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ABSTRACT

Cosmic ray (CR)-modified shocks are a demanding test of numerical codes. We use them to test and validate the two-moment
method for CR hydrodynamics, as well as characterize the realism of CR shock acceleration in two-fluid simulations which
inevitably arises. Previously, numerical codes were unable to incorporate streaming in this demanding regime, and have never
been compared against analytic solutions. First, we find a new analytic solution highly discrepant in acceleration efficiency
from the standard solution. It arises from bi-directional streaming of CRs away from the subshock, similar to a Zeldovich
spike in radiative shocks. Since fewer CRs diffuse back upstream, this favours a much lower acceleration efficiency, typically
<10 per cent (even for Mach number > 10) as opposed to =50 per cent found in previous analytic work. At Mach number
210, the new solution bifurcates into three branches, with efficient, intermediate, and inefficient CR acceleration. Our two-
moment code accurately recovers these solutions across the entire parameter space probed, with no ad hoc closure relations.
For generic initial conditions, the inefficient branch is robustly chosen by the code; the intermediate branch is unstable. The
preferred branch is very weakly modified by CRs. At high Mach numbers (=10), the gas jump conditions approach that of a
purely hydrodynamic shock, and a sub-grid prescription for thermal injection is required for reasonable acceleration efficiencies
~10 per cent. CR-modified shocks have very long equilibration times (~1000 diffusion time) required to develop the precursor,
which must be resolved by =10 cells for convergence. Non-equilibrium effects, poor resolution, and obliquity of the magnetic
field all reduce CR acceleration efficiency. Shocks in galaxy-scale simulations will generally contribute little to CR acceleration

without sub-grid modification.
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1 INTRODUCTION

Cosmic rays (CRs) are close to energy equipartition with thermal
gas in the local interstellar medium (ISM), and have been observed
in many astrophysical scenarios. They are now thought to be
dynamically important to galaxy evolution, both in providing non-
thermal support to the Circumgalactic Medium (CGM) gas and in
driving a wind that initiates a feedback cycle (e.g. see Zweibel 2017
for a recent review), which has become the focus of intense study
by numerous groups in recent years. It has even been suggested
that the CGM is CR dominated (Ji et al. 2020). CRs are believed
to be accelerated at shocks to high energies through diffusive
shock acceleration (DSA). Test particle theories developed in the
1970s (Axford, Leer & Skadron 1977; Krymskii 1977; Bell 1978;
Blandford & Ostriker 1978) were instrumental in explaining the
observed power law in CR energy. It was later realized that CR
coupling to the background thermal gas through plasma instabilities
can affect the acceleration efficiency by generating a shock precursor
where upstream thermal particles can be decelerated, compressed,
and scattered, thus facilitating further acceleration (Drury & Voelk
1981). The two-fluid model and Monte Carlo simulation were two
common methods utilized to study this non-linear behaviour. These
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variant models all point to the same conclusion, that the non-linear
modification of the shock by CRs is substantial.

Magnetic field amplification due to compression, baroclinic vor-
ticity, and plasma instabilities can be dynamically important too, and
has been seen in X-ray observations (Ballet 2006; Morlino et al.
2010). With the growth of computational power it became possible
to perform Particle-In-Cell (PIC)/hybrid simulations that capture the
most important microphysics of CR shock acceleration, including
various kinetic instabilities and their non-linear evolution into turbu-
lence (e.g. Caprioli & Spitkovsky 2014a). These simulations continue
to show that shock acceleration is very efficient.

In this paper, we study CR-modified shocks in the two-fluid
approximation ubiquitously used in galaxy formation simulations
of CR feedback. CRs couple with the background gas through the
streaming instability (Kulsrud & Pearce 1969). In this instability, CR
bulk drifting at velocity greater than the local Alfven wave speed (vp
> vy4) excites magnetic waves that gyro-resonantly scatter the CR,
effectively locking the drift motion of the CR to the local wave frame
((vp — va)lva K 1), causing it to ‘stream’ along the magnetic field
at the Alfven speed down the CR pressure gradient, i.e.
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This collective streaming causes energy transfer from CR to the
gas at the volumetric rate of v, - VP,. In steady state, wave growth
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is balanced by various damping mechanisms (e.g. see Wiener, Oh &
Guo 2013). The finite scattering rate of CRs means that they are not
perfectly locked to the Alfven frame; slippage with respect to the
Alfven frame is expressed in terms of an anisotropic diffusive flux
iV P., where & is dependent on the CR energy spectrum, the various
plasma parameters, and the damping mechanisms at play. We forgo
these complications and assume the diffusion coefficient is constant
in time and space though our work can be extended to account for a
more detailed treatment of diffusion.

The two-fluid treatment was historically the first method used to
study CR-modified shocks. However, it has several shortcomings.
Since momentum information is integrated out, CR pressure and
energy (which are moments of the full distribution function) have to
be related by an equation of state, with adiabatic index y. = 1 +
P./E. that is usually assumed to be constant, y. = 4/3. In reality, y .
depends on the detailed shape of the distribution function and evolves
continuously from 5/3 to 4/3 as particles are accelerated. Shock
structure, compressibility, and acceleration efficiency are all sensitive
to assumptions about the adiabatic index (Achterberg, Blandford &
Periwal 1984; Duffy, Drury & Voelk 1994). Similarly, the diffusion
coefficient i is averaged over the CR spectrum. Furthermore, it is
not self-consistently calculated.! In general it should evolve with the
time-dependent distribution function. In particular, since generically
Kk (p) rises with energy, this can lead to a CR flux dominated by the
highest-energy particles; in this case a steady-state shock structure
no longer exists. In this paper, we simply assume a constant, time-
steady & (and hereafter drop the overbar). Finally, the standard CR
hydrodynamic equations ignore microscopic physics such as thermal
injection and magnetohydrodynamic (MHD) wave growth which PIC
and hybrid simulations take into account.”

Given these serious shortcomings, it may seem a step backwards
to simulate CR-modified shocks using the two-fluid approach.
Certainly, if our main interest is understanding CR acceleration at
shocks, then PIC and hybrid simulations are unquestionably the tools
of choice. However, there are still compelling reasons for two-fluid
CR shock simulations:

Code testing. In recent years, as interest in the role of CRs in
galaxy formation has rapidly grown, many new codes for simulating
CR transport in the two-fluid approximation have been developed
[CR streaming with regularization (Sharma, Colella & Martin 2009);
ENZO (Salem & Bryan 2014); AREPO (Pfrommer et al. 2017); GIZMO
(Chan et al. 2019); GADGET-2 (Pfrommer et al. 2006); RAMSES
(Dubois & Commercon 2016; Booth et al. 2013); FLASH (Yang
et al. 2012) among others]. These must be subjected to a battery of
tests to ensure they are correctly solving the CR transport equations.
Perhaps the most demanding test for such codes are CR shocks;
this is also one of the few regimes where analytic solutions exists.
However, to date codes have only been compared against analytic
solutions in the purely advective regime, with both CR streaming
and diffusion turned off. Even in this restricted regime, numerical
methods do not appear to be robust. When the post-shock CR pressure

IThe calculation of the diffusion coefficient itself requires calculating wave
growth by the resonant streaming instability (Kulsrud & Pearce 1969), the
current-driven non-resonant Bell instability (Bell 2004), as well as associated
damping mechanisms. Our current study essentially assumes that waves
are strongly damped, although kinetic simulations show that waves can be
amplified to the non-linear regime (Caprioli & Spitkovsky 2014b), which
facilitates CR scattering.

2They can potentially be modified to include such physics; we implement a
very simplified prescription for thermal injection (Section 3.5.4), and one can
also analytically model wave growth (Caprioli et al. 2008, 2009)
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is a small fraction of the gas pressure, simulations appear to agree
with existing analytic solutions (Pfrommer et al. 2006). However,
once this is no longer true, outcomes are non-unique and dependent
on numerical method such as discretization, time-steppping, spatial
reconstruction, and CFL number (Kudoh & Hanawa 2016; Gupta,
Sharma & Mignone 2019). This was attributed to the fact that the
equations can no longer be written in conservative form, due to
the presence of a source term involving spatial derivatives. It was
therefore suggested that additional assumptions are required at CR
shocks to achieve closure, such as constant CR entropy across the
shock (Kudoh & Hanawa 2016), or a priori prescription of the
post-shock CR pressure (Gupta et al. 2019). We shall clarify this
situation by showing that such potentially unphysical assumptions
are unnecessary in the full problem where CR transport (diffusion
and streaming) is considered.

Even more pressing is the need to compare codes with CR
streaming to analytic solutions. In the past, simulations with CR
streaming have been afflicted by severe grid-scale instabilities due
to the requirement that CRs can only stream down their gradient
(Sharma et al. 2009). The only known cure, adding artificial
diffusion, led to severe time-step requirements (Af o (Ax)? as
well as dependence on the adopted smoothing parameter).> Thus,
simulations with CR streaming (and particularly CR shocks with
streaming) were infeasible. These problems were resolved with a
new two-moment method for CR transport (Jiang & Oh 2018),
which has no arbitrary smoothing and only linear time-step scaling
with resolution (A7 o Ax); since then similar formulations (albeit
with some important differences) have been proposed (Chan et al.
2019; Thomas & Pfrommer 2019) and employed in galaxy formation
simulations. For instance, Thomas & Pfrommer (2019) claim that
expansion to O(v%/c?) is necessary, but did not present a specific
scenario demonstrating this claim. No codes to date have been
compared against existing analytic solutions with streaming (Voelk,
Drury & McKenzie 1984). We shall show that these old analytic
solutions are in fact incomplete, and develop a new set of solutions.
The Jiang & Oh (2018) method matches the new analytic solutions
we develop.

CR shocks in galaxy formation simulations. Another compelling
motivation to understand CR shocks in the two-fluid approximation
is that at present it is the only one used in galaxy formation
simulations; no other method has been shown to be feasible. Shocks
are also omni-present in such simulations, and it is important to
understand the mutual interaction and impact of CRs on shocks
and vice versa, particularly in the presence of CR streaming. For
instance, it is usually prescribed in cosmological simulations that
fcr ~ 10 per cent of supernova energy is injected into CR (via a
sub-grid recipe) and that most of the CRs in the simulation comes
from this source. However, in a two-fluid code, shocks will enhance
CR energy density. Thus, shocks generated by e.g. SNe blast waves,
galactic wind termination shocks (e.g. Bustard, Zweibel & Cotter
2017), and structure formation shocks may produce CRs in excess
of that from sub-grid injection recipes, and also alter the spatial
distribution of CRs. It is important to understand this effect and
its dependence on numerical resolution. The simulation results must
also be checked to ensure they make physical sense (for instance, that
CR acceleration efficiencies are not wildly discrepant with PIC simu-
lations), given the approximations inherent in the two-fluid method. It
is also important to understand how CRs affect shock jump conditions

31t is possible to include streaming by modeling it as diffusion coefficient
using a time-implicit scheme (Dubois et al. 2019).
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(e.g. compression ratios, which is increased in the presence of CRs),
and whether the simulations are handling this correctly. Only by
doing so can we assess whether the astrophysical impact of shocks
is correctly handled, and the robustness of observational predictions
that depend on conditions at the shock (e.g. radio relics; Botteon
et al. 2020).

The outline of this paper is as follows. In Section 2, we develop
analytic solutions for CR-modified shocks, and in particular a
new solution that takes bi-directional streaming into account. In
Section 3, we show simulation results and compare them to the
analytic solution. This is followed by a study on the equilibration
time, resolution dependence, effect of oblique magnetic fields, and
injection. We conclude in Section 4.

2 ANALYTICS

2.1 Governing equations

Our analytic study follows the treatment by Voelk et al. (1984),
hereafter VDM84, of CR shocks with streaming, but with some
important modifications. We consider 1D adiabatic non-relativistic
steady-state shocks in the two-fluid approximation. As noted in the
Introduction, we do not assume any injection of CRs from the thermal
pool; we simply assume a non-zero upstream CR pressure. With a
shock finding algorithm, it is possible to include prescriptions for
thermal injection (e.g. Pfrommer et al. 2017), but we eschew this for
the sake of simplicity. At high Mach numbers (M > 5), it has been
suggested that the acceleration efficiency is independent of injection,
maintaining at or above 50 per cent (Eichler 1979; Achterberg et al.
1984; Ellison & Eichler 1984; Falle & Giddings 1987; Kang & Jones
1990). We also ignore magnetic field amplification and subsequent
back-reaction on the shock, which can alter compressibility and
hence CR acceleration efficiency (Caprioli et al. 2008, 2009). This
is standard in the two-fluid formalism.

The time-dependent equations two-fluid equations we solve in our
1D numerical simulations are (Jiang & Oh 2018):

p

V. =0
5 TV (v
ov 1 1
— +V-VV=——VP,+ —0,-[F. — V(E. + P.)]
ot P P
P,
?-ﬁ-V'VPg-l-)/ngV'V:(J/g—l)Vs‘CTc'[Fu—V(Ec'FPc)]
0P,
ot +(Vr - I)V 'Fc = _(yc - l)(V+V5) cO¢ - [Fc - V(Ec + Pc)]
1 OF.
— + VP =—o. - [Fc = v(E. + Po)] @)
c? ot

where subscripts g and ¢ denotes the gas and CR, respectively; F.
denotes the CR flux. The interaction coefficient tensor is:

ol =0+ %va 3)
where o, = (y. — 1)/k, and « is the customary CR diffusion coeffi-
cient. There are five time-dependent PDEs for the five variables p,
v, Py, P, F.. Note the presence of source terms in the equations,
indicating momentum and energy exchance between the gas and
CRs. Total momentum and energy are conserved, since the source
terms for gas and CRs are equal and opposite. The last equation in 2
is an improvement from the one-moment description (Sharma et al.
2009), taking into account free streaming of cosmic rays when gas
and CRs are weakly coupled. The addition of the time-dependent
term OF,/0t/c? suppresses a numerical instability associated with
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the one-moment method. Details for this equation can be found in
(Jiang & Oh 2018) and references therein.*

In our 1D formulation, the B-field is parallel to the shock
propagation direction and magnetic pressure/tension is ignored. In
steady state, conservation of mass, momentum, and energy gives

PV = const, 4

oV + Py + P. = const, 5)
1 ., P,

oU (fvz + L—}’) + F. = const, (6)
2 ve—1p

where all quantities are measured in the shock frame. This is
supplemented by the steady-state CR energy equation,

e rui )
=W+ ,
dx T dx
where the steady-state CR flux is
yL‘ K dP(,‘
F.= (U + US)PL' - 7 (8)
Ve — 1 Ve — 1 dx

Equation (7) captures energy transferred from CRs to the gas,
either by mechanical work done (v - VP.), or heating (vs - VP,.).
Transport by streaming and diffusion are captured, respectively, by
the first and second terms on the RHS of equation (8). VDM84
assumed that CRs only stream towards the upstream. However, this
assumption is unclear downstream given equation (1); CRs can only
stream down their gradient. We therefore restrain from presupposing
a CR streaming direction. The direction will become clear as we go
along. In the following, we take y , = 5/3, y . = 4/3 to be the adiabatic
indices of the gas and CR. ‘Upstream’ means the fluid state at x =
—o00, ‘downstream’ means the post-subshock fluid state if there is a
subshock or x = +o0 if there is not.

The non-conservative form of the CR subsystem leads to the
presence of derivatives in equations (7) and (8). This implies that we
cannot simply use conservation laws to determine jump conditions,
but must solve for the detailed structure of the front. In particular,
we must solve ODEs. For this to be possible, the CR variables P,
F. (unlike the gas variables) must be continuous across the front.
Physically, the smoothness of P., F, across the shock is guaranteed
by the large mean free path of CRs, A ~ r./(8B/B)*> > X;, where Ty
is the CR gyroradius and A; is the ion mean free path; the (much
smaller) thermal ion mean free path sets the characteristic thickness
of any gas shock discontinuity. Mathematically, the smooth solutions
are guaranteed by the diffusion term in the above equations; we just
need to resolve the diffusion length /p ~ «/cs. Note that if P, were
discontinuous, similar to Py, then equation (8) would imply an infinite
CR flux F..

2.2 Shock structure and solution method

2.2.1 Previous solution: uni-directional streaming

Before solving the above equations, we describe the overall features
of the shock. CR acceleration implies that P, is higher in downstream
gas. However, downstream CRs can diffuse upstream and affect the
flow. The CR precursor significantly affects fluid flow and decelerates
incoming gas, from being supersonic with respect to the overall

4 A recent derivation starting from the CR Fokker—Planck equation (Skilling
1971) can be found in Hopkins, Squire & Butsky (2021). Our equations
correspond to the isotropic limit of their results.
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acoustic speed of the plasma (which includes both gas and CR
contributions to gas pressure; c; ., ~ d(p; + pc)/dp) to subsonic
with respect to ¢ (. There are two possibilities: (i) in a CR-
dominated shock, the post-shock CR pressure absorbs a significant
fraction of the incoming ram pressure. In this case, the ‘shock’
simply consists of a smooth deceleration and compression; all fluid
variables are continuous. After the compression, the flow is still
supersonic with respect to the gas sound speed. (ii) The gas must
absorb a significant fraction of incoming ram pressure, an amount
that is inconsistent with just adiabatic compression. This implies a
discontinuous gas subshock in the gas variables only, and a jump in
gas entropy. The subshock renders the flow subsonic with respect
to the gas sound speed. The effect of CR streaming is transfer
energy from CRs to the gas in the precursor, preheating the gas,
and thus increase in the importance of gas decelerating the flow, thus
increasing the strength of the subshock.

2.2.1.1 The smooth precursor. The gas is adiabatically compressed.
The gas velocity decreases from mass conservation while the gas and
CR pressures increase. For a shock propagating in the —x direction,
VP, > 0in the precursor and CR streams towards the upstream (v, =
—v,4). The net motion of CR is still towards the downstream as the
gas advects faster than v4 (M4 >> 1). In this region, one can safely
take derivatives of the fluid variables, and as shown by VDM&84,
integrate equation (4) to (8) to yield the ‘wave adiabat’

s —1)BX(2 1—
{1 + Ma } {Pg+(yg VB CreMat ve) } = const,
vy — 1 Ve 2y, +1)
)

where M 4 = v/v, is the Alfvenic Mach number. The ‘wave adiabat’
is an additional conserved quantity that relates gas pressure to density.
It reduces to the gas entropy P,p~ "¢ for g > M, > 1 —i.e. when
va - VP, is small and there is little energy exchange between CRs
and gas, the gas compresses adiabatically. On the other hand, in the
limit M4 > B ~ 1, equation (9) reduces to p = const: the gas is
incompressible at strong and magnetically significant shocks, due to
intense CR heating of the thermal plasma.

Since we have four conserved quantities for five variables, only
a first order differential equation governing the shock precursor is
required to close the system. The precursor equation, expressed in
terms of the inverse compression ratio y = p/p (subscript 1 denoting
upstream), is (Voelk et al. 1984)

dy _ A =y»NQ®)
dx  (k/v))D(y)’

where N(y) and D(y) are given by equation (24) and (25) in VDM84;
we list them here for completeness:

10)

=00 (o2t
Ve Yo —Ye 1—Py }
- 1+6— 27
Vgle { Vc(yg -1 1-y
_ % {yl/z B I 321 - P) }
My yeMEA+ 12y ME(L =) )
(1
P(y) -0
D(y) = -1 1+ —-——2 12
O (nyl )/( * Mmyl/z> (12

where § = P./Pg, Msl = v /¢s1, Cfl =Yg Po1/p1, Mei = vi/cer,
C? = ycpcl/lol and P = Pg/Pg1~
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2.2.1.2 The subshock. The subshock is characterized by a set of jump
conditions. CR diffusion ensures that only the gas variables jump
discontinuously while the CR pressure and flux must be continuous.
The jump conditions are therefore

[pv] =0 (13)

[pv? + Pl =0 (14)

|:,ov <1v2+ LE)} —0 (15)
2 ve—1lp

[P]=[F.]=0. (16)

From the jump conditions, one can derive the relation
Ye(Pg) = J(v), a7)

where ( - ) denotes the arithmetic mean of the enclosed quantity just
before and after the jump and J = pv is the conserved mass flux.
What is the criterion for a gas subshock? It occurs when the
compression ratio y is discontinuous, i.e. in equation (10), dy/dx
— 0o when D(y) = 0 (it can be shown that N(y) is finite, even in the
limit y — 1). From equation (12), we see that this happens when

V. P,
2= e g:cf,

P
i.e. the flow hits a sonic point with respect to the gas sound speed.
We see that this is equivalent to equation (17) derived from the jump
conditions. Since fluid variables are discontinuous at a shock, the
sonic point is defined in terms of the average of pre-shock and post-
shock quantities. The upstream flow is of course supersonic; if the
downstream flow is still supersonic with respect to the gas sound
speed, then there is no sonic transition and no subshock. We still
refer to the entire compressive structure as a ‘shock’, since the fluid
decelerates from M > 1 to M < 1 with respect to the fotal sound
speed,’ given by VDM84:

2 2 (v —va/2)(v + (yg — Dua)

2
v, =ci+c
P s ¢ V(v — vy)

(18)

, 19)

where ¢2 = y.P./p. However, if the downstream flow is subsonic,
then equation (10) becomes singular at the sonic point and a subshock
occurs.

The sonic point is where P, is maximized. Physically, this is
because at the subshock, the kinetic energy of the flow goes into
the gas component rather than the CR component: P, undergoes
a discontinuous increase at the subshock, while P, is unchanged
(continuous) across the subshock. After the subshock, one goes
directly to the downstream state where all fluid variables are constant.
One can also see this by differentiating equation (6) and using
equation (7) to obtain

dpP,
dx

i.e. as one approaches the sonic point where the term in brackets
vanishes, VP, — 0 and P, is maximized. Note that if the solution
were to remain continuous and differentiable, then V P. would
change sign, implying a non-monotonic precursor profile, which is
unphysical in the presence of diffusion. One can also see that at a
sonic point, dy/dx would change sign since D(y) changes sign (see

dp
(pv* =y P 5= =p (20)

SNote that this differs from simply summing the gas and CR pressure to
get the total pressure in an adiabatic medium, because energy is transferred
between the gas and CRs.
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Figure 1. Top: Typical P, against v diagram without bi-directional stream-
ing. Each colored curve represents a P, — v relation given a condition,
as described in Drury & Voelk (1981). Blue — P, = 0; orange — y P, =
Jv; black — the Hugoniot, N(y) = 0; red — jump in (P,, v) satisfying the
subshock jump conditions (equations 13-16); green — the wave adiabat,
equation 9; purple — the reflected Hugoniot. Botfom: Same as the top but
with bi-directional streaming, which leads to the dotted lines. The dotted
black line expresses the P, — v relation for N(y) = 0. Construction of the
dotted red and purple line follows that of the solid red and purple line. For
reference, M =5, Q = 0.5, B = 1 for these two plots.

equation 12), again implying a non-monotonic profile. However, if a
subshock takes place at the sonic point, derivatives involving the gas
diverge (in particular, dp/dx — 00) and so all equations involving
derivatives (including equation 10 and 20) are no longer valid.

2.2.1.3 Solution method. In the standard treatment by VDM&84, for
a given upstream, the downstream can be found by a modification of
the procedure described in Drury & Voelk (1981; hereafter DV81).
The solution procedure can be expressed graphically, as in the top
panel of Fig. 1, which shows a P, against v diagram. Each curve
on the diagram describes a constraint characteristic to the shock
structure:

(1) P, = 0 (blue curve). Pressure must be positive. The plot shows
P, > 0 only; another obvious constraint is P. > 0. Thus, all valid
solutions must lie below the blue line, which shows P. = 0 (obtained
from equation 5). Lines parallel to this line correspond to P, = const,
which we will use shortly.

(i) Hugoniot (black curve). The black curve references equation
10, showing where N(y) = 0, or equivalently where the gradients of
the fluid variables are zero. This corresponds to far upstream and
downstream. It is called the Hugoniot. For a given upstream, the
Hugoniot encompasses possible downstream states.

(iii) Wave adiabat (green curve). The wave adiabat, given by
equation (9), is set by upstream conditions and conserved throughout
the precursor. The initial intersection of the wave adiabat and the
Hugoniot at the far right gives the upstream state; the subsequent

MNRAS 506, 3282-3300 (2021)

intersection at the left gives the downstream state if there is no
subshock. The ordering of these states is unambiguous, since the
shock decelerates the flow.

(iv) Sonic boundary (orange line). The orange line shows the sonic
condition given by equation (18). If the wave adiabat does not cross
this boundary before reaching the Hugoniot, then it never undergoes
a sonic transition and there is no subshock. The structure of the shock
can then be read off graphically by following the wave adiabat from
the upstream to the downstream state. On the other hand, if it crosses
this line, then the gas will shock.

(v) Reflected Hugoniot (purple line). If the gas undergoes a
subshock, how do we proceed? Since P, is continuous, [P.] = [pv?
+ P,] = 0 across the subshock, the jump in fluid variables must be
parallel to the P, = O (blue) line. In addition, from equation (17), the
sonic boundary (orange line) must bisect this line, since the sonic
boundary gives the relationship between the mean of the pre-shock
and post-shock pressure and velocities. From these facts, we can
construct a ‘reflected Hugoniot’ (purple curve), which is the locus
of points traced out by lines parallel to the blue P. = 0 line, which
start at the Hugoniot (black) and are bisected by the sonic boundary.
The reflected Hugoniot shows all the possible pre-subshock states
connected to the downstream by the subshock jump conditions
(equation 13-16). The intersection of the wave adiabat (green) and
reflected Hugoniot (purple) therefore gives the pre-subshock state.

(vi) Subshock jump (red line). Now that we have identified the
pre-subshock state, we insert the subshock jump (red line), which as
discussed must be parallel to the P. = 0 (red) line. The intersection
of the subshock jump (red line) with the Hugoniot (black line) gives
the post subshock (and final downstream) state.

In summary, the solution procedure is: follow the wave adiabat
(green) in the direction of decreasing v until it intersects with the
reflected Hugoniot (purple), then follow the subshock jump (red)
directly to the downstream. In the absence of a subshock, possible
if the wave adiabat does not cross the sonic boundary (orange), the
downstream is simply given by the intersection of the Hugoniot and
the wave adiabat. Such smooth transitions can occur if the shock is
CR dominated.

The solution can be parametrized by

Pcl 87'[Pg1
p=""1,

M= o=

=55 @n
Upl Pgl +Pcl

where v, is given by equation (19) here. The shock Mach number
M is not to be confused with the Alfvenic Mach number M 4, the
sonic Mach number M, or the CR acoustic Mach number M.. O
is the upstream non-thermal fraction of the total pressure. 8 is the
familiar plasma beta.

2.2.2 New solution: bi-directional streaming

The aforementioned solution method assumes the direction of CR
streaming is the same throughout the shock profile, i.e. towards
the upstream. However, post-subshock CR can stream towards the
downstream too. At the early stages of shock formation, strong
compression at the subshock can cause the CR pressure to overshoot,
forming a small spike from which CR stream away in opposite
directions (Fig. 2). This is entirely analogous to the ‘Zeldovich spike’
(Zel’dovich & Raizer 1967) which occurs in radiative shocks. The
spike is a non-equilibrium state which slowly flattens as CRs stream
out. However, it sets up a shock structure where downstream CRs
stream away from the shock, rather than towards it, as VDM&84
assumed. Note that the downstream CR profile is almost flat (P, —
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Uni-directional streaming
+<— —— Bi-directional streaming

Vs Vs

Figure 2. Conceptual plot of P, leading to bi-directional streaming. The
direction of streaming assumed in VDM&84 is added for comparison.

const), so the direction of streaming is set by small changes in the
CR profile at the shock.

To capture this new solution graphically, a new Hugoniot curve
has to be added (see bottom panel of Fig. 1). This new Hugoniot is
derived by setting N(y) = 0, where N(y) is the function N(y) with
the signs in front of M, flipped,

2 Ye+1
v 1-P
Y {1+6— Ye = Ve y}
YeM5 Yelyg— 1 1—y

' 1 12q0-p
+V {y1/2_ . S— y g )}7
M YeML(A 4y 2) YoM (1 —y)
(22)

N(y) =

The standard Hugoniot (solid black line in Fig. 1) shows possible
downstream solutions for which v, = —v,, where post-shock CR
streams toward the shock. With the sign flip, the new Hugoniot
(dotted black line) shows possible downstream solutions for which
vy = va, and the post-shock CR stream away from the shock.
The switch in direction of downstream CRs changes not just the
magnitude of the subshock, but also where it occurs. One can see
it is not possible to jump, from the standard location where the
subshock occurs (intersection between the solid green and purple
lines), to the new Hugoniot while satisfying the subshock jump
conditions. The sonic boundary (orange) would no longer bisect
the line connecting pre-shock and post-shock states. To determine
when the subshock occurs, a new reflected Hugoniot (dotted purple
line) has to be calculated, in a similar manner as in the standard
treatment.

Fluid flow in the precursor conserves the same wave adiabat
as before since CR still streams towards the upstream. Therefore,
precursor fluid states continue to trace the same green curve.
The subshock occurs at intersections between the new reflected
Hugoniot and the wave adiabat, which brings the fluid directly to
the downstream.

2.2.2.1 Existence of the new solution. In the case of uni-directional
streaming, the shock profile can be smooth (i.e. no subshock) if
the wave adiabat does not cross the sonic boundary. This happens
when the upstream P, is sufficiently high. However, the new solution
always requires a subshock. Bi-directional streaming can only occur
if there is a maximum in P., at which VP, = 0. As previously
discussed (see equation 20), unless dp/dx = 0, a maximum in P,
is equivalent to a sonic point in the gas, and thus a subshock must
occur, which brings the fluid to its downstream state without further
relaxation. Otherwise, the profile will be non-monotonic. This means
that in CR-dominated regimes, the new solution may cease to exist
because the subshock has been smoothed out.

Fig. 3 shows an example where a new solution is not allowed
for the above reasons. The wave adiabat (green) does not cross
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Figure 3. Top: P, — v diagram for M =2, 0 = 0.95, B = 1. The colour
of the curves mean the same as in Fig. 1. Bottom: Density plot of the new
solution shows that it is non-monotonic.

the sonic boundary before intersecting with the standard Hugoniot
(black). Thus, the standard solution involves a smooth transition,
with no subshock. The wave adiabat (green) does also intersect with
the new reflected Hugoniot (dotted purple), but only after crossing
the standard Hugoniot (solid black), where dP./dx = 0. Continuing
after this would imply a change in sign for dP./dx and other fluid
derivatives, i.e. a non-monotonic profile. This solution therefore has
to be rejected.

2.3 Solution structure

Fig. 4 shows the acceleration efficiency, measured by the ratio of
the change in CR pressure to the upstream ram pressure ((P, —
P.1)/piv? = AP./p;v?), against Mach number for upstream non-
thermal fraction Q = 0.1, 0.5 and B = 1. Fig. 5 shows the acceleration
efficiency against Q for a sample of Mach number and plasma beta.
In these two figures, two different solutions emerge, corresponding
to uni-directional (black curves) or bi-directional streaming (blue
curves). At high g, the two solutions converge since the contribution
of streaming is small in that limit, so it does not matter which way
the CRs stream. In magnetically significant regimes (8 ~ 1), the new
branch introduces two main differences: first, the acceleration effi-
ciency is in general lower. For bi-directional streaming, downstream
CRs stream away from the subshock, and fewer CRs diffuse to the
upstream precursor. In the two-fluid formalism, all CR ‘acceleration’
is essentially compressional (adiabatic) heating. With a smaller
precursor, the shock is more hydrodynamic and less compressible
(since the y, = 5/3 gas is less compressible than the . = 4/3 CRs).
Lower compression implies less overall less adiabatic heating of the
CRs. The difference is small at low Mach numbers (M ~ 1 — 2) but
becomes more apparent as M increases. At M ~ 10 the acceleration
efficiency can drop from ~40 — 50 per cent for the standard branch
to less than 10 per cent. However, at moderate Mach numbers, a
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Figure 4. Acceleration efficiency against mach number M for Q = 0.1
(top) and = 0.5 (bottom) and B = 1. The black curve denotes the standard
branch while the blue curve denotes the new solution branches (efficient,
intermediate, and inefficient).

transition occurs, and that brings us to the second point: the new
solution bifurcates into multiple branches. A similar bifurcation
occurs for CR shocks without streaming, which is equivalent to
our high g limit (DV81; Jones & Ellison 1991; Donohue & Zank
1993; Mond & O’C. Drury 1998; Becker & Kazanas 2001; Saito,
Hoshino & Amano 2013). This does not happen for uni-directional
solutions with streaming. Even so, bifurcation in the no streaming
case happens only at very small Q, and within an intermediate range
of Mach numbers. In contrast, the new bifurcation can occur at high
Q (for B ~ 1, it can occur for equipartition CR energy densities or
even in CR-dominated regimes) and persists even as M continue
to increase. Fig. 6 shows a summary of the solution multiplicity for
(M, Q) and 8 = 1, 20, 1000. Multiple solutions for the new branch
are common, particularly for high Mach numbers and when magnetic
fields are significant (lower ). The new branch usually bifurcates
into three solutions, and in order of increasing acceleration efficiency
we shall call them the inefficient, intermediate, and efficient branch.

The uni-directional solution poses a difficulty at low f: a signif-
icant downstream non-thermal fraction exists even as Q — 0. This
solution has been argued to be physically unrealistic (Malkov 1997).
It is unclear physically how, without injection, one can accelerate
particles without an existing CR population. By contrast, the bi-
directional solution has at least one branch where AP, — 0 as Q —
0.

The behaviour of different branches of solution are markedly
different. The ‘inefficient’ branch corresponds to the test particle limit
where CRs have nearly no effect on the shock structure. The down-
stream fluid is gas dominated and the shock appears hydrodynamic,
giving a compression ratio ~4 at high Mach number. At equipartition
(0 ~0.5, B ~ 1), the typical acceleration efficiency ~10 per cent for
Mach numbers below 10 and decreases with increasing Mach number
(see Fig. 4). Atlow Mach numbers, the acceleration efficiency of this
branch appears consistent with PIC/hybrid simulations (Caprioli &
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Spitkovsky 2014a), which found an efficiency of <10 per cent for
M < 10. It is, however, at odds with the behaviour at very high
Mach numbers M > 10, for which PIC/hybrid simulations show an
increase in efficiency. We shall see that if we include thermal injection
into DSA (Section 3.5.4), this decline in efficiency at high Mach
number goes away. With less ambient CR (Q = 0.1), the acceleration
efficiency of the inefficient branch drops to ~1 per cent. This reflects,
in the two-fluid model, a substantial ambient CR population is
required for efficient acceleration.

The efficient branch is strongly CR-modified. Having a smaller
adiabatic index y,. = 4/3, the fluid is more compressible, so the
compression ratio ~7 at high Mach number. This leads to much
higher adiabatic heating of the CRs. At equipartition, this branch
emerge at Mach numbers higher than ~12 and has a typical efficiency
of 260 per cent. The acceleration efficiency continues to increase
with Mach number such that at Mach number of a few tens and above
the subshock is smoothed out by the dominating CR population and
the efficient branch merges with the standard branch. In the following,
we shall often refer to the efficient branch and standard solution
collectively as the efficient/standard branch due to their similarity in
acceleration efficiency. An acceleration efficiency of this order has
been found in previous works, both analytically (Caprioli et al. 2008,
in a two-fluid model; Caprioli et al. 2009, in a kinetic description;
both works include magnetic field amplification) and in simulations
(Ellison & Eichler 1984, in a Monte Carlo approach).

While some previous analytics have assumed CR entropy (P./p*)
to be constant (Pfrommer et al. 2006; Gupta et al. 2019) across the
shock, we find this to be untrue; CR entropy increases across the
shock for all branches of solution (in ascending order of increase:
inefficient, intermediate, and efficient branch).

The downstream P, can be different by decades across branches
of solution, so knowing which one will be selected is important. We
seek to answer this with simulation. In the following sections, we
will demonstrate numerically that the standard and new solutions are
all valid steady-state shock profiles, but the intermediate branch of
the new solution is unstable. We also illustrate, with different initial
setups, how various branches can be captured. They turn out to be
sensitive to local upstream conditions, but generically, the inefficient
branch of the new solution is the one most likely to be realized in
realistic settings.

3 SIMULATION

3.1 Code

The following simulations were performed with ATHENA+ + (Stone
et al. 2020), an Eulerian grid based MHD code using a directionally
unsplit, high order Godunov scheme with the constrained transport
technique. CR streaming was implemented with the two moment
method introduced by Jiang & Oh (2018). This code solves equation
(9) in Jiang & Oh (2018), which reduces to our equation (2) in 1D
(where the B-field is constant and parallel to the shock normal).
Unless otherwise specified, a 1D Cartesian grid is used and the
magnetic field points in the +x direction.

3.2 Setup 1: imposed shock profile

We begin by verifying the analytic standard and new solutions,
by imposing the steady-state analytic profiles as initial conditions,
and verifying that they are time-steady in the code. For a given
upstream state, the downstream state can be determined by the
method described in Section 2.2. The shock profiles can be calculated
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Figure 5. Acceleration efficiency against upstream non-thermal fraction (Q) for Mach number M = 2, 5, 10, 15 and plasma beta g = 1, 5, 20, 1000. The black
curve denotes the standard branch while the blue curve denotes the new solution branches (efficient, intermediate, and inefficient). In each panel, the efficient
branch gradually merges with the standard branch as Q increases. At sufficiently CR-dominated regimes (high Q), the efficient branch cease to exist by the
monotony argument in Secrion 2.2.
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Figure 6. Color plots showing the multiplicity of the new + standard solution for a given (M, Q, B). Purple = 1, blue = 2, green = 3, yellow = 4.
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Figure 7. Simulation results for Setup 1. Top row: From left to right: density, gas pressure, and CR pressure profiles for the standard branch. Second row:
Profiles for efficient branch. Third row: Profiles for the intermediate branch. Bottom row: Profiles for the inefficient branch.

from equation (10) supplemented by a subshock that brings the fluid
to the downstream state. This profile is input into the simulation
domain and evolved in time. Since the shock structure depends
only on M, Q, B, we fix the upstream p = 100, P, = 1 in code
units, implying an unstream gas sound speed of ¢, = 0.13. We
set the reduced speed of light ¢ = 100.° Some simulations were
rerun with ¢ = 1000 with no apparent difference. The diffusion
coefficient (which we set to x = 0.1) has no effect on downstream
values, it only sets the shock width. The number of grid cells is
4096; at this resolution the diffusive length is typically resolved
with ngex = k/v1Ax 2 40 cells. Previously, ngyocx ~ 10-20 was
found to be sufficient for convergence (Frank, Jones & Ryu 1994).
Outflow boundary conditions were used on both sides. The result is
independent of the boundary conditions as increasing the domain size
and imposing the ghost zones yield no difference. Unless specified,
the following simulations assume B = 1. CR transport at high g is

©The reduced speed of light ¢ is a free simulation parameter governing the
CR free stream speed in the decoupled limit. It should be much greater than
other characteristic speeds. See Jiang & Oh (2018) for a detailed discussion.
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purely diffusive, a limit that has been extensively studied, which we
will not investigate in this work.

Fig. 7 shows, respectively, the shock profiles of the standard,
efficient, intermediate, and inefficient branch at r = 0, 1502¢yi,
30034 for M =20, Q = 0.6, 8 = 1, where t45 = K/U12 is the
diffusion time-scale. The solutions at t = 1502z are relatively
well maintained, with a little numerical shift. Such numerical shifts
are expected to equilibrate after ~1000z4¢ (Kang & Jones 1990).
Behavior of the solutions vary drastically after ~2000z4, with
the intermediate branch diverging exponentially from its original
profile. The standard and efficient branch show small spatial shifts,
but overall the profile is maintained, with the same acceleration
efficiency. The inefficient branch appears the most robust. In general,
solution branches with significant downstream CR fraction tend to
be the most susceptible to this numerical shift. Such shift originate
at the subshock (we do not observe this for smooth shocks). The
problem lies with how the direction of the streaming velocity vy
is determined. The direction is determined by sgn(VP,.), which is
estimated by a finite difference scheme: sgn(VP, ;) = sgn((P., i+ 1
— P ;i—1)/Ax). The cells at the subshock therefore would still
have positive VP, whereas it should, for bi-directional streaming,
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be negative. This causes v, to be positive at the subshock and F,.
(equation 8) to overshoot slightly, hence causing the shift in P,
profile. Since F, scales linearly with P,, the overshoot is larger for
more CR-dominated downstream. The inefficient branch, which has
the lowest downstream CR fraction, is therefore the least affected.
Another possible source of shift comes from the finite coupling time
for F, to attain its steady-state value (equation 8), given roughly by
feoup = 1 /o.¢%. Across the subshock, o drops abruptly, leading to
a rise in the coupling time. Deviations of F, from the steady-state
expression (equation 8) causes the tiny discrepancy seen.

The intermediate branch has a profile that does not just translate
spatially; it also clearly evolves. Furthermore, in the example above,
the acceleration efficiency of the intermediate branch diverges
with time and evolves to the standard/efficient branch efficiencies,
while the other branches remain close to their initial values. Thus,
the intermediate branch is unstable. The same multiplicity (3) of
solutions appears in standard solutions with diffusion only, and the
intermediate branch is also unstable in this case. Mond & O’C. Drury
(1998) suggested that this divergent behaviour is a consequence of a
corrugational instability. Nevertheless, along with Donohue & Zank
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(1993) and Saito et al. (2013), we have found that the intermediate
branch is unstable without invoking a corrugation mode (since our
simulations are 1D). It is also unlikely to be due to the acoustic
instability (Drury 1984; Dorfi & Drury 1985; Zank & McKenzie
1985; Drury & Falle 1986; Kang, Jones & Ryu 1992; Wagner et al.
2006), triggered at the shock precursor by phase shifts between the
acoustic disturbances in the gas and CR components due to CR
diffusivity: the typical growth time (i.e. e-folding time) of the acoustic
instability is fgow ~ K/cf,. whereas the advection time across the
shock precursor is 7,4y ~ «/v1cy1. The ratio of these two time-scales
iS tarow /tagy ~ M > 1,i.e. there is insufficient time for the instability
to grow.

We can understand the instability of the intermediate branch as
follows, which is in line with suggestions that the divergent behaviour
of the intermediate branch is caused by a feedback loop between
downstream CR pressure and acceleration efficiency (Drury & Voelk
1981). A clear criterion for a stable solution is dP/0P. > 0, so
that for instance the downstream CR pressure P, decreases if the
upstream value P.; decreases. Otherwise, the acceleration efficiency
is divergent. In our variables, the stability criterion is

opa__ 3lans(ond)] _ PatBa 1
00 0 p1v} M2

where 1/ M? « 1. From Fig. 5, we see that the strong negative slope
of the intermediate branch implies that it is unstable, while both of
the other branches are stable. Thus, a solution on the intermediate
branch will evolve to one of the other branches. The instability of
the middle branch in an ‘S’ shaped phase plane curve is generic to
many problems, from thermal instability (Field, Goldsmith & Habing
1969) to accretion disk instabilities (Smak 1984).

We proceed to test the analytic shock profiles for other values of
Q. The result is shown in Fig. 8. The acceleration efficiencies of
the standard, efficient, and inefficient branches are stable and remain
close to their initial setups while that of the intermediate branch is
unstable, and asymptotes to the standard and efficient branch. These
results show that our two-moment code handles this demanding test
well, and in agreement with analytic expectations.

(23)

3.3 Setup 2: free flow

Next, we show how initial conditions influence which solution branch
is realized. We simulate a fluid moving supersonically towards a

| L B AL L
0.00 0.25 0.50 0.75 1.00
Q

Figure 8. Acceleration efficiency against Q for M = 20, 8 = 1 at two time
instances, at t = 0 (top) and ¢ ~ 2000¢g;sr (bottom). The markers denote the
simulation data, the different marker shapes represents the solution branch
the simulation was set up with (red diamond: inefficient, green squares:
intermediate, yellow triangle: efficient, blue circles: standard). The markers
are threaded by black and blue lines, denoting the analytic acceleration
efficiency (black corresponds to standard branch, blue corresponds to the
new solution branches, i.e. efficient, intermediate, inefficient). The vertical
brown dashed line indicates the value of Q used in the test cases displayed in
Fig. 7.

reflecting boundary on the right at high speed, as in a converging
flow. This causes the fluid to shock. The initial flow is either uniform
or has background gradients. The left boundary is set to outflow if
the flow is uniform initially, or with linear extrapolation in the ghost
zones otherwise. The initial flow speeds are listed in Table 1 (top
table) and P, is set by Q. The CR flux F. is determined by equation
8.

For uniform flow, p and P, are set to 1000 and 1, respectively. In
the setup with initial gradients, all quantities except for P, remain
constant. P, was set to be linear,

Po(x) = (P — Py) (1 - ) + P, (24)
Xleft

where the subscripts 0,1 denote quantities at the left and right
boundaries, respectively. Equation (24) determines the spatially
varying CR pressure fraction Q(x) = P.(x)/(P.(x) + Pg). The initial
profile can equivalently be parametrized by Qp and Q;, the non-
thermal fraction at the left and right boundaries. Since the shock
propagates from right to left, at first Q = Q;, which then declines to
Q = Qy as the shock moves leftward. A background with non-zero
P, gradient will push on the gas, causing the background profile to
evolve. We include an external body force on the fluid to counteract
the CR push, keeping the background gas in force balance and thus
in steady state. We set k = 0.1 and use N = 16384 grid cells unless
otherwise specified.
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Table 1. Top table: Summary of test cases with uniform initial flow (Section 3.3). The first column catalogues the
corresponding figure. The second column lists the initial flow speed. The third column lists the upstream shock parameters.
The forth column enumerates the number of analytical solution branches for each case. The fifth column records the
branch selected by simulation. The last column measures the acceleration efficiency by (Peo — Pe1)/p1 v%. Lower table:
Summary of the oblique shock parameters (Section 3.5.3). Column 1: Angle between upstream magnetic field and
shock normal. Column 2: Time of measurement in code unit and in unit of the diffusion time in parenthesis. Column
3: Upstream Mach number (defined relative to the fast magnetosonic speed), non-thermal fraction and plasma beta.
Column 4: Compression ratio. Column 5: Acceleration efficiency. Column 6: Angle between downstream magnetic field

and shock normal.

Case v M, 0, B) #of Selected Acc. eff.

sol. branch branch
Fig. 9(a) 0.5 (14.8,0.2, 1) 2 Inefficient 0.93 per cent
Fig. 9(b) 1.23 (26.6, 0.6, 1) 4 Inefficient 2.1 per cent
Fig. 9(c) 3.31 (224,095, 1) 1 Standard 77.0 per cent
0 (deg) 1 (t/tqifr) My, 0,8) r Acc. eff. Oout (deg)
5 60 (1299) (7.6,0.5, 1) 4.0 1.1 per cent 19.5
45 60 (1304) (7.6,0.5, 1) 4.0 0.9 per cent 76
5 200 (3435) (7.7, 0.5, 100) 6.8 81.1 30.8

per cent

45 200 (4344) (8.65, 0.5, 100) 4.0 1.2 per cent 76

3.3.1 Uniform background

For initially uniform flow, we show three different cases, which are
tabulated in Table 1 and have profiles in Figs 9(a), (b), and (c). The
Mach number is measured in the shock frame with the shock velocity
calculated by imposing continuity: vy, = [pv]/[p]. In each case, it
took ~ 1000t for the shock to equilibrate. We comment further on
these long equilibration times in Section 3.5. Equilibration generally
takes longer for CR-dominated flows. In Fig. 9(c), where there is a
transition from low to high CR dominance, the equilibration time is
extended by a factor of two. We compare the simulated shock profile
against the analytic prediction well after equilibration, and find good
agreement. We show an example in Fig. 9(d). This shows that bi-
directional streaming is indeed necessary to understand the shock
profiles. The slight discrepancy in the P, profile is due to fluctuations
at the subshock associated with sgn(VP,), as discussed in Section 3.2.
In Table 1, it appears the inefficient branch is favoured whenever it
is a possible solution of the shock equations. We have found in
all other shock simulations with uniform flow that the simulation
indeed selects the inefficient branch whenever possible. It is unclear
physically why this is the case, but could be related to the fact that
the inefficient branch maximizes the wave entropy (the quantity on
the LHS of equation 9), and in particular has strongest subshock and
hence the largest jump for the gas entropy. Consistent with the results
of the previous section, the intermediate branch is never selected.

3.3.2 Gradient background

Fig. 10(a) shows the evolution of a shock in a background P, gradient,
where Qy, the initial non-thermal fraction at the left boundary, was
0.2, while Qy, that at the right boundary, was 0.95. This was meant
to simulate a shock propagating from a CR-dominated region (Q; =
0.95), where only the efficient/standard branch is permissible, to
a progressively gas-dominated area, where the inefficient branch
also exists. It is clear that the efficient/standard branch is picked
throughout. As a comparison, a similar test where Q; = 0.8 was
performed (not shown). The inefficient branch is selected throughout
for this case. The reason for this discrepant solution pick is as follows:
as shown in Fig. 11, at Q; = 0.95, only the efficient/standard branch
is possible, so the shock will pick this solution. Under continuously
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varying background conditions (in this case the gradually decreasing
P.), the shock will shift to a proximate point on the same branch.
The shock remains on the same branch even if subsequent upstream
conditions permit the inefficient branch. The same logic applies to
the case Q) = 0.8. At Q; = 0.8, there are four possible branches.
As in our uniform background tests, the inefficient branch is picked.
Subsequent evolution of the shock down the P, gradient follows the
same branch. These two test cases have been repeated without the
balancing source terms, causing the shock and the background to co-
evolve with time. Nevertheless, the same result applies: the inefficient
branch is selected for Q; = 0.8 while the efficient/standard branch
is selected for Q1 = 0.95. Branch selection is unaffected by source
terms.

The reverse is also true. A shock beginning at the inefficient
branch can, as in Fig. 10(b), transition to the efficient/standard
branch provided the upstream has shifted to conditions where only
the efficient/standard branches are permissible. This could happen if
the upstream is more CR dominated, or has higher plasma .

The findings of these simulations are summarized in Fig. 11. The
branch selected by the shock is dependent on the local upstream
conditions where the shock is formed. Where possible, the inefficient
branch is picked. The shock will remain on the same branch unless the
upstream transitions into conditions where only the efficient/standard
branches are permissible. It will then switch to these branches and
remain there. Thus, a shock passing through a CR-dominated region
(e.g. a cold cloud) will change its properties and continue to effi-
ciently accelerate CRs, even after leaving the cloud. Two-fluid shock
simulations appear to have hysteresis, likely because downstream
conditions set boundary conditions for CR streaming that impact the
shock itself. We will not consider the physics of this hysteresis, or
the preference for the inefficient branch, further in this paper. The
full realism of these properties is unclear, given the limitations of the
standard two-fluid approach. For now, it is important to be aware of
them, given that two-fluid CR hydrodynamics is essentially the only
approach used in galaxy formation simulations.

3.4 Setup 3: 1D blast wave

Thus far, we have focused on the properties of steady-state shocks,
and not examined properties of the time-dependent stage. We have
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Figure 9. Simulation results for Setup 2 without background gradients, as in Table 1.

already seen that the equilibration time of shocks can be long,
~1000¢24igruse- Thus, the acceleration efficiency of shocks will be
time-dependent in a realistic setting. Here, as the simplest possible
example, we consider a plane-parallel analog to a blast wave.

In cosmological simulations, an SN (Supernova) event is typically
prescribed to deposit mass, metals, momentum, and energy to nearby
cells of gas, generating an expanding shock wave. The energy
deposited to CR (i.e. acceleration efficiency) is often taken to be
10 per cent of the total energy ~10°!erg. If CR is treated as a
fluid coupled to the thermal gas, additional CR will be generated
at the expanding shock. As we have seen, this can be handled
self-consistently by a fluid code without a sub-grid prescription,
though whether the acceleration efficiency is correct as compared to
PIC/hybrid simulations is another matter.

In our setup, a total energy of E; = 10°! erg was deposited
uniformly over a volume of radius R = 10pc. 70 per cent of this

was deposited into thermal energy, 10 per cent into CR energy and
the remaining 20 per cent into kinetic energy. For a swept-up mass
to be 50 M, the average density was p = 8.12 x 1072 gcm™3. The
average outflow velocity was therefore v = 632 kms™!, yielding a
temperature of 7 = 5.64 x 107 K from the ideal gas law for a gas of
molecular weight © = 1. The surrounding ISM was assumed to have
density pjsy = 1072 gem ™ and Pyism = Peism = 103 ks Kem™3.
The Mach number of the expanding remnant is ~40. We consider
both Bism = 2, 100 cases. Following the analytic solution method
described in Section 2, there are four solution branches for the
Bism = 2 case, of which we expect the inefficient branch to be
picked. For the Bism = 100 case, only the efficient/standard branch
is permissible. The whole domain spanned —2000 pc < x < 2000 pc,
with outflow boundary conditions and ¥ = 3 x 10 cm?s~!. The
acceleration efficiency is independent of the diffusion coefficient; the
specific value chosen allowed the precursor to be resolved without
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inefficient branch is selected at first, then the standard/efficient branch.

Figure 10. Simulation of Setup 2 with background gradient. Time is given in code units because there is not a well-defined « / vl2 due to varying background.

an equilibration time which is too long (and requires a large box).
It is also consistent, but on the low side, with the value used in
(Gupta et al. 2018) and observations of SN shocks cited therein. A
smaller diffusion coefficient is reasonable given the shorter mean free
path of CRs at strong shocks, due to the amplification of magnetic
perturbations. The domain was resolved with N = 65536 cells (i.e.
0.06pc per grid cell). For simplicity and to avoid computational cost,
the calculation is done in planar 1D geometry, and only meant to be
illustrative.

The top and bottom rows of Fig. 12 shows the time evolution
of an expansion shock from a top-hat SNR setup for Bigm = 2
and Bism = 100, respectively. After an initial transient of ~1000
kyr, the SNR settles on to a relatively stable structure. For Sism =
2, the forward shock at r = 5871 kyr has a compression ratio
~4 and an acceleration efficiency of ~4.6 per cent, indicating the
inefficient branch is selected as expected. For Sism = 100, the
compression ratio rises to ~6 and the acceleration efficiency to
67.3 per cent, indicating the efficient/standard branch is selected.
As in Fig. 9(c) in Section 3.3, the shock profile for the Sism =
100 case underwent an extended transient of ~1500 kyr at low
post-shock CR dominance before transitioning to the expected
efficient/standard branch. Thus, the acceleration efficiency ramps up
while the blast wave expands. Comparing the CR energy contained
within the SNR of the two test cases (Fig. 13), the high Bism
case is clearly much more CR populated (~3.5 times in this
case).

Our test case is clearly idealized and we expect the simulated
profiles to change in realistic 3D spherical geometry, as well as
the inclusion of additional physics such as radiative cooling and
collisional losses. In particular, the forward shock should decelerate
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faster from stronger adiabatic cooling, reducing the acceleration
efficiency and the net CR produced. Nevertheless, it shows how
shocks can potentially add CRs over and above the initial values
input by a sub-grid recipe, as well as the influence of CR streaming
losses (which differ in the low and high B regimes) in reducing
acceleration efficiency.

3.5 Further considerations

Through most of this paper, we have considered time-steady numer-
ically resolved parallel shocks only involving acceleration of pre-
existing CRs (no injection from the thermal pool). Here, we briefly
discuss the impact of relaxing these assumptions.

3.5.1 Long equilibration times

We have already seen that shocks require ~1000¢4; ~ 1000k /v? to
equilibrate, where 7 is the diffusion time and v, is the upstream ve-
locity in the shock frame. The non-linear build up of the CR precursor,
which significantly affects shock structure and CR acceleration, takes
many CR diffusion cycles across the shock. The long equilibration
time reflects the time required for the upstream flow to respond to
the acceleration and diffusion of CR. This has been seen in previous
work with diffusion only: for instance, Jones & Kang (1990) found
it took ~200-1000z4 for their solutions to equilibrate, which is
very similar to our findings. Fig. 14 plots the acceleration efficiency
and the instantaneous diffusion time of the forward shock in the
setup described in Section 3.4. Clearly, the equilibration time for the
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1.00 (Star]

Figure 11. Acceleration efficiency against Q plot showing how various so-
lution branches are captured. Top: A shock beginning at the efficient/standard
branch (brown dot) would, under continuously varying background condi-
tions, shift to another point on the same branch. The same holds for the green
dot on the inefficient branch. Bottom: A shock beginning at the inefficient
branch (green dot) can transition to the efficient/standard branch if the
background transitions into one for which only the efficient/standard branch
is permissible. As before, the black solid line denotes the standard branch
while the blue line denotes the new solution branches (efficient, intermediate,
and inefficient).

efficient/standard branch (the Bism = 100 case) is longer, ~2500 kyr.
This time-scale is indeed of order ~1000zg;¢.

The equilibration time is longer for the efficient/standard branch
because the post-shock CR pressure is higher, leading to a stronger
precursor which takes a longer time to build up. By the same token,
the more pre-existing CRs there are in the upstream, the more
rapidly the precursor equilibrates. As mentioned in Sections 3.3 and
3.4, when only the efficient/standard branch is permissible, there is
usually an extended transient in which the shock transitions from low
to high post-shock CR dominance (i.e. low to high CR acceleration
efficiency), which coincides with the build-up of the precursor. This
behaviour was also seen by Dorfi & Drury (1985) and Jones & Kang
(1990) in simulations without CR streaming. Jones & Kang (1990)
derived an approximate analytic formula for the equilibration time
and found that the number of diffusion time required is dependent
on y. as well. The equilibration time is the longest for y. = 4/3
and decreases for a stiffer CR equation of state, when the plasma
is less compressible and the precursor plays a smaller role. For
instance, in oblique shock simulations assuming y. = 4/3, we find
an equilibration time of ~2500z4 for 6 =5 deg, 8 = 100 case,
whereas Jun & Jones (1997) find #.q ~ 3614 for y . = 5/3. Thus, in
more realistic scenarios where y . is self-consistently calculated (and
varies continuously from y,. = 5/3 to y. = 4/3), equilibration times
will be smaller.

None the less, the long equilibration times are important to keep
in mind. Before reaching steady state, shocks will have lower
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acceleration inefficiencies. One should be careful before grafting
the result of steady-state shock calculations in many astrophysical
settings (for instance, when using a shock-finding algorithm to inject
CRs by hand). For example, in SNR presented in Section 3.4, the
equilibration time is of order of 1 Myr, comparable to the expansion
time, and the acceleration efficiency was clearly time-dependent.
Other factors not present in our current simulations will affect
whether the standard/high efficiency branch will appear in two-fluid
galaxy formation simulations: by 1 Myr, radiative cooling will put
the SNR in the snowplough phase, and various instabilities (e.g.
Rayleigh—Taylor, CR acoustic instability, corrugational instability),
if resolved, can disrupt the shock profile and truncate build-up of
a precursor. It is important to bear in mind the use of a galaxy-
scale CR diffusion coefficient in cosmological simulations, of order
10?8 cm? s~! or above, would have an equilibration time significantly
longer than 1 Myr.

3.5.2 Numerical resolution

It is clear that our high resolution simulations are converged, since
they match analytic predictions. However, it is interesting to under-
stand the minimal resolution needed to obtain accurate acceleration
efficiencies. To study numerical convergence, we repeated the setup
described in 3.4 at different resolutions, and compared solutions at
t = 5871 kyr. The number of grids used were: 512, 2048, 8192,
16384, 32768, 65536, 131072. Equivalently, taking the shock width
at this time instance to be ~k/v; = 3 x 10® cm?s™! /150 kms™! =
0.67 pc and a domain size of 4000 pc gives, in ascending order of
resolution, the approximate number of grids ng,eck the shock was
resolved with: 0.085 (res = 512), 0.34 (res = 2048), 1.37 (res =
8192), 2.73 (res = 16384), 5.46 (res = 32768), 10.9 (res = 65536),
21.9 (res = 131072). For ng,ock < 1, the shock is unresolved. One can
see in Fig. 15 that the solutions converges steadily for the Sism = 2
case, whereas for the Bism = 100 case, there is an abrupt transition
from the inefficient branch to the efficient branch once ngocc > 5.5.
We quantified this by looking at the acceleration efficiency across
the forward shock at different resolutions (Fig. 16). The acceleration
efficiency converges smoothly for the Sism = 2 case, while in the
Bism = 100 case, there is slow change at low resolution followed by
an abrupt rise at fghock ~ 5.

Thus, the diffusion length must be resolved by ~10 grid cells for
convergence in acceleration efficiency. At a lower Mach number, and
if the upstream is highly CR dominated, the precursor is smaller and
somewhat lower resolution may suffice. At insufficient resolution, the
acceleration efficiency at shocks is underestimated. Except perhaps
for very high resolution zoom simulations, most shocks in galaxy-
scale simulations will not resolve such length-scales and will thus
have very low acceleration efficiencies. For this reason alone, it is
likely safe to presume that the only source of CRs in such simulations
are those injected by a sub-grid recipe.

3.5.3 Oblique magnetic fields

An oblique shock, where the magnetic field is no longer parallel
to the shock normal, suppresses CR acceleration. This is because
CR transport across the shock is suppressed. In the post-shock
fluid, compression preferentially amplifies the perpendicular B-field
component, so the B-fields are aligned parallel to the shock front,
suppressing diffusion upstream.

Here we describe four 2D test cases involving oblique magnetic
fields. The setups were as follow: We initialized a uniform 2D flow of
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Figure 13. CR energy enclosed by the blast wave as a function of time for
Bism = 2 (blue) and By = 100 (orange). The initial CR energy is 105 erg,
i.e. 10 per cent of the total energy ejected. After an initial transient phase, CR
energy begins to rise due to particle acceleration.

density p = 1000, velocity v = 1.108, gas pressure P, = 1, and CR
pressure P, = 1 (i.e. Q = 0.5) crashing towards the right boundary.
The magnetic field was oriented at angle 0 = 5, 45 deg to the shock
normal for plasma beta 8 = 1, 100. The reduced speed of light was
set to ¢ = 50 and CR diffusivity to «,, = 0.1 along the magnetic field
and k| = 1.67 x 10~ perpendicular to it. The domain spanned —30
<x<0,-5<y<5forthe f =1caseand —90 < x < 0, =5 <
y < 5 for the B = 100 case. The whole domain was resolved with
2048 x 512 grids for B = 1 and 8192 x 512 grids for 8 = 100,
corresponding to a precursor resolved by ngock & 6, 8 grid cells,
respectively. Reflecting boundary was set at the right and outflow at
the left.

A summary of the oblique shock results is given in Table 1 (lower
table). The magnetic field for an example is also shown in Fig. 17.
Shock compression deflects the magnetic field away from the shock
normal and increases its strength. Compressive amplification of mag-
netic field is stronger for higher obliquity as only the perpendicular
component is boosted. The acceleration efficiencies of the 8 = 1
case are very low (~1.1 per cent for & =5 deg and ~0.9 per cent
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Figure 14. Top: Acceleration efficiency as a function of time for the 1D blast
wave example. Bottom: Instantaneous diffusion time of the forward shock.

for & = 45 deg). This is inconsistent with the analytic prediction by
Webb, Drury & Volk (1986; that included oblique magnetic fields
and CR diffusion but no streaming), which predicted an efficiency
of 250 per cent. The reduction in acceleration efficiency seen in our
simulations is caused by bi-directional streaming, with the inefficient
branch being picked. For simplicity we eschew repeating the analytic
calculation in Section 2 including oblique magnetic fields.
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Figure 16. Acceleration efficiency across the forward shock as a function of ngpeck for Bism = 2 (left) and Bigm = 100 (right) case.

The difference is more marked at different obliquity for 8 = 100.
At 0 =5 deg, the efficient/standard branch is recovered, achieving
an efficiency ~81 per cent. The acceleration efficiency decreases
drastically at 6 = 45 deg to ~1.2 per cent. This suggests that the
inefficient branch may be more extensive at high obliquity in
parameter space (M, Q, ) than in the 1D case. Given that oblique
shocks are the most common case, we expect the inefficient branch to
appear more commonly in cosmological simulations than expected
from 1D analytics and simulations.

3.5.4 Injection of thermal particles

Thus far, we only consider acceleration of pre-existing CRs, which
can easily take part in diffusive shock acceleration. However,
suprathermal particles in the Maxwellian tail of the plasma can
also be injected into the DSA process, and contribute to the CR
population. This is particularly important when the pre-existing
CR population is sparse (small Q). Here, we consider a simple
prescription for injection which illustrates some potential effects.

Following Kang & Jones (1990), injection can be accommodated
in our solution method as follows. First, modify the subshock jump
conditions to include injection:

[pv] =0, (25)

[pv? + P,] =0, (26)

{pv <1v2 + LE)] =-1, 27)
2 Yve—1lp

[P]=0, (28)

[Fl=1, (29)

where the injected energy flux / is calculated according to

1
I = Eekchzf, (30)
for some prescribed injection efficiency €, post-shock gas sound

speed Acyy, and mass flux J = pv. Physically, this represents a small
fraction € of the incident thermal particles that have A times the
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Figure 17. The shock profile for 6 = 45deg, B = 1 at r = 60 showing the magnetic field. The arrows indicate the orientation of the field.

post-shock gas sound speed and are injected into the DSA process,
contributing to the CR pressure. From the modified jump conditions,
one can derive the relation

(1 + Gin)J (V) = yg(Py), 31
where

Yve—1 ., 632
2 ()|Av]”

which is consistent with our previous equation (17) , if §;,; = 0. The
symbols () and A denote the arithmetic mean and the difference of
the relevant quantity before and after the jump.

Graphically, equation (31) modifies the sonic boundary by a factor
of (1 + 8iyj). However, ;,; is not known a priori, so one must guess
a value for 6, first, then iteratively, using the updated pre- and post-
subshock quantities, find an improved solution until the downstream
state stays the same within some tolerance (taken to be 10~ here).
A good initial guess would be 8y = €A?/2.

We inject a fixed fraction € ~ 10~>of the thermal particles into the
CR population at the subshock, which is roughly the fraction of parti-
cles in a Maxwellian with A ~ 3 times the sound speed. This fraction
is consistent with the injection parameters in (Caprioli & Spitkovsky
2014a). Fig. 18 shows a case where most of the CRs come from
injection (Q = 0.01). The acceleration efficiency including thermal
injection as a function of Mach number is displayed by the blue curve.
The uni-directional and bi-directional solutions without injection
are shown by the translucent black and red curve, respectively,
for comparison. Two points are worth noting: (i) The acceleration
efficiency of the bi-directional solution increases with Mach number
instead of the other way around. (i) At high Mach number the
inefficient branch vanishes. For small Mach number (M < 14)
acceleration efficiency of the bi-directional solution with injection
(~1-2 per cent) appear roughly consistent but a few per cent lower
than that found in hybrid simulations (Caprioli & Spitkovsky 2014a).
Our current simulation code not yet include injection; it is left for
future work. However, it will improve the realism of two-fluid shocks.
We believe that most of the properties we have found (in particular,

Oinj =

(32)
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Figure 18. Acceleration efficiency against Mach number with injection. A
fraction of 10~2 of the thermal particles is injected at the subshock. Injection is
included only for the bi-directional solutions (blue curve). The acceleration
efficiency without injection (for the same Q and f) is displayed here for
comparison (black and red translucent curves for the uni-directional and bi-
directional solutions. respectively).

the fact that the inefficient bi-directional branch is favoured) will
continue to be found in simulations with injection.

4 DISCUSSION AND CONCLUSION

In this work, we studied steady-state CR-modified shocks in the
two-fluid approximation, with the inclusion of both CR diffusion
and streaming in the CR transport. This is a demanding test of new
two-moment CR codes (Jiang & Oh 2018) that are the first to be
able to handle such shocks with CR streaming; they have never been
compared against analytic solutions. It also allows us to understand
and quantify the effects of CR-modified shocks in galaxy formation
simulations. In a two-fluid code, shocks can accelerate CRs, over
and above CRs injected via a sub-grid prescription; it is important
to understand their contribution quantitatively. We only consider
acceleration of pre-existing CRs, although one can modify the code
to include thermal injection. Our findings are as follows:
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(i) New analytic solutions: bi-directional streaming. Previous ana-
Iytic solutions (Voelk et al. 1984) assumed uni-direction streaming of
CRs toward the upstream. In fact, overcompression at the subshock
can lead to a transient spike (similar to the Zeldovich spike in
radiative shocks) that seeds bi-directional streaming. The upstream
and downstream CRs stream in opposite directions, away from
the subshock. We obtain analytic profiles for this new solution.
Streaming leads to lower acceleration efficiency with increasing
magnetic field (due to increased gas heating and reduced com-
pression). Furthermore, the new solution has a lower acceleration
efficiency compared to the standard streaming, since downstream
CRs propagate away rather than diffusing back to the shock. The
CR precursor is smaller and less compressible. At Mach number
M 2 15, the new solution bifurcates into inefficient, intermediate,
and efficient acceleration efficiency solution branches (Figs 4 and
5). The inefficient branch is a hydrodynamic shock only weakly
modified by CRs, with acceleration efficiencies that typically do
not exceed 10 per cent. The efficient branch is CR dominated, with
typical acceleration efficiency =60 per cent, similar to the standard
branch. The intermediate branch lies somewhere in between. For
weaker magnetic fields (higher ), the standard and new solutions
merge closer together. At B 2 100 essentially only the efficient
branch is left.

(i) Simulations match analytic solutions. The simulations repro-
duces the standard analytic solution as well as all three branches of
the new solution. The predicted acceleration efficiency also agrees
extremely well with analytic predictions (Fig. 9d). Itis excellent news
that the two-moment method can pass this demanding test, which
should lay to rest concerns about solution degeneracy and numerical
robustness at CR shocks (Kudoh & Hanawa 2016; Gupta et al. 2019).
As long as explicit diffusion is included (and for Fermi acceleration
to operate, diffusion must be present), the analytic solution does
not require ad hoc closure relations. As long as the diffusion length
is resolved, numerical simulations closely match analytic solutions
across a wide range of parameters.

(iii) Inefficient branch favoured. Which of the various solution
branches is actually realized in nature? The intermediate branch is
unstable (perturbations cause the acceleration efficiency to diverge
to either the inefficient or efficient branch), so it is not realized.
Of the remaining two possibilities, the branch selected is dependent
upon the local upstream conditions where the shock is formed. In
CR-dominated shocks, only the efficient/standard branch is possible,
since the compression ratio is high. However, if both branches are
possible, the inefficient branch is selected, though transition to the
efficient branch is possible if the upstream condition shifts to one
for which only the efficient/standard branch is permissible. Once the
shock selects the efficient/standard branch, it will remain there. See
Fig. 11. The reason for this preference for the inefficient branch
is unclear, though it is worth noting that it maximizes entropy
generation at the shock (see discussion for diffusion only case in
Becker & Kazanas 2001).

(iv) Assumptions of time-steady, resolved, and parallel shocks
often not satisfied. These calculations focus on well-resolved, steady-
state, parallel shocks. These conditions are unlikely to be true
in galaxy-scale simulations, and changes to these assumptions all
point in the direction of reduced CR modification of the shock
and lower acceleration efficiency: (i) The equilibration time for a
shock to reach its steady-state structure is fequii ~ 100074 (Where
taige 18 the diffusion time); higher for CR-dominated shocks with
high acceleration efficiency, and somewhat smaller for shocks with
lower acceleration efficiency. This is because the build-up of the
CR precursor is a non-linear process which requires many diffusion
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times. This is often longer than shock crossing times (e.g. supernova
remnants). Thus, shocks in realistic settings are not time-steady and
cannot be compared directly to our results. (ii) As shown in Sec-
tion 3.5.2, the precursor needs to be resolved by at least 10 grid cells
for convergence. Lower resolution will lead to lower acceleration
efficiency (Fig. 16). (iii) High obliquity magnetic fields will suppress
formation of the CR precursor and hence acceleration efficiency,
since the shock will more closely resemble a hydrodynamic shock
with lower compression ratio (Table 1, lower table). (iv) If thermal
injection is taken into account, the efficiency of the ‘inefficient’
branch of the bi-directional solution (~5—10 per cent) is in good
agreement with hybrid/PIC simulations.

In summary, in a two-fluid code, the CR acceleration efficiency of
shocks in a galaxy-scale simulation is likely small (<10 per cent)
and thus the prevailing tendency to assume that they do not contribute
significantly is likely reasonable. However, one must be careful
to test this assumption, particularly in high resolution simulations,
because the high efficiency branch converts such a large fraction
(~60 per cent) of the shock kinetic energy to CRs (e.g. see Fig 13
where the CR energy rises far above the initial value), far above
that obtained by kinetic simulations. In the end, we find that in most
settings a two-fluid code ‘does no harm’ at shocks and gives roughly
physical reasonable solutions, despite the significant shortcomings
of the fluid approach in handling a fundamentally kinetic problem,
as discussed in the Introduction. The fluid approach can probably be
modified (e.g. introducing thermal injection, as in Section 3.5.4, and
potentially introduce a time-dependent « and y . as the shock evolves)
which further improves agreement with kinetic results. In the end,
however, the most pragmatic approach for galaxy-scale simulations
is to simply leave the code as is, effectively ignoring CR injection
at shocks. If the CR acceleration at shocks is a critical application,
then one can simply apply a shock-finding algorithm and inject CRs
by hand (e.g. Pinzke, Oh & Pfrommer 2013; Pfrommer et al. 2017),
but carefully taking the time-dependence of shock equilibration into
account.
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