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A B S T R A C T 
Recently, cosmic rays (CRs) have emerged as a leading candidate for driving galactic winds. Small-scale processes can 
dramatically affect global wind properties. We run two-moment simulations of CR streaming to study how sound waves are 
driven unstable by phase-shifted CR forces and CR heating. We verify linear theory growth rates. As the sound waves grow 
non-linear, they steepen into a quasi-periodic series of propagating shocks; the density jumps at shocks create CR bottlenecks. 
The depth of a propagating bottleneck depends on both the density jump and its velocity; ! P c is smaller for rapidly moving 
bottlenecks. A series of bottlenecks creates a CR staircase structure, which can be understood from a conv e x hull construction. 
The system reaches a steady state between growth of new perturbations, and stair mergers. CRs are decoupled at plateaus, but 
e x ert intense forces and heating at stair jumps. The absence of CR heating at plateaus leads to cooling, strong gas pressure 
gradients and further shocks. If bottlenecks are stationary, they can drastically modify global flows; if their propagation times are 
comparable to dynamical times, their effects on global momentum and energy transfer are modest. The CR acoustic instability 
is likely rele v ant in thermal interfaces between cold and hot gas, as well as galactic winds. Similar to increased opacity in 
radiati ve flo ws, the build-up of CR pressure due to bottlenecks can significantly increase mass outflow rates, by up to an order of 
magnitude. It seeds unusual forms of thermal instability, and the shocks could have distinct observational signatures, on ∼kpc 
scales. 
Key words: MHD – Shock Waves – Cosmic Rays. 

1  I N T RO D U C T I O N  
It is generally believed that cosmic rays (CR) should play crucial 
dynamical roles in the interstellar and circumgalactic medium (ISM, 
CGM) because the energy density of these high-energy particles is 
comparable to the thermal energy of the gas or the magnetic field 
(Blandford & Eichler 1987 ). The coupling between CRs and the 
thermal plasma is believed to be mediated through the streaming 
instability (Kulsrud & Pearce 1969 ) in which CRs pitch-angle 
scattered by hydromagnetic waves causes the waves to grow and thus 
lead to more scattering. This wave-particle interaction causes energy 
and momentum to be transferred between the gas and CRs. On global 
scales, the interaction of waves with CRs are key to the transport 
and confinement of CRs in a galaxy. CRs can provide a significant 
amount of non-thermal support (Ji et al. 2020 ; Crocker, Krumholz & 
Thompson 2021b ) and is a strong candidate for driving galactic winds 
(Ipavich 1975 ; Breitschwerdt, McKenzie & Voelk 1991 ; Uhlig et al. 
2012 ; Ruszkowski, Yang & Zweibel 2017 ; Crocker, Krumholz & 
Thompson 2021a ; Hopkins et al. 2021b ). On smaller scales, CRs 
accelerated by shocks can modify shock structures (Drury & Voelk 
1981 ; Voelk, Drury & McKenzie 1984 ; Blandford & Eichler 1987 ; 
Haggerty & Caprioli 2020 ; Hin Navin Tsung, Oh & Jiang 2021 ) 
and impact the entrainment, survi v al and destruction of cold clouds 
" E-mail: ttsung@ucsb.edu 

(Br ̈uggen & Scannapieco 2020 ; Bustard & Zweibel 2021 ). Thus, 
CRs can significantly affect the multiphase structure of the ISM and 
CGM. 

Even though details of the wave-particle interaction are inherently 
kinetic, in the limit of strong scattering a fluid description is possible 
and more practical for galaxy (or cosmological) scale simulations. 
CRs, treated as a bulk fluid, have the following general transport 
modes: (1) Wave-particle interactions lock the bulk of CRs with 
the local Alfven wave, causing them to advect at the Alfven speed 
along magnetic fields (streaming). (2) Slippage from perfect wave 
locking causes CRs to diffuse relative to the local Alfven wave 
frame, down the CR pressure gradient (diffusion). More detailed 
transport models in the presence of various wave damping mech- 
anisms have been studied (e.g. ion-neutral damping (Farber et al. 
2018 ; Bustard & Zweibel 2021 ), turbulent damping (Holguin et al. 
2019 ), dust damping (Squire et al. 2021 ) or some combination 
thereof (Hopkins et al. 2021c )). There is, ho we ver, no consensus 
within the community as to the correct form of CR transport in 
the ISM and CGM. One important observational constraint lies in 
reconciliation with gamma-ray observations. Gamma-ray emission 
from pion production by CRs is o v erproduced in simulations unless 
CRs can be rapidly transported out of dense star forming regions 
(Chan et al. 2019 ). Thomas, Pfrommer & Enßlin ( 2020 ) modelled 
harp-like structures in radio synchrotron maps of the Galactic Center. 
Their analysis suggested streaming dominated transport rather than 
diffusion. 
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In the fluid description, CRs have been found to modify well- 
known fluid instabilities such as the Parker instability (Ryu et al. 
2003 ; Rodrigues et al. 2016 ; Heintz & Zweibel 2018 ; Heintz, Bus- 
tard & Zweibel 2020 ), magnetorotational instability (Kuwabara & 
Ko 2015 ), thermal instability (Shadmehri 2009 ; Butsky et al. 2020 ; 
Kempski & Quataert 2020 ), Kelvin–Helmholtz instability (Suzuki, 
Takahashi & Kudoh 2014 ), etc., while driving some entirely new 
instabilities, such as the CR acoustic instability (Drury & Falle 1986 ; 
Begelman & Zweibel 1994 ). The CR acoustic instability arises when 
CRs amplify sound waves, via CR pressure forces and/or CR heating 
of the gas. This causes acoustic waves to increase in amplitude and 
steepen into shocks. In this paper, we generalize and test previous 
linear theory predictions for the CR acoustic instability, and study its 
non-linear saturation. We find a characteristic staircase structure in 
the CR pressure profile – a new feature in CR transport – and explain 
its physical origin. 

In the diffusion-dominated regime, Drury & Falle ( 1986 ) found 
that the acoustic instability occurs when the CR pressure scale height 
L c ≡ P c / ∇P c is shorter than the diffusion length l diff ∼ κ/ c s (where 
κ is the diffusion coefficient and c s is the gas sound speed), a 
condition not easily met except at shock precursors (see Quataert, 
Jiang & Thompson 2022a for application to galactic winds, where 
they find the instability to be unimportant). Kang, Jones & Ryu 
( 1992 ) performed simulations of its non-linear growth at shocks 
and found that acoustic waves can steepen into many small scale 
shocks, resulting in enhanced particle acceleration. Ryu, Kang & 
Jones ( 1993 ) found, in a 2D shock setup, that the steepened acoustic 
waves can create density inversions, trigger a secondary Rayleigh–
Taylor instability and generate turbulence in the downstream. All in 
all, the CR diffusion driven acoustic instability is mostly relevant at 
shocks. 

On the other hand, Begelman & Zweibel ( 1994 ) found that in the 
streaming-dominated regime, CR heating can cause acoustic modes 
to become unstable even without a sharp CR pressure gradient. They 
speculated that the acoustic modes would, in the non-linear regime, 
generate constant CR pressure regions (CR plateaus) separated by 
sudden drops, although they were unable to test this. We shall see in 
this paper, fulfilment of their prescient predictions. 

Numerical simulation of this streaming driven acoustic instability 
have not yet been conducted to date. In the past, such simulations 
were infeasible due to a numerical instability which arises at CR 
pressure gradient zeros. Regularization of this instability (Sharma, 
Colella & Martin 2010 ) requires very high-resolution and short time- 
steps, making the calculation infeasibly e xpensiv e. In recent years, a 
new two-moment method (Jiang & Oh 2018 ; Thomas & Pfrommer 
2019 ) now makes this calculation possible. The two-moment method 
has already been deployed in FIRE simulations of galaxy formation 
(Chan et al. 2019 ; Hopkins et al. 2021b ). 

We will, in this paper, utilize this relati vely ne w tool to study 
the linear and non-linear growth of the streaming driven acoustic 
instability. We begin, in Section 2 , with an analytic discussion of 
the CR acoustic instability and rele v ant physics. In Section 3 , we 
describe our simulation setup and results in the linear and non-linear 
regime. We proceed in Section 4 (a) discussion of its astrophysical 
significance and conclusions. In Appendix A , we derive the linear 
growth rate of the CR acoustic instability. A resolution study is 
conducted in Appendix B . 
2  A NA LY T I C  C O N S I D E R AT I O N S  
Assuming gas flow is non-relativistic and the gyroradii of the CRs to 
be much smaller than any macro scale of interest, the two-moment 

equations go v erning the dynamics of a CR-MHD coupled fluid is 
given by Jiang & Oh ( 2018 ) 
∂ ρ
∂ t + ∇ · ( ρv ) = 0 , (1) 
∂ ( ρv ) 
∂ t + ∇ · ( ρv v − B B + P ∗I ) 

= σ c · [ F c − ( E c + P c ) v ] + ρg , (2) 
∂ E 
∂ t + ∇ · [( E + P ∗) v − B ( B · v ) ] = ( v + v s ) · σ c 

× [ F c − ( E c + P c ) v ] + ρg · v + L , (3) 
∂ B 
∂ t = ∇ × ( v × B ) , (4) 
∂ E c 
∂ t + ∇ · F c = −( v + v s ) · σ c · [ F c − ( E c + P c ) v ] , (5) 
1 
c 2 ∂ F c 

∂ t + ∇P c = −σ c · [ F c − ( E c + P c ) v ] , (6) 
where c is the speed of light, L = H − C is gas heating minus cooling, 
v s = −v A sgn ( B · ∇P c ), where v A = B / √ 

ρ is the streaming velocity 
(the gas is assumed to be fully ionized), P ∗ = P g + B 2 /2, E = ρv 2 /2 
+ P g /( γ g − 1) + B 2 /2 and σ c is the interaction coefficient defined 
by 
σ−1 

c = σ−1 
d + B 

| B · ∇P c | v A ( E c + P c ) , σ−1 
d = κ

γc − 1 . (7) 
where κ is the CR diffusion tensor. Generally, κ = κ‖ ̂  B ̂  B + κ⊥ ( I −
ˆ B ̂  B ) is anisotropic, but in this 1D study it reduces to a scalar. For 
simplicity, we assume κ to be constant and time-steady, ignoring 
the dynamics of magnetic waves (see Thomas & Pfrommer 2019 
for a full inclusion). This assumption can be relaxed by using the 
equilibrium κ calculated from linear theory (see the appendix of 
Jiang & Oh 2018 , and Bustard & Zweibel 2021 for an implementation 
of ion-neutral damping). CRs exchange momentum according to 
the source term σ c · [ F c − ( E c + P c ) v ] and energy according to 
( v + v s ) · σ c · [ F c − ( E c + P c ) v ]. We shall call these the generalized 
CR forcing and heating terms, respectively . Microscopically , some 
degree of anisotropy in the CR distribution is required to trigger the 
streaming instability; macroscopically, this translates to requiring 
a finite P c gradient. As ∇P c → 0, the interaction coefficient σ c 
→ 0 (equation 7 ), and CRs can free stream at the speed of light, 
as encapsulated by the time-dependent term in equation ( 6 ). The 
condition for the time-dependent term in equation ( 6 ) to be negligible 
is 
L c = P c 

∇P c + c 2 
v 2 A v A !t . (8) 

where ! t is a dynamical time. This sets a condition on the strength of 
the P c gradient. If it is fulfilled, the equations reduce to the standard 
one-moment equations (Skilling 1975 ; Breitschwerdt et al. 1991 ), 
and the CR flux, from equation ( 6 ), reduces to 
F c = ( v + v s )( E c + P c ) − 1 

γc − 1 ∇ · κ · ∇P c , (9) 
which shows that in the well-coupled limit, CR transport is given 
as a sum of advection, streaming and diffusion processes. The CR 
energy equation (equation 5 ) reduces to 
∂ E c 
∂ t + ∇ · F c = −( v + v s ) · ∇P c (10) 

where F c is given by equation ( 9 ). The RHS, written in this form 
shall be called the coupled CR heating term, while the coupled CR 
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forcing term is ∇P c . In Section 2.1 , we will use this canonical form 
of the CR equations in the well-coupled limit. 

In writing the CR equations as ( 5 ) and ( 6 ), we have assumed the 
CR distribution function to be close to isotropic on scales larger 
than the scattering mean free path ∼κ/ c . This is not al w ays true, but 
in the well-coupled limit (which is the context of this study) it is 
a reasonable assumption. For more general CR equations that take 
into considering anisotropy in the weakly coupled limit, see Hopkins, 
Squire & Butsky ( 2022 ). 

In this study, we ignore any CR collisional losses due to Coulomb 
collisions and hadronic interactions. These losses are important in 
dense gas, but are unlikely to be important in the diffuse halo gas. 
Dif fusi ve reacceleration is also not considered as we do not consider 
the effects of turbulence; the free energy for the instability here comes 
from the CRs themselves. In any case, reacceleration is strongly 
suppressed by streaming losses in the low β scenarios we consider 
(Hopkins et al. 2021a ; Bustard & Oh, in preparation). 

We now discuss two key pieces of physics: linear growth rates for 
the CR acoustic instability (Section 2.1 ) and the CR bottleneck effect 
(Section 2.2 ). 
2.1 CR acoustic instability: linear theory 
In this section, we make order of magnitude arguments for the 
threshold and growth rate of instabilities driven primarily by CR 
diffusion and streaming, respectively, in the most physically relevant 
asymptotic limits for the CGM. The detailed dispersion relations are 
derived in Appendix A , and solutions to these dispersion relations 
gi ve the gro wth rates sho wn in Fig. 1 . Broadly speaking, in this 
section, we seek to understand the features seen in Fig. 1 . The 
reader can get a feel for the physics of the instability here, which are 
rele v ant to understanding the simulation results in Section 3 ; only 
those interested in the technical details need to consult Appendix A . 

If CRs were completely locked to the gas, the system would simply 
behave as a single fluid with adiabatic index intermediate between 
γ c = 4/3 and γ g = 5/3, depending on α = P c / P g . Ho we ver, CRs can 
both stream and diffuse relative to the gas, which leads to a phase 
offset between gas CR pressure and gas density perturbations. In 
addition, CRs affect gas pressure perturbations by heating the gas as 
they stream. Acoustic waves thus experience external forcing. If this 
forcing is in phase with wave oscillations, they grow; otherwise, they 
damp. 

There are several characteristic length-scales in the problem: 
(i) The mode wavelength, λ ∼ k −1 . 
(ii) The CR diffusion length l diff ∼ κ/ c s . This is the length-scale 

o v er which the sound crossing time t sc ∼ L / c s and the diffusion time 
t diff ∼ L 2 / κ are comparable. On scales below l diff , diffusion is faster 
than advection. 

(iii) The CR scale height L c = | P c / ∇P c | , as well as the gas pressure 
scale height L g and the density scale height L ρ , defined similarly. 

Additionally, there are two important dimensionless parameters: 
β = P g / P B , and α = P c / P g . Finally, the direction of the sound wave, 
and in particular whether the sound wave propagates down (‘forward’ 
wave) or up (‘backward’ wave) the CR pressure gradient also affects 
instability and growth rates. 

We work in the WKB approximation kL c , 1. Furthermore, 
we ignore background gas pressure and density gradients, i.e. we 
assume a uniform background L g , L ρ → ∞ . In Appendix A, we 
show that our results are unchanged even if we allow for non-zero 
gas pressure and density gradients. Essentially, this is because in the 
WKB approximation, kL g , kL ρ , 1, the background looks locally 

Figure 1. Growth rate * of the CR acoustic instability (in units of c 2 c /κ) as 
function of η ≡ κ/ γ c L c c s and β ≡ 2 P g / B 2 of the forward (top panel) and 
backward (bottom panel) acoustic waves in the short wavelength limit ( k κ/ c s 
, 1, kL , 1). The stable and unstable regimes are demarcated by a thick black 
line. k is the wavenumber, κ is the diffusion coefficient, c s ≡ √ 

γg P g /ρ is the 
gas sound speed, c c ≡ √ 

γc P g /ρ is the CR sound speed and L c ≡ P c / |∇P c | is 
the CR scale height. L in the subtitle of each plot is a wildcard for any kind of 
scale heights (density, gas, CR scale heights, etc.), kL , 1 simply states that 
the wavelength in consideration here is sufficiently short that WKB analysis 
holds. 
uniform. We still retain the CR scale height L c because there is 
an additional length-scale in CR dynamics, the diffusion length 
l diff ∼ κ/ c s . The ratio η ≡ l diff / L c ∼ κ/ L c c s impacts CR dynamics 
and instability growth. If we work in the approximation where 
besides kL c , 1, kl diff = k κ/ c s , 1 (i.e. the diffusion time is much 
shorter than the wave period), then the ratio η = κ/ L c c s is the only 
dimensionless parameter involving length-scales which is important. 
For the purposes of this subsection, we will work in the limit where 
L c is small enough that CRs are well coupled to the thermal gas, and 
equations ( 9 ) and ( 10 ) apply. 

For simplicity, we discuss regimes where either CR diffusion 
and streaming dominate. The dif fusion coef ficient κ is assumed 
constant in space and time. Since diffusion rates are independent 
of B-field strength, while streaming velocities and heating rates are 
both proportional to v A ∝ B , we expect that diffusion- and streaming- 
dominated regimes correspond to high and low β, respectively, a 
notion we shall quantify. 
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2.1.1 Diffusion dominated 
2.1.1.1 Damping‘Drag’ against CRs provides a frictional force 
which damps sound waves, a phenomenon known as Ptuskin damp- 
ing (Ptuskin 1981 ). The physics is very similar to radiative damping 
of sound waves, which famously leads to Silk damping of acoustic 
waves in the early universe. We can estimate the damping rate as 
follows. Sound waves are just a simple harmonic oscillator (SHO), 
where the restoring force is proportional to displacement F ∝ −x . 
If CR diffusion produces a perturbed CR force which is instead 
proportional to velocity, F ∝ −v, then just as for the SHO, this 
force will damp oscillations, since it is π/2 radians out of phase 
with the restoring force. 1 Since, we work in the limit k κ/ c s , 1, 
where diffusion is much more rapid than advection on scales of 
the wave period, the Lagrangian time deri v ati ve in the CR energy 
equation (equation 10 ) can be ignored, and CR compression is 
balanced by diffusion: i γ c P c, 0 ku 1 ∼ −κk 2 P c, 1 , which gives rise to 
an acceleration: 
u̇ 1 ∼ − 1 

ρ
∇P c , 1 ∼ −P c , 0 u 1 

ρκ
∼ − c 2 c 

κ
u 1 , (11) 

which is indeed proportional to velocity ( ̇u 1 ∝ −u 1 ), and damps the 
wave, with damping rate: 
* damp ∼ u̇ 1 

u 1 ∼ − c 2 c 
κ

. (12) 
Note that the frictional force, and hence the damping rate, is 
independent of wavelength in this limit. Using | P c , 1 / P c, 0 | ∼ u 1 /( κk ), 
P g, 1 / P g, 0 ∼ u 1 / c s , we find that rapid diffusion causes the CR pressure 
perturbation to be suppressed: 
∣∣∣∣
P c , 1 
P g , 1 

∣∣∣∣ ∼ c s 
kκ

(
P c , 0 
P g , 0 

)
+ 1 . (13) 

Since CR pressure perturbations do not provide a restoring force 
but a damping force, the acoustic mode is driven by gas pressure 
perturbations, and propagates at the gas sound speed c s . Furthermore, 
since the CR pressure perturbations are so small, the damping time 
is much longer than the wave period, 1/ t damp c s k ∼ c s /( k κ)( P c, 0 / P g, 0 ) 
+ 1, even if equipartition holds P c, 0 ∼ P g, 0 . Note also from 
equation ( 12 ) that damping is stronger for a weaker diffusion 
coefficient: the CR pressure perturbations are still π/2 out of phase, 
b ut now ha ve larger amplitude. Ho we v er, the y can now only suppress 
smaller scale perturbations. 
2.1.1.2 Growth with a background gradientIf sound waves propagate 
in a medium with a background CR gradient, they can be driven 
unstable (Drury & Falle 1986 ). This can be understood as follows. 
Consider the limit of rapid diffusion. In this case, the CR gradient is 
time-steady and simply given by the background gradient, which is 
much larger than the perturbed CR gradients due to sound waves, 2 
which are strongly suppressed by diffusion. Since the CR gradient 
−∇P c is independent of density, any fluctuations in density will 
result in a differential acceleration, since underdense regions receive 
a larger force per unit mass: 
u̇ 1 ∼ ρ1 

ρ2 ∇P c , 0 ∼ ∓u 1 
c s P c , 0 

ρL c ∼ ∓u 1 
c s c 

2 
c 

L c , (14) 
1 Mathematically, this must be true since the diffusion operator brings down 
an additional factor of i compared to the gradient operator. 
2 This is no longer true in the non-linear phase of the instability; we address 
this in numerical simulations. 

where we have used ρ1 / ρ ∼ u 1 / c s , and the ∓ sign refers to forward and 
backw ard w av es, respectiv ely. Thus, underdense (o v erdense) re gions 
having relative acceleration down (up) the gradient. The abo v e force 
is proportional to velocity, and can either drive or damp sound waves. 
Consider density maxima, where the velocity perturbation u 1 has the 
same direction as wave propagation. In a forward wave, the wave 
and hence u 1 point down the CR gradient, but dense regions are 
accelerated up the gradient. We have u̇ 1 ∝ −u 1 , and the wave is 
damped. Conversely, for a backward wave, u̇ 1 ∝ u 1 , and the wave 
grows in amplitude. The growth rate is 
* gro wth , dif fuse ∼ u̇ 1 

u 1 ∼ c 2 c 
c s L c . (15) 

For gro wth dri ven by a background CR gradient to o v ercome Ptuskin 
damping, we see from equation ( 12 ) and ( 15 ) that we require 

κ

c s L c > 1 (growth) . (16) 
For the sound wave to see a steady CR gradient ∇P c independent of 
density, the diffusion time must be shorter than the sound crossing 
time across a scale height L c , which is equi v alent to equation ( 16 ). 
2.1.2 Streaming dominated 
We now consider the streaming-dominated re gime. F or simplicity, 
and similar to Begelman & Zweibel ( 1994 ), we consider a weak 
background gradient ( L c large) which is sufficient to couple CRs to 
the gas and give the streaming velocity a definite sign, 3 but otherwise 
does not affect CR dynamics. In particular, the force and heating 
from the background gradient is assumed to be negligible. We will 
relax this assumption shortly. The magnitude of the background 
gradient has important implications for CR coupling and non-linear 
saturation, but here it just complicates matters. We do include 
diffusion in our WKB analysis, which is essential because otherwise 
there is no π/2 phase offset between CRs and density perturbations; 
streaming with flux F c ∝ P c (rather than F c ∝ ∇P c ) cannot introduce 
a π/2 phase shift. 4 F or an y finite scattering rate, CRs are imperfectly 
locked to the Alfv en wav e frame, and will al w ays dif fuse relati ve to 
the wave frame. 

CR streaming has two effects. First, it introduces an additional 
adv ectiv e component to CR transport which can be either aligned 
or anti-aligned with gas motions. Thus, it modulates the amplitude 
and even the sign of CR perturbations. Since the phase shift between 
CRs and gas depends on the competition between adv ectiv e and 
dif fusi ve transport, we might expect that as before, growth/damping 
depends on whether the wave is forward or backward. Secondly, CR 
streaming heats the gas, at a rate v A · ∇P c , which perturbs the gas 
pressure. Both of these processes are only important if the streaming 
velocity v A is large compared to the gas sound speed c s , or at low β
∼ ( c s / v A ) 2 . 

Heating is a new consideration, particular to CR streaming. Does it 
dri ve gro wth or damping? CR compression followed by gas heating 
3 CRs are assumed to al w ays stream down the background gradient, which is 
presumed to be larger than any gradients induced by the sound wave. If this 
is no longer true, very interesting consequences arise, which we explore in 
Section 3 . 
4 Importantly, stratification can introduce phase shifts, so that sound waves 
can be destabilized for the pure streaming case in a stratified background 
(Quataert et al. 2022a ). The instability disco v ered by Quataert et al. ( 2022a ) 
is driven purely by phase shifts and does not rely on heating; hence it can 
operate even in isothermal gas. 
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as CRs stream out of an o v erdensity is a situation where the adiabatic 
index of the system is increasing, as energy is transferred from CRs 
(more compressible) to gas (less compressible). This stiffening of 
the equation of state is equi v alent to a secular increase in the spring 
constant of a simple harmonic oscillator, which drives overstable 
oscillations. The peak pressure (arising from CR heating as CRs 
stream out of an o v erdensity) lags the peak density, and so work 
is done on the fluid during the expansion phase. CRs give up more 
energy streaming out of an o v erdensity than the y receiv e during 
compression, and there is net energy transfer from CRs to gas. 5 
Unlike the perturbed CR force, these effects are independent of 
the direction of wave propagation, so we expect heating to be 
destabilizing for both forward and backward waves. 

We can make order of magnitude estimates for these remarks. 
Let us write the perturbed acceleration u̇ 1 ≈ u̇ 1 ,a + u̇ 1 ,b , where u̇ 1 ,a 
arises due to the phase-shifted CR force and u̇ 1 ,b arises from gas 
pressure gradients due to CR heating. The calculation of the phase 
shifted, perturbed CR force is the same as for Ptuskin damping, 
where compression and diffusion balance, except that now: 
u 1 → u 1 + v A , 1 = u 1 − 1 

2 ρ1 
ρ0 v A = u 1 (1 ∓ v A 

c s 
)

, (17) 
where we have used ρ1 / ρ ∼ ±u 1 / c s , and ∓ sign is for forward 
and backward wav es respectiv ely ( v A, 1 always points down the CR 
gradient, whereas u 1 depends on whether the wave is forward or back- 
ward). From substituting this replacement for u 1 into equation ( 11 ), 
we obtain a perturbed acceleration from the phase-shifted CR force: 
u̇ 1 ,a ∼ − 1 

ρ
∇P c , 1 ∼ − c 2 c 

κ

(
1 ∓ v A 

2 c s 
)

u 1 . (18) 
The perturbed gas pressure from heating is Ė g ∼ ωP g, 1 / ( γg − 1) ∼
v A · ∇P c ∼ ±iv A kP c . Solving for P g, 1 , and using ω ∼ kc s , we obtain 
a perturbed acceleration from CR heating: 
u̇ 1 ,b ∼ − 1 

ρ
∇P g, 1 ∼ ±( γg − 1) v A 

c s u̇ 1 ,a . (19) 
We thus obtain a net acceleration: u̇ 1 = u̇ 1 ,a + u̇ 1 ,b = (1 ± ( γg −
1) v A /c s ) ̇u 1 ,a . Using equation ( 18 ) and * = u 1 / ̇u 1 , we obtain 
* stream = − c 2 c 

2 κ
(

1 ∓ 1 
2 β1 / 2 

)(
1 ± ( γg − 1) 

β1 / 2 
)

(20) 
as derived by Begelman & Zweibel ( 1994 ). Note that instability 
arises for both forw ard w aves (if β ! 0.25) and backward waves 
(if β ! ( γ g − 1) 2 = 0.5, note that we are using ! as this is an 
approximate calculation). The thresholds differ because u 1 and v A, 1 
can be either aligned or antialigned, depending on the direction of 
wave propagation. The perturbed CR force only destabilizes forward 
waves, while at sufficiently low β, CR heating destabilizes waves 
independent of wave direction (as can be seen if the second terms in 
the two brackets in equation 20 dominate). 

The growth rate is proportional to the Ptuskin damping rate due 
to diffusion, * stream ∼ −β−1 * damp . The diffusive flux F d ∝ ∇P c is 
important since it causes a π/2 phase shift, so that perturbed forces 
are proportional to velocity rather than displacement. The diffusion 
time of CRs thus still sets a characteristic time-scale. Ho we ver, by 
changing the amplitude and sign of total pressure perturbations, CR 
streaming converts Ptuskin damping ( ̇u 1 ∝ −u 1 ) to a destabilizing 
5 This is in contrast to the diffusion case, where CRs expand ‘for free’, without 
transferring energy to the gas. In this case, there is net energy transfer from 
the gas to the CRs, and the wave damps. 

force ( ̇u 1 ∝ u 1 ), with a growth rate which depends on the rapidity of 
streaming and hence heating. 

Broadly speaking, in the WKB regime kL c , 1 and k κ/ c s , 1, 
there are two instability regimes, the streaming-dominated regime 
β ! 0.5, which is unstable regardless of κ/ c s L c , and the diffusion- 
dominated regime, κ/ c s L c > 1, which is unstable regardless of β. 
Gro wth rates, ho we ver, can depend on the secondary parameter. This 
is essentially what we see in Fig. 1 . In both cases, the instability 
threshold does not depend on P c / P g , although growth rates do. The 
growth rates are simply c 2 c / min (2 c s L c , 6 βκ). Where both instabilities 
are allowed, we anticipate that diffusion dominates when c s L c < 3 βκ , 
and vice versa 

For completeness, we derive in Appendix A , an equation governing 
the growth of an acoustic perturbation as it propagates in an arbitrary 
background profile in the limit k κ/ c s , 1. Its growth rate can be 
expressed as 
* grow = − c 2 c 

2 κ
{[

1 ± ( γg − 1) v A 
c s 
](

1 ∓ v A 
2 c s 
)

± κ

γc L c c s 
(

1 ± ( γg − 1) v A 
2 c s 
)}

. (21) 
This quantity has to be greater than zero for growth. In the absence 
of streaming, we reco v er the instability condition κ/ γ c L c c s > 1 for 
backw ard w aves as estimated in equation ( 16 ). In the streaming- 
dominated regime, where κ/ γ c L c c s + 1, the growth condition are 
β < 0.3 for forw ard w aves and β < 0.533 for backward waves, 
consistent with the approximate calculation in equation ( 20 ). Since 
waves of both signs are generally present, as a general rule of thumb 
β ! 0.5 will result in the CR acoustic instability. 
2.2 CR bottleneck effect 
A streaming dominated fluid well-coupled 6 with CRs should in 
steady state obey, along the B -field, the following 7 (Breitschwerdt 
et al. 1991 ) 
P c ( v + v A ) γc = const (22) 
This relation can be derived by setting the time-dependent and CR 
diffusion terms to zero in equations ( 5 ) and ( 6 ) and inte grating. F or a 
static fluid and for constant B-field (true in our 1D simulations), this 
reduces to 
P c ρ−γc / 2 = const . (23) 
The CR pressure rises with density. 

This property, together with the requirement that CRs can only 
stream down their gradient, leads to an unusual feature of CR 
transport known as the ‘bottleneck effect’, predicted analytically 
by Skilling ( 1971 ) and first simulated by W iener , Oh & Zweibel 
( 2017a ). For simplicity, consider a 1D setup with constant B-field 
pointing in the + x -direction, the gas variables held fixed, and CRs 
streaming towards the + x direction. Now suppose the CRs encounter 
an o v erdense bump. Equation ( 23 ) demands that P c increases at the 
rising edge with the density. This contradicts the requirement that 
CRs only streams down the P c gradient. The resolution (seen in 
Fig. 2 ) is for P c to flatten on the incoming side and for CRs to 
decouple from that gas in that re gion; the y free-stream at the speed 
6 Well-coupled means that CRs have the steady state flux form (equation 9 ), 
with a nearly isotropic distribution function. 
7 This conserved quantity is geometry dependent. In spherically symmetric 
geometry, for example, the conserved quantity is r 2 P c ( v + v A ) γc . 
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Figure 2. The bottleneck effect . Only the CR variables are evolved while the 
gas variables are held fixed. A double peak is initialized in the static density 
field, the denser peak at x = 200, the other at x = 400. CR pressure responds 
with a double plateau. Just after t = 2000, the peak at x = 400 is manually 
pushed up to 1.5. As seen in the bottom panel, the two P c plateaus merge. The 
two panels show the equilibriated P c , ρ, and F c profiles before and after the 
push. Note that the upper panel shows the density and CR pressure field just 
before the second peak is modified and F c has been rescaled for comparison. 
The bottom panel is the steady-state solution to the updated bump. The region 
enclosed by the black dashed lines represents ! F c predicted using the density 
profile and equation ( 27 ). Similarly, the region enclosed by the red dotted lines 
represents ! P c predicted using the density profile and equation ( 26 ). Both 
are in good agreement with simulation. If instead we start out with the bump 
structure in lower panel and manipulate the bumps to end up with that in the 
upper panel, the CR pressure and flux profiles adjust accordingly to give the 
results in the upper panel. 
of light. CRs recouple to the gas and obey equation ( 22 ) on the far 
side of the density bump, where gas density and hence P c falls, with 
CRs streaming down the gradient. Physically, the decrease in Alfven 
speed as the density rises causes a CR traffic jam at the bump, causing 
CR pressure to build up and flatten out. Simulations of this bottleneck 
effect in the presence of a single b ump ha ve been conducted in 1D by 
Wiener et al. ( 2017a ), Jiang & Oh ( 2018 ), and in 2D 8 by Bustard & 
Zweibel ( 2021 ). 
8 Note that B-field geometry does affect how well the bottleneck equation ( 22 ) 
is obeyed as it influences the magnitude of the streaming velocity along 
x. Here, we assume that B and ∇P c are aligned. The general case of a 

Here, we follow a similar setup as in Jiang & Oh ( 2018 ) in 
considering a CR sub-system (i.e. a constant B-field pointing in 
the + x -direction, keeping the gas variables fixed and allow only the 
CR v ariables to v ary). Ho we ver, here we consider the impact of 
multiple density peaks. Two density bumps are placed apart from 
each other, one higher than the other. The initial CR pressure is set 
to near zero and the CR flux to zero. CRs are injected by fixing 
the CR flux at the inner boundary ( x = 0), while keeping inner CR 
pressure boundary free. At some time well after the P c profile has 
equilibriated, the second density bump is pushed manually down to 
lower than the first and the P c profile allowed to adjust and equilibrate. 
The result is shown in Fig. 2 , and can be described as follows: CRs 
al w ays bottleneck behind the highest density peak they see from the 
incoming direction. Specifically, incoming CRs would bottleneck 
and form a plateau all the way up to the highest density peak they 
see, and upon climbing down in a fully coupled manner (for which 
equation 23 holds), bottleneck up the next highest peak and so on 
and so forth, forming a staircase. Should the order of peak heights be 
changed, manually in Fig. 2 , or (in our simulations of the CR acoustic 
instability) due to rise of some newly seeded unstable modes, for 
example, then the P c profile will adjust accordingly such that the 
abo v e holds true in steady state. Thus, if instead we start out with the 
bump structure in lower panel of Fig. 2 and manipulate the bumps 
to end up with that in the upper panel, the CR profiles adjust to give 
the results in the upper panel. If the fluid has a background flow or 
variable B-fields, equation ( 22 ) holds, with CR bottlenecks at the 
deepest minima of ( v + v A ). 

How is the net momentum and energy transfer from CRs affected 
by the presence of a staircase? The spatial distribution is obviously 
affected, since there is no momentum and energy transfer at the 
plateaus; instead, these only happen at the staircase jumps, where 
the CRs are coupled. 9 Ho we ver, we shall no w sho w that in a static 
setup, the total momentum and energy transfer from CRs to the gas 
only depends on the net change in Alfven speed across the profile. If 
the bump structure does not change this, then even if a CR staircase 
develops, the total momentum and energy transfer is unaffected. 

Consider the previous setup in the coupled limit. The net momen- 
tum transfer by CR forces, integrated over the profile, is 
∫ 

d x ∇P c = −!P c (24) 
Similarly, in our static setup, the net amount of CR heating in steady- 
state is: 
∫ 

d x v A · ∇P c = ∫ d x ∇ · F c = −!F c . (25) 
Since, we deal e xclusiv ely with decreasing P c and F c profiles and will 
make use of ! P c and ! F c frequently in the following, we defined 
! P c = P c, left − P c, right and ! F c = F c, left − F c, right to ensure positive 
definiteness, hence the minus sign. 

Fig. 4 shows a smooth density profile and the associated back- 
ground P c profile (without bumps) and the steady-state P c profile in 
the presence of bumps. Again, we decouple the hydrodynamics so 
that the gas distribution does not evolve. While the spatial distribution 
of P c (and hence the spatial distribution of CR momentum and energy 
transfer) is strongly affected by the presence of bumps, the net 
momentum/energy transfer ( ! P c and ! F c respectively) is almost 
non-aligned mean field which in addition changes direction can introduce 
additional bottlenecks, but is beyond the scope of 1D simulations. 
9 In our subsequent simulations of the acoustic instability, the jumps propagate 
and eventually all gas fluid elements experience a force and CR heating. 
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unchanged. See also Wiener et al. ( 2017a ) for similar conclusions 
(their sections 3.6 and 3.7). The CR pressure only changes where 
CRs are coupled; there, P c ∝ v −γc 

A . Thus, !P c ∝ ! [ v −γc 
A ]. Since 

the net density drop is the same, so is the net change in v A 
and hence P c . Similarly, the net change in the flux is given by 
!F c ≈ ! ( P c v A ) ∝ ! [ v 1 −γc 

A ], so the net heating is also determined 
by the initial and final Alfven speeds (in our 1D sims with constant 
B-field, this is equi v alent to the net density jump). Since these are 
almost unchanged by the presence of bumps, the net heating rate is 
similar. 

The net momentum transfer in Fig. 2 , !P c ∝ ! [ v −γc 
A ], is similarly 

given by the net change in the Alfven speed: 
!P c = P c , left [1 −( v A, min 

v A, right 
)γc ]

(26) 
where P c, left = ( γ c − 1) F c, inj / γ c v A , min . The net energy transfer is 
likewise !F c ≈ ! ( P c v A ) ∝ ! [ v 1 −γc 

A ], or 
!F c = F c, inj 

[ 
1 −( v A, min 

v A, right 
)γc −1 ] 

. (27) 
We show ! P c , ! F c calculated using these equations as dashed black 
lines in Fig. 2 ; they agree well with the simulations. When the second 
peak is pushed up in the lower panel of Fig. 2 there is an increase in 
! P c and ! F c , as expected. 

In many realistic applications (and certainly in the CR acoustic 
instability), the density profile is not static but dynamic, and the 
density peaks are seldom stationary. As we will see in Section 3 , 
the non-linear evolution of the CR acoustic instability often involves 
density bumps propagating up the CR pressure gradient. The P c 
profile develops into a propagating staircase in which equation ( 22 ) 
holds only in the respective rest frames of the jumps. The motion of 
the jumps will hav e non-ne gligible effect on the P c jumps and hence 
the o v erall energy and momentum transfer. A simple illustration is 
given in Fig. 3 , again evolving only the CR sub-system, in which a 
density peak manually mo v ed at constant speed to the left, incurs a 
reduced P c jump at the moving peak. 

How can we understand this? The key is to realize that equa- 
tion ( 22 ) only holds in the rest frame of the jumps, which is the 
frame where the density (and hence P c ) is time-steady. In the lab 
frame, the conserved quantity is therefore: 
P c ( v + v A − v bump ) γc = const (28) 
instead, where v is the lab frame velocity profile and v bump is the 
propagation velocity of the bump. In Fig. 3 , we show the result of 
applying equation ( 28 ), which matches the simulation results well. 

The conservation law in equation ( 28 ) has 3 asymptotic limits, 
when each of the three terms v , v A , v bump dominates. When the CR 
flux F c ∼ 4 P c v is dominated by gas flows, and the CRs simply advect 
with the gas, then P c ∝ v −γc ∝ ργc , i.e. the CRs are adiabatic with 
an adiabatic index γ c = 4/3 for a relativistic fluid. When the CR 
flux is dominated by streaming F c ∼ 4 P c v A , then P c ∝ v −γc 

A ∝ ργc / 2 
(for constant B ), which is a limit most studied in the literature for 
the bottleneck effect (Wiener et al. 2017a ; Bustard & Zweibel 2021 ). 
When v bump , v , v A , then the CR flux in the frame of the bump is F c 
∼ 4 P c v bump , which is constant. As ∇ · F → 0, from equation ( 10 ), 
∇P c → 0, i.e. P c → const at the moving bump, as is also given by 
equation ( 28 ). The motion of the bump reduces CR heating of the gas, 
and when v bump , v , v A , there is almost no apparent energy exchange 
between the two fluids! In this limit, the heating time ∼l bump / v A is 
much longer than the bump propagation time ∼l bump / v bump (where 

Figure 3. These two panels denote the possible effect of a moving bump on 
the P c jumps. The upper panel shows the density field while the lower panel 
shows the CR pressure. Similar to the setup in Fig. 2 , only the CR variables 
are evolved while the gas variables remain decoupled. Initially, two density 
peaks are placed apart at x = 200 and 800 and kept stationary (see the black 
dashed line in the upper panel). The equilibrated P c profile is shown by the 
black dashed line in the lower panel. Some time after the initial equilibrium 
the peak at x = 800 is mo v ed manually at constant speed towards −x while 
the peak at x = 200 remains fixed. The red arrow indicates the direction of 
motion. The subsequent density and P c profiles when the peak has mo v ed to 
x = 350 are indicated by the solid blue lines. The orange line denotes the P c 
profile across the second bump e v aluated using equation ( 28 ), including the 
effect of v jump . 
l bump is the bump size), so before the CRs have a chance to transfer 
much energy, the bump has already mo v ed on. 

Another perspective is to see that the motion of the density 
bump weakens the minimum in ( v + v A − v bump ), and reduces 
the strength of the bottleneck. The moving bump makes a net time- 
a veraged contrib ution to the density profile which is much smoother 
than the density profile of the stationary bump, and approaches the 
background profile for a rapidly moving bump. If the background 
profile is already flat, as in this example, then coupling between the 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/3/4464/6573878 by U
niversity of C

alifornia, Santa Barbara user on 07 Septem
ber 2022

art/stac1123_f3.eps


The CR staircase and the acoustic instability 4471 

MNRAS 513, 4464–4493 (2022) 

Figure 4. Steady state profiles of CR sub-system which in one case, denoted 
by black dashed lines, the ( v + v A ) −1 profile is initiated without bumps and 
the other case, denoted by solid blue lines, it is initiated with several bumps. 
None of the bumps rise abo v e the global maximum of the background profile. 
The o v erall ! P c and ! F c with and without bumps are the same. 
CRs and gas becomes weak and there is hardly any CR staircase. 
In this way, the motion of density bumps alters the CR staircase 
(and energy and momentum transfer) compared to the stationary 
case, where staircase heights are maximized. We will return to this 
when interpreting our simulation results. Note that if bumps are 
propagating at different velocities, then one must apply a different 
frame transformation for each bump. Although one can still infer 
the CR staircase structure given velocity information, the lack of a 
global reference frame means that it is no longer possible to write 
! P c , ! F c in terms of endpoint quantities, as in equations ( 26 ) and 
( 27 ). 

These properties are the basis for the ‘staircase’ features seen in 
the non-linear outcome of the CR acoustic instability, and discussed 
further in Section 3.3 . Interestingly, such staircase features are 
also seen in Lagrangian maps (i.e. correspondence between initial 
(Lagrangian) and final (Eulerian) particle positions) in adhesion 
models of cosmological structure formation (Vergassola et al. 1994 ). 
They are also seen in doubly dif fusi ve fluids, such as sea water where 
both salt and heat diffuse (Radko 2007 ). However, we caution that 
while some mathematical machinery can be used in common, the 
origin and physics of these staircases is quite different. In particular, 

Figure 5. Constructing a conv e x hull o v er wiggly curve, surface, etc., is 
similar to co v ering it with a rubber band that connects all the highest peaks. 
Fluctuations lying in the valley between the ridges are swept under the rubber 
band. See Vergassola et al. ( 1994 ). Note that the conv e x hull described here 
is slightly different from the canonical mathematical definition. 
the CR staircase arises from features peculiar to CR transport –
namely, the bottleneck effect in a two-fluid system. 

Mathematically, the P c staircase is similar to constructing a conv e x 
hull (see Fig. 5 ) of ρ (or ( v + v A ) −1 for non-zero flow) and then 
determining P c from equation ( 23 ) (or 22 ). A conv e x hull is the 
smallest conv e x set that encloses a particular shape. F or our purposes, 
given a plot of ( v + v A ) −γc as a function of position, the conv e x hull 
of this structure is the non-increasing set of lines of minimal length 
which encloses all points, including the peaks. As shown in Fig. 5 , it is 
equi v alent to connecting the peaks with rubber bands, via horizontal 
ridge lines. 

The reasoning abo v e did not take into account multidimensional 
effects, e.g. that due to magnetic field draping around density 
enhancements (Sparre, Pfrommer & Ehlert 2020 ). Bustard & Zweibel 
( 2021 ) show in 2D that magnetic field strength can affect the path 
CRs choose around density peaks. Particularly, it was shown that 
a higher magnetic field facilitates penetration of CRs into density 
peaks, since magnetic tension causes the field lines to resist draping. 
The bottleneck effect can be important in this case. 
3  SI MULATI ON  
The following simulations were performed with Athena + + (Stone 
et al. 2020 ), an Eulerian grid-based MHD code using a directionally 
unsplit, high-order Godunov scheme with the constrained transport 
(CT) technique. CR streaming was implemented with the two- 
moment method introduced by Jiang & Oh ( 2018 ). This code solves 
equations ( 1 )–( 7 ). Cartesian geometry is used throughout. 
3.1 Setup 
Our 1D setup consists of a set of initial profiles, source terms and 
appropriate boundary conditions. Magnetic field is constant both in 
space and time in 1D Cartesian geometry (as required to maintain 
∇ · B = 0). Both CR transport modes (streaming and dif fusi ve) are 
present. We assume that CRs stream at the local Aflven speed v A . 
Slippage from perfect wave locking gives rise to CR diffusion, which 
in the absence of a model for damping, is assumed constant in space 
and time. In this study, we focus mostly on streaming-dominated 
transport; the CR dif fusion coef ficient is usually taken to be small 
(in a sense we shall quantify). 

The CR acoustic instability is a small-scale instability that only 
depends on local conditions. In the following, we will frequently 
reference our setup to actual galactic halo conditions, obtained mostly 
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from galaxy-scale simulations. The purpose of doing so is to provide 
a context for which this instability could act. Our 1D Cartesian setup 
can be crudely thought of as mimicking the vertical profile of disc 
galaxies, though obviously it is highly idealized. Ho we ver, it allo ws 
for high resolution and a detailed scrutiny of the physics in this first 
study. 
3.1.1 Initial profiles 
The initial profiles are calculated by solving a set of ODE’s assuming 
time steadiness of the fluid equations. In the absence of any 
instability, the initial profiles will remain steady in simulations. To 
simplify our calculations, we assume a power law profile in the gas 
and CR pressure and calculate the required density, velocity profiles 
and gravity, cooling/heating source terms required for these profiles 
to remain time-steady. The pressure profiles take the form: 
P g = P g0 ( x 

x 0 
)−φ

, (29) 
P c = α0 P g0 ( x 

x 0 
)−φ

, (30) 
for some specified φ, x 0 , P g 0 , and α0 . For pressure to decrease 
with radius, φ > 0. A power-law pressure profile is motivated by 
galaxy scale simulations (e.g. van de Voort & Schaye 2012 ) and its 
simplicity in describing a generic halo profile. Since magnetic fields 
are constant in our model, this implies that β ∝ x −φ , i.e. the gas 
becomes magnetically dominated at large x . Physically, magnetically 
dominated haloes can arise in simulations (Pakmor et al. 2020 ; van 
de Voort et al. 2021 ) and in analytic solutions (Ipavich 1975 ); we 
discuss this further in Section 4 . 

Specifying the density ρ0 , velocity v 0 , and Alfven speed v A 0 = 
B/ √ 

4 πρ0 at x 0 , the velocity v and density ρ profiles are found by 
integrating from x 0 the equations 
d 

d x ( v + v A ) = κP ′′ c − ( v + v A ) P ′ c 
γc P c , (31) 

ρv = constant , (32) 
where the first equation is the steady state version of equation ( 10 ), 
and the second from mass conservation. Each prime means an 
additional deri v ati ve with respect to x . As mentioned abo v e, B and κ
are constants. An example of the initial profiles is shown in Fig. 6 . 
Using the steady state profiles calculated, the gravity source term g 
is defined as 
g = (ρv d v 

d x + d P g 
d x + d P c 

d x 
)/ 

ρ (33) 
to ensure momentum balance. To have a sense of what functional 
form ρ and g have, consider the sub-sonic and sub-Alfvenic limit 
where we can ignore terms involving the velocity v (for a galactic 
halo/wind profile this would hold near the base of the profile). For 
streaming-dominated transport, the dif fusi ve term in equation ( 31 ) 
can be ignored, which then reduces to equation ( 23 ). We obtain, for 
the density, a power law profile: 
ρ = ρ0 ( x 

x 0 
)−3 φ/ 2 

, v + c s , v A . (34) 
The gravity term has a power law form too: 
g = φP g0 (1 + α0 ) 

ρ0 x 0 
(

x 
x 0 
)φ/ 2 −1 

, v + c s , v A , (35) 

Figure 6. Top panel: typical initial ρ, v, P g , P c profiles found by integrating 
equation ( 31 ) from x = 1 to 10. The profiles shown are obtained with α0 = 
1 , β0 = 1 , η0 = 0 . 01 , M 0 = 0 . 015 , φ = 2. Bottom panel: typical variation 
of α, β, η, M with x . 
where we have used γ c = 4/3. In our fiducial setup ( φ = 2), 
gravity is constant until the critical point (see the discussion below 
equation 40 ). 

For cooling, adiabatic processes and CR heating is balanced by 
a time-independent heating/cooling term H ( x), defined using the 
steady state profiles, 
H = [v d P g 

d x + γg P g d v d x + ( γg − 1) v A d P c 
d x 
]/

( γg − 1) . (36) 
In the subsonic and sub-Alfvenic limit, this approximates to 
H = −α0 φP g0 v A 0 

x 0 
(

x 
x 0 
)−φ/ 4 −1 

, v + c s , v A . (37) 
Although not fully realistic, it is a simple and attractive setup in global 
force and energy balance. Note that it does have cooling, which in the 
background profile offsets CR Alfven heating. Ho we ver, this cooling 
is simply a function of spatial position, rather than thermodynamic 
variables. This simplification allows us to initialize arbitrary profiles 
which are still in energy balance. 

Thus, in each scenario the initial profile is determined by the 
parameters: 

(i) ρ0 , M 0 , P g 0 , α0 , β0 , η0 , φ. 
The subscripts 0 all indicate they are defined at x 0 . The dimen- 

sionless parameters are defined as 
α0 = P c0 /P g0 , β0 = 8 πP g0 /B 2 , η0 = κ/γc L c0 c s0 , 

M 0 = v 0 /c s0 , (38) 
where c s0 = √ 

γg P g0 /ρ0 is the adiabatic sound speed and L c0 = 
| P c /P ′ c | 0 is the CR scale height. Note that L c, 0 = x 0 / φ, so x 0 can also 
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be interpreted as a CR pressure scale height. In general, α, β, η, M 
(defined similarly as 38 but without the subscript 0) vary along the 
profile. Their typical variation is given by the bottom plot of Fig. 6 . 
β and η usually decrease as x increases while M increases. 10 α, by 
construction of the power-law pressure profile equations ( 29 ) and 
( 30 ), is a fixed quantity throughout. Unless otherwise specified, we 
set ρ0 = 1, P g 0 = 1, and x 0 = 1. 

One issue in 1D Cartesian geometry is the transition to supersonic 
flow. If we combine the Euler equation with equation ( 22 ) (in the 
streaming-dominated regime), we obtain, after some manipulations, 
the wind equation 
d v 
d x = g( x) 

v ( v 2 − c 2 eff − c 2 s ) , 1D Cartesian (39) 
where 
c 2 eff = γc P c 

ρ

v + v A / 2 
v + v A , c 2 s = d P g 

d ρ . (40) 
As usual with wind equations, there is some critical point where the 
wind becomes transonic (i.e. v 2 = c 2 eff + c 2 s in this case). To a v oid 
any singularity, g ( x ) has to go through zero at the critical point, and 
indeed it must change sign if the wind is to keep acceleration (d v/d x 
> 0). This is obviously unphysical. We cannot focus on subsonic 
flow alone in our simulations; the flow must be supersonic at large 
x to a v oid boundary problems (see Section 3.1.2 ). In reality, at large 
radii disc winds transitions to a more spherical geometry, where this 
problem no longer occurs. But for simplicity, we simply solve for 
the gravitational field g ( x ) which maintains a steady wind solution 
through the sonic point in Cartesian geometry. Our conclusions are 
unchanged if we focus solely on the subsonic portion of the flow, 
where the gravitational field is fully realistic (e.g. constant or power 
law up to the sonic point). 

We shall try to answer the following questions with this 1D setup: 
(1) Verify the linear growth of the CR acoustic instability and study 
the non-linear growth and saturation. Since we find that the non- 
linear CR profile exhibits a staircase structure, we follow up with the 
questions belo w: (2) Ho w can we understand the staircase structure 
and characteristic scales? (3) How does the staircase affect the time- 
averaged momentum and energy transfer between the gas and CR? 

Our simulations focus on situations where streaming dominates 
CR transport, i.e. κ/ L c c s ∼ η + 1. The CR diffusion dominated limit 
(with η! 1) has already been studied (Drury & Falle 1986 ; Kang et al. 
1992 ; Ryu et al. 1993 ; Drury & Downes 2012 ; Quataert et al. 2022a ). 
In actual simulations using the two-moment formalism, the diffusion 
coefficient κ is never set to zero (as that would give nan in the 
calculation of σ c , equation 7 ). Also, with our boundary conditions, 
the very fast growth rates for small κ cause the simulations to crash. 
We find that for stability and numerical convergence, the diffusion 
length l diff ∼ κ/ c s has to be resolved with ! 4 grid cells. Thus, 
the minimum value of κ in our simulations is dictated by resolution. 
Since the diffusion length is resolved, the fastest growing, small-scale 
modes in our simulation are in the limit k κ/ c s > 1. As discussed in 
Appendix A2 , on scales below the diffusion length, growth rates 
are independent of wavenumber. In addition, the acoustic mode 
dominates, ω ≈ ±kc s , i.e. the wave propagation speed is simply 
the gas sound speed. 
10 Note that κ is constant in our setup. Since L c increases further out in the 
halo, this causes η to fall with distance. Realistically κ should vary with 
location (e.g. due to weaker self-confinement, κ is likely to increase further 
out in the halo), so the o v erall variation of η is unclear. For simplicity, we do 
not consider alternate forms of η. 

3.1.2 Static and outflow setup and boundary conditions 
Linear growth. To e v aluate linear gro wth rates, we will (mostly) 
adopt a static background. The initial profiles are first e v aluated up 
to the boundary ghost zones and input into the simulation box. Then 
an acoustic wave is generated from a boundary and its amplitude 
tracked as it propagates. We perturb the velocity, gas density and 
pressure as follows: 
δv = Aζ ( t ) sin ( ∓kc s t ) , δρ = ±ρ

δv 
c s , 

δP g = ±γg P g δv 
c s , (41) 

where A is some injection amplitude and ρ, P g , c s are e v aluated at 
the boundary with the top sign for forward propagating waves, and 
bottom sign for backw ard w aves. The perturbations are multiplied 
by a buffer function ζ ( t ), given by 
ζ ( t) = 1 − e −t/τ (42) 
where τ is small (around one wave-crossing time), to ensure the 
wave profile and its deri v ati ves are continuous when the acoustic 
perturbation is injected. 

Non-linear growth. When studying the non-linear growth and 
saturation, we include a background flow. As we shall explain, this 
is important to a v oid boundary effects; it also mimics a disc wind. 
We impose the initial density, gas pressure, and CR flux on to the 
inner ghost zones while keeping the CR pressure free by linearly 
extrapolating from the active zones. The inner velocity is determined 
by maintaining constant mass flux. For the outer boundary, we copy 
the density, gas pressure and CR flux from the last active zone and 
linearly extrapolate the CR pressure. The velocity is again determined 
from constant mass flux. This set of boundary conditions mimics a 
stratified disc atmosphere with the inner boundary fixed by galactic 
disc properties and the outer boundary kept free. To limit boundary 
ef fects, a buf fer zone with viscosity is added near the boundaries 
to damp out inbound or outbound unstable acoustic waves. 11 Still, 
it is important, when the outer boundary is kept free, to initiate 
a background velocity such that the flow near the outer boundary 
is supersonic, as otherwise inbound unstable sound wave can cause 
unphysical effects 12 (e.g. spurious shocks). Despite requiring the flow 
near the outer boundary to be supersonic, it is possible to initiate the 
flow at the inner boundary to be highly subsonic (see the bottom 
of Fig. 6 ). To further ensure our discussion will not be affected by 
outer boundary conditions, we focus on the inner (subsonic) half of 
the simulation domain. Unlike the linear setup, where we explicitly 
perturb the profile, here all growth is seeded by numerical noise. 
3.2 Acoustic instability: comparison with linear theory 
Table 1 lists the parameters used for simulating the linear growth 
of acoustic waves. In each case, an acoustic wave with a specified 
amplitude and wav elength (e xpressed in units of diffusion length) is 
injected by a boundary perturbation as described in Section 3.1.2 . 
The background profile spans 1 < x < 2. The resolution is given in 
number of grids used to resolve each wavelength, the whole domain 
11 Specifically, we add the term ν∇ 2 v to the momentum equation, where ν is 
chosen to be small enough not to affect the o v erall profile, but large enough 
to damp out high frequency sound waves. 
12 In keeping the boundary free, the values at the ghost zones should depend 
on the last active zones. Instead, inbound sound waves carry information from 
outside in. This usually is not a problem when the inbound sound waves are 
stable, but here they are problematic. 
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Table 1. Parameters for simulation of linear growth of acoustic waves. Column 1: case identifier. Column 2: direction of 
propagation up or down the CR pressure gradient. Column 3–5: parameters defined in equation ( 38 ). Column 6: power-law 
index of the background P c profile defined in equation ( 30 ). Column 7: wavelength of the acoustic wave in units of l diff, 0 
≡ κ/ c s, 0 . Column 8: injection amplitude. Column 9: resolution, the number of grids each wavelength is resolved with. 
Identifier Direction of 

propagation α0 β0 η0 φ λ ( l diff, 0 ) Injection 
amplitude Resolution ( λ/ ! x ) 

alpha1beta1eta.01phi2 Up 1 1 0.01 2 1 1.84 × 10 −5 109 
alpha1beta1eta.1phi2 Up 1 1 0.1 2 0.1 1.99 × 10 −4 109 
alpha10beta1eta.1phi2 Up 5 1 0.1 2 0.1 1.99 × 10 −5 109 
alpha1beta.1eta1phi2 Up 1 0.1 1 2 0.01 2.35 × 10 −4 109 
alpha1beta.01eta10phi2 Up 1 0.01 10 2 0.003 3.47 × 10 −4 328 
alpha1beta.1eta.1phi1 Up 1 0.1 0.1 1 0.1 1.57 × 10 −4 219 
alpha1beta.1eta.1phi.5 Down 1 0.1 0.1 0.5 0.1 1.44 × 10 −4 437 
alpha1beta.1eta.1phi2 Up 1 0.1 0.1 2 0.1 1.29 × 10 −5 109 
alpha1beta.5eta.1phi2ms.03 a Up 1 0.5 0.1 2 0.1 1.87 × 10 −5 109 
a A background flow with M 0 = 0 . 03 (see equation 38 ) is initiated for this case. 

Figure 7. Simulation of linear growth of acoustic waves. An acoustic wave is injected according to the description described in Section 3.1.2 with the parameters 
listed in Table 1 . In each panel, the identifier is given at the top. The blue curve shows the simulated velocity profile of the growing acoustic wave. The analytically 
predicted amplitude (using equation A22 ) is displayed in black dashed line for comparison. 
is typically resolved with 16384 grids. The reduced speed of light 
is c = 1000. The results are displayed in Fig. 7 . In each panel, the 
velocity profile is given by the blue solid curve. In the linear growth 
phase, the velocity amplitude of the acoustic perturbation can be 
analytically expressed, to first-order approximation, as 
ˆ v ( x) = ˆ v ( x inj ) exp {1 

2 ln ρinj 
ρ

+ 1 
2 I ( x, x inj ) } , (43) 

where I ( x, x inj ), given in equation ( A23 ), is an integral involving the 
growth rate from the location of injection x inj to some point x along 
the path of propagation. Overall, there is good agreement between the 

simulated amplitude growth and analytics, except in the case where 
λ = l diff, 0 (case alpha1beta1eta.01phi2 , panel in the upper 
left-hand corner), for which k κ/ c s ∼ 1 and the growth rate formula 
(equation 21 ) is no longer valid. In particular, for k κ/ c s ! 1 the 
acoustic mode bifurcates into additional hybrid modes (appendix A ). 
These modes have lo wer gro wth rates than the asymptotic small 
wavelength k κ/ c s , 1 limit. 

In Fig. 8 , rather than injecting a sound wave from the right 
boundary, we set up a Gaussian perturbation of amplitude 10 −3 and 
characteristic width κ/ c s0 in the middle of the simulation domain. 
Both the forward and backward acoustic modes are unstable at the 
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Figure 8. Growth comparison of forward and backward propagating waves. 
The black dashed line shows the initial velocity profile with a slight Gaussian 
perturbation at x = 1.5. This perturbation then decomposes into a forward 
moving (to + x ) component and a backward (to −x ) component. Their 
evolution is captured at a later time by the blue solid line. As expected, 
the backward component grows more rapidly. The background α0 = 1, β0 = 
0.5, η0 = 0.01, and φ = 2. The Gaussian bump has amplitude 10 −3 and 
characteristic width of κ/ c s 0 . 
Gaussian bump. The background mode clearly grows faster than the 
forward mode, as expected. 

All in all, we have shown that acoustic perturbations can be 
amplified by CRs in various settings and the growth rate is consistent 
with that expected from linear theory. In particular, in the fluid rest 
frame, waves propagating up the CR gradient are more unstable. 
3.3 Acoustic instability: non-linear outcome 
We list, in Table 2 the simulations we have used to probe the 
non-linear regime, the parameters used and some rele v ant results. 
These include the change in mass flux, as well as ! P c and ! F c of 
the time averaged profiles. As discussed in Section 2.2 , ! P c and 
! F c probe the net momentum and energy transfer. We show the 
ratios ! P c / ! P c0 , ! F c / ! F c0 between the non-linear staircase and 
the background profile. 
3.3.1 General observation of the non-linear behaviour 
The following proceeds after the linear growth phase. Growth of 
acoustic waves is slowed when the amplitude becomes large enough 
such that the CR pressure gradient becomes zero at the wave extrema 
(left most panel of Fig. 9 ). At these locations, CRs decouple from 
the gas, truncating CR heating, which is the source of energy driving 
the instability. Elsewhere gas and CRs are still coupled, so growth 
continues, though growth rates become strongly inhomogeneous. 
The local patches of CR gradient zeros expand, forming a series 
of CR plateaus separated by jumps in CR pressure, i.e. a staircase 
structure that travel up the P c gradient (second left of Fig. 9 ). Gas 
and CR remain coupled at the jumps, so the instability continues 
to act, stretching the jump heights. Each CR jump can be seen to 
associate with a density spike. Local conditions drive a differential 
in non-linear growth for each jump, causing the CR plateaus to rise 
or drop at varying rates. When one plateau levels with another, the 
jump between them vanishes, they merge and mo v e thereafter as 
one (second right of Fig. 9 ). Occasionally, newly seeded modes with 
wavelengths at or smaller than the jump width would arise at a stair 
jump, breaking it up into a series of sub-staircases (right most panel 
of Fig. 9 ). When a stair propagates into a region for which β ! 
0.5, where acoustic waves are damped, the jump will shrink. As the 

instability saturates, we see continual staircase propagation, breaking 
and merging of the staircase jumps in an o v erall time-steady manner. 

Fig. 10 depicts a snapshot which clearly shows the aforementioned 
staircase structure in the P c profile (see the bottom left-hand panel of 
Fig. 10 ). The morphology of the P c profile is distinct from the other 
profiles, particularly the gaseous profiles, in several ways. First, P c 
decreases monotonically whereas the density exhibits small scale 
shocks. Secondly, whereas the P c jumps, as well as gas density and 
velocity fluctuations are of order ! P c / P c ∼ !ρ/ ρ ∼ !v/ v ∼ 1, the 
gas pressure and temperature exhibit extreme dips, ! P g / P g ∼ ! T / T 
, 1. The origin of these dips will be discussed in Section 3.3.2 . 

In Fig. 11 , we illustrate the meaning of the terms jump width 
! x , jump height ! P c and plateau H , which we use throughout the 
rest of this paper. We often express the jump width as w ≡ ! x / l diff , 
normalized with respect to the local diffusion length, while the jump 
height is often expressed as h ≡ ! P c / P c , i.e. the logarithmic change 
in P c . 
3.3.2 Zoom-in of staircase jumps 
The P c jumps can provide intense local heating and momentum 
transfer as they propagate, potentially altering the o v erall dynamics 
of the gas-CR fluid. In this subsection we zoom-in on to a typical 
jump and explain the physics behind various features. 

Fig. 12 shows the CR pressure, density and gas pressure profiles 
across one such jump. Since the instability is dominated by backward 
propagating waves (see Fig. 8 ), like most others this jump is 
propagating to the left, up the CR gradient. We observe for other 
jumps the direction of propagation is al w ays tow ards increasing P c 
in the rest frame of the fluid, such that only in the supersonic part 
of the flow do the stairs propagate down the P c gradient in the lab 
frame. Moving across the zoom-in profiles from left to right, the 
P c jump is preceded by sharp density and gas pressure increase. 
These are purely hydrodynamic shocks, across which P c remains 
constant and decoupled from the gas. The actual P c jump begins 
from the post-shock density peak, tracing the falling side of the 
acoustic disturbance. The jump is ensued by a CR plateau. 

Across a hydrodynamic shock, one can infer the shock speed v sh 
by imposing mass continuity 
v sh = ρ2 v 2 − ρ1 v 1 

ρ2 − ρ1 , (44) 
where v 1 , v 2 are the fluid velocities in the lab frame and the subscripts 
1 and 2 denote the fluid quantities upstream and downstream of the 
shock, respectively. The density and gas pressure increase follow 
the Rankine–Hugoniot shock jump relations, as shown by the black 
dashed lines. Proceeding down the jump, CR, and gas are coupled. 
In the rest frame of the shock the bottleneck equation ( 22 ) is 
satisfied, as demonstrated by the green dashed line. The gas and CR 
profiles across other jumps also exhibit similar structure: a purely 
hydrodynamic shock at a CR plateau, followed by a jump in P c and 
an ensuing CR plateau. 

The generation of gaseous shocks preceding each P c jump follows 
from wave steepening of acoustic waves, where differences in phase 
velocities between the wave crest and trough causes o v ertaking and 
a discontinuity to be formed. Waves generated in this manner are 
usually weak and propagate at approximately the sound speed in the 
fluid’s rest frame (thus appearing to propagate down the CR gradient 
only for supersonic flo ws). Ho we ver, with thermal cooling these 
initially weak shocks can evolve into strong shocks, as we describe 
below. 
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Table 2. Simulation parameters for non-linear evolution of the acoustic instability. We have listed out only the test cases explicitly mentioned or used for 
figures in this paper. Column 1: identifier of the test cases. Column 2–7: α0 , β0 , η0 , φ defined in ( 30 ) and ( 38 ). Column 8: resolution given in grid size. Column 
9–11: ratio of the time averaged mass flux, 〈 ! P c 〉 and 〈 ! F c 〉 to the initial values. Column 12: effective CR adiabatic index (defined by equation 50 ). 
Identifier α0 β0 η0 φ c Resolution ( ! x ) 〈 Ṁ 〉 / Ṁ 0 〈 ! P c 〉 / ! P c0 〈 ! F c 〉 / ! F c0 γ eff 
NL4096alpha.5beta1eta.01phi2c200 0.5 1 0.01 2 200 2.20 × 10 −3 0.969 1.120 0.947 1.28 
NL4096alpha.6beta1eta.01phi2c200 0.6 1 0.01 2 200 2.20 × 10 −3 0.977 1.184 0.932 1.20 
NL4096alpha.7beta1eta.01phi2c200 0.7 1 0.01 2 200 2.20 × 10 −3 1.063 1.207 0.911 1.17 
NL4096alpha.8beta1eta.01phi2c200 0.8 1 0.01 2 200 2.20 × 10 −3 1.123 1.230 0.915 1.20 
NL4096alpha.9beta1eta.01phi2c200 0.9 1 0.01 2 200 2.20 × 10 −3 1.175 1.234 0.899 1.19 
NL4096alpha1beta1eta.01phi2c200 1 1 0.01 2 200 2.20 × 10 −3 1.384 1.309 0.907 1.25 
NL4096alpha1beta1eta.01phi2c400 1 1 0.01 2 400 2.20 × 10 −3 1.382 1.321 0.890 1.22 
NL4096alpha1beta1eta.01phi2c800 1 1 0.01 2 800 2.20 × 10 −3 1.375 1.313 0.883 1.22 
NL4096alpha1beta1eta.01phi2c1000 1 1 0.01 2 1000 2.20 × 10 −3 1.446 1.310 0.868 1.23 
NL4096alpha2beta1eta.01phi2c200 2 1 0.01 2 200 2.20 × 10 −3 1.713 1.269 0.852 1.16 
NL4096alpha3beta1eta.01phi2c200 3 1 0.01 2 200 2.20 × 10 −3 1.825 1.210 0.844 1.12 
NL4096alpha4beta1eta.01phi2c200 4 1 0.01 2 200 2.20 × 10 −3 1.861 1.186 0.844 1.10 
NL4096alpha5beta1eta.01phi2c200 5 1 0.01 2 200 2.20 × 10 −3 1.890 1.187 0.848 1.09 
NL4096alpha6beta1eta.01phi2c200 6 1 0.01 2 200 2.20 × 10 −3 1.901 1.175 0.846 1.09 
NL4096alpha7beta1eta.01phi2c200 7 1 0.01 2 200 2.20 × 10 −3 1.925 1.158 0.848 1.09 
NL4096alpha8beta1eta.01phi2c200 8 1 0.01 2 200 2.20 × 10 −3 1.944 1.141 0.843 1.09 
NL4096alpha9beta1eta.01phi2c200 9 1 0.01 2 200 2.20 × 10 −3 1.366 1.120 0.813 1.09 
NL4096alpha10beta1eta.01phi2c200 10 1 0.01 2 200 2.20 × 10 −3 1.579 1.107 0.825 1.09 
NL1024alpha1beta.02eta.01phi2c4000 1 0.02 0.01 2 4000 8.79 × 10 −3 5.635 1.408 0.671 1.22 
NL1024alpha1beta.04eta.01phi2c3000 1 0.04 0.01 2 3000 8.79 × 10 −3 4.318 1.393 0.739 1.25 
NL4096alpha1beta.05eta.01phi2c2000 1 0.05 0.01 2 200 8.79 × 10 −3 4.232 1.423 0.752 1.25 
NL1024alpha1beta.06eta.01phi2c3000 1 0.06 0.01 2 3000 8.79 × 10 −3 3.943 1.376 0.727 1.25 
NL1024alpha1beta.08eta.01phi2c2000 1 0.08 0.01 2 2000 8.79 × 10 −3 3.354 1.364 0.783 1.27 
NL2048alpha1beta.1eta.01phi2c1000 1 0.1 0.01 2 1000 4.39 × 10 −3 3.078 1.666 0.858 1.31 
NL2048alpha1beta.3eta.01phi2c550 1 0.3 0.01 2 550 4.39 × 10 −3 2.140 1.500 0.888 1.26 
NL2048alpha1beta.5eta.01phi2c400 1 0.5 0.01 2 400 4.39 × 10 −3 1.680 1.463 0.919 1.26 
NL4096alpha1beta.6eta.01phi2c200 1 0.6 0.01 2 200 2.20 × 10 −3 1.685 1.433 0.889 1.25 
NL16384alpha1beta.6eta.01phi2c200 1 0.6 0.01 2 200 5.49 × 10 −4 1.685 1.505 0.926 –
NL4096alpha1beta.8eta.01phi2c200 1 0.8 0.01 2 200 2.20 × 10 −3 1.466 1.352 0.908 1.26 
NL4096alpha1beta2eta.01phi2c200 1 2 0.01 2 200 2.20 × 10 −3 1.091 1.117 0.864 1.17 
NL4096alpha1beta3eta.01phi2c200 1 3 0.01 2 200 2.20 × 10 −3 0.937 1.053 0.914 1.17 
NL4096alpha1beta4eta.01phi2c200 1 4 0.01 2 200 2.20 × 10 −3 0.896 1.036 0.953 1.16 
NL4096alpha1beta1eta.02phi2c200 1 1 0.02 2 200 2.20 × 10 −3 1.378 1.299 0.879 1.23 
NL4096alpha1beta1eta.04phi2c200 1 1 0.04 2 200 2.20 × 10 −3 1.312 1.271 0.880 1.21 
NL4096alpha1beta1eta.06phi2c200 1 1 0.06 2 200 2.20 × 10 −3 1.209 1.271 0.899 1.21 
NL4096alpha1beta1eta.08phi2c200 1 1 0.08 2 200 2.20 × 10 −3 1.290 1.255 0.871 1.18 
NL4096alpha1beta1eta.1phi2c200 1 1 0.1 2 200 2.20 × 10 −3 1.211 1.260 0.884 1.18 

Figure 9. Non-linear growth and generation of the staircase. Time proceeds from the left panel to the right. Initial growth of acoustic waves generates a 
series of ∇P c zeros, which then expand to form a series of staircases. Differential non-linear growth rates of the jumps causes stronger jumps to expand at 
the expense of weaker jumps, merging into bigger jumps. Subsequently, as merging slows down and new modes grow, the stair jumps fragment into smaller 
sub-steps. 
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Figure 10. Density (top left-hand panel), velocity (top middle panel), gas pressure (top right-hand panel) and CR pressure (bottom left-hand panel), CR 
flux (bottom middle), temperature (bottom right, defined in code units by T = P g / ρ) plots of the non-linear evolution of the acoustic instability at t = 
2.84 (blue solid lines). The initial profiles are shown by black dashed lines for comparison ( t = 0). A staircase structure can be seen in the CR pressure. 
Plasma β decreases from 0.6 to 0.017 from x = 1 to 6, going below the stability threshold β = 0.53 at x ≈ 1.1. The case shown is a time slice taken from 
NL4096alpha1beta.6eta.01ms.015psi0c200 . 

Figure 11. Clarification of jump width, height, and plateau. 
The CR staircase is characterized by sudden drops in CR pressure 

(the jumps), connected by regions of constant CR pressure (the 
plateaus). CR and gas are decoupled at the plateaus and coupled at 
the jumps. Thus, there are no CR forces or CR heating at the plateaus, 
but very strong CR momentum and energy transfer to the gas at the 
jumps, where ∇P c is much larger than in the background profile. This 
rearrangement of where CR momentum and heat is deposited causes 
the entire region to fall out of force and energy balance. Regions of 
excess cooling (the plateau) abut regions of intense CR heating (the 
jump). The cooling in plateaus causes gas pressure and temperature to 

hav e e xtreme dips, 13 and pressure gradients between the plateau and 
jump drives a strong shock. This shock can be considerably stronger 
and different in character from simple steepening of an unstable 
acoustic wave. It is driven by the thermodynamics of the staircase 
structure when cooling is present. Cooling itself can create density 
peaks which create bottlenecks, and further alters the structure of the 
staircase. 
3.3.3 Staircase finder 
Before we delve into the dynamical implications of the staircase, we 
shall determine the saturation of the non-linear staircase structure. 
To this end, we have developed a simple staircase finder to identify 
staircase jumps in a P c profile. In light of equation ( 8 ), we deem the 
13 In our simplified setup, cooling is artificially enforced to be equal to CR 
heating (plus adiabatic heating) in the initial steady-state profile (see equations 
36 and 37 ), and meant to mimic a system initially in thermal equilibrium. 
Cooling is independent of time. If the initial CR heating is strong, so is cooling 
and gas pressure and temperature will fall very quickly at the CR plateaus. A 
more realistic scenario would use standard cooling functions which depend on 
plasma density and temperature. This would produce initial pressure profiles 
which are no longer power law, and time-dependent cooling. We are studying 
this separately (Tsung et al., in preparation), but the current simplified setup 
illustrates much of the key physics. 
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Figure 12. Zoom-in plot of the CR pressure (top panel), density (middle 
panel) and gas pressure (bottom panel) across a typical staircase jump that is 
propagating up the P c gradient (i.e. left in these plots). The blue solid curves 
are the simulation data. A stair jump in general consists of four sections, colour 
coded by different background shades. The yellow section denotes the pre- 
jump plateau where CR and gas are uncoupled. The orange section denotes the 
hydrodynamic shock. The red section denotes the actual stair jump, where CR 
and gas are coupled. The blue section denotes the entailing plateau where CR 
and gas becomes uncoupled again. The green dashed curve in the P c plot (top 
panel) is the analytic P c profile calculated from equation ( 22 ) in the shock’s 
rest frame for the simulated density profile. Given the upstream condition and 
the shock’s Mach number, the Rankine–Hugoniot shock jump relations return 
the post-shock density and gas pressure, as displayed by the horizontal black 
dashed lines in the density plot, which closely match those in simulation. 
gas to be coupled with CRs if the following condition holds: 
!x 
L c > θthres v A 

c , (45) 
where ! x is the grid spacing (of order c ! t ), L c is the local P c 
scale height, and θ thres is some threshold parameter. Physically, 
this condition determines whether the time-dependent term in 
equation ( 6 ) is negligible. If so, there is strong coupling, and the 
CR flux attains its steady state form (equation 9 ). We have found 

θ thres ≈ 0.01 to work well in identifying jumps in the staircase here, 
though note that this value is likely situation dependent. Every grid 
cell is categorized as ‘coupled’ or ‘uncoupled’ according to this 
criterion. If a ‘coupled’ grid has an ‘uncoupled’ grid on its left and 
a ‘coupled’ grid on its right, it is deemed the start of a jump and 
vice versa for the end of a jump. Once the stair jumps have been 
identified we then record the number of jumps along the profile, as 
well as the jump widths, heights, etc. Fig. 13 shows a snapshot of 
P c with vertical dashed green lines indicating the start of a jump and 
red dashed lines indicating the end of a jump. This method is quite 
robust in capturing staircase jumps. 
3.3.4 Quasi-static state of the staircase 
The staircase finder was applied o v er time. Fig. 14 shows the 
evolution of the staircase at the first few time instances while Fig. 15 
shows the number of stairs (each pair of green and red dashed line is 
counted as one stair) captured as a function of time. From t = 0 −0.1 
there is an initial surge of stair jumps seeded by numerical noise 
due to the acoustic instability. This time period is consistent with 
the growth time t grow ∼ κ/c 2 c ∼ 0 . 01 for the case displayed, where 
several e-folds are required to reach the non-linear stage. There is a 
large number of them because small scale perturbations from noise 
each grow until ∇P c = 0 is reached, forming plateaus. From t = 
0.1 −0.5, the number of jumps drops drastically as the individual 
CR plateaus expand and merge. Since non-linearly steepened sound 
wa ves tra vel ∼c s , we expect the difference in propagation speed 
between adjacent jumps to be ∼c s , and the merging time-scale ∼H / c s , 
the sound crossing time across a plateau (the merging time-scale in 
general scales as H / v bump , where v bump is the jump propagation speed. 
In the presence of strong shocks due to cooling at the plateaus, 
v bump does not scale as c s . Ho we ver, at the early stage of staircase 
formation, before cooling can take action, v bump ∼ c s is generally 
true). Do all the CR plateaus simply merge into one big jump? The 
answer is no. From t = 0.5 onwards the number of staircase steadied 
to around 15, fluctuating from 5 to 30. The number steadies due to 
two main reasons. First, merging of the CR plateaus have slowed 
down (the time for the stairs to merge lengthens with plateau width 
H ). Secondly, newly seeded acoustic modes (seeded by numerical 
noise or propagating acoustic waves) at the CR jumps where CR 
and gas are still coupled lead to growth of a series of smaller 
CR stair jumps. This is similar to what happened at t = 0 −0.1, 
but occurring only at the jumps. This leads to a fragmentation of 
a stair jump into smaller sub steps. The relative independence of 
these two factors causes fluctuations in stair numbers for t > 0.5. In 
this way, the P c profile settles into a quasi-steady state marked by 
occasional merging, fragmentation and propagation of the staircase. 
In summary, the evolution of a staircase structure is characterized 
by (1) an initial surge of jumps seeded by perturbations, scaled 
by the growth time-scale t grow , followed by (2) merging of the 
jumps on some merger time-scale t merge and at last 3. a quasi-static 
state balancing fragmentation and merging of stairs. Since the CR 
acoustic instability is a local instability, the staircase is agnostic to 
the simulation box size. Extending the simulation domain at fixed 
resolution (more specifically at fixed ! x / l diff ) will not change the 
number of jumps per unit box length. Higher resolutions do seed 
smaller scale instabilities, as shown in Appendix B . 
3.3.5 Bottleneck effect with a moving staircase 
In this section, we recall and extend our discussion of the bottleneck 
effect (Section 2.2 ) in the context of the non-linear profile arising 
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Figure 13. Staircases are identified using the algorithm described in Section 3.3 . The P c profile is plotted in blue solid line with green (red) dashed lines 
indicating the beginning (end) of a staircase jump. The zoom-in panels show with greater clarity parts of the P c profile with the identified jumps, showing the 
staircase finder to be robust. The case shown is a time slice taken from NL4096alpha1beta.6eta.01ms.015psi0c200 . 
from the acoustic instability (Fig. 10 ). In the presence of non-linear 
acoustic disturbances, the bottleneck effect causes a CR plateau 
to be formed on the rising side of the disturbance (viewed from 
the standpoint of the streaming CRs). Meanwhile CR and gas are 
coupled on the falling side, forming CR jumps. The plateaus and 
jumps occur one after another, in conjunction with successively 
rising and falling acoustic disturbances, forming a staircase. If the 
density and velocity profiles were stationary, with all the peaks held 
fixed, P c would acquire a stationary profile as well, whose profile 
can be obtained through a ‘conv e x hull’ procedure, as shown by 
the dashed curve in the top plot of Fig. 5 . The convex hull is the 
minimal surface that encompasses the entire ( v + v A ) −1 profile. 14 
P c can then be obtained via equation ( 22 ). Fig. 16 shows one such 
example of reconstructed P c profile using the convex hull procedure. 
Comparing the reconstructed P c profile against actual simulations 
sho ws that e ven though the locations of the P c jumps can be identified 
reasonably, the magnitude of the individual jumps are incorrectly 
estimated. 

Clearly, the profiles are not stationary, since the jumps (and shocks) 
are propagating. Could this be the problem? equation ( 22 ) only holds 
14 The steps to constructing a conv e x hull is described in greater detail here. 
(1) Identify the highest peak of the ( v + v A ) −1 profile. Incoming CRs will 
bottleneck all the way up to here. (2) Trace the falling side of the ( v + 
v A ) −1 peak while searching for the next highest peak. CRs will bottleneck 
up to here next. (3) By repeating this procedure o v er successiv ely lower ( v + 
v A ) −1 peaks a conv e x hull can be constructed for the ( v + v A ) −1 profile. The 
conv e x hull is given by the dashed line in the top plot of Fig. 16 . (4) Finally, 
the P c profile is obtained by applying equation ( 22 ) using the conv e x hull of 
( v + v A ) −1 . 

in the rest frame of the jumps. In the lab frame, the conserved quantity 
is thus: 
P c ( v + v A − v bump ) γc = const (46) 
instead, where v is the lab frame velocity profile and v bump is the 
propagation velocity of the jump determined by imposing continuity 
across the preceding hydrodynamic shock (equation 44 ). This is the 
same as equation ( 28 ), aforementioned in Section 2.2 . In Fig. 17 , 
we show that once equation ( 28 ) is used, good agreement is 
restored. Since all the jumps propagate at different velocities, the 
frame transformation has to be applied separately to each jump to 
reconstruct an entire staircase, using the conv e x hull approach. 
3.3.6 Jump widths, heights, and plateau widths 
We now discuss some characteristic scales in the staircase, such as 
the jump width, heights, and plateau widths. We begin with the jump 
width ! x . As discussed in Section 2.1 , the growth rate increases with 
wavenumber for k κ/ c s ! 1, flattening to a constant value for k κ/ c s ! 
1. With sufficient resolution, modes with wavelength less than l diff ∼
κ/ c s – the diffusion length, will grow the fastest and form non-linear 
stair jumps. Modes with wavelength close to the resolution grid size 
will be susceptible to numerical diffusion and damp. Thus, we expect 
the distribution of stair widths ! x to be suppressed on small scales 
! x < ! x res due to numerical diffusion, and to be suppressed on large 
scales ! x > l diff due to lower growth rates. 

With the staircase finder one can also study the distribution of jump 
widths. We tally up the jump widths and display their distribution 
d n /dln w in Fig. 18 , where w ≡ ! x / l ldiff is the jump width normalized 
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Figure 14. The evolution of the staircase at the first few time instances is displayed. Starting with smooth a background profile at t = 0, ∇P c zeros begin to 
appear due to the acoustic instability at t = 0.05, followed by a surge of stairs at t = 0.1. The stairs subsequently merge, propagate and fragment to new stairs. 
The case shown is NL4096alpha1beta.6eta.01ms.015psi0c200 . 

Figure 15. Number of staircases as a function of time. There is an initial 
surge of stairs from t = 0 to 0.1, followed by a merging phase from t = 0.1 to 
0.5 and at last a quasi-steady state from t = 0.5 onwards where the the number 
of staircases fluctuates about a constant value. The zoom-in panel is displays 
the 0 < t < 0.8 section in greater detail, showing clearly an initial phase of 
staircase surge (0 < t < 0.08) followed by the merging phase (0.08 < t < 0.5). 
The case shown is NL4096alpha1beta.6eta.01ms.015psi0c200 . 
by the local diffusion length. The distribution peaks at w ∼ 1, 
truncating abo v e w ∼ 1 e xponentially and, as shown by the gre y 
region, 15 close to the grid scale. This shape is broadly consistent 
15 The lower and upper limits of the grey region in Fig. 18 are obtained 
by dividing the grid size ! x res (which is uniform in our simulations) 

with expectations. In general, the jump width typically spans sizes of 
order the diffusion length, ! x ∼ l diff . Substituting values appropriate 
for halo gas, κ ∼10 28 –10 29 cm 2 s −1 and c s ∼ 100 km s −1 , one would 
find that l diff ∼ 1 −10 kpc – orders of magnitude larger than small- 
scale cool structures in the CGM (which may be of order of a 
parsec; McCourt et al. 2018 ), and within reach of observational 
and cosmological simulation resolution limits. We briefly discuss 
observational consequences in Section 4.3 . 

Fig. 19 shows a distribution of plateau widths H (in units of L c 0 ). 
A power law of index −0.21 emerges. The physics of these power 
laws is interesting, but we will defer exploration to future work. Note 
that the relatively flat distribution suggests the mean plateau width 
by the maximum and minimum local diffusion lengths registered at the 
jumps, respecti vely. The local dif fusion length at each jump is calculated 
by κ/ 〈 c s 〉 jump , where 〈 · 〉 jump indicates average across the jump. The 
gre y re gion is therefore an approximate indication where jump widths 
may be under-resolved. Note that some well-resolved jumps may still fall 
within the grey region, for example, one can imagine a well-resolved jump 
width spanning q grids, i.e. ! x = q ! x res . Then ! x / l diff = q ! x res / l diff = 
q ( ! x res / l diff, min )( l diff, min / l diff ). But note that ! x res / l diff, min is the upper limit 
of the grey region, so if q ( l diff, min / l diff ) < 1, this jump width would still be 
placed in the grey region. Conversely, jump widths above the grey region 
is guaranteed to be resolved by more than one grids. Similarly, in 19 , the 
lower and upper limits of the gre y re gion are obtained by dividing the grid 
size ! x res by the maximum and minimum local initial background CR scale 
heights at the plateaus. The local initial background CR scale height at each 
plateau is calculated by 〈 L c0 〉 plateau , where L c0 ≡ P c0 ( x )/ |∇P c0 ( x ) | is the CR 
scale height of the initial profile. There are also physical constraints on jump 
width set by CR mean free paths, which coincidentally are not very different 
from our numerical limits (see Appendix B ). 
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Figure 16. Top plot: ( v + v A ) −1 (solid blue line) and its conv e x hull 
(black dashed line). Bottom plot: The reconstructed P c profile from the 
conv e x hull (black dashed line) and the actual P c profile (blue) assuming 
profile stationarity. The zoom-in plots show with greater clarity how the 
conv e x hull procedure, assuming stationarity, fail in some instances to 
capture the correct jump heights. The case shown is a time slice taken from 
NL4096alpha1beta.6eta.01ms.015psi0c200 . 

Figure 17. For a given density and velocity profile, we e v aluate the 
corresponding P c profiles from equations ( 28 ) and ( 22 ) with and without 
including v jump , respectively, and compare them against P c from simulation. 
Blue solid line: Simulation data. Red dashed line: Estimated P c profile without 
v jump . Green dashed line: Estimated P c profile with v jump . 

Figure 18. Distribution (d n /dln w) of jump widths w (in units of l ldiff , i.e. 
w ≡ ! x / l diff ), showing a peak at ! x ∼ l diff ( w ∼ 1) and a cutoff abo v e 
and below. Note that the diffusion length l diff is calculated locally at each 
jump by averaging κ/ c s across the jump. The grey shaded region, with the 
limits obtained by dividing the grid size by the maximum and minimum local 
dif fusion lengths, respecti vely, denote jump widths that may be underresolved 
(see the footnote in Section 3.3.6 for more details). The case shown is 
NL16384alpha1beta.6eta.01ms.015psi0c200 . 

Figure 19. Distribution (d n /dln ( H / L c0 )) of plateau widths H (in units of 
the initial background CR scale height L c0 ). It has a power-law index 
of −0.21 and is bounded by H ∼ L c0 . The grey shaded region, with 
the limits obtained by dividing the grid size by the maximum and min- 
imum L c0 , respectively, denote plateau widths that may be underresolved 
(see the footnote in Section 3.3.6 for more details). The case shown is 
NL16384alpha1beta.6eta.01ms.015psi0c200 . 
〈 H 〉 = ∫ H d n/ d H d H would be ske wed to wards to wards the higher 
end ∼L c 0 , consistent with simulations, which shows that profile is 
dominated by large plateau widths. Thus, the CR scale height sets 
both an upper bound and a characteristic scale for plateau widths. 

Finally, the distribution of jump heights ! P c / P c is displayed in 
Fig. 20 . It cutting off sharply as ! P c / P c approaches unity. This 
distribution can be roughly characterized as a power law followed by 
an exponential cutoff at some characteristic scale, and be reasonably 
fitted with a Schechter function 
d n 
d ζ = N 0 ( ζ

ζ∗

)−ν

e −ζ/ζ∗ , (47) 
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Figure 20. Distribution (d n /d ζ ) of jump heights (in units of the local 
P c ) with fitting parameters ν and h ∗ (equation 47 ). The case shown is 
NL16384alpha1beta.6eta.01ms.015psi0c200 . 

Figure 21. Two snapshots of P c taken at the same time in which 
the bottom test case has a CR pressure 10 times higher than 
the top case, all other parameters held constant. The bottom test 
case has considerably smaller plateau widths and jump height than 
the top case, consistent with the discussion in Section 3.3.6 . The 
cases shown are NL4096alpha1beta1eta.01ms.015psi0c200 and 
NL4096alpha10beta1eta.01ms.015psi0c200 . 
where ζ ≡ ! P c / P c = ! ln P c is the logarithmic jump height, with ν
and ζ ∗ denoting the power-law index and characteristic jump height, 
respectively. 

How do these scales change as we change physical parameters? 
For instance, in Fig. 21 , we show the effects of a higher CR pressure. 
The stairs appear more clustered and there are many more of them, 
meaning that both the plateau widths and the jump heights are 
reduced. In Fig. 22 , we show how ζ ∗ (the exponential cutoff as 

Figure 22. Variation of the characteristic jump height ζ ∗ (defined in equation 
47 ) for a range of α0 = P c 0 / P g 0 (top, fixing β0 = 1, η0 = 0.01), β0 = 8 πP g 0 / B 2 
(middle, fixing α0 = 1, η0 = 0.01) and η0 = κ/ γ c L c 0 c s 0 (bottom, fixing α0 = 
1, β0 = 1). The legends indicate the power law index found from logarithmic 
fitting when there is a pre v ailing trend. Log–log plotting is used for the top 
and bottom panel. 
defined in equation 47 ) changes as we change parameters at the base 
( α0 , β0 , η0 , defined in equation 38 ). Since our pressure profiles are 
power law, this amounts to an overall rescaling; note in particular 
that α0 is independent of x . We find that ζ∗ ∝ α−1 / 2 

0 = ( P c0 /P g0 ) −1 / 2 
for α0 > 1 (and saturates at ζ ∗ = ! P c / P c ∼ 0.4 for α0 < 1). In 
addition, ζ ∗ shows little dependence on β0 , η0 . 

These scaling relations are particular to our setup and likely 
sensitive to some key assumptions (e.g. about background profiles, 
as well as heating and radiative cooling). They should therefore be 
taken with a grain of salt; they are unlikely to be universal for CR 
staircases. We can none the less understand some qualitative features. 
Suppose the number of staircases per scale height is n c = L c / H , so 
that ζ ∗ = ! P c / P c ∝ 1/ n c ∝ H , where both ζ ∗, H are representative 
values of the logarithmic height and plateau width, respectively. 
The steady state number of staircases arises from a balance between 
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staircase production (via the acoustic instability) and destruction (via 
merging). From equation ( 21 ), the linear growth rate of the acoustic 
instability is 
* grow ∼ c 2 c 

κ

(
1 + 1 

β1 / 2 
)2 

+ 1 
ρc s 

(
1 + 1 

β1 / 2 
)

d P c 
d x . (48) 

d P c /d x can be approximated as ! P c / ! x . The jump width scales 
roughly as the diffusion length while ! P c is observed to be at most 
of order P c (e.g. in Fig. 10 ). Therefore, the term in equation ( 48 ) 
involving d P c / x is at most of order ( c 2 c /κ)(1 + 1 /β1 / 2 ). A close 
examination (not shown) of the jumps shows that the first term 
in 48 usually dominates, and for simplicity we ignore the second 
term. On the other hand, the merger rate scales roughly as the shock 
crossing time across a plateau. We argued in Section 3.3.2 that the 
shock is driven by pressure gradients. The free energy for the shocks 
comes from CRs, such that P c ∼ ρv 2 sh . Thus, the characteristic shock 
propagation velocity is v sh ∼ c c ∼ √ 

P c /ρ. Staircases ‘merge’ when 
one shock (typically the stronger shock, which is propagating faster) 
o v ertakes another. If there is a distribution of shock speeds, and 
the characteristic spread is of order ∼c c , then the merger rate is 
* merge ∼ H / c c . If we set * grow ∼ c 2 c /κ to * merge ∼ H / c c , we obtain 
H ∝ c −1 

c ∝ P −1 / 2 
c , which reproduces the scaling ζ ∗ ∝ α−1/2 for α0 

> 1. Ho we ver, we caution that the gro wth and merger rates estimates 
we use are very crude, and this argument do not capture the relative 
independence with respect to β0 , η0 . Since it is unclear how universal 
these scalings are, we do not pursue this further. 
3.3.7 Dynamical effect and avera g ed properties 
The presence of staircases significantly changes outflow dynamics. 
The decoupling of gas from CRs at the plateaus deprives it of CR 
pressure support and Alfvenic heating. Great P c support and intense 
heating do occur, ho we ver, at the CR jumps, so a fluid parcel not 
co-propagating with the staircase experiences alternating pressure 
support and heating as it transverses plateaus and jumps. The question 
is to what degree do the spasmodic pressure support and heating due 
to stair jumps balance the deficits at CR plateaus? And how does it 
affect the averaged profiles? 

In Section 3.3.5, we observed for a moving stair jump, it is the 
quantity given by equation ( 28 ) that is conserv ed. A mo ving jump, 
as shown in Figs 3 and 17 , can cause the jump height to change as 
compared to when it is stationary. 16 In Section 2.2 we discussed, for 
a steady state profile, the total momentum and energy transfer are 
given by ! P c and ! F c . We also showed, in Fig. 4 that provided 
none of the density bumps exceed the global maximum of the 
background and are stationary, there is no change in net momentum 
and energy transfer as compared to when there are no bumps. Now, 
the staircase is dynamically moving, merging and fragmenting, 
so a steady state profile in which all the time deri v ati ves v anish 
is impossible. Ho we v er, av eraged o v er time, the time deri v ati ves 
do vanish, and 〈 ! P c 〉 and 〈 ! F c 〉 do represent the time-averaged 
momentum and energy transfer (note that angle bracketed quantities 
are time averaged). Since ! P c is the sum of jump heights, in 
which each is affected by the jump velocity v jump , the time averaged 
16 If one estimates the ratio of P c before and after the jump to be 
P c, after / P c, before = A / B , where B > A then adding a positive constant C 
to the numerator and denominator would lead to an increase in the ratio, 
i.e. ( A + C )/( B + C ) > A / B . F or e xample, adding 2 to the numerator and 
denominator of 1/4 gives 3/5 > 1/4. This means the jump height is lessened. 

momentum transfer therefore is deeply related to the jumps’ motion, 
as is the time averaged energy transfer. 

In addition to 〈 ! P c 〉 and 〈 ! F c 〉 , the time averaged mass flux 〈 Ṁ 〉 
is also a quantity of interest as in winds it controls the mass loading 
and transport of materials out to the CGM. We report numerical 
results for these quantities from our simulations, and suggest physical 
moti v ations for our findings. We defer detailed modeling to future 
work. 

In Fig. 23 , we present an example of the time averaged profiles 
resulting from the staircase. The time averaged profiles (blue solid 
lines) are placed in juxtaposition to the initial profiles (black dashed 
lines). Overall, the change is quite modest. Apart from the shifts in 
〈 P c 〉 and mass flux 〈 Ṁ 〉 = 〈 ρv〉 , the other profiles remain relatively 
close to the initial profiles. In Table 2 and Fig. 25, we collect and 
display 〈 Ṁ 〉 , 〈 ! P c 〉 , and 〈 ! F c 〉 for the test cases we have performed. 
Overall, the changes to 〈 ! P c 〉 and 〈 ! F c 〉 are very modest, of order 
∼ 10 per cent o v er 1–2 decades in the parameters probed. The main 
interesting change is to the mass outflow rate, which changes by a 
factor of ∼2 o v er 1.5 decades in α0 , and by a factor of ∼6 o v er 2 
decades in β0 . 

It is perhaps surprising that changes to global energy and mo- 
mentum transfer are so modest. After all, the CR staircase produces 
a drastic rearrangement of CR forces and heating – cutting it off 
through a majority of the profile, and leaving only a small fraction (the 
jumps) where the CRs are coupled, which receive intense forces and 
heating. If the staircase (and associated bottlenecks) were stationary, 
this state of affairs would indeed be deeply destabilizing. Ho we ver, 
a flux tube threading propagating bottlenecks (in this case, shocks) 
still receives heat and momentum over its entire length, albeit in a 
very intermittent manner. Individual fluid elements experience brief 
periods of intense forcing and heating, followed by longer stretches 
without any CR interaction. But as we have seen, averaged over time, 
each fluid element receives heat and momentum comparable to the 
background profile. Thus, while there can be strong local fluctuations, 
the global flow is not destabilized. For instance, the time-scale for a 
fluid element to fall out of force balance is the free fall time, which is 
of order the sound crossing time t sc ∼ L P / c s in the quasi-hydrostatic 
part of the flow, where L P is the pressure scale height. By contrast, 
the time-scale to receive another ‘hit’ of CR forces is H / v bump ; thus, 
t stair / t sc ∼ H / L P ( c s / v bump ) < 1. If the bottlenecks were stationary (e.g. 
a cloud co-moving with a hot wind), their effects would be much 
more severe. 

Despite the modest changes in global momentum and energy 
transfer, it is interesting that the mass flux Ṁ can change so 
significantly. One way to understand this is as follows. We have 
a fixed flux of CRs at the base, which must be transported through 
the stratified atmosphere. Since CRs are trapped at bottlenecks, their 
ef fecti ve streaming speed is reduced. In Fig. 24 , we show 
v s , eff ≡ 〈 F c 〉 

〈 P c + E c 〉 − 〈 v〉 . (49) 
which is reduced by a factor of ∼2 for the simulation shown. Plugging 
the escape valve for CRs leads to a larger o v erall CR pressure, 
required to sustain the same flux F c ≈ 4 P c ( v + v s, eff ). This increase 
in the normalization of P c ∝ 1/ v s, eff (already apparent at the base, 
where v = 0) is seen in the lower left-hand panel of Fig. 23 ; it drives 
a stronger outflow. The adv ectiv e flux increases to compensate for 
the decrease in streaming flux. The situation is similar to increasing 
the opacity in a radiation pressure driven wind – buildup in radiation 
pressure drives a stronger outflow. This increase in wind driving can 
be divorced from CR energy losses. For instance, consider purely 
dif fusi ve models, where there are no CR heating losses. None the 
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Figure 23. The blue solid lines denote the time averaged profile of density (top left-hand panel), velocity (top middle panel), mass flux (top right-hand panel), 
CR pressure (bottom left-hand panel), CR flux (bottom middle panel), and gas pressure (bottom right-hand panel). The black dashed lines show their respective 
initial profiles. The case shown is NL4096alpha1beta.6eta.01ms.015psi0c200 . 

Figure 24. Top panel: phase plot of 〈 P c 〉 against ( 〈 v〉 + 〈 v A 〉 ) −1 
with the ef fecti v e adiabatic inde x γ eff (equation 50 ) found from fit- 
ting. Bottom panel: plot of the effect streaming speed v s, eff (in 
units of the local time averaged Alfven speed). The case shown is 
NL4096alpha1beta.6eta.01ms.015psi0c200 . 

less, for a fixed CR injection power, Ṁ ∝ 1 /κ increases as dif fusi vity 
κ falls, since the base CR pressure scales as P c ∝ 1/ κ (Quataert, 
Thompson & Jiang 2022b ). Similar effects occur in streaming models 
as the ef fecti ve streaming speed falls. 

In Fig. 25 , we see that Ṁ ∝ β−0 . 36 
0 . Why is the impact of CR 

staircases sensitive to the background β0 ? As B-fields (and hence 
v A ) increases, the streaming flux is increasingly dominant o v er the 
adv ectiv e flux, and thus the impact of bottlenecks grows. Further- 
more, as v A / v jump increases, the attenuation of the bottleneck due 
to bump motion is lessened (equation 28 ); deeper bottlenecks imply 
greater build-up of CR pressure and stronger outflows. Accordingly, 
we find in our simulations that the suppression factor f = v s, eff / 〈 v A 〉 
falls with decreasing β. 

Quataert et al. ( 2022a ) see a similar strong increase in Ṁ as CR 
bottlenecks develop in their isothermal wind simulations. This is 
consistent with an observed change in the apparent equation of state 
in the CRs, from the expected P c ∝ ρ2/3 in their highly sub-Alfvenic 
flow to P c ∝ ρ1/2 . We also see this apparent change in the effective 
equation of state in our simulations. In Fig. 24 , we show the ef fecti ve 
CR adiabatic index γ eff , defined by 
γeff = d ln 〈 P c 〉 

d ln ( 〈 v〉 + 〈 v A 〉 ) −1 . (50) 
We find that γ eff ≈ 1.2 rather than 4/3, which naively corresponds to 
P c ∝ ργeff / 2 ∝ ρ0 . 6 in the sub-Alfvenic limit. Quataert et al. ( 2022a ) 
note that o v er a large radial range, F c ≈ 4 P c v A ≈const, which is 
consistent with P c ∝ v −1 

A ∝ ρ0 . 5 . They also note that heating losses 
were ∼1/3 of what one might expect from the time-averaged profile; 
if heating losses were negligible compared with the CR energy flux 
o v er a majority of the volume, this would explain F c ≈ const. 
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Figure 25. Time-averaged quantities 〈 Ṁ 〉 / Ṁ 0 (blue dashed line), 〈 ! P c 〉 / ! P c 0 (orange dashed line) and 〈 ! F c 〉 / ! F c0 (green dashed line) for different α0 , β0 , 
and η0 . All changes are with respect to the new background profile for a given set of parameters. 

In our simulations, the change in energy losses is mild, even 
when Ṁ changes significantly. Here, we offer a slightly different 
interpretation, which relies on the role of moving bottlenecks in the 
CR flux. By themselves, bottlenecks do not change the equation of 
state (e.g. consider the stationary flow in Fig. 4 , where P c ∝ v −4 / 3 

A ). 
Ho we ver, the motion of the bottlenecks can change the apparent CR 
flux divergence and equation of state if not taken into account. For 
instance, as noted in Section 2 , bump motion reduces ∇ · F , with 
∇ · F c → 0, F c → const for v bump , v , v A . Consider highly sub- 
Alfvenic motion (e.g. in very low β flows), where one might expect 
P c ∝ v −4 / 3 

A ∝ ρ2 / 3 . Instead, v A falls at density jumps in shocks and 
can become comparable to v − v bump . Indeed, since the CRs are 
only coupled in dense regions, v A should be e v aluated here. From 
equation ( 28 ), we have 
˜ γeff ≡ d ln P c 

d ln ( v + v A ) −1 = γc v + v A 
v + v A − v bump , (51) 

where we have defined ˜ γeff separately from γ eff as it is not de- 
rived from time averaged quantities. Only for stationary bumps 
v bump = 0 do we reco v er ˜ γeff = 4 / 3. If the bumps propagate 
up the gradient (i.e. v bump < 0), the bottlenecks reduce the CR 
flux compared to the pure streaming case and ˜ γeff < γc . This is 
the canonical case for the acoustic instability . Conversely , if the 
bumps propagate down the gradient (i.e. v bump > 0), the bottlenecks 
enhance outward CR transport relative to the pure streaming case 
and ˜ γeff > γc . Ho we ver, if ( v + v A ) , v bump , then ˜ γeff → γc . This 
is potentially at play in fig. 8 of Quataert et al. ( 2022a ), which 
shows that while P c ∝ ρ0.5 at the mid-range densities, at low 
densities (the outskirts, where flow becomes highly supersonic, 

with v , v bump ), the ef fecti ve adiabatic index steepens. While 
these effects are definitely present, whether they fully determine 
the change in apparent equation of state requires further quantitative 
study. 

In summary, our simulation results are as follows: except in 
low β environments, the changes in net heating and mass flux are 
generally modest, reaching at most 85–90 per cent and a factor 
of 2, respectively, compared to no staircases. Ho we ver, at lo w β, 
〈 Ṁ 〉 ∝ β−0 . 36 changes more significantly, and can increase by an 
order of magnitude. This arises from the build-up of CR pressure 
due to stronger bottlenecks in low β flows. Our simulation results 
are consistent with the higher β ( ∼1) study by Huang & Davis ( 2022 ) 
and low β ( +1) study by Quataert et al. ( 2022a ), the former reporting 
heating rates 95 per cent of the background profile, and the latter 
finding a change of a factor of ∼10 for 〈 Ṁ 〉 . Note that these three stud- 
ies all make different assumptions about cooling/thermodynamics, 
as well as geometry, so the o v erall broad agreement is 
reassuring. 

In our simulations, the time-averaged rate of global momentum 
and energy transfer is constrained if equilibrium is to hold. For 
instance, our cooling rates are time-steady, i.e. the total cooling lu- 
minosity of the simulation box is fixed. Hence, in global equilibrium, 
the time-averaged heat input from CRs – either in the form of direct 
v A · ∇P c heating, or from shocks (which are ultimately powered by 
CRs) must balance this constant rate, and cannot deviate too much. 
In simulations with realistic radiative cooling, the global cooling 
luminosity and the density profile could change significantly. This 
could strongly affect momentum/energy transfer from the CRs. This 
will be the subject of future work. 
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4  DISCUSSION  A N D  C O N C L U S I O N S  
4.1 Brief summary 
In this paper, we carried out simulations of a CR-driven acoustic 
instability (Begelman & Zweibel 1994 ), focussing on the streaming- 
dominated limit. The condition for this instability is strong B-fields 
( β ! 0.5), so that CR heating v A · ∇P c , which drives the instability, 
is sufficiently important. 17 In addition, a diffusion length l diffuse ∼
κ/ c s shorter than the background scale height L c is required. If this 
is not satisfied, sound waves will still be unstable, but the staircase 
structure we focus on is washed out by diffusion. The instability 
becomes stronger at smaller length-scales, with the growth time 
t grow ∼ κ/c 2 c ∼ κρ/P c becoming independent of wavelength at scales 
below the diffusion length l diffuse . 

As sound waves steepen and become non-linear, they turn into 
a quasi-periodic sequence of shocks. The density jumps at the 
shocks in turn create bottlenecks for CR streaming, resulting in a 
CR staircase structure. The jump widths are of order the diffusion 
length, while the jump heights depend on an equilibrium between 
staircase creation and mergers, and decrease with P c . The CRs are 
uncoupled at staircase plateaus, but e x ert intense forces and heating 
at the staircase jumps. This rearrangement of CR pressure profiles 
has important consequences, which we now discuss. 
4.2 Physical significance 
Some key physical consequences the CR acoustic instability and 
ensuing CR staircases are: 

(i) Shocks; density and velocity fluctuations: The non-linear CR 
acoustic instability creates a propagating shock train. In our simu- 
lations, the shocks are initially fairly weak M ∼ 1 , δρ/ρ ∼ 1, but 
they become stronger with the onset of cooling. The free energy for 
these shocks come from CRs, which thus result in significant density 
and velocity fluctuations. We anticipate this will drive turbulence 
in 2D and 3D simulations. These shocks are an important potential 
observational signature of the CR acoustic instability. 

(ii) Spatial and temporal fluctuations in CR forces and heating: 
CRs provide a steady body force ∇P c and heating v A · ∇P c when 
there is a global background gradient. The CR staircase breaks this up 
into patchy, highly intermittent momentum and energy transfer where 
(at any given instant) the CRs are uncoupled with the gas throughout 
most of the v olume, b ut e x ert intense forces and heating o v er narrow 
regions with widths of order the diffusion length. Since these stair 
steps and associated shocks are rapidly propagating, averaged over 
time the entire gas volume does gain momentum and energy from 
the CRs, but in an intermittent and stochastic fashion. We expect 
the intermittency – similar to the highly intermittent and fluctuating 
nature of turbulent dissipation – to become more apparent in 2D and 
3D simulations. The departure from local momentum and energy 
balance can drive dynamical and thermal instability, which deserve in 
depth investigation. In our simulations, the sudden loss of CR heating 
in plateaus drives rapid cooling and large gas pressure fluctuations. 

(iii) Changes in net momentum and energy transfer: CR staircases 
also affect the net momentum and energy transfer av eraged o v er space 
and time once the system has reached a steady state, ! P c , ! F c . In our 
simulations, these changes are relatively modest, although they could 
potentially be more significant in simulations with realistic radiative 
17 It also requires that CR heating contributes substantially to thermal balance, 
i.e. that cooling rates are comparable to CR heating rates. 

cooling where the energy source terms evolve. More importantly, 
the CR staircase can significantly change mass outflow rates Ṁ , 
as also seen by Quataert et al. ( 2022a ). We interpret this as due 
to the build up in CR pressure due to reduced streaming speeds at 
bottlenecks, which ultimately drives a stronger outflow as adv ectiv e 
flux outcompetes CR streaming flux; this becomes progressively 
more important at lower β where the bottlenecks are deeper and 
changes to CR streaming are stronger. 
4.3 Applications 
Can the acoustic instability and CR staircases arise in the CGM? 18 
Depending on gas pressure profiles, this requires B ∼ 0 . 5 − few µG 
in the CGM. Observations of the galaxy halo magnetic fields are 
challenging and sparse. Recent observations using an FRB burst to 
observ e F araday rotation measured a parallel magnetic field B " ∼
1 µG of order the estimated equipartition magnetic field, such that 
β ∼ 1 (Prochaska et al. 2019 ), modulo uncertainties such as field 
geometry. F or instance, field rev ersals reduce the rotation measure 
and lead to an underestimate of B " . Another caveat is that contribution 
to the Faraday rotation measure from the FRB engine, host galaxy, 
host galaxy’s CGM, IGM, and intervening galaxy’s CGM could not 
be separated. The inferred β is therefore a lower limit. van de Voort 
et al. ( 2021 ) show from a suite of zoom-in cosmological simulations 
of galaxy formation that the plasma beta can reach as low as 0.01 
in regions that coincide with the biconical outflow. The magnetic 
field can acquire such dominance from turbulent dynamo action and 
metal enriched cooling. It is quite likely that β fluctuates spatially in 
the CGM. Some regions may be unstable to the acoustic instability, 
while others are not. 

If the acoustic instability is present, it has a very short growth 
time: 
t grow = 15 Myr ( κ

10 29 cm 2 s −1 )( c s 
150 km s −1 )−2 

×
(

P c /P g 
1 

)
, (52) 

where we have normalized to the (large) dif fusion ef ficient κ ∼
10 29 cm 2 s −1 that appears necessary to a v oid o v erproducing γ -rays at 
a level inconsistent with observations (Chan et al. 2019 ). This growth 
time is far shorter than the 0.1 −1 Gyr dynamical times typical of 
CGM processes (e.g. L c / c s ∼ 0.1 Gyr for our fiducial parameters). 
The ratio of the diffusion length to the background scale height in 
galaxy haloes is 
η = κ

c s L c ∼ 0 . 1 ( κ

10 29 cm 2 s −1 )( c s 
150 km s −1 )−1 

×
(

L c 
20 kpc 

)−1 
(53) 

which means that one can expect sharp staircase steps. 
Of course, the CGM is multiphase, and the cooler T ∼ 10 4 K 

component is a critical component. Indeed, it is generally the only 
component, we directly observe. At face value, it might appear from 
equation ( 53 ) that we will not see the CR staircase in cooler T ∼
10 4 K clouds, where both the sound speed c s and CR scale height 
L c can be much smaller. In particular, the interface between hot 
coronal gas and cold clouds has a very small scale height L c , and 
naively, plugging in numbers into equation ( 53 ) would yield a very 
large η. This is not correct, because the ambient diffusion coefficient 
18 It is likely to also be rele v ant in the ISM, but our focus here is on the CGM. 
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adjusts to local conditions. In the self-confinement picture, diffusion 
e xpresses transport relativ e to the Alfv en wav e frame, and can be 
written as 

κ

v A L c = v D 
v A − 1 = l mfp c 

3 v A L c + 1 (strong coupling) (54) 
where v D is the drift speed relative to the Alfven wave frame, and 
l mfp is the CR mean free path l mfp ∼ r g /( δB / B ) 2 , where r g is the CR 
gyroradius and the CR-e xcited Alfv en wav e amplitude ( δB / B ) 2 can 
be calculated in quasi-linear theory by balancing wave growth and 
damping rates (Farmer & Goldreich 2004 ; W iener , Oh & Guo 2013 ). 
At ∼GeV energies (where most of the CR energy resides and the 
gyro-resonant streaming instability is strong), we expect ( v D / v A −
1) ∼ 0.01 −0.1; i.e. the CRs are tightly locked to the Alfven wave 
frame. See W iener , Pfrommer & Oh ( 2017b ) for expressions rele v ant 
to coronal gas, and Wiener et al. ( 2017a ) for expressions rele v ant to T 
∼ 10 4 K clouds and their interfaces with coronal gas. Our parameter 
η is directly related to this measure of CR coupling: 
η = κ

c s L c ∼ 0 . 1 (v D /v A − 1 
0 . 1 

)
β−1 / 2 (55) 

As a sanity check, note that for our fudicial assumptions of c s ∼
150 km s −1 , L c ∼ 20 kpc, β ∼ 1 in the coronal gas, equation ( 54 ) 
gives κ ∼ 10 29 cm 2 s −1 for ( v D / v A − 1) ∼ 0.1. Note that empirical 
measurements of κ in the ISM average over a multi-phase ISM and 
are likely dominated by regions where κ is largest. 

It is also important to remember that CR staircases are not unique to 
the acoustic instability. They are seeded by density fluctuations, since 
o v erdense re gions serv e as streaming bottlenecks. The y are agnostic 
as to the origin of these density fluctuations. Thus, o v erdensities 
created by thermal instability, or a network of o v erdense clouds in 
a multiphase medium, can have similar effects. For this reason, CR 
staircases can show up in a wide range of scenarios. 

Some potential applications include: 
(i) Galactic winds: Galactic winds driven by CRs have often 

been simulated in two limits: a diffusion-dominated regime, due 
possibly to ‘extrinsic confinement’, where CRs are scattered by 
extrinsic turbulence, and/or due to various wave damping mech- 
anisms (e.g. ion neutral damping) and streaming-dominated ‘self 
confinement’, where CRs are confined by Alfven waves they produce 
via the gyroresonant streaming instability. In the dif fusi v e ‘e xtrinsic 
confinement’ case, CRs do not heat the gas. 19 In the streaming 
dominated ‘self confinement’ case, CR transport heats gas at a rate 
v A · ∇P c . The dif fusi ve case fits γ ray observations better, because 
CRs can propagate out of the galaxy faster (Chan et al. 2019 ). 
It is also much better at driving winds, because the CRs do not 
suffer strong energy losses via Alfven wave heating (Wiener et al. 
2017b ; Hopkins et al. 2020 ). Ho we v er, we e xpect self-confinement 
to be very strong at the ∼GeV energies where CR energy peaks 
(Kulsrud & Pearce 1969 ; Farmer & Goldreich 2004 ; Wiener et al. 
2013 ), while extrinsic compressible turbulence is strongly damped 
at small scales, and unlikely to efficiently scatter ∼GeV CRs (Yan & 
Lazarian 2002 ). Thus, CR winds should be streaming dominated and 
relati vely inef ficient. The CR staircase changes these dichotomies 
by changing the structure of the wind. We have seen how CR 
pressure can build up in streaming dominated simulations, due to 
trapping at bottlenecks. This increases mass outflow rates, similar 
to the effect of increased opacity in radiati ve outflo ws. In CR 
streaming simulations of isothermal winds where the CR acoustic 
19 The only energy exchange is slow Fermi II acceleration of the CRs. 

instability arose, Quataert et al. ( 2022a ) found an increase in wind 
mass loss rates by an order of magnitude, compared to analytic 
models without a CR staircase, illustrating the potential impact 
of CR staircases. High-resolution cosmological zoom simulations 
of CR staircases are actually well within reach. As seen in Ap- 
pendix Section B , all that is required is that the diffusion length 
l diff ∼ κ/c s ∼ 2 kpc ( κ

10 29 cm 2 s −1 ) ( c s 
150 km s −1 )−1 is resolved. Ho we ver, 

to date only the FIRE collaboration has implemented the two moment 
method (capable of dealing with CR streaming) in such simulations, 
and – in contrast to, for instance, van de Voort et al. ( 2021 ) – the 
plasma β in their winds is too high for the acoustic instability 
to develop (Hopkins et al. 2020 ). But alternate setups where CR 
staircases appear are certainly numerically feasible. 

(ii) Thermal instability: As already seen in this paper, the patchy 
nature of heating due to a staircase structure can play an important 
role in thermal instability, if CR heating is significant in the 
background equilibrium profile. While CR heating is unlikely to 
be the sole source of heating o v er all galacto-centric radii, as in 
our simplified model, if it is significant even over a fraction of 
the profile (e.g. one or two scale height-heights), interesting effects 
can occur. We will study this in upcoming work (Tsung et al., in 
preparation). The sudden loss of CR heating at plateaus triggers rapid 
cooling. The large gas pressure gradients and density fluctuations 
provide unusually non-linear, large-scale perturbations. It would be 
particularly interesting to see in 2D and 3D simulations if the high 
gas pressure gradients trigger ‘shattering’ of condensing large scale 
patches of cold gas, creating a ‘fog’ of cloudlets (McCourt et al. 2018 ; 
Gronke & Oh 2020b ). The train of shocks which propagating o v er 
condensing cold gas can also play a role in subsequent dynamics, 
breaking up the cold gas further and driving baroclinic vorticity. 

(iii) Thermal interfaces. CRs provide pressure support and heating 
to the interfaces between warm ( T ∼ 10 4 K) photoionized gas and hot 
( T ∼ 10 6 K) coronal gas, thickening them and setting a characteristic 
temperature scale height. Similar to the case with thermal conduction, 
it is possible to solve for the steady state structure of CR mediated 
fronts (Wiener et al. 2017a ). These fronts are currently unresolved 
in simulations of cloud acceleration (Br ̈uggen & Scannapieco 2020 ; 
Bustard & Zweibel 2021 ) and their structure influences the strength 
of the ‘bottleneck’ and hence the momentum that is deposited towards 
cloud acceleration. It is therefore important to understand them in 
detail. The interfaces can be magnetically dominated due to flux 
freezing as hot gas condenses on to the interf ace (Gronk e & Oh 
2020a ; Butsky et al. 2020 ). Therefore they are a likely breeding 
ground for the CR acoustic instability. If a CR staircase appears, the 
spatially fluctuating pressure and thermal balance triggers mixing, 
shocks and turbulence, which in term create dissipation and diffuse 
heat transport. The long-term stability and structure of such fronts 
could change significantly, affecting the mass flux between the phases 
as well as observational diagnostics such as the ratio of low to high 
ionic species (e.g. N(CIV)/N(OVI)). 

(iv) Observational signatures: Although the study of CR driven 
winds have become an intense area of acti vity, observ ational con- 
straints are unfortunately few and far between. If seen, the quasi- 
periodic network of shocks due to the CR acoustic instability could 
provide a sorely needed observational diagnostic of the presence of 
CRs in galaxy haloes. For instance, they could potentially create 
wide-spread radio synchrotron emission from CR acceleration at 
shocks, at a level and with spectral indices inconsistent with transport 
of CR electrons out of galaxies, due to rapid synchrotron and inverse 
Compton cooling. Ho we ver, further work is needed to see if this is 
an appreciable effect. The resultant density fluctuations could also 
potentially be probed by frequency-dependent temporal broadening 
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of radio waves from Fast Radio Bursts (Macquart & Koay 2013 ; 
Prochaska et al. 2019 ) passing through intervening galaxy haloes. 
The challenge is in disentangling these effects from other sources of 
shocks and turbulence. Presumably the closely spaced, wide-spread 
nature of the shock train, as well as accompanying signatures of CRs 
(gamma rays, synchrotron emission) help, but this must be studied 
in more detail. For instance, the passage of multiple weak shocks 
leaves a distinct spectral signature, with the spectrum flattening and 
the shock acceleration efficiency increasing at each shock (Kang 
2021 ). 
Again, as mentioned in Section 3.3.6 , the staircase jump width have 
typical size of a diffusion length, which for halo gas can be several 
kpc, i.e. it can be resolved by both observations and galaxy scale 
simulations. Provided that the shocks themselves do not decrease the 
dif fusion coef ficient (e.g. by increasing the scattering rate), this is a 
happy circumstance where shocks can be observationally resolved, 
and would be an interesting test of this physics. From the standpoint 
of galaxy scale simulations, the required dynamic range is feasible, 
since the diffusion length is routinely resolved. Some small scale 
structure may appear down to ∼10 −2 l diff (though resolving such 
lengthscales is not necessary to obtain reliable results for the impact 
of the CR acoustic instability on Ṁ , !P c ). Below ∼10 −2 l diff , the CR 
fluid approximation no longer holds (see discussion in Appendix B ). 
The observation of a CR staircase can also be used as an observational 
diagnostic of CR streaming. (Thomas et al. 2020 ) have argued, 
through observation of P c plateaus at radio synchrotron harps in 
the Galactic Center, streaming transport is probably dominant there. 
These flat plateaus arise at CR maxima where CRs stream away 
from a source; there is only a single plateau (by constrast, diffusion 
produces a rounded, more Gaussian-like maxima). The staircase 
structure presented in this study produces a series of multiple 
successive plateau and jump features. It relies on the bottleneck 
effect, which only arises if CR transport is streaming dominated. 
It offers a more demanding test for the streaming versus diffusion 
picture. 
4.4 Looking forward 
This paper is a first detailed study of CR staircases, which we expect 
to have broad applicability. Indeed, CR staircases due to the acoustic 
instability have just appeared in two recent preprints (Huang & Davis 
2022 ; Quataert et al. 2022a ). More work is needed to clarify the 
impact of CR staircases on the interaction between gas and CRs. 
Some of the most pressing impro v ements include: (i) 2D and 3D 
MHD simulations, to assess the role of B-field geometry (particularly 
tangled magnetic fields, spatially varying B-fields, MHD forces and 
MHD acoustic modes), as well as the role of turbulence. For instance, 
in winds, one might expect the flow to develop significant anisotropy, 
depending on where bottlenecks develop and how field lines warp 
in response. (ii) Better treatment of the thermodynamics, and more 
realistic cooling functions. This is particularly important in assessing 
cooling at CR plateaus and the development of thermal instability. 
(iii) Exploring parameter space with a wider range of background 
profiles which are less highly idealized. 
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APPEN D IX  A :  LINEAR  G ROW T H  RATES  IN  1 D  
I N C L U D I N G  B  ACK G R  O U N D  G R A D I E N T  
Here, we provide a concise deri v ation of linear growth rates for 
the acoustic instability. More details can be found in Begelman & 
Zweibel ( 1994 ). 
A1 Adiabatic EOS for finite diffusion coefficient 
In the well-coupled limit, the time-dependent flux term in equa- 
tion ( 6 ) can be ignored, reducing equations ( 1 )–( 6 ) to the one-moment 
equations. Expressing the equations in 1D and in primitive form, 
∂ ρ
∂ t + ∂ 

∂ x ( ρv) = 0 (A1) 
∂ v 
∂ t + v ∂ v 

∂ x = − 1 
ρ

∂ 
∂ x ( P g + P c ) + ρg (A2) 

∂ P g 
∂ t + v ∂ P g 

∂ x + γg P g ∂ v 
∂ x = −( γg − 1) v A ∂ P c 

∂ x + ( γg − 1) L (A3) 
∂ P c 
∂ t + ( v + v A ) ∂ P c 

∂ x = −γc P c ∂ 
∂ x ( v + v A ) + ∂ 

∂ x κ ∂ P c 
∂ x (A4) 

For simplicity, we assume the diffusion coefficient κ is constant. We 
perform a WKB analysis similar to Drury & Falle ( 1986 ). Assume 
all quantities Y can be expanded as a background plus fluctuating 
part 
Y ( x, t) → Y ( x) + ˜ Y ( x, t) , (A5) 
where ˜ Y + Y . Keeping terms up to the first order in the fluctuating 
quantities gives (note that going from equations A1 –A4 to equations 
A6 –A9 , we have performed a change of variables Y → Y + ˜ Y . 
Quantities without a tilde now represents the unperturbed back- 
ground rather than the full variation.) 
∂ ̃  ρ

∂ t + ∂ 
∂ x ( ρ ˜ v + ˜ ρv) = 0 , (A6) 

∂ ̃  v 
∂ t + v ∂ ̃  v 

∂ x + ˜ v ∂ v 
∂ x = − 1 

ρ

∂ ˜ P g 
∂ x − 1 

ρ

∂ ˜ P c 
∂ x 

+ ˜ ρ

ρ2 ∂ P g 
∂ x + ˜ ρ

ρ2 ∂ P c 
∂ x , (A7) 

∂ ˜ P g 
∂ t + v ∂ ˜ P g 

∂ x + ˜ v ∂ P g 
∂ x + γg P g ∂ ̃  v 

∂ x + γg ˜ P g ∂ v 
∂ x = 

−( γg − 1) v A ∂ ˜ P c 
∂ x + ( γg − 1) v A 

2 ρ ˜ ρ
∂ P c 
∂ x 

+ ( γg − 1) ( ˜ ρ
∂ L 
∂ ρ + ˜ T ∂ L 

∂ T 
)

, (A8) 
∂ ˜ P c 
∂ t + ( v + v A ) ∂ ˜ P c 

∂ x + ( ̃  v + ˜ v A ) ∂ P c 
∂ x = 

−γc P c ∂ 
∂ x ( ̃  v + ˜ v A ) − γc ˜ P c ∂ 

∂ x ( v + v A ) + κ ∂ 2 ˜ P c 
∂ x 2 . (A9) 

In WKB analysis, we assume the fluctuating length and time-scales 
are much smaller than the scales on which the background varies. 
The fluctuating quantity ˜ Y can be expanded as 
˜ Y ( x, t) = ∞ ∑ 

n = 0 εn Y n ( x, t)e iθ/ε, (A10) 
where ε is a small parameter and ∂ θ/ ∂ t = ω, ∂ θ/ ∂ x = −k. Note that 
∂ ω/ ∂ x + ∂ k/ ∂ t = 0. Substituting into equations ( A6 )–( A9 ), we find 
to the lowest order ε−2 , (note that the expansion of the fluctuating 
quantity ˜ Y begins with the subscript 0, i.e. the subscript 0 means it 
is the lowest order fluctuation, not the unperturbed background.) 
k 2 κP c0 = 0 , ⇒ P c0 = 0 . (A11) 
To order ε−1 , 
ω̄ ρ0 = kρv 0 , (A12) 
ω̄ ρv 0 = kP g0 , (A13) 
ω̄ P g0 = kγg P g v 0 , (A14) 
k 2 κP c1 = ikγc P c (v 0 − v A 

2 ρ ρ0 ) , (A15) 
where ω̄ = ω − k v . Solving for ω̄ from equations ( A12 )–( A14 ), we 
obtain the dispersion relation of a sound wave 
ω̄ = ±kc s , (A16) 
where c s = √ 

γg P g /ρ. 
Now we have found that sound wave is a mode to the perturbed 

equation, what is its growth rate? As a w ave pack et transverse through 
a varying background, it changes in amplitude due to (1) adiabatic 
compression and (2) growth or damping due to instabilities. It is the 
latter we are interested in. To separate the two contributions, note 
that the wave action density A , defined by dividing the wave energy 
density by its propagation frequency 
A = ρv 2 0 

ω̄ , (A17) 
is conserved under adiabatic compression. If the evolution of A 
can be expressed as a conservation equation, the non-conservative 
contribution would be due to instabilities, the growth rate which we 
can read off easily. Such a conservation equation can be derived 
by substituting equations ( A12 )–( A15 ) back to equations ( A6 )–( A9 ) 
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and rearranging. Below is the result. 
∂ A 
∂ t + ∂ 

∂ x [( v ± c s ) A ] = A 
ρc 2 s γg ( γg − 1) (v A ∂ P c 

∂ x − L )
− c 2 c A 

κ

[
1 ± ( γg − 1) v A 

c s 
](

1 ∓ v A 
2 c s 
)

± A 
ρc s 

(
1 ± ( γg − 1) v A 

2 c s 
)

∂ P c 
∂ x 

+ A ( γg − 1) 
c 2 s 

(
∂ L 
∂ ρ + ( γg − 1) T 

ρ

∂ L 
∂ T 
)

, 
(A18) 

where c c = √ 
γc P c /ρ. This equation go v erns the evolution of the 

wave action density as it propagates through a background. The LHS 
describes the adiabatic change due to a varying background whereas 
the RHS describes growth/damping due to instabilities. Without loss 
of generality, we group the prefactors of A on the RHS into a term 
G ( x) such that 
∂ A 
∂ t + ∂ 

∂ x [( v ± c s ) A ] = G ( x) A . (A19) 
Growth occurs when G > 0 while damping occurs otherwise. For 
purpose of linear analysis assume the velocity perturbation has a 
form 
v 0 ( x, t) = ˆ v ( x) exp { iωt − ikx} (A20) 
and the background gradients can be ne glected o v er some re gion x inj 
to x such that ω, k can be considered constants, it can be easily shown 
that 
∂ x 
∂ ln ρ ˆ v 2 = ± G 

c s . (A21) 
Solving gives 
ˆ v ( x) = ˆ v ( x inj ) exp {1 

2 ln ρinj 
ρ

+ 1 
2 I ( x, x inj ) } , (A22) 

where I ( x, x inj ), given by 
I ( x, x inj ) = ∫ x 

x inj ± G 
c s d x, (A23) 

is the integral of the RHS of A21 from the location where the wave 
is injected x x, inj to some location x later in its path. The first term 
within the brace bracket of A22 denotes the adiabatic change in 
wave amplitude due to background profile change while the second 
term represent that due to genuine growth. The phase velocity of a 
sound wave is d x /d t = ±c s , so I in A23 is equi v alent to integrating the 
function G o v er time from the moment of injection to some later time t 
I ( x, x inj ) = ∫ t 

t inj G d t ′ . (A24) 
Differentiating the expression within the brace bracket by time t , we 
obtain an expression for the growth rate * grow 
* grow = G 

2 . (A25) 
A2 Adiabatic EOS with a small diffusion coefficient 
If the diffusion coefficient κ were small such that the term k 2 κP c0 
is of the same order as the other perturbed terms in the CR energy 
equation, equation ( A11 ) may not be valid. This implies P c 0 5= 0. 
Including, this term at order ε−1 yields 

ω̄ ρ0 = kρv 0 , (A26) 
ω̄ ρv 0 = k P g0 + k P c0 , (A27) 
ω̄ P g0 = kγg P g v 0 + ( γg − 1) kv A P c0 , (A28) 
( ̄ω − kv A − ik 2 κ) P c0 = kγc P c (v 0 − v A 

2 ρ ρ0 ) . (A29) 
Rearranging, we obtain 
ω̄ (ω̄ 2 − k 2 c 2 s ) (ω − kv A − ik 2 κ)

= k 2 c 2 c [ω̄ + ( γg − 1) kv A ](ω̄ − kv A 
2 
)

(A30) 
as the dispersion equation. In the limit where k κ/ c s → ∞ , we reco v er 
the gas acoustic mode ω ≈ ±kc s , though at moderate values of k κ/ c s 
the gas acoustic mode is clearly not a solution. This equation has 
been solved in various limits in Begelman & Zweibel ( 1994 ). In 
particular, in the limit v A , c c , c s , an unstable hybrid mode with 
phase speed intermediate between the gas sound speed and the Alfven 
speed appears 
ω̄ 3 = ( γg − 1) k 3 v 2 A c 2 c 

2 v A − ikκ

v 2 A + k 2 κ2 . (A31) 
For k κ + v A 
ω̄ = [ ( γg − 1) k 3 v A c 2 c 

2 
]1 / 3 ( 

−1 
2 −

√ 
3 

2 i ) 
, (A32) 

while for k κ , v A 
ω̄ = [ ( γg − 1) k 2 v 2 A c 2 c 

2 κ
]1 / 3 ( 

±
√ 

3 
2 − 1 

2 i 
) 

. (A33) 
These modes are mediated by gas pressure perturbations, but are 
driven unstable by CR heating. The growth rate scales as the 
wavenumber so higher resolution simulations can potentially seed 
faster growth. The transition from the acoustic mode to these hybrid 
modes occurs at k κ/ c s ∼ 1. 

Solving equation ( A30 ) numerically, one finds that the growth 
rate for k κ/ c s ! 1 increases with wavenumber (equation A32 ) and 
then flattens off with respect to wavenumber for k κ/ c s ! 1 (as one 
would expect from looking at the RHS of equation ( A18 ), which 
is independent of k ). As discussed in Section 3 , for converged 
simulations, the diffusion length must be resolved. This implies that 
in the simulations, our fastest growing modes are always in the limit 
k κ/ c s ! 1, and hence we are dominated by acoustic modes. 
A3 Isothermal EOS with finite diffusion coefficient 
For isothermal EOS, equation ( A8 ) is ignored. The gas pressure 
relates to the density by 
P g = c 2 s ρ, 
with the sound speed c s a constant. Repeating the calculation abo v e 
gives 
ω̄ = ±kc s (A34) 
as the dispersion relation and 
∂ A 
∂ t + ∂ 

∂ x [( v ± c s ) A ] = ± A 
ρc s ∂ P c 

∂ x − c 2 c 
κ
A (1 ∓ v A 

2 c s 
)

(A35) 
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as the wave action equation, which is simply equation ( A18 ) with 
γ g = 1 and without the heating/cooling terms. Condition for genuine 
growth is again 
*( x) = ± 1 

ρc s ∂ P c 
∂ x − c 2 c 

κ

(
1 ∓ v A 

2 c s 
)

> 0 . (A36) 
APPEN D IX  B:  R ESOLUTION  A N D  R E D U C E D  
SPEED  O F  L I G H T  STUDY  
Acoustic waves with wavelengths much shorter than the diffusion 
length l diff = κ/ c s grow in the linear phase at a rate independent of 
the wavelength, as discussed in Section 2.1 and Section A . If the 
diffusion length is well resolved, the characteristic staircase scales 
should ∼l diff (see Section 3.3.6 ). As the resolution decreases, so that 
the diffusion length is no longer resolv ed, the wav elength of the 
growing modes will also increase. In particular, for kl diff ! 1, the 
acoustic mode will bifurcate into hybrid modes which propagate at 

Figure B1. Time average quantities ( 〈 Ṁ 〉 / Ṁ 0 , 〈 ! P c 〉 / ! P c0 , 〈 ! F c 〉 / ! F c 0 ) 
as function of resolution. Resolution given in the x -axis denotes the number 
of grids the mean diffusion length is resolved with ( 〈 l diff 〉 / ! x ), the larger this 
is the higher the resolution. 

Figure B2. P c profile taken at the same time instance for a low ( 〈 l diff 〉 / ! x = 
0.0588) and high-resolution run ( 〈 l diff 〉 / ! x = 25.9). Many more small jumps 
are resolved in the high-resolution run. The P c profile is a stochastic, time- 
varying quantity, and this is an instantaneous snapshot. The difference in the 
time-averaged quantity between these two resolutions ( 〈 P c 〉 / ! P c0 = 1.204, 
1.339, respectively) is small (Table B1 ), despite the factor ∼400 change in 
resolution. 
some modified sound speed, with growth rate that decreases linearly 
with the wavenumber k (see Section A2 ). Thus, decreasing resolution 
will 1. cause slower growth of the staircase and 2. smooth out small 
scale stairs and render stair sizes larger. 

In this section, we rerun the test case NLal- 
pha1beta1eta.01phi2 (Table 2 ) with several resolutions 
and reduced speed of light c , comparing their time averaged mass 
flux 〈 Ṁ 〉 , 〈 ! P c 〉 , and 〈 ! F c 〉 . We shall also discuss the effect of 
resolution on the distributions of stair width, plateau width and jump 
height. A summary of the resolution, reduced speed of light, and 
time averaged quantities is drawn up in Table B1 . 

In Fig. B1 , we plot 〈 Ṁ 〉 / Ṁ 0 , 〈 ! P c 〉 / ! P c0 , and 〈 ! F c 〉 / ! F c0 
as function of 〈 l diff 〉 / ! x , the number of grids the mean diffusion 
length is resolved with. Overall, despite small fluctuations at large 
〈 l diff 〉 / ! x , the time averaged quantities appear reasonably robust to 
resolution. Although there are secular trends with resolution, the 
changes are small. Deviations appear when the mean diffusion 
length is underresolved, i.e. 〈 l diff 〉 / ! x < 1, yet even in the lowest 
resolution explored (i.e. 〈 l diff 〉 / ! x = 0.0588), a staircase structure 
can be clearly seen (Fig. B2 ). Generally, effects of the staircase on 
〈 Ṁ 〉 / Ṁ 0 , 〈 !P c 〉 , 〈 !F c 〉 dwindle with resolution in the underresolved 
re gime, yet ev en in the lowest resolution explored the time-averaged 
quantities deviate from the resolved runs by less than 20 per cent. 
This suggests effects on the time-averaged quantities is due mainly 
to the bigger stairs, with minor modifications from the small stairs. 

Visually inspecting Fig. B2 , which shows the P c profile taken at 
the same time for the lowest and highest resolutions explored, it is 
observed that more small scale structures arise when the resolution is 
high. Only the largest jumps are resolvable at low resolution, details 
of the small scale jumps smoothed out. 

In Fig. B3 , we plot the distributions of stair width, plateau width 
and jump height for the highest and lowest resolutions explored, 
finding there to be more small scale structures (smaller widths and 
heights) for the more resolved run while the low resolution run have 
more large scale structures (larger widths and heights). In particular, 
the peak at ∼l diff for the jump width is reco v ered only if the diffusion 
length is resolved. This lies within expectation as underresolving 
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Figure B3. Distributions of jump width (top panel), plateau width (middle 
panel), and jump height (bottom panel) for low ( 〈 l diff 〉 / ! x = 0.0588) and high 
resolutions ( 〈 l diff 〉 / ! x = 25.9). 

the diffusion length would cause small-scale jumps (typically having 
size of the diffusion length) to be smoothed out into a bigger jump. 

All in all, in practice (e.g. in galaxy-scale simulations), for the 
purpose of eliciting the staircase and its time averaged effects, it 
appears acceptable to resolve the diffusion length by a few cells. 
Ho we ver, should ef fects of indi vidual stairs be important (e.g. 
cloud survi v al under bombardment of a few of these stairs), higher 
resolution is probably necessary. 

On that note, it is tempting to raise the resolution in attempt to 
reveal more small-scale phenomenon. Yet in the fluid approximation, 
one must beware not to go below the CR mean free path, given by 
∼κ/ c , where it breaks down. In CGM conditions the ratio of the diffu- 
sion length to the CR mean free path is ∼c / c s ∼ 3000( c s /100 km s −1 ), 
meaning there is no use resolving the diffusion length by more than 
a few hundred to a thousand grids. We shall see, particularly in 
Fig. B3 that with the resolution we employed, structures 0.001 times 
the local diffusion length do arise. Going to higher resolutions may 
allow one to resolve some of these structures better, but the physical 
validity of these smaller structures is questionable given that the fluid 
approximation no longer holds, so pushing to higher resolution may 
be unwarranted and unrealistic. Finally, convergence can be set by 
other physics as well, particularly in higher dimensional simulations, 
by implementing physical dissipation. 

On a shorter note, changing the reduced speed of light c appears to 
have little effect on our results as long as it is much greater than any 
other velocity scales present (e.g. c , c s , c c , v A ). This is consistent with 
Jiang & Oh ( 2018 ). Numerically, the reduced speed of light c should 
not affect the simulation much if it is way abo v e an y other v elocity 
scales, any effect due to c would be of order O ( v/ c ) or less. In reality, 
the speed of light c true ≈ 3000( c s /100 km s −1 ). In our simulations, 
we often invoke a reduced speed of light that is a factor 200 c s , i.e. 
∼0.1 c true . 
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Table B1. Re-running with different resolutions and reduced speed of light. Column 1: resolution given in grid spacing 
with (the bracketed quantities show the number of grids the mean diffusion length is resolved with, i.e. 〈 l diff 〉 / ! x ). 
Column 2: reduced speed of light. Column 3–5: time averaged mass flux Ṁ , ! P c , and ! F c (in units of the initial, 
unperturbed Ṁ 0 , ! P c0 , and ! F c, 0 ). 

Test case: NL4096alpha1beta1eta.01ms.015phi2c200 
Resolution ! x ( 〈 l diff 〉 / ! x ) c 〈 Ṁ 〉 / Ṁ 0 〈 ! P c 〉 / ! P c0 〈 ! F c 〉 / ! F c0 
7.03 × 10 −2 (0.0588) 200 1.155 1.204 0.951 
3.52 × 10 −2 (0.1168) 200 1.282 1.270 0.963 
1.76 × 10 −2 (0.233) 200 1.257 1.319 0.982 
8.79 × 10 −3 (0.465) 200 1.355 1.339 0.955 
4.39 × 10 −3 (0.926) 200 1.365 1.353 0.933 
2.20 × 10 −3 (1.85) 200 1.384 1.309 0.907 
2.20 × 10 −3 (1.85) 400 1.382 1.321 0.890 
2.20 × 10 −3 (1.85) 800 1.375 1.313 0.883 
2.20 × 10 −3 (1.85) 1000 1.446 1.310 0.868 
1.10 × 10 −3 (3.70) 200 1.339 1.379 0.914 
5.49 × 10 −4 (7.41) 200 1.449 1.407 0.924 
5.49 × 10 −4 (7.41) 400 1.408 1.395 0.918 
1.37 × 10 −4 (25.9) 400 1.465 1.339 0.900 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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