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ABSTRACT

Recently, cosmic rays (CRs) have emerged as a leading candidate for driving galactic winds. Small-scale processes can
dramatically affect global wind properties. We run two-moment simulations of CR streaming to study how sound waves are
driven unstable by phase-shifted CR forces and CR heating. We verify linear theory growth rates. As the sound waves grow
non-linear, they steepen into a quasi-periodic series of propagating shocks; the density jumps at shocks create CR bottlenecks.
The depth of a propagating bottleneck depends on both the density jump and its velocity; AP, is smaller for rapidly moving
bottlenecks. A series of bottlenecks creates a CR staircase structure, which can be understood from a convex hull construction.
The system reaches a steady state between growth of new perturbations, and stair mergers. CRs are decoupled at plateaus, but
exert intense forces and heating at stair jumps. The absence of CR heating at plateaus leads to cooling, strong gas pressure
gradients and further shocks. If bottlenecks are stationary, they can drastically modify global flows; if their propagation times are
comparable to dynamical times, their effects on global momentum and energy transfer are modest. The CR acoustic instability
is likely relevant in thermal interfaces between cold and hot gas, as well as galactic winds. Similar to increased opacity in
radiative flows, the build-up of CR pressure due to bottlenecks can significantly increase mass outflow rates, by up to an order of
magnitude. It seeds unusual forms of thermal instability, and the shocks could have distinct observational signatures, on ~kpc

scales.
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1 INTRODUCTION

It is generally believed that cosmic rays (CR) should play crucial
dynamical roles in the interstellar and circumgalactic medium (ISM,
CGM) because the energy density of these high-energy particles is
comparable to the thermal energy of the gas or the magnetic field
(Blandford & Eichler 1987). The coupling between CRs and the
thermal plasma is believed to be mediated through the streaming
instability (Kulsrud & Pearce 1969) in which CRs pitch-angle
scattered by hydromagnetic waves causes the waves to grow and thus
lead to more scattering. This wave-particle interaction causes energy
and momentum to be transferred between the gas and CRs. On global
scales, the interaction of waves with CRs are key to the transport
and confinement of CRs in a galaxy. CRs can provide a significant
amount of non-thermal support (Ji et al. 2020; Crocker, Krumholz &
Thompson 2021b) and is a strong candidate for driving galactic winds
(Ipavich 1975; Breitschwerdt, McKenzie & Voelk 1991; Uhlig et al.
2012; Ruszkowski, Yang & Zweibel 2017; Crocker, Krumholz &
Thompson 2021a; Hopkins et al. 2021b). On smaller scales, CRs
accelerated by shocks can modify shock structures (Drury & Voelk
1981; Voelk, Drury & McKenzie 1984; Blandford & Eichler 1987;
Haggerty & Caprioli 2020; Hin Navin Tsung, Oh & Jiang 2021)
and impact the entrainment, survival and destruction of cold clouds
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(Briiggen & Scannapieco 2020; Bustard & Zweibel 2021). Thus,
CRs can significantly affect the multiphase structure of the ISM and
CGM.

Even though details of the wave-particle interaction are inherently
kinetic, in the limit of strong scattering a fluid description is possible
and more practical for galaxy (or cosmological) scale simulations.
CRs, treated as a bulk fluid, have the following general transport
modes: (1) Wave-particle interactions lock the bulk of CRs with
the local Alfven wave, causing them to advect at the Alfven speed
along magnetic fields (streaming). (2) Slippage from perfect wave
locking causes CRs to diffuse relative to the local Alfven wave
frame, down the CR pressure gradient (diffusion). More detailed
transport models in the presence of various wave damping mech-
anisms have been studied (e.g. ion-neutral damping (Farber et al.
2018; Bustard & Zweibel 2021), turbulent damping (Holguin et al.
2019), dust damping (Squire et al. 2021) or some combination
thereof (Hopkins et al. 2021c)). There is, however, no consensus
within the community as to the correct form of CR transport in
the ISM and CGM. One important observational constraint lies in
reconciliation with gamma-ray observations. Gamma-ray emission
from pion production by CRs is overproduced in simulations unless
CRs can be rapidly transported out of dense star forming regions
(Chan et al. 2019). Thomas, Pfrommer & EnBlin (2020) modelled
harp-like structures in radio synchrotron maps of the Galactic Center.
Their analysis suggested streaming dominated transport rather than
diffusion.
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In the fluid description, CRs have been found to modify well-
known fluid instabilities such as the Parker instability (Ryu et al.
2003; Rodrigues et al. 2016; Heintz & Zweibel 2018; Heintz, Bus-
tard & Zweibel 2020), magnetorotational instability (Kuwabara &
Ko 2015), thermal instability (Shadmehri 2009; Butsky et al. 2020;
Kempski & Quataert 2020), Kelvin—Helmholtz instability (Suzuki,
Takahashi & Kudoh 2014), etc., while driving some entirely new
instabilities, such as the CR acoustic instability (Drury & Falle 1986;
Begelman & Zweibel 1994). The CR acoustic instability arises when
CRs amplify sound waves, via CR pressure forces and/or CR heating
of the gas. This causes acoustic waves to increase in amplitude and
steepen into shocks. In this paper, we generalize and test previous
linear theory predictions for the CR acoustic instability, and study its
non-linear saturation. We find a characteristic staircase structure in
the CR pressure profile — a new feature in CR transport — and explain
its physical origin.

In the diffusion-dominated regime, Drury & Falle (1986) found
that the acoustic instability occurs when the CR pressure scale height
L. = P./VP, is shorter than the diffusion length /g ~ «/cs (Where
k 1is the diffusion coefficient and ¢, is the gas sound speed), a
condition not easily met except at shock precursors (see Quataert,
Jiang & Thompson 2022a for application to galactic winds, where
they find the instability to be unimportant). Kang, Jones & Ryu
(1992) performed simulations of its non-linear growth at shocks
and found that acoustic waves can steepen into many small scale
shocks, resulting in enhanced particle acceleration. Ryu, Kang &
Jones (1993) found, in a 2D shock setup, that the steepened acoustic
waves can create density inversions, trigger a secondary Rayleigh—
Taylor instability and generate turbulence in the downstream. All in
all, the CR diffusion driven acoustic instability is mostly relevant at
shocks.

On the other hand, Begelman & Zweibel (1994) found that in the
streaming-dominated regime, CR heating can cause acoustic modes
to become unstable even without a sharp CR pressure gradient. They
speculated that the acoustic modes would, in the non-linear regime,
generate constant CR pressure regions (CR plateaus) separated by
sudden drops, although they were unable to test this. We shall see in
this paper, fulfilment of their prescient predictions.

Numerical simulation of this streaming driven acoustic instability
have not yet been conducted to date. In the past, such simulations
were infeasible due to a numerical instability which arises at CR
pressure gradient zeros. Regularization of this instability (Sharma,
Colella & Martin 2010) requires very high-resolution and short time-
steps, making the calculation infeasibly expensive. In recent years, a
new two-moment method (Jiang & Oh 2018; Thomas & Pfrommer
2019) now makes this calculation possible. The two-moment method
has already been deployed in FIRE simulations of galaxy formation
(Chan et al. 2019; Hopkins et al. 2021b).

We will, in this paper, utilize this relatively new tool to study
the linear and non-linear growth of the streaming driven acoustic
instability. We begin, in Section 2, with an analytic discussion of
the CR acoustic instability and relevant physics. In Section 3, we
describe our simulation setup and results in the linear and non-linear
regime. We proceed in Section 4(a) discussion of its astrophysical
significance and conclusions. In Appendix A, we derive the linear
growth rate of the CR acoustic instability. A resolution study is
conducted in Appendix B.

2 ANALYTIC CONSIDERATIONS

Assuming gas flow is non-relativistic and the gyroradii of the CRs to
be much smaller than any macro scale of interest, the two-moment
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equations governing the dynamics of a CR-MHD coupled fluid is
given by Jiang & Oh (2018)

0p
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where c is the speed of light, £ = H — Cis gas heating minus cooling,
v, = —vusgn(B - VP.), where vy = B/, /p is the streaming velocity
(the gas is assumed to be fully ionized), P* = P, + B*/2, E = pv*/2
+ P/(yg — 1) + B?/2 and o is the interaction coefficient defined
by
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where « is the CR diffusion tensor. Generally, k& = iy BB + . (I —
BB) is anisotropic, but in this 1D study it reduces to a scalar. For
simplicity, we assume « to be constant and time-steady, ignoring
the dynamics of magnetic waves (see Thomas & Pfrommer 2019
for a full inclusion). This assumption can be relaxed by using the
equilibrium « calculated from linear theory (see the appendix of
Jiang & Oh 2018, and Bustard & Zweibel 2021 for an implementation
of ion-neutral damping). CRs exchange momentum according to
the source term o - [F. — (E. + P.)v] and energy according to
(v+vy) -0 [F.— (E. + P.)v]. We shall call these the generalized
CR forcing and heating terms, respectively. Microscopically, some
degree of anisotropy in the CR distribution is required to trigger the
streaming instability; macroscopically, this translates to requiring
a finite P, gradient. As VP, — 0, the interaction coefficient o
— 0 (equation 7), and CRs can free stream at the speed of light,
as encapsulated by the time-dependent term in equation (6). The
condition for the time-dependent term in equation (6) to be negligible
is
P, c?

K —5VaAL 3)

L.=
VP, v

where Atis a dynamical time. This sets a condition on the strength of
the P, gradient. If it is fulfilled, the equations reduce to the standard
one-moment equations (Skilling 1975; Breitschwerdt et al. 1991),
and the CR flux, from equation (6), reduces to

Fc:(v+vs)(Ec+Pc)_

1
1V-K-VPC, )

C
which shows that in the well-coupled limit, CR transport is given
as a sum of advection, streaming and diffusion processes. The CR
energy equation (equation 5) reduces to
0E,

ot
where F. is given by equation (9). The RHS, written in this form
shall be called the coupled CR heating term, while the coupled CR

+V-F.=—@+v,)-VP, (10)
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forcing term is VP,. In Section 2.1, we will use this canonical form
of the CR equations in the well-coupled limit.

In writing the CR equations as (5) and (6), we have assumed the
CR distribution function to be close to isotropic on scales larger
than the scattering mean free path ~«/c. This is not always true, but
in the well-coupled limit (which is the context of this study) it is
a reasonable assumption. For more general CR equations that take
into considering anisotropy in the weakly coupled limit, see Hopkins,
Squire & Butsky (2022).

In this study, we ignore any CR collisional losses due to Coulomb
collisions and hadronic interactions. These losses are important in
dense gas, but are unlikely to be important in the diffuse halo gas.
Diffusive reacceleration is also not considered as we do not consider
the effects of turbulence; the free energy for the instability here comes
from the CRs themselves. In any case, reacceleration is strongly
suppressed by streaming losses in the low f scenarios we consider
(Hopkins et al. 2021a; Bustard & Oh, in preparation).

We now discuss two key pieces of physics: linear growth rates for
the CR acoustic instability (Section 2.1) and the CR bottleneck effect
(Section 2.2).

2.1 CR acoustic instability: linear theory

In this section, we make order of magnitude arguments for the
threshold and growth rate of instabilities driven primarily by CR
diffusion and streaming, respectively, in the most physically relevant
asymptotic limits for the CGM. The detailed dispersion relations are
derived in Appendix A, and solutions to these dispersion relations
give the growth rates shown in Fig. 1. Broadly speaking, in this
section, we seek to understand the features seen in Fig. 1. The
reader can get a feel for the physics of the instability here, which are
relevant to understanding the simulation results in Section 3; only
those interested in the technical details need to consult Appendix A.

If CRs were completely locked to the gas, the system would simply
behave as a single fluid with adiabatic index intermediate between
Yc=4/3 and y, = 5/3, depending on o = P./P,. However, CRs can
both stream and diffuse relative to the gas, which leads to a phase
offset between gas CR pressure and gas density perturbations. In
addition, CRs affect gas pressure perturbations by heating the gas as
they stream. Acoustic waves thus experience external forcing. If this
forcing is in phase with wave oscillations, they grow; otherwise, they
damp.

There are several characteristic length-scales in the problem:

(i) The mode wavelength, A ~ k™!

(i1) The CR diffusion length /4 ~ k/c,. This is the length-scale
over which the sound crossing time #,. ~ L/cs and the diffusion time
tairr ~ L*/k are comparable. On scales below Iy, diffusion is faster
than advection.

(iii) The CR scale height L. = |P./V P, |, as well as the gas pressure
scale height L, and the density scale height L,, defined similarly.

Additionally, there are two important dimensionless parameters:
B = Py/Pg, and a = P./P,. Finally, the direction of the sound wave,
and in particular whether the sound wave propagates down (‘forward’
wave) or up (‘backward’ wave) the CR pressure gradient also affects
instability and growth rates.

We work in the WKB approximation kL. >> 1. Furthermore,
we ignore background gas pressure and density gradients, i.e. we
assume a uniform background Ly, L, — oo. In Appendix A, we
show that our results are unchanged even if we allow for non-zero
gas pressure and density gradients. Essentially, this is because in the
WKB approximation, kLg, kL, > 1, the background looks locally
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Figure 1. Growth rate I" of the CR acoustic instability (in units of cg /K) as
function of n = k/y.L.cs and B = 2Pg/B2 of the forward (top panel) and
backward (bottom panel) acoustic waves in the short wavelength limit (kk/c
> 1, kL > 1). The stable and unstable regimes are demarcated by a thick black
line. k is the wavenumber, « is the diffusion coefficient, ¢y = /g Pg/p is the
gas sound speed, cc = /¥ Pg/p is the CR sound speed and L. = P./|VP,| is
the CR scale height. L in the subtitle of each plot is a wildcard for any kind of
scale heights (density, gas, CR scale heights, etc.), kL > 1 simply states that
the wavelength in consideration here is sufficiently short that WKB analysis
holds.

uniform. We still retain the CR scale height L. because there is
an additional length-scale in CR dynamics, the diffusion length
lage ~ Kk/cs. The ratio n = lg/L. ~ k/L.cs impacts CR dynamics
and instability growth. If we work in the approximation where
besides kL. > 1, klg = ki/cs > 1 (i.e. the diffusion time is much
shorter than the wave period), then the ratio n = k/L.cs is the only
dimensionless parameter involving length-scales which is important.
For the purposes of this subsection, we will work in the limit where
L. is small enough that CRs are well coupled to the thermal gas, and
equations (9) and (10) apply.

For simplicity, we discuss regimes where either CR diffusion
and streaming dominate. The diffusion coefficient « is assumed
constant in space and time. Since diffusion rates are independent
of B-field strength, while streaming velocities and heating rates are
both proportional to vs o< B, we expect that diffusion- and streaming-
dominated regimes correspond to high and low B, respectively, a
notion we shall quantify.
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2.1.1 Diffusion dominated

2.1.1.1 Damping‘Drag’ against CRs provides a frictional force
which damps sound waves, a phenomenon known as Ptuskin damp-
ing (Ptuskin 1981). The physics is very similar to radiative damping
of sound waves, which famously leads to Silk damping of acoustic
waves in the early universe. We can estimate the damping rate as
follows. Sound waves are just a simple harmonic oscillator (SHO),
where the restoring force is proportional to displacement F o< —x.
If CR diffusion produces a perturbed CR force which is instead
proportional to velocity, F o« —v, then just as for the SHO, this
force will damp oscillations, since it is 7t/2 radians out of phase
with the restoring force.! Since, we work in the limit kk/cy > 1,
where diffusion is much more rapid than advection on scales of
the wave period, the Lagrangian time derivative in the CR energy
equation (equation 10) can be ignored, and CR compression is
balanced by diffusion: iy .P. oku; ~ —/ckch, 1, which gives rise to
an acceleration:

1 P. 2
iy~ == VP~ e ey (1)
p pK K

which is indeed proportional to velocity (&; o< —u), and damps the
wave, with damping rate:
: 2

u c
Faamp ~ — ~ === (12)

uy K
Note that the frictional force, and hence the damping rate, is
independent of wavelength in this limit. Using | P, /P¢ o| ~ u1/(kk),
Py 1/Pg o ~ uy/c, we find that rapid diffusion causes the CR pressure
perturbation to be suppressed:

Pcl Cs PcO
—| ~ — : 1. 13
‘Pg.l ki <Pg.0) < (1

Since CR pressure perturbations do not provide a restoring force
but a damping force, the acoustic mode is driven by gas pressure
perturbations, and propagates at the gas sound speed cs. Furthermore,
since the CR pressure perturbations are so small, the damping time
is much longer than the wave period, 1/tqampcsk ~ cs/(kic)(Pe, 0/ Py, 0)
< 1, even if equipartition holds P. o ~ Pgo. Note also from
equation (12) that damping is stronger for a weaker diffusion
coefficient: the CR pressure perturbations are still 71/2 out of phase,
but now have larger amplitude. However, they can now only suppress
smaller scale perturbations.

2.1.1.2 Growthwith a background gradientlf sound waves propagate
in a medium with a background CR gradient, they can be driven
unstable (Drury & Falle 1986). This can be understood as follows.
Consider the limit of rapid diffusion. In this case, the CR gradient is
time-steady and simply given by the background gradient, which is
much larger than the perturbed CR gradients due to sound waves,’
which are strongly suppressed by diffusion. Since the CR gradient
—VP, is independent of density, any fluctuations in density will
result in a differential acceleration, since underdense regions receive

a larger force per unit mass:
uy Cg

¢ Lo’

. O up Peo
uy ~ —VP’O ~ F— — ~
et ¢ ¢s pLe

(14)

' Mathematically, this must be true since the diffusion operator brings down
an additional factor of i compared to the gradient operator.

2This is no longer true in the non-linear phase of the instability; we address
this in numerical simulations.
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where we have used p/p ~ u,/cs, and the F sign refers to forward and
backward waves, respectively. Thus, underdense (overdense) regions
having relative acceleration down (up) the gradient. The above force
is proportional to velocity, and can either drive or damp sound waves.
Consider density maxima, where the velocity perturbation u; has the
same direction as wave propagation. In a forward wave, the wave
and hence u; point down the CR gradient, but dense regions are
accelerated up the gradient. We have i, o« —u;, and the wave is
damped. Conversely, for a backward wave, 1| o u;, and the wave
grows in amplitude. The growth rate is

: 2

ui C,

r wth,diffuse ~ — 7~ — . 15
growth, diffuse u Cch ( )

For growth driven by a background CR gradient to overcome Ptuskin

damping, we see from equation (12) and (15) that we require

£ 21 (growth). (16)
¢sLe

For the sound wave to see a steady CR gradient VP, independent of
density, the diffusion time must be shorter than the sound crossing
time across a scale height L., which is equivalent to equation (16).

2.1.2 Streaming dominated

We now consider the streaming-dominated regime. For simplicity,
and similar to Begelman & Zweibel (1994), we consider a weak
background gradient (L. large) which is sufficient to couple CRs to
the gas and give the streaming velocity a definite sign,* but otherwise
does not affect CR dynamics. In particular, the force and heating
from the background gradient is assumed to be negligible. We will
relax this assumption shortly. The magnitude of the background
gradient has important implications for CR coupling and non-linear
saturation, but here it just complicates matters. We do include
diffusion in our WKB analysis, which is essential because otherwise
there is no 71/2 phase offset between CRs and density perturbations;
streaming with flux F, o< P, (rather than F; o VP.) cannot introduce
a 71/2 phase shift.* For any finite scattering rate, CRs are imperfectly
locked to the Alfven wave frame, and will always diffuse relative to
the wave frame.

CR streaming has two effects. First, it introduces an additional
advective component to CR transport which can be either aligned
or anti-aligned with gas motions. Thus, it modulates the amplitude
and even the sign of CR perturbations. Since the phase shift between
CRs and gas depends on the competition between advective and
diffusive transport, we might expect that as before, growth/damping
depends on whether the wave is forward or backward. Secondly, CR
streaming heats the gas, at a rate vy - VP, which perturbs the gas
pressure. Both of these processes are only important if the streaming
velocity vy is large compared to the gas sound speed c;, or at low
~ (cslva)?.

Heating is a new consideration, particular to CR streaming. Does it
drive growth or damping? CR compression followed by gas heating

3CRs are assumed to always stream down the background gradient, which is
presumed to be larger than any gradients induced by the sound wave. If this
is no longer true, very interesting consequences arise, which we explore in
Section 3.

“Importantly, stratification can introduce phase shifts, so that sound waves
can be destabilized for the pure streaming case in a stratified background
(Quataert et al. 2022a). The instability discovered by Quataert et al. (2022a)
is driven purely by phase shifts and does not rely on heating; hence it can
operate even in isothermal gas.
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as CRs stream out of an overdensity is a situation where the adiabatic
index of the system is increasing, as energy is transferred from CRs
(more compressible) to gas (less compressible). This stiffening of
the equation of state is equivalent to a secular increase in the spring
constant of a simple harmonic oscillator, which drives overstable
oscillations. The peak pressure (arising from CR heating as CRs
stream out of an overdensity) lags the peak density, and so work
is done on the fluid during the expansion phase. CRs give up more
energy streaming out of an overdensity than they receive during
compression, and there is net energy transfer from CRs to gas.’
Unlike the perturbed CR force, these effects are independent of
the direction of wave propagation, so we expect heating to be
destabilizing for both forward and backward waves.

We can make order of magnitude estimates for these remarks.
Let us write the perturbed acceleration it} ~ i, , + it 5, Where it 4
arises due to the phase-shifted CR force and i, ; arises from gas
pressure gradients due to CR heating. The calculation of the phase
shifted, perturbed CR force is the same as for Ptuskin damping,
where compression and diffusion balance, except that now:

1 v
u1—>u1—|—vA,1:u1—f—plvA:u1 (IZF—A), (17)
2:00 Cs

where we have used pi/p ~ Zu,/cs, and F sign is for forward
and backward waves respectively (va,; always points down the CR
gradient, whereas #; depends on whether the wave is forward or back-
ward). From substituting this replacement for u; into equation (11),
we obtain a perturbed acceleration from the phase-shifted CR force:

) 1 cf VA

ul_aN—fVPC,l ~ —— 1:F up. (18)
P K 2¢q

The perturbed gas pressure from heating is Eg ~ P /(e — 1) ~

va - VP, ~ Eivak Pe. Solving for Py 1, and using w ~ kc,, we obtain

a perturbed acceleration from CR heating:

) 1 VA .
iy ~ ==V Py~ £y, — D—tiya (19)
P Cs

We thus obtain a net acceleration: 1y =ity 4 + 1ty = (1 £ (y, —
1)va/cs)ity 4. Using equation (18) and I' = u, /i1, we obtain

cf 1 (Ye — 1
— (1; 2/31/2) (u: 21/2 ) (20)

as derived by Begelman & Zweibel (1994). Note that instability
arises for both forward waves (if § < 0.25) and backward waves
(f B S (yg — 1)*> = 0.5, note that we are using < as this is an
approximate calculation). The thresholds differ because u; and v4_
can be either aligned or antialigned, depending on the direction of
wave propagation. The perturbed CR force only destabilizes forward
waves, while at sufficiently low B, CR heating destabilizes waves
independent of wave direction (as can be seen if the second terms in
the two brackets in equation 20 dominate).

The growth rate is proportional to the Ptuskin damping rate due
to diffusion, I'gyeam ~ —ﬁ*IFdamp. The diffusive flux Fqg < VP, is
important since it causes a 7t/2 phase shift, so that perturbed forces
are proportional to velocity rather than displacement. The diffusion
time of CRs thus still sets a characteristic time-scale. However, by
changing the amplitude and sign of total pressure perturbations, CR
streaming converts Ptuskin damping (1z; o< —u) to a destabilizing

Cytream =

SThis is in contrast to the diffusion case, where CRs expand ‘for free’, without
transferring energy to the gas. In this case, there is net energy transfer from
the gas to the CRs, and the wave damps.
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force (1t; o< uy), with a growth rate which depends on the rapidity of
streaming and hence heating.

Broadly speaking, in the WKB regime kL. > 1 and k«/cs > 1,
there are two instability regimes, the streaming-dominated regime
B < 0.5, which is unstable regardless of «/csL., and the diffusion-
dominated regime, «/csL. > 1, which is unstable regardless of f.
Growth rates, however, can depend on the secondary parameter. This
is essentially what we see in Fig. 1. In both cases, the instability
threshold does not depend on P./Pg, although growth rates do. The
growth rates are simply c2/min(2¢, L., 68« ). Where both instabilities
are allowed, we anticipate that diffusion dominates when ¢, L. < 38k,
and vice versa

For completeness, we derive in Appendix A, an equation governing
the growth of an acoustic perturbation as it propagates in an arbitrary
background profile in the limit kk/c; > 1. Its growth rate can be
expressed as

2
Ce VA VA

- |lx(e—D—|[1F—
ZK{[ (e )cs} ( :FZCS>

+ X (14@,—-n2 Q1)
YeLecs T )

This quantity has to be greater than zero for growth. In the absence
of streaming, we recover the instability condition «/y.L.cs > 1 for
backward waves as estimated in equation (16). In the streaming-
dominated regime, where «/y.L.cs < 1, the growth condition are
B < 0.3 for forward waves and B < 0.533 for backward waves,
consistent with the approximate calculation in equation (20). Since
waves of both signs are generally present, as a general rule of thumb
B < 0.5 will result in the CR acoustic instability.

r grow =

2.2 CR bottleneck effect

A streaming dominated fluid well-coupled® with CRs should in
steady state obey, along the B-field, the following’ (Breitschwerdt
etal. 1991)

P.(v+ va)" = const 22)

This relation can be derived by setting the time-dependent and CR
diffusion terms to zero in equations (5) and (6) and integrating. For a
static fluid and for constant B-field (true in our 1D simulations), this
reduces to

P.p~%/? = const. (23)

The CR pressure rises with density.

This property, together with the requirement that CRs can only
stream down their gradient, leads to an unusual feature of CR
transport known as the ‘bottleneck effect’, predicted analytically
by Skilling (1971) and first simulated by Wiener, Oh & Zweibel
(2017a). For simplicity, consider a 1D setup with constant B-field
pointing in the +x-direction, the gas variables held fixed, and CRs
streaming towards the +x direction. Now suppose the CRs encounter
an overdense bump. Equation (23) demands that P, increases at the
rising edge with the density. This contradicts the requirement that
CRs only streams down the P. gradient. The resolution (seen in
Fig. 2) is for P, to flatten on the incoming side and for CRs to
decouple from that gas in that region; they free-stream at the speed

®Well-coupled means that CRs have the steady state flux form (equation 9),
with a nearly isotropic distribution function.

"This conserved quantity is geometry dependent. In spherically symmetric
geometry, for example, the conserved quantity is 2 P.(v 4 va)¥*.
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Figure 2. The bottleneck effect. Only the CR variables are evolved while the
gas variables are held fixed. A double peak is initialized in the static density
field, the denser peak at x = 200, the other at x = 400. CR pressure responds
with a double plateau. Just after r = 2000, the peak at x = 400 is manually
pushed up to 1.5. As seen in the bottom panel, the two P, plateaus merge. The
two panels show the equilibriated Pc, p, and F. profiles before and after the
push. Note that the upper panel shows the density and CR pressure field just
before the second peak is modified and F; has been rescaled for comparison.
The bottom panel is the steady-state solution to the updated bump. The region
enclosed by the black dashed lines represents AF, predicted using the density
profile and equation (27). Similarly, the region enclosed by the red dotted lines
represents AP, predicted using the density profile and equation (26). Both
are in good agreement with simulation. If instead we start out with the bump
structure in lower panel and manipulate the bumps to end up with that in the
upper panel, the CR pressure and flux profiles adjust accordingly to give the
results in the upper panel.

of light. CRs recouple to the gas and obey equation (22) on the far
side of the density bump, where gas density and hence P, falls, with
CRs streaming down the gradient. Physically, the decrease in Alfven
speed as the density rises causes a CR traffic jam at the bump, causing
CR pressure to build up and flatten out. Simulations of this bottleneck
effect in the presence of a single bump have been conducted in 1D by
Wiener et al. (2017a), Jiang & Oh (2018), and in 2D® by Bustard &
Zweibel (2021).

8Note that B-field geometry does affect how well the bottleneck equation (22)
is obeyed as it influences the magnitude of the streaming velocity along
x. Here, we assume that B and VP, are aligned. The general case of a
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Here, we follow a similar setup as in Jiang & Oh (2018) in
considering a CR sub-system (i.e. a constant B-field pointing in
the +x-direction, keeping the gas variables fixed and allow only the
CR variables to vary). However, here we consider the impact of
multiple density peaks. Two density bumps are placed apart from
each other, one higher than the other. The initial CR pressure is set
to near zero and the CR flux to zero. CRs are injected by fixing
the CR flux at the inner boundary (x = 0), while keeping inner CR
pressure boundary free. At some time well after the P, profile has
equilibriated, the second density bump is pushed manually down to
lower than the first and the P, profile allowed to adjust and equilibrate.
The result is shown in Fig. 2, and can be described as follows: CRs
always bottleneck behind the highest density peak they see from the
incoming direction. Specifically, incoming CRs would bottleneck
and form a plateau all the way up to the highest density peak they
see, and upon climbing down in a fully coupled manner (for which
equation 23 holds), bottleneck up the next highest peak and so on
and so forth, forming a staircase. Should the order of peak heights be
changed, manually in Fig. 2, or (in our simulations of the CR acoustic
instability) due to rise of some newly seeded unstable modes, for
example, then the P, profile will adjust accordingly such that the
above holds true in steady state. Thus, if instead we start out with the
bump structure in lower panel of Fig. 2 and manipulate the bumps
to end up with that in the upper panel, the CR profiles adjust to give
the results in the upper panel. If the fluid has a background flow or
variable B-fields, equation (22) holds, with CR bottlenecks at the
deepest minima of (v 4 vy).

How is the net momentum and energy transfer from CRs affected
by the presence of a staircase? The spatial distribution is obviously
affected, since there is no momentum and energy transfer at the
plateaus; instead, these only happen at the staircase jumps, where
the CRs are coupled.” However, we shall now show that in a static
setup, the total momentum and energy transfer from CRs to the gas
only depends on the net change in Alfven speed across the profile. If
the bump structure does not change this, then even if a CR staircase
develops, the total momentum and energy transfer is unaffected.

Consider the previous setup in the coupled limit. The net momen-
tum transfer by CR forces, integrated over the profile, is

/ dx VP, = —AP, 24)

Similarly, in our static setup, the net amount of CR heating in steady-
state is:

/dx Ua- VP, = /dx V.F.,=—AF.. 25)

Since, we deal exclusively with decreasing P, and F. profiles and will
make use of AP, and AF, frequently in the following, we defined
AP = P 1eft — P righe and AF, = F jefy — Fe, rigne to ensure positive
definiteness, hence the minus sign.

Fig. 4 shows a smooth density profile and the associated back-
ground P, profile (without bumps) and the steady-state P, profile in
the presence of bumps. Again, we decouple the hydrodynamics so
that the gas distribution does not evolve. While the spatial distribution
of P, (and hence the spatial distribution of CR momentum and energy
transfer) is strongly affected by the presence of bumps, the net
momentum/energy transfer (AP, and AF, respectively) is almost

non-aligned mean field which in addition changes direction can introduce
additional bottlenecks, but is beyond the scope of 1D simulations.

9In our subsequent simulations of the acoustic instability, the jumps propagate
and eventually all gas fluid elements experience a force and CR heating.

MNRAS 513, 4464-4493 (2022)
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unchanged. See also Wiener et al. (2017a) for similar conclusions
(their sections 3.6 and 3.7). The CR pressure only changes where
CRs are coupled; there, P. v;y“. Thus, AP, A[v;“‘]. Since
the net density drop is the same, so is the net change in vy4
and hence P.. Similarly, the net change in the flux is given by
AF. ~ A(P.vp) A[v:“], so the net heating is also determined
by the initial and final Alfven speeds (in our 1D sims with constant
B-field, this is equivalent to the net density jump). Since these are
almost unchanged by the presence of bumps, the net heating rate is
similar.

The net momentum transfer in Fig. 2, AP, o A[v;y“], is similarly
given by the net change in the Alfven speed:

. Ye
AP. = P [1 - (”"—‘“) ] (26)
VA, right

where P et = (Ve — DF¢ inj/VcVa, min- The net energy transfer is
likewise AF. ~ A(Pevy) o Alvy "], or

ve—1
VA, min
AF, = Fe {1 — (7) } . 27)
VA, right

We show AP., AF, calculated using these equations as dashed black
lines in Fig. 2; they agree well with the simulations. When the second
peak is pushed up in the lower panel of Fig. 2 there is an increase in
AP, and AF,, as expected.

In many realistic applications (and certainly in the CR acoustic
instability), the density profile is not static but dynamic, and the
density peaks are seldom stationary. As we will see in Section 3,
the non-linear evolution of the CR acoustic instability often involves
density bumps propagating up the CR pressure gradient. The P,
profile develops into a propagating staircase in which equation (22)
holds only in the respective rest frames of the jumps. The motion of
the jumps will have non-negligible effect on the P, jumps and hence
the overall energy and momentum transfer. A simple illustration is
given in Fig. 3, again evolving only the CR sub-system, in which a
density peak manually moved at constant speed to the left, incurs a
reduced P, jump at the moving peak.

How can we understand this? The key is to realize that equa-
tion (22) only holds in the rest frame of the jumps, which is the
frame where the density (and hence P.) is time-steady. In the lab
frame, the conserved quantity is therefore:

Pe(v + va — Vpump)’® = const (28)

instead, where v is the lab frame velocity profile and vy, is the
propagation velocity of the bump. In Fig. 3, we show the result of
applying equation (28), which matches the simulation results well.
The conservation law in equation (28) has 3 asymptotic limits,
when each of the three terms v, v4, Vpump dominates. When the CR
flux F. ~ 4P.v is dominated by gas flows, and the CRs simply advect
with the gas, then P, oc v o p’¢, i.e. the CRs are adiabatic with
an adiabatic index y. = 4/3 for a relativistic fluid. When the CR
flux is dominated by streaming F, ~ 4P.v4, then P, oc v, oc p7e/?
(for constant B), which is a limit most studied in the literature for
the bottleneck effect (Wiener et al. 2017a; Bustard & Zweibel 2021).
When vpump 3> v, v4, then the CR flux in the frame of the bump is F
~ 4P Vpymp, Which is constant. As V - F' — 0, from equation (10),
VP, — 0, i.e. P. —const at the moving bump, as is also given by
equation (28). The motion of the bump reduces CR heating of the gas,
and when viyymp > v, v4, there is almost no apparent energy exchange
between the two fluids! In this limit, the heating time ~lyump/v4 is
much longer than the bump propagation time ~lyymp/Vbump (Where
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Figure 3. These two panels denote the possible effect of a moving bump on
the P, jumps. The upper panel shows the density field while the lower panel
shows the CR pressure. Similar to the setup in Fig. 2, only the CR variables
are evolved while the gas variables remain decoupled. Initially, two density
peaks are placed apart at x = 200 and 800 and kept stationary (see the black
dashed line in the upper panel). The equilibrated P, profile is shown by the
black dashed line in the lower panel. Some time after the initial equilibrium
the peak at x = 800 is moved manually at constant speed towards —x while
the peak at x = 200 remains fixed. The red arrow indicates the direction of
motion. The subsequent density and P, profiles when the peak has moved to
x = 350 are indicated by the solid blue lines. The orange line denotes the P,
profile across the second bump evaluated using equation (28), including the
effect of Vjump.

lpump 1s the bump size), so before the CRs have a chance to transfer
much energy, the bump has already moved on.

Another perspective is to see that the motion of the density
bump weakens the minimum in (v + v4 — Upump), and reduces
the strength of the bottleneck. The moving bump makes a net time-
averaged contribution to the density profile which is much smoother
than the density profile of the stationary bump, and approaches the
background profile for a rapidly moving bump. If the background
profile is already flat, as in this example, then coupling between the
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Figure 4. Steady state profiles of CR sub-system which in one case, denoted
by black dashed lines, the (v 4 v4)~! profile is initiated without bumps and
the other case, denoted by solid blue lines, it is initiated with several bumps.
None of the bumps rise above the global maximum of the background profile.
The overall AP, and AF, with and without bumps are the same.

CRs and gas becomes weak and there is hardly any CR staircase.
In this way, the motion of density bumps alters the CR staircase
(and energy and momentum transfer) compared to the stationary
case, where staircase heights are maximized. We will return to this
when interpreting our simulation results. Note that if bumps are
propagating at different velocities, then one must apply a different
frame transformation for each bump. Although one can still infer
the CR staircase structure given velocity information, the lack of a
global reference frame means that it is no longer possible to write
AP., AF. in terms of endpoint quantities, as in equations (26) and
27).

These properties are the basis for the ‘staircase’ features seen in
the non-linear outcome of the CR acoustic instability, and discussed
further in Section 3.3. Interestingly, such staircase features are
also seen in Lagrangian maps (i.e. correspondence between initial
(Lagrangian) and final (Eulerian) particle positions) in adhesion
models of cosmological structure formation (Vergassola et al. 1994).
They are also seen in doubly diffusive fluids, such as sea water where
both salt and heat diffuse (Radko 2007). However, we caution that
while some mathematical machinery can be used in common, the
origin and physics of these staircases is quite different. In particular,
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Figure 5. Constructing a convex hull over wiggly curve, surface, etc., is
similar to covering it with a rubber band that connects all the highest peaks.
Fluctuations lying in the valley between the ridges are swept under the rubber
band. See Vergassola et al. (1994). Note that the convex hull described here
is slightly different from the canonical mathematical definition.

the CR staircase arises from features peculiar to CR transport —
namely, the bottleneck effect in a two-fluid system.

Mathematically, the P, staircase is similar to constructing a convex
hull (see Fig. 5) of p (or (v + v4)~! for non-zero flow) and then
determining P. from equation (23) (or 22). A convex hull is the
smallest convex set that encloses a particular shape. For our purposes,
given a plot of (v 4 v4)~% as a function of position, the convex hull
of this structure is the non-increasing set of lines of minimal length
which encloses all points, including the peaks. As shown in Fig. 5, itis
equivalent to connecting the peaks with rubber bands, via horizontal
ridge lines.

The reasoning above did not take into account multidimensional
effects, e.g. that due to magnetic field draping around density
enhancements (Sparre, Pfrommer & Ehlert 2020). Bustard & Zweibel
(2021) show in 2D that magnetic field strength can affect the path
CRs choose around density peaks. Particularly, it was shown that
a higher magnetic field facilitates penetration of CRs into density
peaks, since magnetic tension causes the field lines to resist draping.
The bottleneck effect can be important in this case.

3 SIMULATION

The following simulations were performed with Athena+ + (Stone
et al. 2020), an Eulerian grid-based MHD code using a directionally
unsplit, high-order Godunov scheme with the constrained transport
(CT) technique. CR streaming was implemented with the two-
moment method introduced by Jiang & Oh (2018). This code solves
equations (1)—(7). Cartesian geometry is used throughout.

3.1 Setup

Our 1D setup consists of a set of initial profiles, source terms and
appropriate boundary conditions. Magnetic field is constant both in
space and time in 1D Cartesian geometry (as required to maintain
V - B = 0). Both CR transport modes (streaming and diffusive) are
present. We assume that CRs stream at the local Aflven speed va.
Slippage from perfect wave locking gives rise to CR diffusion, which
in the absence of a model for damping, is assumed constant in space
and time. In this study, we focus mostly on streaming-dominated
transport; the CR diffusion coefficient is usually taken to be small
(in a sense we shall quantify).

The CR acoustic instability is a small-scale instability that only
depends on local conditions. In the following, we will frequently
reference our setup to actual galactic halo conditions, obtained mostly

MNRAS 513, 4464-4493 (2022)
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from galaxy-scale simulations. The purpose of doing so is to provide
a context for which this instability could act. Our 1D Cartesian setup
can be crudely thought of as mimicking the vertical profile of disc
galaxies, though obviously it is highly idealized. However, it allows
for high resolution and a detailed scrutiny of the physics in this first
study.

3.1.1 Initial profiles

The initial profiles are calculated by solving a set of ODE’s assuming
time steadiness of the fluid equations. In the absence of any
instability, the initial profiles will remain steady in simulations. To
simplify our calculations, we assume a power law profile in the gas
and CR pressure and calculate the required density, velocity profiles
and gravity, cooling/heating source terms required for these profiles
to remain time-steady. The pressure profiles take the form:

X -
&:I@(—) , 29)
X0

x -9
Pe =Py (*) . (30)
X0

for some specified ¢, xo, Py, and «. For pressure to decrease
with radius, ¢ > 0. A power-law pressure profile is motivated by
galaxy scale simulations (e.g. van de Voort & Schaye 2012) and its
simplicity in describing a generic halo profile. Since magnetic fields
are constant in our model, this implies that 8 o< x~%, i.e. the gas
becomes magnetically dominated at large x. Physically, magnetically
dominated haloes can arise in simulations (Pakmor et al. 2020; van
de Voort et al. 2021) and in analytic solutions (Ipavich 1975); we
discuss this further in Section 4.

Specifying the density pg, velocity vy, and Alfven speed v4o =
B//4mpy at xg, the velocity v and density p profiles are found by
integrating from x, the equations

kP! —(v+va)P/

31
VP, , (E2))

d
Lt =

PV = constant, (32)

where the first equation is the steady state version of equation (10),
and the second from mass conservation. Each prime means an
additional derivative with respect to x. As mentioned above, B and k
are constants. An example of the initial profiles is shown in Fig. 6.
Using the steady state profiles calculated, the gravity source term g

is defined as
)/p (33)

dv dPy, dP.
&= (pvdx T T
to ensure momentum balance. To have a sense of what functional
form p and g have, consider the sub-sonic and sub-Alfvenic limit
where we can ignore terms involving the velocity v (for a galactic
halo/wind profile this would hold near the base of the profile). For
streaming-dominated transport, the diffusive term in equation (31)
can be ignored, which then reduces to equation (23). We obtain, for
the density, a power law profile:

L\ 32
L= po <*> , VK G, Va- (34
X0
The gravity term has a power law form too:
Pyo(1 + ¢/2-1
g:fii—i@(f) L v, (35)
PoXo X0
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Figure 6. Top panel: typical initial p, v, Py, P. profiles found by integrating
equation (31) from x = 1 to 10. The profiles shown are obtained with ap =
1, Bo = 1,n0 = 0.01, My = 0.015, ¢ = 2. Bottom panel: typical variation
of a, B, n, M with x.

where we have used y. = 4/3. In our fiducial setup (¢ = 2),
gravity is constant until the critical point (see the discussion below
equation 40).

For cooling, adiabatic processes and CR heating is balanced by
a time-independent heating/cooling term #(x), defined using the
steady state profiles,

H= [0 p s - B -1 66
= |v— — — Doa— — 1.
dy | Teleg TRRT VA f R
In the subsonic and sub-Alfvenic limit, this approximates to
p —p/4—1
Hz_@ﬂﬂﬂ<£) v <o, a7
X0 X0

Although not fully realistic, it is a simple and attractive setup in global
force and energy balance. Note that it does have cooling, which in the
background profile offsets CR Alfven heating. However, this cooling
is simply a function of spatial position, rather than thermodynamic
variables. This simplification allows us to initialize arbitrary profiles
which are still in energy balance.

Thus, in each scenario the initial profile is determined by the
parameters:

(@) po, Mo, Pgo, o, Bo, Nos -

The subscripts 0 all indicate they are defined at x(. The dimen-
sionless parameters are defined as

ao = Peo/Peo, Po=8mPy/B*, 1o = k/ycLeoCso,
Moy = vo/cs0, (38)

where ¢y = /Ve Peo/p0 is the adiabatic sound speed and L. =
| P,/ P/|o is the CR scale height. Note that L. ¢ = xo/¢, S0 xo can also

Z20z Jaquiaideg /( uo Jasn eiegieg ejuesg ‘eluiolijed 10 Ausiaaiun Aq §/8€/59/v9vb/S/S L G/olonie/seiuw/woo dnoolwepeoe//:sdiy woll papeojumod


art/stac1123_f6.eps

be interpreted as a CR pressure scale height. In general, «, 8, n, M
(defined similarly as 38 but without the subscript 0) vary along the
profile. Their typical variation is given by the bottom plot of Fig. 6.
B and n usually decrease as x increases while M increases.'” «, by
construction of the power-law pressure profile equations (29) and
(30), is a fixed quantity throughout. Unless otherwise specified, we
set po =1, Py =1, and xo = 1.

One issue in 1D Cartesian geometry is the transition to supersonic
flow. If we combine the Euler equation with equation (22) (in the
streaming-dominated regime), we obtain, after some manipulations,
the wind equation

dv g(x)

— =——>-""—— 1D Cartesi 39
o o0 — Cgff — 63) esian 39)
where

P 2 dP,
2 = YePevtua/2 o 5 4P 40)

p vFva  ° dp

As usual with wind equations, there is some critical point where the
wind becomes transonic (i.e. v2 = ¢%; + ¢? in this case). To avoid
any singularity, g(x) has to go through zero at the critical point, and
indeed it must change sign if the wind is to keep acceleration (dv/dx
> 0). This is obviously unphysical. We cannot focus on subsonic
flow alone in our simulations; the flow must be supersonic at large
x to avoid boundary problems (see Section 3.1.2). In reality, at large
radii disc winds transitions to a more spherical geometry, where this
problem no longer occurs. But for simplicity, we simply solve for
the gravitational field g(x) which maintains a steady wind solution
through the sonic point in Cartesian geometry. Our conclusions are
unchanged if we focus solely on the subsonic portion of the flow,
where the gravitational field is fully realistic (e.g. constant or power
law up to the sonic point).

We shall try to answer the following questions with this 1D setup:
(1) Verify the linear growth of the CR acoustic instability and study
the non-linear growth and saturation. Since we find that the non-
linear CR profile exhibits a staircase structure, we follow up with the
questions below: (2) How can we understand the staircase structure
and characteristic scales? (3) How does the staircase affect the time-
averaged momentum and energy transfer between the gas and CR?

Our simulations focus on situations where streaming dominates
CR transport, i.e. k/L.c; ~ 1 < 1. The CR diffusion dominated limit
(with n 2 1) has already been studied (Drury & Falle 1986; Kang et al.
1992; Ryu et al. 1993; Drury & Downes 2012; Quataert et al. 2022a).
In actual simulations using the two-moment formalism, the diffusion
coefficient k is never set to zero (as that would give nan in the
calculation of o, equation 7). Also, with our boundary conditions,
the very fast growth rates for small « cause the simulations to crash.
We find that for stability and numerical convergence, the diffusion
length Iy ~ Kk/cs has to be resolved with > 4 grid cells. Thus,
the minimum value of « in our simulations is dictated by resolution.
Since the diffusion length is resolved, the fastest growing, small-scale
modes in our simulation are in the limit kx/c; > 1. As discussed in
Appendix A2, on scales below the diffusion length, growth rates
are independent of wavenumber. In addition, the acoustic mode
dominates, w ~ Zkcs, i.e. the wave propagation speed is simply
the gas sound speed.

10Note that « is constant in our setup. Since L. increases further out in the
halo, this causes 7 to fall with distance. Realistically « should vary with
location (e.g. due to weaker self-confinement, « is likely to increase further
out in the halo), so the overall variation of 7 is unclear. For simplicity, we do
not consider alternate forms of 7.
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3.1.2 Static and outflow setup and boundary conditions

Linear growth. To evaluate linear growth rates, we will (mostly)
adopt a static background. The initial profiles are first evaluated up
to the boundary ghost zones and input into the simulation box. Then
an acoustic wave is generated from a boundary and its amplitude
tracked as it propagates. We perturb the velocity, gas density and
pressure as follows:

5
Sv = AC(t)sin(Fhest), 8p = +por,
C

S

dv
8P, = Ly, Py —, (41)
Cs
where A is some injection amplitude and p, Pg, ¢, are evaluated at
the boundary with the top sign for forward propagating waves, and
bottom sign for backward waves. The perturbations are multiplied
by a buffer function ¢ (¢), given by

(H=1—e'" (42)

where 7 is small (around one wave-crossing time), to ensure the
wave profile and its derivatives are continuous when the acoustic
perturbation is injected.

Non-linear growth. When studying the non-linear growth and
saturation, we include a background flow. As we shall explain, this
is important to avoid boundary effects; it also mimics a disc wind.
We impose the initial density, gas pressure, and CR flux on to the
inner ghost zones while keeping the CR pressure free by linearly
extrapolating from the active zones. The inner velocity is determined
by maintaining constant mass flux. For the outer boundary, we copy
the density, gas pressure and CR flux from the last active zone and
linearly extrapolate the CR pressure. The velocity is again determined
from constant mass flux. This set of boundary conditions mimics a
stratified disc atmosphere with the inner boundary fixed by galactic
disc properties and the outer boundary kept free. To limit boundary
effects, a buffer zone with viscosity is added near the boundaries
to damp out inbound or outbound unstable acoustic waves.!! Still,
it is important, when the outer boundary is kept free, to initiate
a background velocity such that the flow near the outer boundary
is supersonic, as otherwise inbound unstable sound wave can cause
unphysical effects'? (e.g. spurious shocks). Despite requiring the flow
near the outer boundary to be supersonic, it is possible to initiate the
flow at the inner boundary to be highly subsonic (see the bottom
of Fig. 6). To further ensure our discussion will not be affected by
outer boundary conditions, we focus on the inner (subsonic) half of
the simulation domain. Unlike the linear setup, where we explicitly
perturb the profile, here all growth is seeded by numerical noise.

3.2 Acoustic instability: comparison with linear theory

Table 1 lists the parameters used for simulating the linear growth
of acoustic waves. In each case, an acoustic wave with a specified
amplitude and wavelength (expressed in units of diffusion length) is
injected by a boundary perturbation as described in Section 3.1.2.
The background profile spans 1 < x < 2. The resolution is given in
number of grids used to resolve each wavelength, the whole domain

Specifically, we add the term vV2v to the momentum equation, where v is
chosen to be small enough not to affect the overall profile, but large enough
to damp out high frequency sound waves.

121n keeping the boundary free, the values at the ghost zones should depend
on the last active zones. Instead, inbound sound waves carry information from
outside in. This usually is not a problem when the inbound sound waves are
stable, but here they are problematic.

MNRAS 513, 4464-4493 (2022)

Z20z Jaquiaideg /( uo Jasn eiegieg ejuesg ‘eluiolijed 10 Ausiaaiun Aq §/8€/59/v9vb/S/S L G/olonie/seiuw/woo dnoolwepeoe//:sdiy woll papeojumod



4474

T. H. N. Tsung, S. P. Oh and Y.-F. Jiang

Table 1. Parameters for simulation of linear growth of acoustic waves. Column 1: case identifier. Column 2: direction of
propagation up or down the CR pressure gradient. Column 3-5: parameters defined in equation (38). Column 6: power-law
index of the background P, profile defined in equation (30). Column 7: wavelength of the acoustic wave in units of it o
= K/cs, o. Column 8: injection amplitude. Column 9: resolution, the number of grids each wavelength is resolved with.

Direction of Injection
Identifier propagation  «g Bo 10 ¢ A (lgir,0) amplitude Resolution (A/Ax)
alphalbetaleta.01phi2 Up 1 1 0.01 2 1 1.84 x 1073 109
alphalbetaleta.1phi2 Up 1 1 0.1 2 0.1 1.99 x 1074 109
alphalObetaleta.1phi2 Up 5 1 0.1 2 0.1 1.99 x 1073 109
alphalbeta.letalphi2 Up 1 0.1 1 2 001 235x107* 109
alphalbeta.0letalOphi2 Up 1 0.01 10 2 0.003  3.47 x 10~ 328
alphalbeta.leta.1phil Up 1 0.1 0.1 1 0.1 1.57 x 107 219
alphalbeta.leta.1phi.5 Down 1 0.1 01 05 0.1 144 x 1074 437
alphalbeta.leta.1phi2 Up 1 0.1 0.1 2 0.1 1.29 x 1072 109
alphalbeta.Seta.1phi2ms.03¢ Up 1 0.5 0.1 2 0.1 1.87 x 1073 109
¢ A background flow with Mg = 0.03 (see equation 38) is initiated for this case.
alphalbetaleta.01phi2 alphalbetaleta.1phi2 alphaSbetaleta.1phi2
0.002 . —
0.001 3 0.0005 1
= 0.000 = = 0.0000 H
=001 5 —0.0005
—-0.002 T T T T T T T T T T
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Figure 7. Simulation of linear growth of acoustic waves. An acoustic wave is injected according to the description described in Section 3.1.2 with the parameters
listed in Table 1. In each panel, the identifier is given at the top. The blue curve shows the simulated velocity profile of the growing acoustic wave. The analytically
predicted amplitude (using equation A22) is displayed in black dashed line for comparison.

is typically resolved with 16384 grids. The reduced speed of light
is ¢ = 1000. The results are displayed in Fig. 7. In each panel, the
velocity profile is given by the blue solid curve. In the linear growth
phase, the velocity amplitude of the acoustic perturbation can be
analytically expressed, to first-order approximation, as

1 mi 1
) = D exp § = In W ST xi ¢ 43)
2 P 2
where Z(x, x;yj), given in equation (A23), is an integral involving the
growth rate from the location of injection xj,; to some point x along

the path of propagation. Overall, there is good agreement between the
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simulated amplitude growth and analytics, except in the case where
A = lgifr, 0 (case alphalbetaleta.01lphi2, panel in the upper
left-hand corner), for which kk/cs ~ 1 and the growth rate formula
(equation 21) is no longer valid. In particular, for kx/c; < 1 the
acoustic mode bifurcates into additional hybrid modes (appendix A).
These modes have lower growth rates than the asymptotic small
wavelength k«k/cg > 1 limit.

In Fig. 8, rather than injecting a sound wave from the right
boundary, we set up a Gaussian perturbation of amplitude 103 and
characteristic width «/cy, in the middle of the simulation domain.
Both the forward and backward acoustic modes are unstable at the
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Figure 8. Growth comparison of forward and backward propagating waves.
The black dashed line shows the initial velocity profile with a slight Gaussian
perturbation at x = 1.5. This perturbation then decomposes into a forward
moving (to +x) component and a backward (to —x) component. Their
evolution is captured at a later time by the blue solid line. As expected,
the backward component grows more rapidly. The background ag = 1, o =
0.5, no = 0.01, and ¢ = 2. The Gaussian bump has amplitude 1073 and
characteristic width of «/c.

Gaussian bump. The background mode clearly grows faster than the
forward mode, as expected.

All in all, we have shown that acoustic perturbations can be
amplified by CRs in various settings and the growth rate is consistent
with that expected from linear theory. In particular, in the fluid rest
frame, waves propagating up the CR gradient are more unstable.

3.3 Acoustic instability: non-linear outcome

We list, in Table 2 the simulations we have used to probe the
non-linear regime, the parameters used and some relevant results.
These include the change in mass flux, as well as AP, and AF. of
the time averaged profiles. As discussed in Section 2.2, AP, and
AF, probe the net momentum and energy transfer. We show the
ratios AP./APy, AF./AF. between the non-linear staircase and
the background profile.

3.3.1 General observation of the non-linear behaviour

The following proceeds after the linear growth phase. Growth of
acoustic waves is slowed when the amplitude becomes large enough
such that the CR pressure gradient becomes zero at the wave extrema
(left most panel of Fig. 9). At these locations, CRs decouple from
the gas, truncating CR heating, which is the source of energy driving
the instability. Elsewhere gas and CRs are still coupled, so growth
continues, though growth rates become strongly inhomogeneous.
The local patches of CR gradient zeros expand, forming a series
of CR plateaus separated by jumps in CR pressure, i.e. a staircase
structure that travel up the P. gradient (second left of Fig. 9). Gas
and CR remain coupled at the jumps, so the instability continues
to act, stretching the jump heights. Each CR jump can be seen to
associate with a density spike. Local conditions drive a differential
in non-linear growth for each jump, causing the CR plateaus to rise
or drop at varying rates. When one plateau levels with another, the
jump between them vanishes, they merge and move thereafter as
one (second right of Fig. 9). Occasionally, newly seeded modes with
wavelengths at or smaller than the jump width would arise at a stair
jump, breaking it up into a series of sub-staircases (right most panel
of Fig. 9). When a stair propagates into a region for which 8 >
0.5, where acoustic waves are damped, the jump will shrink. As the
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instability saturates, we see continual staircase propagation, breaking
and merging of the staircase jumps in an overall time-steady manner.

Fig. 10 depicts a snapshot which clearly shows the aforementioned
staircase structure in the P, profile (see the bottom left-hand panel of
Fig. 10). The morphology of the P profile is distinct from the other
profiles, particularly the gaseous profiles, in several ways. First, P,
decreases monotonically whereas the density exhibits small scale
shocks. Secondly, whereas the P, jumps, as well as gas density and
velocity fluctuations are of order AP./P. ~ Ap/p ~ Av/v ~ 1, the
gas pressure and temperature exhibit extreme dips, APy/P, ~ AT/IT
>> 1. The origin of these dips will be discussed in Section 3.3.2.

In Fig. 11, we illustrate the meaning of the terms jump width
Ax, jump height AP, and plateau H, which we use throughout the
rest of this paper. We often express the jump width as w = Ax/lyi,
normalized with respect to the local diffusion length, while the jump
height is often expressed as h = AP /P, i.e. the logarithmic change
in P..

3.3.2 Zoom-in of staircase jumps

The P. jumps can provide intense local heating and momentum
transfer as they propagate, potentially altering the overall dynamics
of the gas-CR fluid. In this subsection we zoom-in on to a typical
jump and explain the physics behind various features.

Fig. 12 shows the CR pressure, density and gas pressure profiles
across one such jump. Since the instability is dominated by backward
propagating waves (see Fig. 8), like most others this jump is
propagating to the left, up the CR gradient. We observe for other
jumps the direction of propagation is always towards increasing P
in the rest frame of the fluid, such that only in the supersonic part
of the flow do the stairs propagate down the P, gradient in the lab
frame. Moving across the zoom-in profiles from left to right, the
P. jump is preceded by sharp density and gas pressure increase.
These are purely hydrodynamic shocks, across which P, remains
constant and decoupled from the gas. The actual P, jump begins
from the post-shock density peak, tracing the falling side of the
acoustic disturbance. The jump is ensued by a CR plateau.

Across a hydrodynamic shock, one can infer the shock speed vy,
by imposing mass continuity

)
vy = M (44)

where vy, v, are the fluid velocities in the lab frame and the subscripts
1 and 2 denote the fluid quantities upstream and downstream of the
shock, respectively. The density and gas pressure increase follow
the Rankine—Hugoniot shock jump relations, as shown by the black
dashed lines. Proceeding down the jump, CR, and gas are coupled.
In the rest frame of the shock the bottleneck equation (22) is
satisfied, as demonstrated by the green dashed line. The gas and CR
profiles across other jumps also exhibit similar structure: a purely
hydrodynamic shock at a CR plateau, followed by a jump in P, and
an ensuing CR plateau.

The generation of gaseous shocks preceding each P, jump follows
from wave steepening of acoustic waves, where differences in phase
velocities between the wave crest and trough causes overtaking and
a discontinuity to be formed. Waves generated in this manner are
usually weak and propagate at approximately the sound speed in the
fluid’s rest frame (thus appearing to propagate down the CR gradient
only for supersonic flows). However, with thermal cooling these
initially weak shocks can evolve into strong shocks, as we describe
below.
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Table 2. Simulation parameters for non-linear evolution of the acoustic instability. We have listed out only the test cases explicitly mentioned or used for
figures in this paper. Column 1: identifier of the test cases. Column 2-7: «, Bo, 1o, ¢ defined in (30) and (38). Column 8: resolution given in grid size. Column
9-11: ratio of the time averaged mass flux, (AP.) and (AF¢) to the initial values. Column 12: effective CR adiabatic index (defined by equation 50).

Identifier ag Bo 7o ) c Resolution (Ax) (M)/Mo  (AP)IAPyy (AF)/AFy — Vefr
NL4096alpha.5betaleta.01phi2c200 0.5 1 0.01 2 200 2.20 x 1073 0.969 1.120 0.947 1.28
NL4096alpha.6betaleta.01phi2c200 0.6 1 0.01 2 200 220 x 1073 0.977 1.184 0.932 1.20
NL4096alpha.7betaleta.01phi2c200 0.7 1 0.01 2 200 220 x 1073 1.063 1.207 0.911 1.17
NL4096alpha.8betaleta.01phi2c200 0.8 1 0.01 2 200 220 x 1073 1.123 1.230 0.915 1.20
NL4096alpha.9betaleta.01phi2c200 0.9 1 0.01 2 200 2.20 x 1073 1.175 1.234 0.899 1.19
NL4096alphalbetaleta.01phi2c200 1 1 0.01 2 200 220 x 1073 1.384 1.309 0.907 1.25
NL4096alphalbetaleta.01phi2c400 1 1 0.01 2 400 2.20 x 1073 1.382 1.321 0.890 1.22
NL4096alphalbetaleta.01phi2c800 1 1 0.01 2 800 220 x 1073 1.375 1.313 0.883 1.22
NL4096alphalbetaleta.01phi2c1000 1 1 0.01 2 1000 2.20 x 1073 1.446 1.310 0.868 1.23
NL4096alpha2betaleta.01phi2c200 2 1 0.01 2 200 220 x 1073 1.713 1.269 0.852 1.16
NL4096alpha3betaleta.01phi2c200 3 1 0.01 2 200 220 x 1073 1.825 1.210 0.844 1.12
NL4096alphadbetaleta.01phi2c200 4 1 0.01 2 200 220 x 1073 1.861 1.186 0.844 1.10
NL4096alphaSbetaleta.01phi2c200 5 1 0.01 2 200 2.20 x 1073 1.890 1.187 0.848 1.09
NL4096alpha6betaleta.01phi2c200 6 1 0.01 2 200 220 x 1073 1.901 1.175 0.846 1.09
NL4096alpha7betaleta.01phi2c200 7 1 0.01 2 200 2.20 x 1073 1.925 1.158 0.848 1.09
NL4096alpha8betaleta.01phi2c200 8 1 0.01 2 200 220 x 1073 1.944 1.141 0.843 1.09
NL4096alpha9betaleta.01phi2c200 9 1 0.01 2 200 2.20 x 1073 1.366 1.120 0.813 1.09
NL4096alphalObetaleta.01phi2c200 10 1 0.01 2 200 220 x 1073 1.579 1.107 0.825 1.09
NL1024alphalbeta.02eta.01phi2c4000 1 0.02 0.01 2 4000 8.79 x 1073 5.635 1.408 0.671 1.22
NL1024alphalbeta.04eta.01phi2c3000 1 0.04 0.01 2 3000 8.79 x 1073 4318 1.393 0.739 1.25
NL4096alphalbeta.05eta.01phi2c2000 1 0.05 0.01 2 200 8.79 x 1073 4232 1.423 0.752 1.25
NL1024alphalbeta.06eta.01phi2c3000 1 0.06 0.01 2 3000 8.79 x 1073 3.943 1.376 0.727 1.25
NL1024alphalbeta.08eta.01phi2c2000 1 0.08 0.01 2 2000 8.79 x 1073 3.354 1.364 0.783 1.27
NL2048alphalbeta.leta.01phi2c1000 1 0.1 0.01 2 1000 439 x 1073 3.078 1.666 0.858 1.31
NL2048alphalbeta.3eta.01phi2c550 1 0.3 0.01 2 550 439 x 1073 2.140 1.500 0.888 1.26
NL2048alphalbeta.5eta.01phi2c400 1 0.5 0.01 2 400 439 x 1073 1.680 1.463 0.919 1.26
NL4096alphalbeta.6eta.01phi2c200 1 0.6 0.01 2 200 220 x 1073 1.685 1.433 0.889 1.25
NL16384alphalbeta.6eta.01phi2c200 1 0.6 0.01 2 200 5.49 x 1074 1.685 1.505 0.926 -

NL4096alphalbeta.8eta.01phi2c200 1 0.8 0.01 2 200 220 x 1073 1.466 1.352 0.908 1.26
NL4096alphalbeta2eta.01phi2c200 1 2 0.01 2 200 220 x 1073 1.091 1.117 0.864 1.17
NL4096alphalbeta3eta.01phi2c200 1 3 0.01 2 200 220 x 1073 0.937 1.053 0.914 1.17
NL4096alphalbetadeta.01phi2c200 1 4 0.01 2 200 220 x 1073 0.896 1.036 0.953 1.16
NL4096alphalbetaleta.02phi2c200 1 1 0.02 2 200 220 x 1073 1.378 1.299 0.879 1.23
NL4096alphalbetaleta.04phi2c200 1 1 0.04 2 200 220 x 1073 1312 1.271 0.880 1.21
NL4096alphalbetaleta.06phi2c200 1 1 0.06 2 200 220 x 1073 1.209 1.271 0.899 121
NL4096alphalbetaleta.08phi2c200 1 1 0.08 2 200 220 x 1073 1.290 1.255 0.871 1.18
NL4096alphalbetaleta.1phi2c200 1 1 0.1 2 200 220 x 1073 1.211 1.260 0.884 1.18

Differential growth rates

Newly seeded staircase

/
%

Figure 9. Non-linear growth and generation of the staircase. Time proceeds from the left panel to the right. Initial growth of acoustic waves generates a
series of VP, zeros, which then expand to form a series of staircases. Differential non-linear growth rates of the jumps causes stronger jumps to expand at
the expense of weaker jumps, merging into bigger jumps. Subsequently, as merging slows down and new modes grow, the stair jumps fragment into smaller
sub-steps.

Merge

Merge
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Figure 10. Density (top left-hand panel), velocity (top middle panel), gas pressure (top right-hand panel) and CR pressure (bottom left-hand panel), CR
flux (bottom middle), temperature (bottom right, defined in code units by 7' = Py/p) plots of the non-linear evolution of the acoustic instability at ¢ =
2.84 (blue solid lines). The initial profiles are shown by black dashed lines for comparison (¢ = 0). A staircase structure can be seen in the CR pressure.
Plasma B decreases from 0.6 to 0.017 from x = 1 to 6, going below the stability threshold B = 0.53 at x & 1.1. The case shown is a time slice taken from

NL4096alphalbeta.6eta.0lms.015psi0c200.

Plateau H

Jump Height AP,

TRREEEE!

Jump Width Ax

Figure 11. Clarification of jump width, height, and plateau.

The CR staircase is characterized by sudden drops in CR pressure
(the jumps), connected by regions of constant CR pressure (the
plateaus). CR and gas are decoupled at the plateaus and coupled at
the jumps. Thus, there are no CR forces or CR heating at the plateaus,
but very strong CR momentum and energy transfer to the gas at the
jumps, where V P, is much larger than in the background profile. This
rearrangement of where CR momentum and heat is deposited causes
the entire region to fall out of force and energy balance. Regions of
excess cooling (the plateau) abut regions of intense CR heating (the
jump). The cooling in plateaus causes gas pressure and temperature to

have extreme dips,'3 and pressure gradients between the plateau and
jump drives a strong shock. This shock can be considerably stronger
and different in character from simple steepening of an unstable
acoustic wave. It is driven by the thermodynamics of the staircase
structure when cooling is present. Cooling itself can create density
peaks which create bottlenecks, and further alters the structure of the
staircase.

3.3.3 Staircase finder

Before we delve into the dynamical implications of the staircase, we
shall determine the saturation of the non-linear staircase structure.
To this end, we have developed a simple staircase finder to identify
staircase jumps in a P, profile. In light of equation (8), we deem the

3In our simplified setup, cooling is artificially enforced to be equal to CR
heating (plus adiabatic heating) in the initial steady-state profile (see equations
36 and 37), and meant to mimic a system initially in thermal equilibrium.
Cooling is independent of time. If the initial CR heating is strong, so is cooling
and gas pressure and temperature will fall very quickly at the CR plateaus. A
more realistic scenario would use standard cooling functions which depend on
plasma density and temperature. This would produce initial pressure profiles
which are no longer power law, and time-dependent cooling. We are studying
this separately (Tsung et al., in preparation), but the current simplified setup
illustrates much of the key physics.
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Figure 12. Zoom-in plot of the CR pressure (top panel), density (middle
panel) and gas pressure (bottom panel) across a typical staircase jump that is
propagating up the P, gradient (i.e. left in these plots). The blue solid curves
are the simulation data. A stair jump in general consists of four sections, colour
coded by different background shades. The yellow section denotes the pre-
jump plateau where CR and gas are uncoupled. The orange section denotes the
hydrodynamic shock. The red section denotes the actual stair jump, where CR
and gas are coupled. The blue section denotes the entailing plateau where CR
and gas becomes uncoupled again. The green dashed curve in the P, plot (top
panel) is the analytic P, profile calculated from equation (22) in the shock’s
rest frame for the simulated density profile. Given the upstream condition and
the shock’s Mach number, the Rankine—Hugoniot shock jump relations return
the post-shock density and gas pressure, as displayed by the horizontal black
dashed lines in the density plot, which closely match those in simulation.

gas to be coupled with CRs if the following condition holds:

Ax VA
- > gthres*a (45)
L c

(4
where Ax is the grid spacing (of order cAr), L. is the local P,
scale height, and Oy is some threshold parameter. Physically,
this condition determines whether the time-dependent term in
equation (6) is negligible. If so, there is strong coupling, and the
CR flux attains its steady state form (equation 9). We have found
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Onres ~ 0.01 to work well in identifying jumps in the staircase here,
though note that this value is likely situation dependent. Every grid
cell is categorized as ‘coupled’ or ‘uncoupled’ according to this
criterion. If a ‘coupled’ grid has an ‘uncoupled’ grid on its left and
a ‘coupled’ grid on its right, it is deemed the start of a jump and
vice versa for the end of a jump. Once the stair jumps have been
identified we then record the number of jumps along the profile, as
well as the jump widths, heights, etc. Fig. 13 shows a snapshot of
P with vertical dashed green lines indicating the start of a jump and
red dashed lines indicating the end of a jump. This method is quite
robust in capturing staircase jumps.

3.3.4 Quasi-static state of the staircase

The staircase finder was applied over time. Fig. 14 shows the
evolution of the staircase at the first few time instances while Fig. 15
shows the number of stairs (each pair of green and red dashed line is
counted as one stair) captured as a function of time. From r = 0—0.1
there is an initial surge of stair jumps seeded by numerical noise
due to the acoustic instability. This time period is consistent with
the growth time fyow ~ k/c2 ~ 0.01 for the case displayed, where
several e-folds are required to reach the non-linear stage. There is a
large number of them because small scale perturbations from noise
each grow until VP, = 0 is reached, forming plateaus. From 7 =
0.1-0.5, the number of jumps drops drastically as the individual
CR plateaus expand and merge. Since non-linearly steepened sound
waves travel ~cg, we expect the difference in propagation speed
between adjacent jumps to be ~c;, and the merging time-scale ~H/c;,
the sound crossing time across a plateau (the merging time-scale in
general scales as H/Vpypp, Where vpun, is the jump propagation speed.
In the presence of strong shocks due to cooling at the plateaus,
Vpump does not scale as ¢;. However, at the early stage of staircase
formation, before cooling can take action, vyump ~ ¢ is generally
true). Do all the CR plateaus simply merge into one big jump? The
answer is no. From 7 = 0.5 onwards the number of staircase steadied
to around 15, fluctuating from 5 to 30. The number steadies due to
two main reasons. First, merging of the CR plateaus have slowed
down (the time for the stairs to merge lengthens with plateau width
H). Secondly, newly seeded acoustic modes (seeded by numerical
noise or propagating acoustic waves) at the CR jumps where CR
and gas are still coupled lead to growth of a series of smaller
CR stair jumps. This is similar to what happened at r = 0—0.1,
but occurring only at the jumps. This leads to a fragmentation of
a stair jump into smaller sub steps. The relative independence of
these two factors causes fluctuations in stair numbers for > 0.5. In
this way, the P, profile settles into a quasi-steady state marked by
occasional merging, fragmentation and propagation of the staircase.
In summary, the evolution of a staircase structure is characterized
by (1) an initial surge of jumps seeded by perturbations, scaled
by the growth time-scale fgy, followed by (2) merging of the
jumps on some merger time-scale e and at last 3. a quasi-static
state balancing fragmentation and merging of stairs. Since the CR
acoustic instability is a local instability, the staircase is agnostic to
the simulation box size. Extending the simulation domain at fixed
resolution (more specifically at fixed Ax/lgg) will not change the
number of jumps per unit box length. Higher resolutions do seed
smaller scale instabilities, as shown in Appendix B.

3.3.5 Bottleneck effect with a moving staircase

In this section, we recall and extend our discussion of the bottleneck
effect (Section 2.2) in the context of the non-linear profile arising
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Figure 13. Staircases are identified using the algorithm described in Section 3.3. The P, profile is plotted in blue solid line with green (red) dashed lines
indicating the beginning (end) of a staircase jump. The zoom-in panels show with greater clarity parts of the P, profile with the identified jumps, showing the
staircase finder to be robust. The case shown is a time slice taken from NL4096alphalbeta.6eta.0lms.015psi0c200.

from the acoustic instability (Fig. 10). In the presence of non-linear
acoustic disturbances, the bottleneck effect causes a CR plateau
to be formed on the rising side of the disturbance (viewed from
the standpoint of the streaming CRs). Meanwhile CR and gas are
coupled on the falling side, forming CR jumps. The plateaus and
jumps occur one after another, in conjunction with successively
rising and falling acoustic disturbances, forming a staircase. If the
density and velocity profiles were stationary, with all the peaks held
fixed, P. would acquire a stationary profile as well, whose profile
can be obtained through a ‘convex hull’ procedure, as shown by
the dashed curve in the top plot of Fig. 5. The convex hull is the
minimal surface that encompasses the entire (v + v4)~! profile.'*
P. can then be obtained via equation (22). Fig. 16 shows one such
example of reconstructed P, profile using the convex hull procedure.
Comparing the reconstructed P, profile against actual simulations
shows that even though the locations of the P jumps can be identified
reasonably, the magnitude of the individual jumps are incorrectly
estimated.

Clearly, the profiles are not stationary, since the jumps (and shocks)
are propagating. Could this be the problem? equation (22) only holds

4The steps to constructing a convex hull is described in greater detail here.
(1) Identify the highest peak of the (v 4+ va)~' profile. Incoming CRs will
bottleneck all the way up to here. (2) Trace the falling side of the (v +
va)~! peak while searching for the next highest peak. CRs will bottleneck
up to here next. (3) By repeating this procedure over successively lower (v +
va)~! peaks a convex hull can be constructed for the (v + v)~! profile. The
convex hull is given by the dashed line in the top plot of Fig. 16. (4) Finally,
the P, profile is obtained by applying equation (22) using the convex hull of
(v +va)

in the rest frame of the jumps. In the lab frame, the conserved quantity
is thus:

P.(v + vA — Vbump)’® = const (46)

instead, where v is the lab frame velocity profile and vpun, is the
propagation velocity of the jump determined by imposing continuity
across the preceding hydrodynamic shock (equation 44). This is the
same as equation (28), aforementioned in Section 2.2. In Fig. 17,
we show that once equation (28) is used, good agreement is
restored. Since all the jumps propagate at different velocities, the
frame transformation has to be applied separately to each jump to
reconstruct an entire staircase, using the convex hull approach.

3.3.6 Jump widths, heights, and plateau widths

‘We now discuss some characteristic scales in the staircase, such as
the jump width, heights, and plateau widths. We begin with the jump
width Ax. As discussed in Section 2.1, the growth rate increases with
wavenumber for kk/c; S 1, flattening to a constant value for kic/cg 2,
1. With sufficient resolution, modes with wavelength less than /g ~
k/cs — the diffusion length, will grow the fastest and form non-linear
stair jumps. Modes with wavelength close to the resolution grid size
will be susceptible to numerical diffusion and damp. Thus, we expect
the distribution of stair widths Ax to be suppressed on small scales
AX < Axes due to numerical diffusion, and to be suppressed on large
scales Ax > Iy due to lower growth rates.

With the staircase finder one can also study the distribution of jump
widths. We tally up the jump widths and display their distribution
dn/dln w in Fig. 18, where w = Ax/lj4is; s the jump width normalized
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Figure 14. The evolution of the staircase at the first few time instances is displayed. Starting with smooth a background profile at t = 0, VP, zeros begin to
appear due to the acoustic instability at # = 0.05, followed by a surge of stairs at # = 0.1. The stairs subsequently merge, propagate and fragment to new stairs.

The case shown is NL4096alphalbeta.6eta.0lms.015psi0c200.
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Figure 15. Number of staircases as a function of time. There is an initial
surge of stairs from = 0 to 0.1, followed by a merging phase from # = 0.1 to
0.5 and at last a quasi-steady state from # = 0.5 onwards where the the number
of staircases fluctuates about a constant value. The zoom-in panel is displays
the 0 < 1 < 0.8 section in greater detail, showing clearly an initial phase of
staircase surge (0 < r < 0.08) followed by the merging phase (0.08 < ¢ < 0.5).
The case shown is NL4096alphalbeta.6eta.0lms.015psi0c200.

by the local diffusion length. The distribution peaks at w ~ 1,
truncating above w ~ 1 exponentially and, as shown by the grey
region,'® close to the grid scale. This shape is broadly consistent

I5The lower and upper limits of the grey region in Fig. 18 are obtained
by dividing the grid size Axys (which is uniform in our simulations)

MNRAS 513, 4464-4493 (2022)

with expectations. In general, the jump width typically spans sizes of
order the diffusion length, Ax ~ lgs. Substituting values appropriate
for halo gas, « ~10?8-10% cm?s~! and ¢, ~ 100 kms~!, one would
find that lgir ~ 1—10kpc — orders of magnitude larger than small-
scale cool structures in the CGM (which may be of order of a
parsec; McCourt et al. 2018), and within reach of observational
and cosmological simulation resolution limits. We briefly discuss
observational consequences in Section 4.3.

Fig. 19 shows a distribution of plateau widths H (in units of L.).
A power law of index —0.21 emerges. The physics of these power
laws is interesting, but we will defer exploration to future work. Note
that the relatively flat distribution suggests the mean plateau width

by the maximum and minimum local diffusion lengths registered at the
jumps, respectively. The local diffusion length at each jump is calculated
by «/{(cs)jump, Where ( - )jump indicates average across the jump. The
grey region is therefore an approximate indication where jump widths
may be under-resolved. Note that some well-resolved jumps may still fall
within the grey region, for example, one can imagine a well-resolved jump
width spanning ¢ grids, i.e. Ax = gAxys. Then Ax/lgitt = qAXres/laite =
q(Axres/Laift, min)(Ldir, min/laitr). But note that Axres/lyifr, min iS the upper limit
of the grey region, so if q(lgiff, min/lgitr) < 1, this jump width would still be
placed in the grey region. Conversely, jump widths above the grey region
is guaranteed to be resolved by more than one grids. Similarly, in 19, the
lower and upper limits of the grey region are obtained by dividing the grid
Size AXres by the maximum and minimum local initial background CR scale
heights at the plateaus. The local initial background CR scale height at each
plateau is calculated by (Lco)plateaus Where Leo = Peo(x)/|VPeo(x)] is the CR
scale height of the initial profile. There are also physical constraints on jump
width set by CR mean free paths, which coincidentally are not very different
from our numerical limits (see Appendix B).
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Figure 16. Top plot: (v + va)~! (solid blue line) and its convex hull
(black dashed line). Bottom plot: The reconstructed P. profile from the
convex hull (black dashed line) and the actual P profile (blue) assuming
profile stationarity. The zoom-in plots show with greater clarity how the
convex hull procedure, assuming stationarity, fail in some instances to
capture the correct jump heights. The case shown is a time slice taken from
NL4096alphalbeta.6eta.0lms.015psi0c200.

Figure 17. For a given density and velocity profile, we evaluate the
corresponding P. profiles from equations (28) and (22) with and without
including vjump, respectively, and compare them against P. from simulation.
Blue solid line: Simulation data. Red dashed line: Estimated P, profile without
Vjump- Green dashed line: Estimated P, profile with vjymp.

The CR staircase and the acoustic instability — 4481
10°
107!
)
=} -2
= 10
=
=

1073

10~

1072 10! 10° 10! 102
Width w (Ax/lgigr)

Figure 18. Distribution (dn/dln w) of jump widths w (in units of [, i.e.
w = Ax/lgitr), showing a peak at Ax ~ lgir (w ~ 1) and a cutoff above
and below. Note that the diffusion length /g is calculated locally at each
jump by averaging «/cs across the jump. The grey shaded region, with the
limits obtained by dividing the grid size by the maximum and minimum local
diffusion lengths, respectively, denote jump widths that may be underresolved
(see the footnote in Section 3.3.6 for more details). The case shown is
NL16384alphalbeta.6eta.0lms.015psi0c200.
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Figure 19. Distribution (dn/dln (H/Ly)) of plateau widths H (in units of
the initial background CR scale height L.). It has a power-law index
of —0.21 and is bounded by H ~ L. The grey shaded region, with
the limits obtained by dividing the grid size by the maximum and min-
imum Lo, respectively, denote plateau widths that may be underresolved
(see the footnote in Section 3.3.6 for more details). The case shown is
NL1l6384alphalbeta.6eta.0lms.015psi0c200.

(H) = [ Hdn/dH dH would be skewed towards towards the higher
end ~L., consistent with simulations, which shows that profile is
dominated by large plateau widths. Thus, the CR scale height sets
both an upper bound and a characteristic scale for plateau widths.

Finally, the distribution of jump heights AP./P. is displayed in
Fig. 20. It cutting off sharply as AP./P. approaches unity. This
distribution can be roughly characterized as a power law followed by
an exponential cutoff at some characteristic scale, and be reasonably
fitted with a Schechter function

dl_ £ - =4/«
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Figure 20. Distribution (dn/d¢) of jump heights (in units of the local
P.) with fitting parameters v and h, (equation 47). The case shown is
NL16384alphalbeta.6eta.0lms.015psi0c200.
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Figure 21. Two snapshots of P. taken at the same time in which
the bottom test case has a CR pressure 10 times higher than
the top case, all other parameters held constant. The bottom test
case has considerably smaller plateau widths and jump height than
the top case, consistent with the discussion in Section 3.3.6. The
cases shown are NL4096alphalbetaleta.0lms.015psi0c200 and
NL4096alphalObetaleta.0lms.015psi0c200.

where ¢ = AP./P. = Aln P, is the logarithmic jump height, with v
and ¢, denoting the power-law index and characteristic jump height,
respectively.

How do these scales change as we change physical parameters?
For instance, in Fig. 21, we show the effects of a higher CR pressure.
The stairs appear more clustered and there are many more of them,
meaning that both the plateau widths and the jump heights are
reduced. In Fig. 22, we show how ¢, (the exponential cutoff as
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Figure 22. Variation of the characteristic jump height ¢ .. (defined in equation
47) for arange of co = Po/Pgo (top, fixing Bo = 1,10 =0.01), Bo = 87‘[Pg0/32
(middle, fixing g = 1, no = 0.01) and no = «/y cLcocso (bottom, fixing g =
1, Bo = 1). The legends indicate the power law index found from logarithmic
fitting when there is a prevailing trend. Log—log plotting is used for the top
and bottom panel.

defined in equation 47) changes as we change parameters at the base
(a0, Bo, no, defined in equation 38). Since our pressure profiles are
power law, this amounts to an overall rescaling; note in particular
that &g is independent of x. We find that ¢, o< o 2 = (Py/ Pyo)~17?
for @y > 1 (and saturates at ¢, = AP./P. ~ 0.4 for ay < 1). In
addition, ¢, shows little dependence on By, 1.

These scaling relations are particular to our setup and likely
sensitive to some key assumptions (e.g. about background profiles,
as well as heating and radiative cooling). They should therefore be
taken with a grain of salt; they are unlikely to be universal for CR
staircases. We can none the less understand some qualitative features.
Suppose the number of staircases per scale height is n. = L./H, so
that ¢, = AP /P,  1/n. < H, where both ¢,, H are representative
values of the logarithmic height and plateau width, respectively.
The steady state number of staircases arises from a balance between
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staircase production (via the acoustic instability) and destruction (via
merging). From equation (21), the linear growth rate of the acoustic
instability is

c 1\* 1 1\ dP.
1_‘gmw’\’; 1+W +E 1+W a (48)

dP./dx can be approximated as AP./Ax. The jump width scales
roughly as the diffusion length while AP, is observed to be at most
of order P. (e.g. in Fig. 10). Therefore, the term in equation (48)
involving dP./x is at most of order (cf/x)(l + l/ﬁl/z). A close
examination (not shown) of the jumps shows that the first term
in 48 usually dominates, and for simplicity we ignore the second
term. On the other hand, the merger rate scales roughly as the shock
crossing time across a plateau. We argued in Section 3.3.2 that the
shock is driven by pressure gradients. The free energy for the shocks
comes from CRs, such that P, ~ pv3 . Thus, the characteristic shock
propagation velocity is vy, ~ ¢ ~ +/P./p. Staircases ‘merge’ when
one shock (typically the stronger shock, which is propagating faster)
overtakes another. If there is a distribution of shock speeds, and
the characteristic spread is of order ~c,., then the merger rate is
Cimerge ~ Hlce. If we set Dgow ~ ¢2/k 10 Timerge ~ Hlce, we obtain
H o ¢! oc P72, which reproduces the scaling ¢, o ™! for ag
> 1. However, we caution that the growth and merger rates estimates
we use are very crude, and this argument do not capture the relative
independence with respect to Sy, n¢. Since it is unclear how universal
these scalings are, we do not pursue this further.

3.3.7 Dynamical effect and averaged properties

The presence of staircases significantly changes outflow dynamics.
The decoupling of gas from CRs at the plateaus deprives it of CR
pressure support and Alfvenic heating. Great P, support and intense
heating do occur, however, at the CR jumps, so a fluid parcel not
co-propagating with the staircase experiences alternating pressure
support and heating as it transverses plateaus and jumps. The question
is to what degree do the spasmodic pressure support and heating due
to stair jumps balance the deficits at CR plateaus? And how does it
affect the averaged profiles?

In Section 3.3.5, we observed for a moving stair jump, it is the
quantity given by equation (28) that is conserved. A moving jump,
as shown in Figs 3 and 17, can cause the jump height to change as
compared to when it is stationary.'® In Section 2.2 we discussed, for
a steady state profile, the total momentum and energy transfer are
given by AP, and AF.. We also showed, in Fig. 4 that provided
none of the density bumps exceed the global maximum of the
background and are stationary, there is no change in net momentum
and energy transfer as compared to when there are no bumps. Now,
the staircase is dynamically moving, merging and fragmenting,
so a steady state profile in which all the time derivatives vanish
is impossible. However, averaged over time, the time derivatives
do vanish, and (AP.) and (AF.) do represent the time-averaged
momentum and energy transfer (note that angle bracketed quantities
are time averaged). Since AP, is the sum of jump heights, in
which each is affected by the jump velocity vjymp, the time averaged

I6]f one estimates the ratio of P. before and after the jump to be
Pe. after/Pe, before = A/B, where B > A then adding a positive constant C
to the numerator and denominator would lead to an increase in the ratio,
ie. (A + O)/(B + C) > A/B. For example, adding 2 to the numerator and
denominator of 1/4 gives 3/5 > 1/4. This means the jump height is lessened.
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momentum transfer therefore is deeply related to the jumps’ motion,
as is the time averaged energy transfer.

In addition to (AP.) and (AF,), the time averaged mass flux (M)
is also a quantity of interest as in winds it controls the mass loading
and transport of materials out to the CGM. We report numerical
results for these quantities from our simulations, and suggest physical
motivations for our findings. We defer detailed modeling to future
work.

In Fig. 23, we present an example of the time averaged profiles
resulting from the staircase. The time averaged profiles (blue solid
lines) are placed in juxtaposition to the initial profiles (black dashed
lines). Overall, the change is quite modest. Apart from the shifts in
(P.) and mass flux (M) = (pv), the other profiles remain relatively
close to the initial profiles. In Table 2 and Fig. 25, we collect and
display (M), (AP,.), and (AF,) for the test cases we have performed.
Overall, the changes to (AP.) and (AF.) are very modest, of order
~ 10 per cent over 1-2 decades in the parameters probed. The main
interesting change is to the mass outflow rate, which changes by a
factor of ~2 over 1.5 decades in «, and by a factor of ~6 over 2
decades in By.

It is perhaps surprising that changes to global energy and mo-
mentum transfer are so modest. After all, the CR staircase produces
a drastic rearrangement of CR forces and heating — cutting it off
through a majority of the profile, and leaving only a small fraction (the
jumps) where the CRs are coupled, which receive intense forces and
heating. If the staircase (and associated bottlenecks) were stationary,
this state of affairs would indeed be deeply destabilizing. However,
a flux tube threading propagating bottlenecks (in this case, shocks)
still receives heat and momentum over its entire length, albeit in a
very intermittent manner. Individual fluid elements experience brief
periods of intense forcing and heating, followed by longer stretches
without any CR interaction. But as we have seen, averaged over time,
each fluid element receives heat and momentum comparable to the
background profile. Thus, while there can be strong local fluctuations,
the global flow is not destabilized. For instance, the time-scale for a
fluid element to fall out of force balance is the free fall time, which is
of order the sound crossing time #,. ~ Lp/c; in the quasi-hydrostatic
part of the flow, where Lp is the pressure scale height. By contrast,
the time-scale to receive another ‘hit” of CR forces is H/vpymp; thus,
tstair/tse ~ HILp(cs/Vpump) < 1. If the bottlenecks were stationary (e.g.
a cloud co-moving with a hot wind), their effects would be much
more severe.

Despite the modest changes in global momentum and energy
transfer, it is interesting that the mass flux M can change so
significantly. One way to understand this is as follows. We have
a fixed flux of CRs at the base, which must be transported through
the stratified atmosphere. Since CRs are trapped at bottlenecks, their
effective streaming speed is reduced. In Fig. 24, we show

(F)
(P + Eo)

which is reduced by a factor of ~2 for the simulation shown. Plugging
the escape valve for CRs leads to a larger overall CR pressure,
required to sustain the same flux F. & 4P (v 4 vs, <s). This increase
in the normalization of P, ox 1/v, o (already apparent at the base,
where v = 0) is seen in the lower left-hand panel of Fig. 23; it drives
a stronger outflow. The advective flux increases to compensate for
the decrease in streaming flux. The situation is similar to increasing
the opacity in a radiation pressure driven wind — buildup in radiation
pressure drives a stronger outflow. This increase in wind driving can
be divorced from CR energy losses. For instance, consider purely
diffusive models, where there are no CR heating losses. None the

(v). (49)

Us.eff =
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Figure 23. The blue solid lines denote the time averaged profile of density (top left-hand panel), velocity (top middle panel), mass flux (top right-hand panel),
CR pressure (bottom left-hand panel), CR flux (bottom middle panel), and gas pressure (bottom right-hand panel). The black dashed lines show their respective
initial profiles. The case shown is NL4096alphalbeta.6eta.0lms.015psi0c200.
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Figure 24. Top panel: phase plot of (P.) against ((v) + (va))~!
with the effective adiabatic index y.f (equation 50) found from fit-
ting. Bottom panel: plot of the effect streaming speed v e (in
units of the local time averaged Alfven speed). The case shown is
NL4096alphalbeta.6eta.0lms.015psi0c200.
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less, for a fixed CR injection power, M o< 1/« increases as diffusivity
Kk falls, since the base CR pressure scales as P, o 1/« (Quataert,
Thompson & Jiang 2022b). Similar effects occur in streaming models
as the effective streaming speed falls.

In Fig. 25, we see that M o ;3(;0'36. Why is the impact of CR
staircases sensitive to the background S(? As B-fields (and hence
va) increases, the streaming flux is increasingly dominant over the
advective flux, and thus the impact of bottlenecks grows. Further-
more, as VA/Vjump increases, the attenuation of the bottleneck due
to bump motion is lessened (equation 28); deeper bottlenecks imply
greater build-up of CR pressure and stronger outflows. Accordingly,
we find in our simulations that the suppression factor f = v cg/{va)
falls with decreasing f.

Quataert et al. (2022a) see a similar strong increase in M as CR
bottlenecks develop in their isothermal wind simulations. This is
consistent with an observed change in the apparent equation of state
in the CRs, from the expected P, oc p*? in their highly sub-Alfvenic
flow to P, o p'”2. We also see this apparent change in the effective
equation of state in our simulations. In Fig. 24, we show the effective
CR adiabatic index y ¢, defined by

dIn (P.)

din((v) + (A"

We find that y . & 1.2 rather than 4/3, which naively corresponds to
P. o p¥eii/2 ¢ p%© in the sub-Alfvenic limit. Quataert et al. (2022a)
note that over a large radial range, F. ~ 4P.vs ~const, which is
consistent with P, o v;l o p%3. They also note that heating losses
were ~1/3 of what one might expect from the time-averaged profile;
if heating losses were negligible compared with the CR energy flux
over a majority of the volume, this would explain F. ~ const.

Veft (50)
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Figure 25. Time-averaged quantities (M)/My (blue dashed line), (AP.)/APy (orange dashed line) and (AF.)/AF (green dashed line) for different g, Bo,

and 7n9. All changes are with respect to the new background profile for a given set of parameters.

In our simulations, the change in energy losses is mild, even
when M changes significantly. Here, we offer a slightly different
interpretation, which relies on the role of moving bottlenecks in the
CR flux. By themselves, bottlenecks do not change the equation of
state (e.g. consider the stationary flow in Fig. 4, where P, v:v %).
However, the motion of the bottlenecks can change the apparent CR
flux divergence and equation of state if not taken into account. For
instance, as noted in Section 2, bump motion reduces V - F, with
V. F. — 0, F. —const for vpump > v, va. Consider highly sub-
Alfvenic motion (e.g. in very low B flows), where one might expect
P. oc v o p?/3. Instead, vy falls at density jumps in shocks and
can become comparable t0 v — Vpump. Indeed, since the CRs are
only coupled in dense regions, v should be evaluated here. From
equation (28), we have

- dln P, v+ vp
Vet = =Y

dIn(v + va)~! vt up — vbump7

(5D

where we have defined j.; separately from y.y as it is not de-
rived from time averaged quantities. Only for stationary bumps
Vpump = 0 do we recover . =4/3. If the bumps propagate
up the gradient (i.e. vpump < 0), the bottlenecks reduce the CR
flux compared to the pure streaming case and Jer < Y. This is
the canonical case for the acoustic instability. Conversely, if the
bumps propagate down the gradient (i.e. Vpump > 0), the bottlenecks
enhance outward CR transport relative to the pure streaming case
and Vet > y.. However, if (v 4+ vA) > Vpump, then Pt — yc. This
is potentially at play in fig. 8 of Quataert et al. (2022a), which
shows that while P, oc p%° at the mid-range densities, at low
densities (the outskirts, where flow becomes highly supersonic,

with v > Vpump), the effective adiabatic index steepens. While
these effects are definitely present, whether they fully determine
the change in apparent equation of state requires further quantitative
study.

In summary, our simulation results are as follows: except in
low B environments, the changes in net heating and mass flux are
generally modest, reaching at most 85-90 percent and a factor
of 2, respectively, compared to no staircases. However, at low g,
(M) o< 793¢ changes more significantly, and can increase by an
order of magnitude. This arises from the build-up of CR pressure
due to stronger bottlenecks in low S flows. Our simulation results
are consistent with the higher 8 (~1) study by Huang & Davis (2022)
and low B («1) study by Quataert et al. (2022a), the former reporting
heating rates 95 percent of the background profile, and the latter
finding a change of a factor of ~10 for (M. Note that these three stud-
ies all make different assumptions about cooling/thermodynamics,
as well as geometry, so the overall broad agreement is
reassuring.

In our simulations, the time-averaged rate of global momentum
and energy transfer is constrained if equilibrium is to hold. For
instance, our cooling rates are time-steady, i.e. the total cooling lu-
minosity of the simulation box is fixed. Hence, in global equilibrium,
the time-averaged heat input from CRs — either in the form of direct
va - VP heating, or from shocks (which are ultimately powered by
CRs) must balance this constant rate, and cannot deviate too much.
In simulations with realistic radiative cooling, the global cooling
luminosity and the density profile could change significantly. This
could strongly affect momentum/energy transfer from the CRs. This
will be the subject of future work.
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4 DISCUSSION AND CONCLUSIONS

4.1 Brief summary

In this paper, we carried out simulations of a CR-driven acoustic
instability (Begelman & Zweibel 1994), focussing on the streaming-
dominated limit. The condition for this instability is strong B-fields
(B < 0.5), so that CR heating va - VP., which drives the instability,
is sufficiently important.'” In addition, a diffusion length lgruse ~
Kk/c shorter than the background scale height L. is required. If this
is not satisfied, sound waves will still be unstable, but the staircase
structure we focus on is washed out by diffusion. The instability
becomes stronger at smaller length-scales, with the growth time
tarow ~ K /c2 ~ Kkp/ P, becoming independent of wavelength at scales
below the diffusion length /g;fyse -

As sound waves steepen and become non-linear, they turn into
a quasi-periodic sequence of shocks. The density jumps at the
shocks in turn create bottlenecks for CR streaming, resulting in a
CR staircase structure. The jump widths are of order the diffusion
length, while the jump heights depend on an equilibrium between
staircase creation and mergers, and decrease with P.. The CRs are
uncoupled at staircase plateaus, but exert intense forces and heating
at the staircase jumps. This rearrangement of CR pressure profiles
has important consequences, which we now discuss.

4.2 Physical significance

Some key physical consequences the CR acoustic instability and
ensuing CR staircases are:

(1) Shocks; density and velocity fluctuations: The non-linear CR
acoustic instability creates a propagating shock train. In our simu-
lations, the shocks are initially fairly weak M ~ 1,8p/p ~ 1, but
they become stronger with the onset of cooling. The free energy for
these shocks come from CRs, which thus result in significant density
and velocity fluctuations. We anticipate this will drive turbulence
in 2D and 3D simulations. These shocks are an important potential
observational signature of the CR acoustic instability.

(1) Spatial and temporal fluctuations in CR forces and heating:
CRs provide a steady body force VP, and heating v4 - VP, when
there is a global background gradient. The CR staircase breaks this up
into patchy, highly intermittent momentum and energy transfer where
(at any given instant) the CRs are uncoupled with the gas throughout
most of the volume, but exert intense forces and heating over narrow
regions with widths of order the diffusion length. Since these stair
steps and associated shocks are rapidly propagating, averaged over
time the entire gas volume does gain momentum and energy from
the CRs, but in an intermittent and stochastic fashion. We expect
the intermittency — similar to the highly intermittent and fluctuating
nature of turbulent dissipation — to become more apparent in 2D and
3D simulations. The departure from local momentum and energy
balance can drive dynamical and thermal instability, which deserve in
depth investigation. In our simulations, the sudden loss of CR heating
in plateaus drives rapid cooling and large gas pressure fluctuations.

(iii) Changes in net momentum and energy transfer: CR staircases
also affect the net momentum and energy transfer averaged over space
and time once the system has reached a steady state, AP, AF,. In our
simulations, these changes are relatively modest, although they could
potentially be more significant in simulations with realistic radiative

171t also requires that CR heating contributes substantially to thermal balance,
i.e. that cooling rates are comparable to CR heating rates.
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cooling where the energy source terms evolve. More importantly,
the CR staircase can significantly change mass outflow rates M,
as also seen by Quataert et al. (2022a). We interpret this as due
to the build up in CR pressure due to reduced streaming speeds at
bottlenecks, which ultimately drives a stronger outflow as advective
flux outcompetes CR streaming flux; this becomes progressively
more important at lower § where the bottlenecks are deeper and
changes to CR streaming are stronger.

4.3 Applications

Can the acoustic instability and CR staircases arise in the CGM?'®
Depending on gas pressure profiles, this requires B ~ 0.5 — few uG
in the CGM. Observations of the galaxy halo magnetic fields are
challenging and sparse. Recent observations using an FRB burst to
observe Faraday rotation measured a parallel magnetic field B ~
111G of order the estimated equipartition magnetic field, such that
B ~ 1 (Prochaska et al. 2019), modulo uncertainties such as field
geometry. For instance, field reversals reduce the rotation measure
and lead to an underestimate of B)|. Another caveat is that contribution
to the Faraday rotation measure from the FRB engine, host galaxy,
host galaxy’s CGM, IGM, and intervening galaxy’s CGM could not
be separated. The inferred g is therefore a lower limit. van de Voort
et al. (2021) show from a suite of zoom-in cosmological simulations
of galaxy formation that the plasma beta can reach as low as 0.01
in regions that coincide with the biconical outflow. The magnetic
field can acquire such dominance from turbulent dynamo action and
metal enriched cooling. It is quite likely that B fluctuates spatially in
the CGM. Some regions may be unstable to the acoustic instability,
while others are not.

If the acoustic instability is present, it has a very short growth
time:

K Cs -2
ferow = 13 Myr(1029 cm? s—l) (150 kms—')
P./P,
><( {g) (52)

where we have normalized to the (large) diffusion efficient « ~
10%cm? s~! that appears necessary to avoid overproducing y-rays at
alevel inconsistent with observations (Chan et al. 2019). This growth
time is far shorter than the 0.1—1 Gyr dynamical times typical of
CGM processes (e.g. L./cs ~ 0.1 Gyr for our fiducial parameters).
The ratio of the diffusion length to the background scale height in
galaxy haloes is

= 0 (ma) (o)
n_Cch " \102%cm2s—!/ \150kms—!

L —1
* (20kpc> 53)

which means that one can expect sharp staircase steps.

Of course, the CGM is multiphase, and the cooler 7 ~ 10*K
component is a critical component. Indeed, it is generally the only
component, we directly observe. At face value, it might appear from
equation (53) that we will not see the CR staircase in cooler 7 ~
10*K clouds, where both the sound speed ¢, and CR scale height
L. can be much smaller. In particular, the interface between hot
coronal gas and cold clouds has a very small scale height L., and
naively, plugging in numbers into equation (53) would yield a very
large 1. This is not correct, because the ambient diffusion coefficient

181t g likely to also be relevant in the ISM, but our focus here is on the CGM.

Z20z Jaquiaideg /( uo Jasn eiegieg ejuesg ‘eluiolijed 10 Ausiaaiun Aq §/8€/59/v9vb/S/S L G/olonie/seiuw/woo dnoolwepeoe//:sdiy woll papeojumod



adjusts to local conditions. In the self-confinement picture, diffusion
expresses transport relative to the Alfven wave frame, and can be
written as

k_%_ 1= lmi < 1 (strong coupling) (54)
UALC VA 3UALC
where vp is the drift speed relative to the Alfven wave frame, and
Ingp is the CR mean free path [y ~ rg/(SB/B)z, where r, is the CR
gyroradius and the CR-excited Alfven wave amplitude (§B/B)* can
be calculated in quasi-linear theory by balancing wave growth and
damping rates (Farmer & Goldreich 2004; Wiener, Oh & Guo 2013).
At ~GeV energies (where most of the CR energy resides and the
gyro-resonant streaming instability is strong), we expect (vp/va —
1) ~ 0.01-0.1; i.e. the CRs are tightly locked to the Alfven wave
frame. See Wiener, Pfrommer & Oh (2017b) for expressions relevant
to coronal gas, and Wiener et al. (2017a) for expressions relevant to 7'
~ 10*K clouds and their interfaces with coronal gas. Our parameter
n is directly related to this measure of CR coupling:

~0.1 (M) g2 (55)

n=

¢csL. 0.1

As a sanity check, note that for our fudicial assumptions of ¢, ~
150kms~!, L, ~ 20 kpc, B ~ 1 in the coronal gas, equation (54)
gives k ~ 10¥cm?s™! for (vp/vy — 1) ~ 0.1. Note that empirical
measurements of x in the ISM average over a multi-phase ISM and
are likely dominated by regions where « is largest.

Itis also important to remember that CR staircases are not unique to
the acoustic instability. They are seeded by density fluctuations, since
overdense regions serve as streaming bottlenecks. They are agnostic
as to the origin of these density fluctuations. Thus, overdensities
created by thermal instability, or a network of overdense clouds in
a multiphase medium, can have similar effects. For this reason, CR
staircases can show up in a wide range of scenarios.

Some potential applications include:

(1) Galactic winds: Galactic winds driven by CRs have often
been simulated in two limits: a diffusion-dominated regime, due
possibly to ‘extrinsic confinement’, where CRs are scattered by
extrinsic turbulence, and/or due to various wave damping mech-
anisms (e.g. ion neutral damping) and streaming-dominated ‘self
confinement’, where CRs are confined by Alfven waves they produce
via the gyroresonant streaming instability. In the diffusive ‘extrinsic
confinement’ case, CRs do not heat the gas.!” In the streaming
dominated ‘self confinement’ case, CR transport heats gas at a rate
va - VP.. The diffusive case fits y ray observations better, because
CRs can propagate out of the galaxy faster (Chan et al. 2019).
It is also much better at driving winds, because the CRs do not
suffer strong energy losses via Alfven wave heating (Wiener et al.
2017b; Hopkins et al. 2020). However, we expect self-confinement
to be very strong at the ~GeV energies where CR energy peaks
(Kulsrud & Pearce 1969; Farmer & Goldreich 2004; Wiener et al.
2013), while extrinsic compressible turbulence is strongly damped
at small scales, and unlikely to efficiently scatter ~GeV CRs (Yan &
Lazarian 2002). Thus, CR winds should be streaming dominated and
relatively inefficient. The CR staircase changes these dichotomies
by changing the structure of the wind. We have seen how CR
pressure can build up in streaming dominated simulations, due to
trapping at bottlenecks. This increases mass outflow rates, similar
to the effect of increased opacity in radiative outflows. In CR
streaming simulations of isothermal winds where the CR acoustic

19The only energy exchange is slow Fermi II acceleration of the CRs.
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instability arose, Quataert et al. (2022a) found an increase in wind
mass loss rates by an order of magnitude, compared to analytic
models without a CR staircase, illustrating the potential impact
of CR staircases. High-resolution cosmological zoom simulations
of CR staircases are actually well within reach. As seen in Ap-
pendix Section B, all that is required is that the diffusion length
Lt ~ K /¢ ~ 2kpe (tgmia=) (s )71 is resolved. However,
to date only the FIRE collaboration has implemented the two moment
method (capable of dealing with CR streaming) in such simulations,
and — in contrast to, for instance, van de Voort et al. (2021) — the
plasma B in their winds is too high for the acoustic instability
to develop (Hopkins et al. 2020). But alternate setups where CR
staircases appear are certainly numerically feasible.

(ii) Thermal instability: As already seen in this paper, the patchy
nature of heating due to a staircase structure can play an important
role in thermal instability, if CR heating is significant in the
background equilibrium profile. While CR heating is unlikely to
be the sole source of heating over all galacto-centric radii, as in
our simplified model, if it is significant even over a fraction of
the profile (e.g. one or two scale height-heights), interesting effects
can occur. We will study this in upcoming work (Tsung et al., in
preparation). The sudden loss of CR heating at plateaus triggers rapid
cooling. The large gas pressure gradients and density fluctuations
provide unusually non-linear, large-scale perturbations. It would be
particularly interesting to see in 2D and 3D simulations if the high
gas pressure gradients trigger ‘shattering’ of condensing large scale
patches of cold gas, creating a ‘fog’ of cloudlets (McCourtet al. 2018;
Gronke & Oh 2020b). The train of shocks which propagating over
condensing cold gas can also play a role in subsequent dynamics,
breaking up the cold gas further and driving baroclinic vorticity.

(iii) Thermal interfaces. CRs provide pressure support and heating
to the interfaces between warm (T ~ 10*K) photoionized gas and hot
(T ~ 10°K) coronal gas, thickening them and setting a characteristic
temperature scale height. Similar to the case with thermal conduction,
it is possible to solve for the steady state structure of CR mediated
fronts (Wiener et al. 2017a). These fronts are currently unresolved
in simulations of cloud acceleration (Briiggen & Scannapieco 2020;
Bustard & Zweibel 2021) and their structure influences the strength
of the ‘bottleneck’ and hence the momentum that is deposited towards
cloud acceleration. It is therefore important to understand them in
detail. The interfaces can be magnetically dominated due to flux
freezing as hot gas condenses on to the interface (Gronke & Oh
2020a; Butsky et al. 2020). Therefore they are a likely breeding
ground for the CR acoustic instability. If a CR staircase appears, the
spatially fluctuating pressure and thermal balance triggers mixing,
shocks and turbulence, which in term create dissipation and diffuse
heat transport. The long-term stability and structure of such fronts
could change significantly, affecting the mass flux between the phases
as well as observational diagnostics such as the ratio of low to high
ionic species (e.g. N(CIV)/N(OVI)).

(iv) Observational signatures: Although the study of CR driven
winds have become an intense area of activity, observational con-
straints are unfortunately few and far between. If seen, the quasi-
periodic network of shocks due to the CR acoustic instability could
provide a sorely needed observational diagnostic of the presence of
CRs in galaxy haloes. For instance, they could potentially create
wide-spread radio synchrotron emission from CR acceleration at
shocks, at a level and with spectral indices inconsistent with transport
of CR electrons out of galaxies, due to rapid synchrotron and inverse
Compton cooling. However, further work is needed to see if this is
an appreciable effect. The resultant density fluctuations could also
potentially be probed by frequency-dependent temporal broadening
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of radio waves from Fast Radio Bursts (Macquart & Koay 2013;
Prochaska et al. 2019) passing through intervening galaxy haloes.
The challenge is in disentangling these effects from other sources of
shocks and turbulence. Presumably the closely spaced, wide-spread
nature of the shock train, as well as accompanying signatures of CRs
(gamma rays, synchrotron emission) help, but this must be studied
in more detail. For instance, the passage of multiple weak shocks
leaves a distinct spectral signature, with the spectrum flattening and
the shock acceleration efficiency increasing at each shock (Kang
2021).

Again, as mentioned in Section 3.3.6, the staircase jump width have
typical size of a diffusion length, which for halo gas can be several
kpc, i.e. it can be resolved by both observations and galaxy scale
simulations. Provided that the shocks themselves do not decrease the
diffusion coefficient (e.g. by increasing the scattering rate), this is a
happy circumstance where shocks can be observationally resolved,
and would be an interesting test of this physics. From the standpoint
of galaxy scale simulations, the required dynamic range is feasible,
since the diffusion length is routinely resolved. Some small scale
structure may appear down to ~10~2[y (though resolving such
lengthscales is not necessary to obtain reliable results for the impact
of the CR acoustic instability on M, AP,). Below ~10~21, the CR
fluid approximation no longer holds (see discussion in Appendix B).
The observation of a CR staircase can also be used as an observational
diagnostic of CR streaming. (Thomas et al. 2020) have argued,
through observation of P, plateaus at radio synchrotron harps in
the Galactic Center, streaming transport is probably dominant there.
These flat plateaus arise at CR maxima where CRs stream away
from a source; there is only a single plateau (by constrast, diffusion
produces a rounded, more Gaussian-like maxima). The staircase
structure presented in this study produces a series of multiple
successive plateau and jump features. It relies on the bottleneck
effect, which only arises if CR transport is streaming dominated.
It offers a more demanding test for the streaming versus diffusion
picture.

4.4 Looking forward

This paper is a first detailed study of CR staircases, which we expect
to have broad applicability. Indeed, CR staircases due to the acoustic
instability have just appeared in two recent preprints (Huang & Davis
2022; Quataert et al. 2022a). More work is needed to clarify the
impact of CR staircases on the interaction between gas and CRs.
Some of the most pressing improvements include: (i) 2D and 3D
MHD simulations, to assess the role of B-field geometry (particularly
tangled magnetic fields, spatially varying B-fields, MHD forces and
MHD acoustic modes), as well as the role of turbulence. For instance,
in winds, one might expect the flow to develop significant anisotropy,
depending on where bottlenecks develop and how field lines warp
in response. (ii) Better treatment of the thermodynamics, and more
realistic cooling functions. This is particularly important in assessing
cooling at CR plateaus and the development of thermal instability.
(iii) Exploring parameter space with a wider range of background
profiles which are less highly idealized.
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APPENDIX A: LINEAR GROWTH RATES IN 1D
INCLUDING BACKGROUND GRADIENT

Here, we provide a concise derivation of linear growth rates for
the acoustic instability. More details can be found in Begelman &
Zweibel (1994).

A1 Adiabatic EOS for finite diffusion coefficient

In the well-coupled limit, the time-dependent flux term in equa-
tion (6) can be ignored, reducing equations (1)—(6) to the one-moment
equations. Expressing the equations in 1D and in primitive form,

p
2 v =0 Al
o + (pv) (A1)
0, a” L (A2)
v ov_ 19 ]
o " Pox T T poxE P8
or, 0P, o dP,
5[ +v 5 +Vgpga = _(Vg I)UA +(7/g ne (A3)
dP, P, 2 0P,

= P2 < A4
Y, ox v ax(v+vA)+ ox " ox (A4)

For simplicity, we assume the diffusion coefficient « is constant. We
perform a WKB analysis similar to Drury & Falle (1986). Assume
all quantities Y can be expanded as a background plus fluctuating
part

Y(x,t) > Y(x)+ Y(x, 1), (A5)

where ¥ « Y. Keeping terms up to the first order in the fluctuating
quantities gives (note that going from equations A1-A4 to equations
A6-A9, we have performed a change of variables ¥ — ¥ + V.
Quantities without a tilde now represents the unperturbed back-
ground rather than the full variation.)

0p

a+—(pv+pv)—0 (A6)
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aﬁ+ aﬁ+~6v 19P, 10P
—Ftrv—F == - —
ot 0x 0x p Ox p Ox
5 oP, AP,
P o , A7
p? 0x  p? Ox (A7)
AL S LY T
or T Vox VxRl TVelepy T
P, va _OP,
_(Vg 1)UA +(Vg 2 ox
ac - 0L
=4+ 7= A8
+(ve — )(p + aT), (A8)
0P, p
+
t
0 2D 3P,
Pe— (0 + 04) — e Pes— (v +va) + & . (A9)
x 0x 0x2

In WKB analysis, we assume the fluctuating length and time-scales
are much smaller than the scales on which the background varies.
The fluctuating quantity Y can be expanded as

EHED LD AT (A10)

n=0

where € is a small parameter and 06 /0t = w, 00/0x = —k. Note that
dw/0x + 0k/0t = 0. Substituting into equations (A6)—(A9), we find
to the lowest order €2, (note that the expansion of the fluctuating
quantity ¥ begins with the subscript 0, i.e. the subscript 0 means it
is the lowest order fluctuation, not the unperturbed background.)

k*k Py = 0,=> P = 0. (A1)
To order € !,

@po = kpvo, (A12)
@pvy = k Py, (A13)
@ Py = kyy Pyvy, (A14)
Kk Py = iky, P, (vo - ;—;p0> , (A15)

where @ = w — kv. Solving for & from equations (A12)—(A14), we
obtain the dispersion relation of a sound wave

» = *kc,

where ¢, = /v, P/ p.

Now we have found that sound wave is a mode to the perturbed
equation, what s its growth rate? As a wave packet transverse through
a varying background, it changes in amplitude due to (1) adiabatic
compression and (2) growth or damping due to instabilities. It is the
latter we are interested in. To separate the two contributions, note
that the wave action density .4, defined by dividing the wave energy
density by its propagation frequency

(A16)

2
A=20 (A17)

is conserved under adiabatic compression. If the evolution of A
can be expressed as a conservation equation, the non-conservative
contribution would be due to instabilities, the growth rate which we
can read off easily. Such a conservation equation can be derived
by substituting equations (A12)—(A15) back to equations (A6)—(A9)
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and rearranging. Below is the result.

0A 0 A 0P,
671 + 7[(” +c)Al = PCE Vg(yg -1 (UA ox - £)
2
_GA {1 £ (e — 1)”—’*] (1 - ”—A)
K N Cs ZCS
0P
A (2o
,ocS 2¢s ) Ox
-1 T oL
—_ D=
+A cs (ap + (e )p aT) ,
(A18)
where ¢, = /Y. P./p. This equation governs the evolution of the

wave action density as it propagates through a background. The LHS
describes the adiabatic change due to a varying background whereas
the RHS describes growth/damping due to instabilities. Without loss
of generality, we group the prefactors of .4 on the RHS into a term
G(x) such that

0A

L i[w + ¢ Al = G)A. (A19)

Growth occurs when G > 0 while damping occurs otherwise. For
purpose of linear analysis assume the velocity perturbation has a
form

vo(x, 1) = 0(x)exp{iot — ikx} (A20)

and the background gradients can be neglected over some region x;y
to x such that w, k can be considered constants, it can be easily shown
that

d
ox 48 (A21)
O0ln Cs

Solving gives

1
B(x) = D(xiy) exp {7 n 20

> + I(x xmj)} (A22)

where Z(x, xiyj), given by

I(x, xinj) = / :I:g dx, (A23)
Xinj Cs
is the integral of the RHS of A21 from the location where the wave
is injected Xy iy to some location x later in its path. The first term
within the brace bracket of A22 denotes the adiabatic change in
wave amplitude due to background profile change while the second
term represent that due to genuine growth. The phase velocity of a
sound wave is dx/dr = £c;, so Zin A23 is equivalent to integrating the
function G over time from the moment of injection to some later time ¢

1
Ix, xinj) = th" (A24)
tinj
Differentiating the expression within the brace bracket by time 7, we
obtain an expression for the growth rate I' gy
g

Pgrow = = A25
prow = (A25)

A2 Adiabatic EOS with a small diffusion coefficient

If the diffusion coefficient ¥ were small such that the term k%« Peg
is of the same order as the other perturbed terms in the CR energy
equation, equation (A11l) may not be valid. This implies P, # 0.
Including, this term at order ! yields
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@po = kpo, (A26)

wpvg = k Py + k Py, (A27)

O Py = kygPevo + (Ve — Dkva Peo, (A28)
— .12 VA

(® — kvy —ik“k) Py = ky P. (vo — z—po) . (A29)
P

Rearranging, we obtain
@ (&)2 — kch) (a) — kvp — isz)

= k¢ [®+ (v, — Dkva] (w - ’%) (A30)
as the dispersion equation. In the limit where k«/c; — 0o, we recover
the gas acoustic mode w & *kc,, though at moderate values of kx/c
the gas acoustic mode is clearly not a solution. This equation has
been solved in various limits in Begelman & Zweibel (1994). In
particular, in the limit vy >> ¢ > ¢, an unstable hybrid mode with
phase speed intermediate between the gas sound speed and the Alfven
speed appears

3 _ (Ye — 1)k3v c va — ikk (A3D)
2 v + k22
For kk < vy
= D11 /3
oo Qe DEme] T (1 V3 (A32)
2 2 2

while for kk > vy

_ 2 1/3
&= {7% DR vace } (iﬁ - 1i> : (A33)

2k 22

These modes are mediated by gas pressure perturbations, but are
driven unstable by CR heating. The growth rate scales as the
wavenumber so higher resolution simulations can potentially seed
faster growth. The transition from the acoustic mode to these hybrid
modes occurs at kx/cg ~ 1.

Solving equation (A30) numerically, one finds that the growth
rate for kx/cs < 1 increases with wavenumber (equation A32) and
then flattens off with respect to wavenumber for kx/cy 2 1 (as one
would expect from looking at the RHS of equation (A18), which
is independent of k). As discussed in Section 3, for converged
simulations, the diffusion length must be resolved. This implies that
in the simulations, our fastest growing modes are always in the limit
ki/cg 2 1, and hence we are dominated by acoustic modes.

~

A3 Isothermal EOS with finite diffusion coefficient

For isothermal EOS, equation (AS8) is ignored. The gas pressure
relates to the density by

Py = cf 0,

with the sound speed ¢, a constant. Repeating the calculation above
gives

& = tkcg (A34)
as the dispersion relation and

P ¢
P foraa-22 - Sa(15 ) @
ot pcs 0x K 2¢;
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as the wave action equation, which is simply equation (A18) with
¥¢ = | and without the heating/cooling terms. Condition for genuine
growth is again

1 0P, 2 VA
Fx)==+ —=<{1F==)>0.
pcs 0x K 2¢

(A36)

APPENDIX B: RESOLUTION AND REDUCED
SPEED OF LIGHT STUDY

Acoustic waves with wavelengths much shorter than the diffusion
length Iy = k/cg grow in the linear phase at a rate independent of
the wavelength, as discussed in Section 2.1 and Section A. If the
diffusion length is well resolved, the characteristic staircase scales
should ~lys (see Section 3.3.6). As the resolution decreases, so that
the diffusion length is no longer resolved, the wavelength of the
growing modes will also increase. In particular, for klgy < 1, the
acoustic mode will bifurcate into hybrid modes which propagate at
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Figure B1. Time average quantities ((M)/Mo, (AP.)/APco, (AF:)/AFco)
as function of resolution. Resolution given in the x-axis denotes the number
of grids the mean diffusion length is resolved with ({/gifr)/Ax), the larger this
is the higher the resolution.

The CR staircase and the acoustic instability

4491

10° +

—  (laigr)/Ax=0.0588
— (lairr)/Ax=25.9

Figure B2. P profile taken at the same time instance for a low ({(lgiff)/Ax =
0.0588) and high-resolution run ({/gifr)/ Ax = 25.9). Many more small jumps
are resolved in the high-resolution run. The P, profile is a stochastic, time-
varying quantity, and this is an instantaneous snapshot. The difference in the
time-averaged quantity between these two resolutions ((P.)/AP¢y = 1.204,
1.339, respectively) is small (Table B1), despite the factor ~400 change in
resolution.

some modified sound speed, with growth rate that decreases linearly
with the wavenumber k (see Section A2). Thus, decreasing resolution
will 1. cause slower growth of the staircase and 2. smooth out small
scale stairs and render stair sizes larger.

In this section, we rerun the test case NLal-
phalbetaleta.0lphi2 (Table 2) with several resolutions
and reduced speed of light ¢, comparing their time averaged mass
flux (M), (AP.), and (AF.). We shall also discuss the effect of
resolution on the distributions of stair width, plateau width and jump
height. A summary of the resolution, reduced speed of light, and
time averaged quantities is drawn up in Table B1.

In Fig. B1, we plot (M)/M,, (AP.)/APy, and (AF.)/AF
as function of (lgig)/Ax, the number of grids the mean diffusion
length is resolved with. Overall, despite small fluctuations at large
(laigr)/ Ax, the time averaged quantities appear reasonably robust to
resolution. Although there are secular trends with resolution, the
changes are small. Deviations appear when the mean diffusion
length is underresolved, i.e. {lgi)/Ax < 1, yet even in the lowest
resolution explored (i.e. (/girr)/Ax = 0.0588), a staircase structure
can be clearly seen (Fig. B2). Generally, effects of the staircase on
(M)/ My, (AP.), (AF,.) dwindle with resolution in the underresolved
regime, yet even in the lowest resolution explored the time-averaged
quantities deviate from the resolved runs by less than 20 per cent.
This suggests effects on the time-averaged quantities is due mainly
to the bigger stairs, with minor modifications from the small stairs.

Visually inspecting Fig. B2, which shows the P, profile taken at
the same time for the lowest and highest resolutions explored, it is
observed that more small scale structures arise when the resolution is
high. Only the largest jumps are resolvable at low resolution, details
of the small scale jumps smoothed out.

In Fig. B3, we plot the distributions of stair width, plateau width
and jump height for the highest and lowest resolutions explored,
finding there to be more small scale structures (smaller widths and
heights) for the more resolved run while the low resolution run have
more large scale structures (larger widths and heights). In particular,
the peak at ~Iy;¢ for the jump width is recovered only if the diffusion
length is resolved. This lies within expectation as underresolving
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Figure B3. Distributions of jump width (top panel), plateau width (middle
panel), and jump height (bottom panel) for low ({/4ifr)/ Ax = 0.0588) and high
resolutions ({lgifr)/Ax = 25.9).
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the diffusion length would cause small-scale jumps (typically having
size of the diffusion length) to be smoothed out into a bigger jump.

All in all, in practice (e.g. in galaxy-scale simulations), for the
purpose of eliciting the staircase and its time averaged effects, it
appears acceptable to resolve the diffusion length by a few cells.

However, should effects of individual stairs be important (e.g.
cloud survival under bombardment of a few of these stairs), higher

resolution is probably necessary.

On that note, it is tempting to raise the resolution in attempt to
reveal more small-scale phenomenon. Yet in the fluid approximation,
one must beware not to go below the CR mean free path, given by
~i/c, where it breaks down. In CGM conditions the ratio of the diffu-
sion length to the CR mean free path is ~c/c; ~ 3000(cs/100 km s7h),
meaning there is no use resolving the diffusion length by more than
a few hundred to a thousand grids. We shall see, particularly in
Fig. B3 that with the resolution we employed, structures 0.001 times
the local diffusion length do arise. Going to higher resolutions may
allow one to resolve some of these structures better, but the physical
validity of these smaller structures is questionable given that the fluid
approximation no longer holds, so pushing to higher resolution may
be unwarranted and unrealistic. Finally, convergence can be set by
other physics as well, particularly in higher dimensional simulations,
by implementing physical dissipation.

On a shorter note, changing the reduced speed of light ¢ appears to
have little effect on our results as long as it is much greater than any
other velocity scales present (e.g. ¢, ¢s, Cc, v4). This is consistent with
Jiang & Oh (2018). Numerically, the reduced speed of light ¢ should
not affect the simulation much if it is way above any other velocity
scales, any effect due to ¢ would be of order O(v/c) or less. In reality,
the speed of light ¢y A 3000(c,/100kms~"). In our simulations,
we often invoke a reduced speed of light that is a factor 200c;, i.e.
~0.1cque-
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Table B1. Re-running with different resolutions and reduced speed of light. Column 1: resolution given in grid spacing
with (the bracketed quantities show the number of grids the mean diffusion length is resolved with, i.e. (lgifr)/Ax).
Column 2: reduced speed of light. Column 3-5: time averaged mass flux M, AP., and AF, (in units of the initial,

unperturbed My, AP, and AF¢ ).

Test case: NL4096alphalbetaleta.0lms.015phi2c200

Resolution Ax ({Igiff)/Ax) ¢ (M)/ Mo (AP AP (AF.)/AF
7.03 x 1072 (0.0588) 200 1.155 1.204 0.951
3.52 x 1072 (0.1168) 200 1.282 1.270 0.963
1.76 x 1072 (0.233) 200 1.257 1.319 0.982
8.79 x 1073 (0.465) 200 1.355 1.339 0.955
439 x 1073 (0.926) 200 1.365 1.353 0.933
2.20 x 1073 (1.85) 200 1.384 1.309 0.907
2.20 x 1073 (1.85) 400 1.382 1.321 0.890
2.20 x 1073 (1.85) 800 1.375 1.313 0.883
2.20 x 1073 (1.85) 1000 1.446 1.310 0.868
1.10 x 1073 (3.70) 200 1.339 1.379 0.914
5.49 x 107* (7.41) 200 1.449 1.407 0.924
5.49 x 107* (7.41) 400 1.408 1.395 0.918
1.37 x 1074 (25.9) 400 1.465 1.339 0.900

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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