise/approximate PCM, and (b) quantization error
rate of the compromised PCM cells.

either a cut-off value for the aforementioned configuration
parameters or a quality requirement for the application. A
conceptual attack on APB-3 is illustrated in Fig. 4. Assume
an AC system is initialized with configuration A to achieve
the performance quantified by the quality metric QMI.
When an attack alters QM1 deployed in a self-tuning AC
system, the lower quality QM2 will lead the system switch
to a new configuration option A.

We use an approximate Phase Change Memory (PCM)
as an example to demonstrate the impact of the attack on
APB-3 on the quantization error rate of PCM. Depending on
the number of read and write iterations, the accumulated
voltage on the PCM cell will turn the PCM material into
either amorphous or crystalline and thus tune its resistance.
As shown in Fig. 5(a), the voltage presented by the PCM
material can be quantized into four levels, which means
each PCM cell carries two bits. An approximate PCM
narrows the guard band (i.e., AV,p, > AV, ) and adapts the
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Fig. 6: Demonstration of three APB attacks in a hybrid
approximate/precise adder.
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Fig. 7: Impact of different attacks on the error rate of
approximate computing systems.

number of iterations in the read and write process. If AV}, is
compromised by the APB-3 attack in the initialization stage,
less write iterations will be applied to the PCM block. As
shown in Fig. 5(b), a larger AV offset due to the attack leads
to a higher quantization error rate. More approximation in
PCM will result in more precision loss.

C. Significance of Protecting APB vs. Approximate Module

Section IV-B illustrates the impact of the attacks on
APBs on the system output and application quality. In this
section, we use an approximate adder and its application
to compare the consequence of tampering with three APBs
and the outcome of altering the approximate algorithm.
Assume that a complete 16-bit approximate adder is com-
posed of one approximate 4-bit adder and three precise
4-bit full adders, as shown in Fig. 6. A general attack on
the approximate module Apx. will change the logic function
into Apx.. In contrast, the APB attacks will occur at three
attack surfaces. The attack on APB-1 will cause multiple
4-bit full adders to compute approximately. The attack on
APB-2 will make more data blocks to be processed by the
approximate adders than what is originally planned. The
attack on APB-3 will alter the original threshold, which
determines when to use approximate or precise mode, to
manipulate the output quality (e.g., error rate of approxima-
tion). Our preliminary assessment shown in Fig. 7 indicates
that the error rate increase caused by the attacks on APBs is
more significant than that originated from the attack on the
approximate module itself. This trend grows steadily as the
triggering probability of the APB attack increases further.
Based on this case study, we believe that it is crucial to
protect the APB from various attacks.
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Fig. 8: Overview of proposed APB obfuscation method.

V. PROPOSED APB OBFUSCATION METHOD
A. Method Overview

Typically, an AC system integrates precise and approxi-
mate operations together to obtain the degraded but still
acceptable accuracy/precision. Regardless of the approxi-
mation mechanism at different abstraction level, there is an
explicit APB between precise and approximate logic/storage
zones. APBs are defined in the specification phase of AC sys-
tems’ design flow. To address the APB attacks, we propose
to secure AC systems by obfuscating the APBs mentioned in
Section IV. More specifically, our method is composed of (1)
entry-blurring and (2) boundary-broadening schemes. As
shown in Fig. 8, the proposed method alters the appearance
of the approximation modules at the top level of a com-
puting system. The entry-blurring scheme obfuscates the
true entrance of the approximate modules. The boundary-
broadening scheme expands the transition zone between
the precise and approximate modules. As a result, these
two schemes harden the APB from a system point of view
and reduce the APB attack success rate. In the following
subsections, we explain each scheme in detail.

B. Entry-Blurring Scheme
1) Conceptual View

The traditional sharp transition from precise to approx-
imation mode will lead to a drop on the quality metric A.
Depending on the instant A obtained from various input
and external interference, traditional AC systems compare
A with the mode-transition threshold A¢ to switch between
approximate and precise modes. If the threshold A¢ is
compromised by the APB attack, the application quality will
decrease, as shown in Fig. 9. To thwart the APB attack, we
propose an entry-blurring scheme, which leverages a hid-
den quality metric € to obfuscate the mode transition. The
hidden quality metric has a stronger correlation with the
errors caused by the APB attack than the original (explicit)
quality metric, thus providing a higher sensitivity to the
attack. Moreover, the hidden quality metric is transparent to
users and does not have a direct-access interface available
to the external world, making the system less vulnerable to
APB attacks than the system only using an explicit quality
metric. If an attack leads to a large decrease in A, the AC
system protected by our countermeasure will choose proper
precise and approximate modules to perform the reliable
computation and approximately maintain the expected
application quality. The non-linear transition between the
precise and approximate modes shown in Fig. 9 is designed
to thwart the APB attacks, either tampering with or reverse
engineering the APB.
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Fig. 9: Conceptual view of proposed entry-blurring scheme.
2) Mathematical Modeling

The quality metrics interested in applications direct the
selection of approximate or precise computation. To de-
termine the hidden quality metric, one needs to examine
the dependent factors of the errors in the approximation
process. It varies with applications where AC mechanisms
are applied to. For instance, the most common quality
metric used in image processing applications is Peak Signal-
to-Noise Ratio (PSNR). If the application using approximate
computation achieves a PSNR below the threshold, the
application needs to switch to precise computation. Assume
that the function A(:) is the metric to assess the quality of
deployed computing system, X;, is the application input,
and Outy,yr is the reference output. We define the overall
configuration function h(-) in Eq. (1). The functions Fgpy()
and Fprecise() configure the parameters in AC systems.

Fapx (Xin) A>Ac
h(Xin) = (D
Fprecise Xin) A=A
In which, A, is the cutoff threshold for the quality metric

explicitly declared in the user manual and A is the instant
quality assessed by Eq.( 2).

A= A(h(Xin), Outrer) 2)

The proposed obfuscated transition method changes k(-
in Eq. (1) to H(-) in Eq. (3).

Fapx (Xin) A> A,
H(Xjp,Ace) =3 ¥ (Xinr Gavae) A=Ac,€<Epiggen (3)
Fprecise Xin) A=< Ac,€ 2 Epjdden

Where the function W(-) describes the obfuscated mode
transition method, which searches for an alternative ap-
proximate function Ggp, from an implicit function array
{GIGapx € [Gapx,» Gapxy» --» Gapx,]}- The function W(-) stands
for an iterative searching process to find the best approx-
imation function to satisfy the expectation on A, and the
hidden quality metric Ep;g44.,- The selection of the explicit
and hidden metrics (1 and €) and the target quality (A, and
Enidden) depends on the specific AC application.

We assume that a candidate list of precise and approxi-
mate computation modules is available in the IP library, in
which diverse IPs either use different approximation mech-
anisms or have tunable parameters to achieve different
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Fig. 10: Illustration of an attack surface in the DFG for an
approximate computing system.
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Fig. 11: The APB in the DFG example protected with
proposed entry-blurring scheme.

performance and accuracy. In the phase of deploying the AC
algorithm in an application, we initialize the explicit quality
metric and its intended goal. The proposed ¥ (:) function
enables the mitigation of the attacks on APB.

3) Deploying Entry-blurring Scheme in An Application

We take an approximate arithmetic function as a subject
to demonstrate the attack surface and the deployment of
our entry-blurring scheme. The main function and its data
flow graph (DFG) are described in Fig. 10. We assume that
the sum of x; and x; is computed by an approximate
adder. Following the work [32], we model the effect of
approximation by introducing an error characteristic w,
which represents system configuration of an approximate IP,
to one of the multiplier inputs, x3. Thus, the approximation
error propagated from the approximate adder to other
nodes in DFG is expressed in Eq. (4).

X7apx = [X3 % (1 + )] * x4 (4)

The error due to the approximate adder will lead x74px to
deviate from the precise product of x3 and x4. The deviation
will be further propagated to the final output x9. We define

Algorithm 1: Proposed entry-blurring scheme de-
ployed in an image processing application.
Data: Application A; QM;pec = PSNRgpec;
Approximate IPs from library Apx[1: NJ;
Image size: Row, Col;
Result: Apx-IP-index
1 Run the application A without any approximation to
obtain Outyye;

2 Calculate n;igear;

3 i=1;

4 while j < N do

5 | Run the application A with approximate setting
Apx[j] to obtain Outgpy;

6 Calculate PSNR;

7 | if Attack Free then

8 | | PSNR{,. = PSNRspec

9 else

10 | | PSNRy,, = attacker assigned arbitary PSNR’'

11 end

12 Calculate 7prqc;
13 | if (PSNR>= PSNRgpeC) and (Mideal >=Mprac) then

14 Use Apx[j] in Application A;
15 array[i] = Apxl[jl;

16 PSNR.4li] = PSNR;

17 i++;

18 else

19 ‘ Discard Apx[jl;

20 end

21 j++;

22 end

23 Return the index of minimum value from the array
PSNR.4; as Apx-1P-index;

24 Note: PSNR, 7;4eq1, and nprqc can be obtained from
Eq. (10, 15,16), respectively, in Appendix.

the deviation on the final output as a ratio 1,4, and thus
obtain Xxgupx as denoted in Eq. (5).

xgapx = X9 * (1 +nprac) (5)

In this example, the attack surface is the entrance of
selecting an approximate adder for x; and x». Theoretically,
the diverse choices for the approximate adder can be
modelled as introducing x34px with a different w. The
attack on the APB leads a difference between xgqpx and
X9, which exceeds the range that can be tolerated by the
target application.

The proposed entry-blurring scheme will obfuscate the
APB highlighted in Fig. 10. The key idea of our obfuscation
is to collaboratively use an explicit quality metric (QM1) and
a hidden quality metric (QM2) to select the best-fit approx-
imate IP, rather than only relying on QM1 to configure the
approximate system. In the application of image processing,
QM1 is PSNR and QM2 is average relative error (ARE).
ARE is a specific quality metric that compares the ideal
(Nidear) and practically (1,,qc) obtained primary outputs.
The APB attack on the approximate adder selection will
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Fig. 12: Conceptual view of boundary-broadening scheme.

lead to an unexpected ARE. As the hidden quality metric
ARE is directly and strongly tied with the approximation
errors, we can use ARE to detect the presence of attacks.
The derivation of ARE is introduced through Eq. (10) to
Eq. (15) in the appendix. As shown in Fig. 11, our scheme
incorporates QM1 (PSNR) and QM2 (9;4eq;) to tune the
system configuration w (i.e., selecting a proper approximate
adder). The hidden quality metric QM2 is an interpretation
of QM1. The detailed selection procedure for an image
processing application is presented in Algorithm 1.

C. Boundary-Broadening Scheme
1) Conceptual view

The proposed boundary-broadening scheme is another
way to mitigate APB attacks. Our scheme replaces an
explicit cut-off threshold with a vague transition zone,
which acts as a buffer for approximate and precise mode
switching. The concept of boundary-broadening scheme
is depicted in Fig. 12. In traditional AC systems, the
proper computing mode (i.e., approximate or precise) is
determined based on the quality metric (QM) of interest.
Only when the QM at the check point is greater than
the QM threshold x;;, the adopted approximate IP will
guarantee to meet the minimum quality requirement of the
application. In our scheme, we expand the threshold x;j to
two thresholds, x;,, and xyp. The buffered area between
Xjow and xyp is considered as an obfuscated transition
Zone.

In a real scenario such as the one shown in Fig. 13,
there will be multiple approximate configurations to enable
the computing system reach the desired quality metric.
Assume there are five approximate configurations cl~c5,
which results in its quality metric x1~x5. If the instant
computation quality is higher than x;j, the baseline scheme
selects c3 out of the group of cl, c2 and c3 to minimize
the hardware cost; otherwise the system opts out the
approximate mode. In contrast, the proposed boundary-
broadening scheme sets two thresholds x,, and x;4,, and
adds c4 approximation configuration to the group of se-
lection candidates. When the instant computation quality

X5 Approximate config.
to be selected is c3 * Approximate config. to
x4 as min(x1,x2,x3) is be selected is random
= x3. — x4 from (c1 and c2) which
é 5 satisfies QM>x,,,
3 S %
g2 QM >xy, g0
g S
£ H
3 S .. |
" | " 1y
2 3 cd 5
Approximate configurations Approximate configurations
(@ (b)

Fig. 13: The selection of approximation configuration using
(a) baseline algorithm [28] and (b) proposed boundary-
broadening scheme.

QM is between x,, and X0, the boundary-broadening
scheme randomly selects a configuration from the group
of c1 and c2. From this example we can see, our boundary-
broadening scheme (1) introduces some randomness to the
selection of approximate configurations, and (2) expands
the number of configuration choices that can eventually
enable the system to achieve the desired quality.

2) Mathematical Modeling

The two thresholds x;,,, and x,, depend on the specific
application. To simplify the analysis, we assume that the
single threshold x,;, is located in the middle of x;,, and
Xup, as expressed in Eq. (6).

(Xiow + Xup)

Xy = (6)

We continue to use PSNR as the quality metric to demon-
strate the process of deriving x;,,, and x,,, from the original
single threshold x;,. Equation (7) expresses the relation
among these three thresholds.

(PSNRjg + PSNRy))

PSNR;;, = PSNRspec = 2 @)

Based on the derivation in Appendix, we have PSNR;,,, and
PSNR,, expressed in Egs. (8) and (9), respectively, where
ay stands for the deviation of MSE,, from MSEspec .

V1) )

PSNR[DW = IOZOgl() (8)

MSEspec + )

PSNRyp = (2% PSNRspec) — PSNR oy 9)

3) Deploying Boundary-Broadening Scheme in An Appli-
cation

We apply the proposed boundary-broaden scheme to an
image processing application, Sobel edge detection. The
entire process of the deployment is described in Algo-
rithm 2. Readers can follow the same procedure (except
replace PSNR with other quality metrics of interest) to apply
our APB obfuscation method to other applications. In our
case study, the quality metric is PSNR. The PSNR,; is
obtained by running the Sobel edge detection application
with approximate IPs. The PSNRgpe is provided by the
designer during the design specification. The PSNR.,; is
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Algorithm 2: Proposed boundary-broadening
scheme deployed in an image processing application.

Data: Application A; Approximate IPs from library
Apx[1:K]; QMspec = PSNRspec;
QM 41(= PSNR:)[jl corresponding to each
Apx[jl,j € (1,K), where K is the number of
approx. IPs that satisfies the APB condition;
Result: Apx-IP-index
1 Calculate MSEspec from PSNRgpec ;
2 Assume a value for ay;
3 Derive PSNRyy, and PSNRy,,, , respectively;
4 Arrange the PSNR,,; array in ascending order;
5 Change the order of Apx array according to
PSNR;q;
6 j =1
7 while j < K do

8 | if PSNRq[jl>= PSNRy), then

9 assign Apx-IP-index = j;

10 | else

11 if PSNRjoyy < PSNR4[jl < PSNRy, then
12 Randomly select a value from array whose

index is n, where n € (1, K);

13 assign Apx-IP-index = n;

14 break;

15 else

16 Discard Apxl[jl;

17 end

18 end

19 j++;
20 end

21 Return Apx-IP-index;
22 Note: MSEspec, PSNR;oy, and PSNRy,, are derived
in Egs. (18, 21, 22), respectively, shown in Appendix.

compared with the PSNRgp. to check if the approximate
IP used by the application satisfies the minimum quality
requirement of the system. If the PSNR.,; is no less than
PSNRgpec, that approximate IP will be adopted by the
application; otherwise, it will be discarded. We assume that
the attacker changes the PSNR;p.c to PSNRgpeC to conduct
the APB-3 attack. To protect the system from such an
attack, we replace the single threshold with two thresholds
PSNR;,, and PSNRy, derived by Egs. (8) and (9). Now,
when the approximate IP used in the Sobel edge detection
produces an instant PSNR.,; that is in the range between
PSNRyp and PSNR,,, the proper approximate IP will be
a random one from the library Apx[1: K], rather than the
approximate IP providing PSNR.,;.

VI. EXPERIMENTAL RESULTS
A. Experimental Setup
1) Baseline and Proposed Scheme Deployment
As approximate computing has been widely applied in
image processing, we evaluated the impact of APB at-

tacks and proposed attack mitigation method on an image
processing application—approximate Sobel edge detection.

8

(© (d) (e)

Fig. 14: Original images used in our evaluation: (a) butterfly,
(b) Lena, (c) cat, (d) dog, and (e) horse.

Five images shown in Fig. 14 were utilized in our as-
sessment. We adopted the approximate edge detection
presented in [28] as our baseline, in which the quality
metric PSNR directed the selection of proper approximate
computing IPs for the application. The baseline and our
methods were implemented and simulated in Matlab.

2) Attack Scenario in Our Evaluation

In our following experiments, the APB is the logic that
determines whether the AC system uses approximate or
precise operations. The quality threshold used in the APB
is a user-specified PSNR. We assume that attackers have
access to the quality control knob and can introduce
malicious approximate IPs to the library of IP candidates
for the AC system. We further assumed that the attacker
has access to the row indicator and column indicator of
the image being processed. We have designed two types of
triggering logic: (1) trigger is always-on and (2) trigger is
activated only when a particular row or column is under
processing. When the triggering condition arrives, the spe-
cific APB attacks we applied to the case studies include (1)
adding malicious approximate IPs to the IP library to cause
unexpected precision reduction at unique trigger conditions
(APB-1 and APB-2 attacks) and (2) tampering with the PSNR
threshold during the AC system’s initialization phase to
degrade the overall computation accuracy (APB-3 attack).
The occurrence frequency of all attacks were managed by
an external triggering controller, which was independent
with the application inputs.

B. Impact of APB Attacks on Image Quality

Assume that an attack sabotages the APB in the process
of AC system initialization by changing the original PSNR
(PSNRspec) from 30db to a lower value (PSNRy),.), 20db
or 10db. Consequently, the APB attack will lead the AC
system to overuse the approximate operations. We com-
pared the PSNRs achieved at the end of the approximate
Sobel edge detection without and with the APB attack.
Figure 15 illustrates one example of the outputs of the
approximate edge detection application suffering from the

different-degree APB attacks. More images were used in our
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Fig. 15: Output of approximate edge detection without/with
APB attacks: (a) PSNR;p..=30db, (b) PSNRgpeC:ZOdb, and
() PSNR;pec:IOdb.

TABLE II: Obtained Application Quality (PSNR) of Approxi-
mate Image Edge Detection with/without APB Attacks.

Images Without APB attack | With APB attack With APB attack
8 (PSNRspec=30db) (PSNRjpe=20db) | (PSNRjy,=10db)

Butterfly 34.60db 21.00db 14.49db
Horse 32.93db 26.25db 13.21db
Lena 30.11db 23.78db 17.38db
Cat 35.04db 21.74db 15.25db
Dog 32.94db 25.89db 12.28db

‘ Average ‘ 33.12db 23.73db 14.52db

(79% PSNRgpec) | (48% PSNRspec)

assessment. As shown in the second column of Table II, if
no APB attack is conducted, the real PSNR is higher than
the desired quality PSNR;pec.. When the APB is tampered
by the attacker, the final quality of the application cannot
reach the target PSNR. As listed in the third and fourth
columns of Table II, the two APB attacks reduce the average
real PSNR to 79% and 48% of PSNRspec. This assessment
indicates that the APB attack indeed leads to a significant
quality drop and needs effective attack mitigation.

C. Evaluation of Entry-Blurring Scheme
1) Sensitivity of Quality Metrics to APB Attacks

The errors induced by approximate operations may not
have a strong correlation with the final quality interested in
the application. When exploring a hidden quality metric for
the purpose of attack detection/mitigation, we customize
the metric to enlarge the correlation between the output
deviation and the system configuration choices. Assume
that the APB attack alters PSNRpe from 30db to 20db.
Figure 16 shows that the hidden quality metric ARE we
selected for attack mitigation is more sensitive to the APB
attack than the explicit quality metric PSNR, which is
measured from the primary output of the edge detection
on the butterfly image. When the triggering probability of
the APB attack increases from 20% to 100%, the change in
the quality metric increases from 2x to 31x.

Next, we examine the sensitivity of the hidden quality
metric to the severeness of the APB attack. Figure 16 only
shows the sensitivity of the hidden quality metric to the
APB attack altering PSNRgpec by 33.3%. Now, we made
the APB attack reduce the original PSNR;p.c by 20% to
100%. As shown in Fig. 17, the hidden quality metrics for
the horse image without attack (1;4e4;) and with attack
(Mpracrical) have significant difference, varying from 99.5%
to 306.3%. A larger increase in the hidden quality metric will
provide higher confidence in the detection of APB attacks.

120

Explicit quality metric, PSNR

100 |- |~ Hidden quality metric, ARE
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Fig. 16: The sensitivity of explicit and hidden quality metrics
to APB attacks.
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Fig. 17: Sensitivity of hidden quality metric to the APB attack
that reduces the quality threshold applied in the APB.

We repeated the same experiment for the other four images
listed in Section VI-Al. The results shown in Fig. 17 confirm
that the sensitivity of our hidden quality metric to the APB
attack is approximately the same for different images.

2) Efficiency of Proposed APB Attack Mitigation

The baseline [28] provides four system configurations
0, 0.004, 0.056 and 0.12, each of which represents the
relative error yielded by a combination of the deployed
approximate IPs [32], [33]. We further introduce two new
configurations, 0.25 and 0.5, to consider the APB attack
that results in exchanging the approximate and precise bit
positions or accelerating the propagation of approximate
errors throughout the AC system [7]. As shown in Fig. 18,
each approximation configuration yields a unique value for
the hidden quality metric we selected for attack mitigation.
The characteristic of hidden quality metric versus different
approximate configurations varies with the input image, but
the general trend remains the same.

The entry-blurring algorithm was applied to the approx-
imate Sobel edge detection. The minimum PSNR require-
ment was set to 30db. For each image, we measured the
corresponding ARE for this given PSNR requirement and
denoted it as a reference. As shown in Fig. 19, the baseline
without using any protection mechanisms suffers from the
APB attack, resulting in an average increase on ARE by
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Fig. 19: Successful APB attack mitigation by proposed entry-
blurring scheme.

82.9% over the reference. In contrast, the ARE achieved by
the proposed entry-blurring scheme is always less than the
reference, which indicates that our approximate computing
results met the minimum PSNR requirement and thus the
APB attack was mitigated successfully.

The result shown in Fig. 19 is for the scenario that the
APB attack is always triggered. In practical applications,
the APB attack may happen occasionally. Thus, we further
examine the final quality of the AC application upon the
attack with different triggering probabilities. As shown in
Fig. 20, the proposed entry-blurring scheme assures that
the final quality is always above PSNR;p.., regardless of
the attack triggering probability and the input images. If
the attack is always triggered, our scheme improves the final
PSNR by 149%, 73%, 168%, 130% and 139% for the image
horse, Lena, dog, cat, and butterfly, respectively, compared
to baseline. As each image has its unique pixel patterns, the
tampered approximation in the edge detection causes dis-
tinctive error propagation and thus the final PSNR achieved
by our scheme slightly varies with the input images. As
the attack triggering probability reduces to 20%, our attack
mitigation scheme still obtains the average improvement of
53% over the baseline without entry blurring.

3) Overhead on Latency

We analyzed the computation complexity overhead of the
proposed entry-blurring scheme applied in the Sobel edge

10

TABLE III: Latency Overhead. Unit: clock cycles (cc).

Arithmetic Operation | Unit Baseline (cc) Proposed
operations overhead latency (cc) scheme (cc)
Addition 0 1 2258060 2258060
Multiplication 0 3 7161276 7161276
Division 38 19 19 57
Subtraction 2 1 65536 65538
Square 0 3 1167411 1167411
Square-root 10 10 1290320 1290330
Mean 40 20 40 80
Transpose 0 19 19 19
Log 60 30 30 90
Total 0.0013% — 11942711 11942861

detection application. As the total number of arithmetic
operations in the application depends on the size of the
input image, the computation complexity reported in this
section is for an image composed of 256x256 pixels. The
baseline is the method that only uses a single explicit
quality metric in the APB. In contrast, our scheme needs
to calculate both explicit and hidden quality metrics. That
is why more computations are required in the application.
The overall arithmetic operations required for the baseline
and proposed entry-blurring scheme are summarized in
Table III. We assume that the image processing application
is run in an Intel Ivy Bridge processor, in which the latency
of basic operations is reported in [34]. Given an image with
256x256 pixels, the overall latency overhead incurred by the
proposed method is 0.0013%, which is negligible.

D. Evaluation of Boundary-Broadening Scheme
1) Improved Attack Resilience

We also applied the proposed boundary-broadening
scheme to the approximate Sobel edge detection and im-
plemented Algorithm 2 in Matlab. We set a; in Eq. (8) to
2*MSE;pec. The parameter MSE;pe. can be obtained from
the given PSNR;pec. Assume that the desired application
quality PSNR;pe is 30db. According to Egs. (8) and (9), the
two thresholds used in our APB-attack-mitigation mecha-
nism are 26.36db and 33.64db. The baseline [28] uses a
single threshold (30db) to determine which approximate IP
will obtain the minimum acceptable quality on accuracy.
In contrast, the proposed boundary-broadening scheme
leverages the two thresholds to randomly choose one ap-
proximate configuration from the candidate list. Table IV
compares the possible options and the final choice for the
horse image in the process of approximate edge detection.
If an attacker alters the APB threshold in the baseline
from 30db to 20db, the final approximate configuration
adopted by the baseline will be shifted from 0.056 to 0.25.
Due to the broadened APB boundary, our attack mitigation
method will make more configuration options available for
the system, as shown in the most bottom right of Table IV.
Figures 21(a) and (b) indicate that our mitigation scheme
will provide more system configuration options for more
severe modifications on the APB threshold. The standard
deviation of the final PSNRs achieved by all options is
over 22. The various configuration options offered by our
method will contribute to the resilience against reverse
engineering attack on the deployed attack mitigation.
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Fig. 20: The final PSNR achieved by different approximate edge detection algorithms under the APB attack with a triggering

probability of (a) 100%, (b) 50% and (c) 20%.

TABLE IV: The Approximate Configuration Options Available in Our Experiments.

Approx. config. to meet

Selection scheme target quality (no attack)

Approx. config. to meet
target quality (with attack)

Final selection of approx. config.
(no attack, with attack)

Baseline 0, 0.004, 0.056 0, 0.004, 0.056, 0.12, 0.25 (0.056, 0.25)
Randomly select from: (0, 0); (0, 0.004);
Proposed boundary-broadening | 0, 0.004 0, 0.004, 0.056, 0.12 (0, 0.056); (0, 0.12); (0.004, 0);

(0.004, 0.004); (0.004, 0.056); (0.004, 0.12)

Obtained application quality, PSNR (db)
Obtained application quality, PSNR (db)
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Fig. 21: The random options available in the proposed
boundary-broadening scheme when the attack reduces the
APB threshold by (a) 33% and (b) 66%.
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Fig. 22: PSNR improvement
boundary-broadening scheme.

achieved by proposed

The broadened APB boundary improves the system’s
resilience against the APB attack that sabotages the thresh-
old for precise and approximate boundary. As shown in
Fig. 22, when the single threshold for APB is used [28]
and the APB of the AC system is under attack, the final
quality represented by PSNR is decreased from 30db to
25db. In contrast, the deployment of two APB thresholds
improves the PSNR, regardless how often the APB attack
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Fig. 23: Our PSNR improvement for different input images.

is triggered. The random configuration options built in our
scheme makes the relation of PSNR and attack triggering
probability unique and unpredictable. As shown in Fig. 22,
the proposed boundary-broadening improves the applica-
tion quality by 49.7%, 81.2%, and 211.5% for the random
options 1, 2, 3, respectively, when the APB attack triggering
probability is 10%. If the attack happens more often, our
PSNR improvement will be increased to 170% on average.
More interestingly, the trend of three two-threshold options
could decrease, increase, or remain flat with the increasing
APB attack probability. The option3 in Fig. 22 represents
the precise IP, and other two options (1 and 2) are approxi-
mate IPs with different system configurations. Each option
enables the AC system to achieve a PSNR that is higher
than the user-specified requirement. Although our random
choice in protection incurs more power consumption than
a static approximate configuration, it still consumes less
power than a fully precise computing configuration. Next,
we evaluate whether the PSNR improvement achieved by
our method is input dependent or not. We assume that all
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Fig. 25: APB attack mitigation in approximate PCM. (a) An
example of write operation, (b) the original approximate
PCM without attack, (c) the original approximate PCM with
APB attack, and (d) the boundary-broadening protected
approximate PCM with APB attack.

input images require the same approximate configuration
in the initialization stage. As shown in Fig. 23, different
inputs do not affect the trend of how PSNR changes with
the attack triggering probability.

2) Improved Attack Resilience in Approximate PCM

Approximate PCM adapts the number of iterations for its
write operation to save power consumption and improve
performance [19], [35], [36]. If the difference between the
new data and the current content saved in the target
memory cell is lower than the voltage threshold, the writing
operation is shortened. Here, the voltage threshold is the
APB in this particular approximation mechanism. Figure 24
highlights the attack surface in an approximate PCM [37].
We applied the proposed boundary-broadening scheme to
the comparator so that the write operation of the PCM is
resilient to the attack on APB-3. As our boundary-blurring
method is implemented in the comparator (hardware), the
protection mechanism will protect the system from attacks
at run-time, rather than at an initial stage.

We implemented the write circuit for approximate PCM
presented in the work [37] as our baseline in this section.
The flowchart in our evaluation is depicted in Fig. 25(a).
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Fig. 26: Attack mitigation achieved by proposed boundary-
broadening scheme.

We stored an butterfly image in the dedicated approximate
PCM cells. A new cat image was the new data to be written
to the same memory location. Without the APB attack, the
cat image will be successfully overwritten to the PCM cells
and the new image will be read out as the one shown
in Fig. 25(b). When the attack changes the APB threshold
used in the comparator, the new image stored in the PCM
is distorted as illustrated in Fig. 25(c). From this example,
we can conclude that the quality of the approximate write
operation is reduced by the APB attack. However, once the
proposed boundary-broadening mechanism is employed to
the approximate PCM, the comparator logic checks if the
difference between the cat image and butterfly image is
in the range of Thjy, and Thyy, less than Thy,,, or
greater than Thyp. Because of the modified comparator
logic highlighted in the middle of Fig. 25(a), the image in
Fig. 25(b) for without attack and the image in Fig. 25(d) for
with attack are visualized almost the same. If the attacker
makes more increase on the APB threshold of PCM, less new
data will be written to the memory. We assume the attacker
increases the APB threshold from 30 to 60 (i.e., attack
threshold 1) and 100 (i.e., attack threshold 2). We used the
Pearson correlation coefficient to quantify the image simi-
larity before and after the attack. As shown in Fig. 26, the
proposed scheme facilities the approximate PCM to write
the new image with a correlation coefficient of over 0.9 (if
two images are identical, the correlation coefficient is 1). In
contrast, the baseline that uses a single threshold results in
the image having a lower image correlation coefficient. As
the percentage of attacks increases, the proposed method
successfully mitigates the attack and only incurs 2.7% drop
on the image correlation, but the baseline does not have the
attack resilience and leads the image correlation coefficient
drop by 16.7% in our case study.

The logic for approximate write operation and our de-
fense scheme was written in Verilog HDL and synthesized
by Synopsys Design Compiler with a TSMC 65nm tech-
nology. The hardware cost for the proposed scheme is
listed in Table V. The boundary-broadening scheme costs
16.7% more area and 16.4% more power compared to the
PCM approximate write mechanism with one threshold.
The area and power overhead is induced by the calculation
of the expanded thresholds Th;,, and Thy,. Alternatively,
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TABLE V: Area and Power Consumption of Approximate
PCM Write Logic Module.

Dynamic Leakage

: 2 Y g
Design Area (M%) | po ver (WW) | Power (uW)
Baseline 1230.84 479.0475 4.9477
Proposed Method,

(two thresholds from hardware) 1436.76 557.8565 5.7897
Proposed Method,

(two thresholds from software) 1309.32 521.57 5.2867

these two thresholds can be pre-computed and read from
software. Then, our overhead on area and power is reduced
to 6% and 8%, respectively.

VII. CONCLUSION

Approximate computing has become increasingly pop-
ular because it is promising to further improve perfor-
mance and energy efficiency. However, the utilization of
approximate techniques also make AC systems vulnerable
to new attacks. We propose three APB boundaries observed
in the common AC systems and demonstrate some prac-
tical attack examples, which have the potential to inspire
more researchers developing unique countermeasures for
AC systems. To mitigate those attacks, we further introduce
entry blurring scheme and boundary broadening scheme
to obfuscate the APB. Our experimental results show that
the proposed entry blurring scheme improves the PSNR
by up to 53% over the baseline when the attack triggering
probability is 20%. When the APB attack becomes always
triggered, our method achieves 168% more PSNR than
the baseline. The latency overhead for the entry-blurring
scheme is negligible. The proposed boundary-broadening
scheme also enables the AC system to mitigate the APB
attack and meet the quality requirement of an approximate
image processing application. Our case study on approx-
imate PCM further confirms that the attack resilience is
improved by our APB obfuscation method. The overhead
on area and power induced by the boundary-broadening
scheme is around 16%. We can leverage software support
to reduce the area and power overhead to 6% and 8%.

APPENDIX
The quality metric Peak-Signal-Noise-Ratio (PSNR) is
defined in Eq. (10).

2NB _ 1)2
PSNR = 1010g10

MSE

in which, NB is the number of the bits representing each
pixel. The Mean Square Error (MSE) for the comparison of
original and processed images is denoted by Eq. (11).

i=Row v Jj=Col
B D

(10)

2
(Ourij.apx — Ourij.pre)
Row * Col

MSE =

(1D

Where Out;jqpx is an approximate output, Outf;jpre is
an precise output for a general image pixel in row i and
column j, and the maximum range of i and j are Row and
Col, the dimension of an image in processing. We define
the ARE for a general pixel in the image as 7;; and use
Tideal 10 stand for the expected average n;; for the selected
approximate configuration.

13

Out;;
nij = Z-apx (12)
Outijpre
i=R j=Col
_ B i j=1 Mij 13)
Nideal = Row * Col

By substituting MSE and Out;japx in Eq. (10) with
Egs. (11,12,13), we can rewrite Out;j qpx and then rearrange
the PSNR in a format shown in Eq. (14).

PSNR=20logio (2V8 — 1) -20l0g10 (Nideat)

i=Row v Jj=Col 2
o1 X outyo,

Row x Col

(14)

—IOZOgl()

As a result, given a PSNR required by the application, we
are able to derive the ideal value of the hidden quality met-
ric. After rearranging Eq.(14), we can obtain the theoretical
ARE on the final output x9 as expressed in Eq. (15).
i:Roij:(I'Jnl Our?

i=1 ij.pre

NB PSNR _1
lOgIO(z _1)_ 20 _EZOglo RowxCol

Nideal = 10

(15)

In the boundary-broadening scheme, we measure the
Average Relative Error (ARE) at run-time using Eq. 16. The
comparison between 1;4eq; and 1p,4c will indicate if the IP
is legitimate or not.

MSE
i=Row v Jj=Col
pishewy =t ou, )

(16)

ij.pre
Rowx*Col

Nprac = (

As defined in Eq. (10), PSNR is a function of MSE.
We can also obtain the relation between MSEp.. and
MSE;oy and MSE,, from Eq. (17). The al and a2 are
the deviation values of MSE;,,, and MSE,;, from MSE;p..
value respectively.

MSEspec = \/ MSEiow * MSEyp .

= \/(MSEspec — al) * (MSEspeC + a2)

In which, MSE),,, and MSE,, are the shifted mean square
error for PSNR)4,, and PSNRy,), respectively. The variables
a; and @, can have a minimum value of 2MSE and they
stand for the offset from the mean square error (MSE)
due to the proposed boundary-broadening scheme. Solving
Eq. (17), we can see that MSE;p.. determines the offset as
described in Eq. (18).

a) * Ao
MSEspec =

(18
a)+ap
In Algorithm 2, we continue to use PSNR as the quality
metric to demonstrate the process of deriving two thresh-
olds xj0,y and xyp from the original single threshold x;j
defined in Eq. (19).

Xth = PSNRgpec (19)

Thus, we can also substitute x;4,, and xyp, with PSNR,,
and PSNR,,, respectively. Thus, the average of the two
quality metric thresholds will be equal to the target quality
metric PSNRp.c as expressed in Eq. (20).
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(PSNRjoy + PSNRyp)
2

PSNRy, = PSNRspec = (20)

When we deploy this scheme in a specific application, we
can assume either a; or a, and derive another one from

Eq.

(18). Next, we can derive PSNR;,,, and PSNR,,;, using

the relation expressed in Egs. (21) and (22), respectively.
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