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ABSTRACT: Prediction of chemical reaction outcomes using
machine learning (ML) has emerged as a powerful tool for
advancing materials synthesis. However, this approach requires
large and diverse datasets, which are extremely limited in the field
of nanomaterials synthesis due to inconsistent and nonstandardized
reporting in the literature and a lack of understanding of synthetic
mechanisms. In this study, we extracted parameters of InP
quantum dot (QD) syntheses as our inputs and resultant
properties (absorption, emission, diameter) as our outputs from
72 publications. We “filled in” missing outputs using a data
imputation method to prepare a complete dataset containing 216
entries for training and testing predictive ML models. We defined
the descriptor space in two ways (condensed and extended) based on either chemical identity or the role of reagents to explore the
best approach for categorizing input features. We achieved mean absolute errors (MAEs) as low as 20.29, 11.46, and 0.33 nm for
absorption, emission, and diameter, respectively, with our best ML model. We used these models to deploy an accessible and
interactive web app for designing syntheses of InP (https://share.streamlit.io/cossairt-lab/indium-phosphide/Hot _injection/hot
injection_prediction.py). Using this web app, we investigated chemical trends in InP syntheses, such as the effects of common
additives, like zinc salts and trioctylphosphine. We also designed and conducted new experiments based on extensions of literature
procedures and compared our experimentally measured properties to predictions, thus evaluating the “real-life” accuracy of our
models. Conversely, we used inverse design to obtain InP QDs with specific properties. Finally, we applied the same approach to
train, test, and launch predictive models for CdSe QDs by expanding a previously published dataset. Altogether, our data
preprocessing method and ML implementations demonstrate the ability to design materials with targeted properties and explore
underlying reaction mechanisms even when faced with limited data resources.

1. INTRODUCTION of the nonclassical growth mechanisms observed under certain
reaction conditions,”® and the microwave-assisted method that
uses inductive heating and in situ fluoride generation to develop
a scalable InP synthetic platform that results in luminescent InP
cores directly out of the synthesis.” Efforts to replace the highly
reactive and challenging to handle tris(trimethylsilyl)phosphine
(P(TMS),) precursor to better separate nucleation and growth
have resulted in a variety of new phosphorus precursors such as
aminophosphines,'’  tris(trimethylgermyl)phosphine,'" phos-
phine gas,'” and white phosphorus.”” In general, synthetic
development has focused on narrowing size distributions,
increasing quantum yields, and exploring more environmentally

Indium phosphide quantum dots (QDs) are a promising
alternative to traditional Cd- and Pb-based materials for lighting,
displays, and optoelectronic technologies.' > However, due to
its increased covalency, limitations in easily accessible
precursors, and inherent distinctions in precursor reactivity
and valency, the synthesis of InP has been met with more
challenges compared to their II-VI and IV—VI counterparts in
terms of extracting generalizable design principles and targeted
properties.” Since the first InP QD synthesis in 1994 that
reported the use of chloroindium oxalate combined with
tris(trimethylsilyl)phosphine (P(TMS);) in a mixture of
trioctylphosphine (TOP) and trioctylphosphine oxide

(TOPO) using a heat-up method,” intense effort has been Received: February 28, 2022 e
devoted to exploring new synthetic methodologies and new Revised:  June 21, 2022 ..ZE‘W
precursors (Figure 1). The most important synthetic develop- Published: July 6, 2022 N
ments include the hot injection method that typically produces RN
ensembles with a high degree of monodispersity,” the magic- il

sized cluster-mediated method that exploits our understanding

© 2022 American Chemical Society https://doi.org/10.1021/acs.chemmater.2c00640

v ACS PUbl ications 6296 Chem. Mater. 2022, 34, 6296—6311


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hao+A.+Nguyen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Florence+Y.+Dou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nayon+Park"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shenwei+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Harrison+Sarsito"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Benedicte+Diakubama"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Helen+Larson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Helen+Larson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Emily+Nishiwaki"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Micaela+Homer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Melanie+Cash"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brandi+M.+Cossairt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemmater.2c00640&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640?goto=supporting-info&ref=pdf
https://share.streamlit.io/cossairt-lab/indium-phosphide/Hot_injection/hot_injection_prediction.py
https://share.streamlit.io/cossairt-lab/indium-phosphide/Hot_injection/hot_injection_prediction.py
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640?fig=abs1&ref=pdf
https://pubs.acs.org/toc/cmatex/34/14?ref=pdf
https://pubs.acs.org/toc/cmatex/34/14?ref=pdf
https://pubs.acs.org/toc/cmatex/34/14?ref=pdf
https://pubs.acs.org/toc/cmatex/34/14?ref=pdf
pubs.acs.org/cm?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.chemmater.2c00640?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/cm?ref=pdf
https://pubs.acs.org/cm?ref=pdf

Chemistry of Materials

pubs.acs.org/cm

Synthetic methods of InP quantum dots
From 179 publications that reported syntheses of InP quantum dots from 1994 to June 2021
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Figure 1. Timeline and number of publications on the synthesis of InP QDs.
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Figure 2. (A) Workflow and (B) output and input feature selection.

benign reagents. Other important considerations in this regard
are tunability and reproducibility in particle size and emission
wavelength, which are governed by different synthetic factors
including but not limited to nucleation temperature, reaction
time, precursor conversion kinetics, additives, and postsynthetic
manipulations. Often, QDs with distinct sizes and excitonic
emission wavelengths are isolated by taking aliquots from the
reaction mixture at different reaction times. However, max-
imizing material yield and achieving precise synthetic control
and reproducibility over particle size and emission wavelengths
of InP QDs still remain a challenge.

In recent years, machine learning (ML) has emerged as a
powerful tool to accelerate chemical reaction design and
materials discovery. ML techniques are effective at inferring
patterns and uncovering trends from complex chemical
processes or mechanisms when a database of a reasonable size
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is available. In the field of nanomaterials, ML has been used to
extract data,14_16 discover novel materials,"”~"° optimize
chemical reactions,”’”** reveal underlying mechanisms,”***
and predict synthetic outcomes.”> For example, support vector
machine classification and regression models were used to
synthetically control layer thickness of perovskite halide
nanoplatelets.26 In another application, Bayesian optimization
was applied to improve monodispersity of PbS QDs, leading to
the narrowest reported half-width at half-maximum of
absorbance of this material.>” In 2020, Santos and co-workers
published a study wherein different ML algorithms were applied
to identify influential synthetic parameters and to predict the
final size of a variety of metal chalcogenide QDs, including CdSe,
CdS, PbS, PbSe, and ZnSe.”® The Gradient Boosting Machine
algorithm used in that study resulted in a high R* value and
revealed that growth temperature and time are the most
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Figure 3. (A) Data imputation process and (B) descriptions of the initial and imputed datasets.

influential synthetic parameters. In addition, several groups have
used automated technology with feedback learning mechanisms
to generate their own synthesis parameter space to create
nanocrystals, including InP,*® with desired characteristics.””*’
The accuracy of predictions is typically limited by the size,
completeness, and quality of the dataset. While there are many
valuable materials databases such as the Inorganic Crystal
Structure Database, NREL Materials Database, Materials
Project, Stanford Catalysis-Hub, and PubChem in the field of
nanomaterials, there are a limited number of adequate datasets
largely due to inconsistencies in reporting and the lack of an
organized, centralized data repository.

In this work, we employ different predictive ML algorithms to
gain insights into reaction condition control over particle
diameter, absorption, and emission wavelength of InP QDs from
reported data. ML methods are appropriate to help us gain a
deeper understanding of InP QD synthesis because of the
complexity of factors that affect the physical and electronic
structures of the QDs. In principle, particle diameter, excitonic
absorption, and band-edge emission should be connected, but
from experimental observations, nuances related to surface
chemistry, stoichiometry, and size and morphological hetero-
geneity make direct correlations less obvious. We demonstrate a
dataset preprocessing technique to overcome the challenge of
having limited data from the literature. Different approaches to
define input descriptors and machine learning model types are
explored to find the best strategy for reaction prediction. Finally,
we deploy an accessible user interface for external users and
apply this interface to compare the results of new experiments
with predicted results obtained from the ML models.

2. METHODS

2.1. Data Acquisition. The dataset was created by manually
extracting reaction conditions and resultant size and optical properties
reported in the literature using Web of Science and Scifinder with
search terms: “indium phosphide”, “indium phosphide quantum dots”,
“InP”, and “III-V quantum dots”. We identified 179 articles from 1994
to June 2021 that reported syntheses of InP QDs. We then classified the
articles by synthetic methods (e.g, heat-up, hot injection, magic-sized
cluster-mediated, etc.). Since there are significant practical differences
among these synthetic methods that can affect the accuracy of the
predictions, only similar methods, where the reaction is performed
using batch-type techniques with molecular indium and phosphorus
precursors, were used for further data extraction. We also excluded
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syntheses that did not include any size, absorption, or emission data.
This process resulted in an initial dataset that included 219 syntheses
from 72 different articles, in which the hot injection method, heat-up
method, reactions using phosphine gas, reactions using white
phosphorus, and reactions using sodium phosphide make up 73, 19,
S, 2, and 1% of the syntheses, respectively. An illustration of how the
data extraction was done can be found in Figure S1.

2.2. Datasets. The data extracted from the 219 syntheses were split
into input features and output targets. With the goal of predicting the
properties of QDs, the output targets contained particle diameter in
nanometers measured directly from transmission electron microscopy
(TEM), absorption wavelength in nanometers, and photoluminescence
(PL) emission wavelength in nanometers. Although the three chosen
outputs are physically related, e.g, QD size can be theoretically
determined by the excitonic peak from absorption spectra, we wanted
to investigate the ability of the ML models to recognize these
relationships.

While defining the output set was straightforward, determining the
input features required more consideration. In general, the performance
of a predictive model depends on finding representative input
features.*>*' Furthermore, using too many input features may lead to
overfitting. This becomes challenging, especially for predictive chemical
synthesis models, where the outcomes of syntheses are nontrivially
affected by unknown, unreported, and/or seemingly trivial parameters.
Therefore, to evaluate the effect of feature selection on our models, we
defined two sets of input features (Figure 2A) and compiled two
datasets: an extended dataset with 22 features and a condensed dataset
with 18 features (Figure 2B). In the extended dataset, the additives
beyond the indium and phosphorus sources were categorized by their
functional groups (e.g, carboxylic acid, amine, thiol), while the
condensed dataset grouped chemicals by their primary assumed role in
the synthesis (e.g., ligands, solvents) (see the full list of input features in
Table S1). Using the extended dataset, we hoped to uncover trends of
additives based on chemical identity such as fatty amines, zinc salts, and
thiol-containing ligands that may play more than one role in the
synthesis.”> > For example, since thiols and fatty amines are
sometimes used as both coordinating solvents and capping ligands
that directly affect the optical properties of QDs, it is more reasonable to
separate these features from each other and from other features
(solvents and acids) in the dataset with the risk of having a high
dimensionality. On the other hand, features in the condensed dataset
were chosen to reduce the number of input variables for better ML
performance with the tradeoff of not observing unique behaviors of
some additives. Prior to training machine learning models, the
continuous values (In amount, P amount, reaction time, etc.) in the
input set were scaled and the categorical features (In source, P source,
etc.) were transformed to numerical features using one-hot encoding
and the scikit-learn software package (sklearn).*
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Figure 4. Description of the input set. Histograms of indium precursors, phosphorus precursors, zinc additives, nucleation temperature, and reaction

time of the syntheses in the initial dataset.
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to the absorption wavelength (nm) of the synthetic outcomes. (B) Scree plot indicating the variance of the PCs when PCA is applied to the dataset. (C)
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2.3. Data Imputation. After defining the two datasets, we applied a
data imputation process to both datasets. One of the biggest challenges
when applying machine learning to materials chemistry is the lack of
sufficient data. In our initial dataset, only 35 out of 219 syntheses had a
complete set of output target values because only a few articles reported
all three targeted properties of InP QDs (Figure 3A). To “fill in” the
output target values, we performed a data imputation process. Data
imputation, or imputing, is a technique used for filling in missing entries
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in the dataset, when values are not measured or reported.””** This
method is simple when only a small fraction of the output set is missing
and when the missing values can be calculated or easily predicted.

In our study, we imputed the missing values by training a predictive
model for each output feature, using the initial input set and the
available output entries as training data. Since absorption was the most
frequently reported output in the initial dataset (205 syntheses), data
imputation was performed on absorption first, followed by emission,
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and finally diameter. Each imputative model was tuned by an exhaustive
grid search to find the best parameters (see details in Supporting
Information S2). We then eliminated any syntheses that gave negative
Stokes shift values, resulting in a final dataset of 216 syntheses, where
excitonic absorption maxima ranged between 397 and 729 nm, band-
edge PL emission ranged between 470 and 775 nm, and diameters
ranged between 1.5 and 8.3 nm (Figure 3B).

2.4. Machine Learning Models and Metrics. After filling in the
missing output targets, we trained our datasets by both single- and
multi-output regressors. Single-output models predict each target
individually, and the features do not depend on each other. Multi-
output models predict all output targets simultaneously, and the output
targets depend on each other and on the input features.>® We tested six
regression algorithms suitable for small datasets: Extra Trees, Decision
Tree, Random Forest, k-NN, Bagging, and Gradient Boosting using
sklearn. To create representative samples for testing and training, we
performed random sampling and stratified sampling methods for our
datasets; and used Extra Trees and Decision Tree models to evaluate
which train/test partitions give better pretraining performance (see
Supporting Information S4). For the stratified sampling method, we
sorted our data based on the values in the “emission_nm” column and
put them into six “bins”: [450, 500), [500, 550), [550, 600), [600, 650),
[650,700), and [700, 800). Then, we sampled uniformly from each bin.
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Dividing this dataset by these bins avoids clustering of data since some
specific QD sizes are more common synthetically than others. For all
models, the datasets were split into 85% for training and 15% for testing.
Results for a 70/30 train/test partition are also shown in the Supporting
Information SS. We optimized the hyperparameters for each model
using grid search. The final hyperparameters used for each model are
listed in the Supporting Information S11. We used the mean absolute
error (MAE), the coefficient of determination (R?), and relative
absolute errors (RAE) as metrics to assess the performance of all
models. MAE:s are sensitive to outliers since it is a linear score, in which
all differences are weighted equally. Using MAEs also helps compare
performances across datasets and models for three different output
targets in a direct and intuitive manner. R* indicates the proportion of
variance for a dependent variable determined by an independent
variable. RAEs consider all errors equally important and provide
informative metrics to nonexperts in the field of QDs. For each model in
this study, we reported the MAE, R? and RAE of the predicted set
versus the test set.

2.5. Syntheses. We conducted eight new syntheses of InP QDs to
test the prediction accuracy of our models. The experiments were
designed based on four procedures found in the literature**™* with
minor adjustments such that all reaction parameters were not already
included as entries in the dataset used to train the machine learning
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Figure 8. Parity plots of observed vs predicted values and error metrics for single-output and multi-output models using the condensed and extended

datasets.

models. The reaction parameters were also selected such that they were
not easily extrapolated from the parent procedures (see synthesis details
in Supporting Information S7).

3. RESULTS AND DISCUSSION

3.1. Data Description. After the data extraction process the
dataset contained 219 syntheses of InP QDs from 72 papers.
However, the dataset is biased toward hot injection syntheses,
with 71% of entries from this method. This bias reflects the
widespread use of the hot injection method, which has been
proposed to assist the formation of monodisgerse InP QDs due
to rapid nucleation at elevated temperatures.”* Despite this bias,
we also included comparable methods in the dataset to
maximize the size and diversity of inputs in our dataset, even
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though every synthetic parameter (e.g,, temperature ramp rate)
could not be captured due to limited and inconsistent reporting.
As can be seen, the most common In and P precursors were
indium acetate, indium chloride, and P(TMS); (Figure 4). The
addition of zinc salts is known to increase the photo-
luminescence quantum yield and the stability of the InP
QDs;* around 41% of the syntheses in the dataset include a Zn
additive, with ZnCl, being the most common. The reaction
temperatures ranged from 130 to 310 °C, among which the
lowest temperatures correspond to reactions using chloroin-
dium oxalate, and the highest temperatures correspond to
reactions using indium tris(N,N’-diisopropylacetamidinato),
indium trifluoroacetate, indium oxalate, indium palmitate, and
indium myristate. Across the dataset, the reaction times were
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concentrated below 1 h, again related to the widespread use of E — 194 +
the hot injection method. In contrast, the heat-up procedure 0 ’ 0.343 4% (2)

requires much longer reaction times, due to progressive heating
and typically lower precursor reactivity, resulting in long
supersaturation times. "

Principal component analysis (PCA, Figure SA) was
performed using continuous features in the extended dataset
(In amount, P amount, etc.). The scree plot (Figure SB)
identifies the three directions (PC1, PC2, and PC3 capturing
29.68, 10.01, and 15.95% of the dataset, respectively) along
which the data have the largest spread. The features contributing
the most to PCI1 are total volume of reaction, solvent amount,
and Indium precursor amount; while reaction temperature and
phosphorus precursor amount contribute the most to PC2, and
reaction time contributes the most to PC3 (Figure SC). When
shown as coefficients of PC1 vs PC2 and PC1 vs PC3, no clear
relationship between these PCs and absorption wavelengths is
observed. The spanning of syntheses along PC1 indicates that
most InP QD syntheses in the dataset were conducted on a
similar scale, while there are three syntheses that have a
significantly larger scale than the rest of the dataset. The
spanning of syntheses along PC3 indicates that most of the
syntheses in the dataset were run for a similar duration, owing to
their use of the hot injection method (typically less than 1 h),
while a portion of the syntheses was run for a much longer time.

The plot of absorption peak versus the emission peak from the
datasets before and after imputation (Figure 6A) suggests a
linear relationship between these two output targets. Figure 6B
displays the dependence of the Stokes shift on the first excitonic
absorption peak. Our observation from the dataset before
imputation (e.g., only reported values) agrees with the size-
dependent behavior of Stokes shifts in InP QDs in that Stokes
shift increases as QD size decreases or as absorption peak energy
increases.”’

In Figure 7, we plotted the band gap energy versus InP QD
size and generated sizing curves from both the initial dataset and
the imputed dataset. In the small particle size range (2—4 nm),
both curves fit reasonably well with the empirical sizing curve
developed by Micic et al.,” the calculated sizing curves from Cho
et al.** and Baskoutas and Terzis,”” but the curve after imputing
deviates in the larger size range. The inverse square fitted sizing
curve for the data before imputing is

1

E,=169 + ——
0 0.206 d*

and the curve for the data after imputing is
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where E; is the band gap in €V and d is the QD diameter in
nanometers. The most likely reason for the deviation in the
curves at larger sizes is the limited available data for high-quality
InP QDs larger than 4 nm. However, challenges associated with
sample size polydispersity and surface oxidation may also be
convoluting the reported data. It is also interesting to see the
difference in the sizing curves before and after imputing in
comparison to the empirically derived sizing curve from Micic.
The imputed dataset seems to fit better than the raw dataset in
the smallest size regime, but imputation appears to overestimate
the band gap in the 2.5—3.5 nm regime in some cases leading to a
higher degree of curvature in the line of best fit.

3.2. Model Performance. Figure 8A—D shows the
performance of the best model for each output in each study
case. Performance data for all other models are listed in
Supporting Information S5. For most cases, the Extra Trees
algorithm outperformed other algorithms. Considering that the
datasets in this study are small, unbalanced, and contain noise,
randomized tree-based algorithms such as Extra Trees would be
expected to perform better than other methods, such as single
decision tree or boosting algorithms. The Extra Trees algorithm
uses the entire set of learning entries to develop the tree, and the
decision rule is selected randomly; therefore, bias in the datasets
is minimized.”'

Among the three output targets, predictions of emission were
the best, followed by absorption, and finally diameter. The
differences in predictions among different synthetic outcomes
might be attributed to the correlation between the reported
outcome values and reported synthetic conditions. Emission and
absorption peaks are often used to monitor QD reactions, while
particle diameter, determined by TEM, must be done many
hours after the synthesis finishes and most often following
purification. Further, the size measurements are usually done
manually without established best practices in the community.
Therefore, data on particle size is not consistent and hence, more
prone to poor correlations with synthetic conditions, leading to
poor predictions when synthetic conditions are used as the
descriptors.

Although multi-output models were expected to give better
predictions due to the strong correlation between the three
output targets (see Supporting Information Section S3 for
Pearson correlations), single-output models showed better
performance for both the condensed and the extended datasets,
indicating that assuming a relationship among the output targets
did not improve but worsened the predictions. While there
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Figure 10. Mean absolute errors over five iterations of stratified k-fold validation.

1 2 3 4 5
Cross Validation Iteration

seems to be a linear relationship between emission and
absorption wavelength (Figure 6A), the datasets failed to reflect
the expected relationship between particle size and absorption.
Thus, for these datasets, using different model selections for
each output, would give a better prediction performance.
When comparing the performance of the two descriptor sets
using the models that gave the lowest MAEs, models that used
the condensed dataset were expected to show better perform-
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ance since they have lower dimensionality from manually
combining some input features while retaining the same
information. Figure 8 shows that models using the condensed
dataset gave better predictions for absorption wavelength and
diameter than models using the extended dataset, while emission
prediction accuracy seemed to be similar in both cases.
However, for the single-output Decision Tree model for
diameter that used the condensed dataset, we saw that many
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predictions were centered around 3.3 nm for the observed range
of 3—4 nm (Figure 8A, right). This might be caused by the low
complexity of the model and/or oversimplification of the
descriptor set, leading to inaccurate predictions when a few
input features have a significantly higher influence on the model
than others. When the Decision Tree model was applied to the
extended dataset with similar complexity, this behavior seemed
to be eliminated (Figure 8C, right). Thus, we note that to
improve ML model performance for QD synthesis, over-
simplification of feature engineering must be carefully
considered as it may directly affect the prediction accuracy.

3.3. Validation. Applying a complex algorithm to a small
dataset can result in significant overfitting that leads to
misleading predictions. Here, we used different methods,
statistically and experimentally, to detect overfitting and test
the accuracy of our ML models.

3.3.1. Stratified k-Fold Validation. We first used the stratified
k-fold validation method on both the condensed dataset and the
extended dataset to justify the accuracy of our ML models. The
datapoints were divided into five groups based on their emission
wavelength output to ensure that test sets are uniformly sampled
across the dataset (Figure 9). Then, a stratified test/train split of
the dataset was performed to achieve a ratio of 15/8S, consistent
with the ratio used in this study. For the four cases, we applied
the same ML algorithms as shown in Figure 8 and evaluated
their performance by MAEs. Figure 10 indicates that the
accuracy of all models was consistent over five iterations, and no
considerable overfitting was observed. It should be noted that
the hyperparameters used in the models for this validation step
were adopted from the models in Figure 8.

3.3.2. Comparison with Nonimputed Models. Next, we
trained and tested models with the initial or nonimputed
datasets. Details on data processing and ML training on these
datasets are shown in Supporting Information Section S6. Due
to the small dataset size (205 datapoints for absorption, 85
datapoints for emission, and 72 datapoints for diameter),
predictions using the nonimputed datasets gave higher errors
especially for emission and diameter targets (Figure 11). This
result indicates that it is necessary to effectively impute the
missing data to improve the performance of predictive models
for QD synthesis when the available datasets are limited.

3.3.3. Comparison with Experimental Data. To further test
the practical accuracy of the models, we conducted a series of
eight InP QD syntheses. The synthetic procedures were
designed by varying the reaction conditions of existing syntheses
of InP QDs found in the literature such that they would not be
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entries in the initial dataset and not be easily extrapolated from
the original reports (Section $7). The QDs from each synthesis
were characterized by UV—vis and photoluminescence spec-
troscopy, and the particle sizes were determined by TEM
analysis. Only five out of eight batches of InP QDs showed
strong luminescence because as-prepared InP NCs generally
exhibit poor luminescence due to nonradiative channels
originating from surface states. The parity plots in Figure
12A—D show that the models correctly predicted the actual
synthetic outcomes in many cases. While predictions of
experimental absorption and particle size had similar accuracy
as the test sets, MAEs for emission predictions were high
because there were only five datapoints for emission and MAEs
are sensitive to large errors. It should be noted that models using
the extended dataset had a much better performance than the
models using the condensed dataset for prediction of particle
size.

3.4. Interactive User Interface. To allow external users,
including researchers with no background in machine learning,
to use our model to predict InP QDs synthesis outcomes and
explore new synthetic methods, we deployed a user interface
using an open-source Python library provided by Streamlit.>*
Streamlit is a framework for building interactive web
applications with user-friendly components such as buttons,
sliders, and plots. From the best ML models in this study, we
deployed a Streamlit web app that enabled real-time reaction
analysis and prediction https://share.streamlit.io/cossairt-lab/
indium-phosphide/Hot_injection/hot_injection_prediction.
py. The web app includes sections where users answer questions
about QD synthetic conditions to get a prediction of diameter,
emission, and the first excitonic absorption peak with a
prediction interval as uncertainty. We anticipate that this web
app will enable more chemical insights into InP synthesis from
machine learning. Although the best models from this study
were used, inaccurate predictions, i.e., absorption wavelength
higher than emission wavelength, can sometimes be seen from
the web app due to inconsistency and low synthesis variety in the
dataset. We expect the performance of the web app to improve
when a larger dataset becomes available.

3.5. Synthetic Insights. Using the best model for our four
study cases, we calculated the feature importance of each model.
Feature importance reflects the extent to which a variable is used
for accurate predictions (i.e., the more a model uses a variable,
the more important it is). Specifically in the case of Extra Trees
and Decision Tree algorithms, feature importance is computed
as the normalized total reduction of the criterion brought by that
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Figure 12. Parity plots of experimental values vs. predicted values from the ML models.

feature, which is also known as the Gini importance. As
expected, temperature and time were found to be most
important in all cases as they directly influence nucleation and
growth kinetics. Interestingly, the presence of zinc additives also
played an important role (Figure 13), consistent with the
reported observations of spectral shifts and size changes when a
zinc salt is present in the synthesis.*’

As discussed in the above section, the web app allowed us to
explore the chemical intuition of our algorithms beyond basic
statistical metrics and discover synthetic trends without
conducting actual experiments. For example, predicted out-

comes from the web app suggested that for a typical hot injection
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synthesis where InCl; reacts with tris(diethylamino)phosphine,
the presence of TOP red-shifts the emission and absorption
maxima, while the presence of a zinc halide salt results in spectral
blueshifts (Figure 14). These observations are consistent with
the reported literature.*>*

3.6. Limitations. Despite their accuracy, there are several
inevitable limitations of the ML models that arise from the
available data and the nature of QD synthesis. The novelty of
this study is based on the collection, imputation, and ML
training of reported data in the literature; however, the presence
of unknown or unreported contaminants and the related lack of
standardization in reporting data in the literature heavily
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wavelengths from the Streamlit web app using single-output algorithms
and the condensed dataset with all methods. Reaction conditions
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nucleation temperature at 180 °C, reaction time of 2 min, with 0.3
mmol of ZnCl, (blue outlines), or with 0.2 mL TOP (pink outlines), or
without both ZnCl, and TOP (black outlines).

influence these ML results. As shown in Figure S1 and discussed
in Section 2.1, many publications did not report details of the
synthesis, which significantly decreases the size of the dataset
despite the large number of published reports of InP QD
synthesis in the past decades. Other synthetic parameters that
also affect the synthetic outcomes but are often not mentioned
include injection rate,”® solvent and precursor purity,””*” and
QD purification status and methods.”®* " Moreover, hetero-
geneity of experimental conditions in different labs also impacts
the synthetic outcomes. For example, it has been shown that the
presence of trace water can affect the size of InP QDs.®"**
Another inconsistency in reporting synthetic results comes from
uncertainties associated with using TEM to determine particle
size and size distribution. As discussed in detail by Pyrz and
Buttrey,”> many decisions during image acquisition and size
determination can lead to over- and underestimation of particle
size, especially for smaller particles. Those decisions include
optimization of measurement resolution, limiting electron beam
damage, proper determination of particle boundaries, and
reliable quantification of particle size distributions. Data
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diversification plays an important role in the performance of
ML models. In this study, a diverse dataset that consists of many
syntheses of a variety of particle sizes or emission peaks would
help improve ML model performance. However, since the
synthesis of blue-emitting (<480 nm) or small InP QDs is still
challenging, and current applications of InP often make use of
QDs in the size range of 2—4 nm, the data inevitably
concentrated around a small range of particle sizes, leading to
less accurate predictions for the synthesis of QDs outside of that
range. Furthermore, at this time, our system does not allow for
exploration of new precursors or reagents.

4. APPLICATIONS

4.1. Predicting InP QD Hot Injection Synthesis Out-
comes. We applied the process of data preparation, data

Table 1. Performance of the Best Algorithms Using the Hot
Injection Dataset (Output: Model/MAE in nm/R?)

condensed dataset extended dataset

single-output absorption: Extra Trees/ absorption: Decision Tree/

models 15.61/0.83 15.89/0.86
emission: Extra Trees/ emission: Decision Tree/
6.39/0.86 9.88/0.82
diameter: Decision Tree/  diameter: Extra Trees/0.13/
0.23/0.79 0.85
multi-output absorption: Extra Trees/ absorption: Extra Trees/
models 17.91/0.85 18.22/0.82
emission: Extra Trees/ emission: Extra Trees/12.09/
7.27/0.88 0.72
diameter: Extra Trees/ diameter: Extra Trees/0.16/
0.50/0.25 0.61

imputation, and ML training from this study to other datasets
with similar size. First, we prepared new condensed and
extended datasets that have only hot injection syntheses by
filtering our initial datasets. These new datasets contained 157
syntheses. The results (Table 1) showed improvement in R*
values for all outputs and lower MAEs for emission predictions
but demonstrated modest differences in MAEs for diameter and
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Figure 16. Feature importance charts of the (A) Extra Trees model from this study and (B) Gradient Boosting Machine model from ref 2.

absorption wavelength. Similar to the previous observation,
models using the condensed dataset and single-output
algorithms have better performance than models using the
extended dataset and multi-output algorithms, respectively. It
should be noted that single-output algorithms using the hot
injection dataset could achieve MAEs as low as 0.13 nm for
diameter and 6.39 nm for emission wavelength predictions. The
algorithms were also able to identify temperature and time as the
most influential parameters that affect the synthetic outcomes
(Figure S13).

4.2. Predicting CdSe QD Hot Injection Synthesis
Outcomes. To further evaluate the reliability and show the
utility of the imputing method for small datasets, we revised and
extended the CdSe QD dataset from Baum et al.* to include
absorption and emission wavelengths in the output set. The
revised dataset contained 233 hot injection syntheses of CdSe
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QDs, in which the absorption wavelength is absent in 38
syntheses (16%) and the emission wavelength is absent in 77
syntheses (33%). The dataset preprocessing, data imputation,
model tuning, model training, and user interface creation were
done in the same manner as the InP study. For feature selection,
we reduced the number of input features from 27 to 15 since
models with fewer input variables typically give better
performance®® (details on feature selection can be found in
Section S10). Compared to the InP models for the hot injection
dataset, the CdSe models showed better performance for all
three output features, especially for diameter. This is likely a
result of the original study’s focus on diameter, whose values
were not limited to TEM measurements but were also calculated
from absorption spectra. Further, a much smaller portion of the
dataset was missing absorption and emission entries, perhaps
reflecting the inherent poor emissivity of InP QDs, thus reducing
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particles with an average diameter of 5.15 nm.

prediction bias. Results from the hot injection models also
showed that single-output models outperformed multi-output
models with MAEs as low as 14.67, 8.37, and 0.18 nm for
absorption wavelength, emission wavelength, and particle
diameter, respectively. R? values for diameter from the Extra
Trees and Decision Tree algorithms are comparable to the value
from the reported Gradient Boosting Machine algorithm™
(Figure 15). Examining feature importance in our study showed
that reaction time and growth temperature are the most
influential factors in the synthesis of CdSe QDs. This is
consistent with the Gradient Boosting Machine model from
Baum et al; however, in this study, the two most important
variables have a significantly higher influence on the synthesis
than other variables (Figure 16).

4.3. Inverse Design Using the Streamlit User Interface.
Finally, we targeted 600 nm—absorbing InP QDs using sgrnthetic
conditions and precursors from an existing procedure.”* Using
the Streamlit web app, we entered the synthetic conditions from
the procedure, modified chemicals to what were available to us,
and adjusted the reaction temperature and time to achieve the
desired synthetic outcome. We conducted the experiment and
were able to synthesize InP QDs with desired optical properties
with high accuracy (Figure 17). For absorption and emission
wavelengths, we also found that there was a noticeable difference
between samples before and after purification. This observation
justifies our previous hypotheses that the inconsistency from
reported values from the literature can strongly affect the
accuracy of prediction, that our syntheses were a mix of purified
and in situ data entries, and that there are many unreported
factors that can also play a role in achieving precise optical
properties.

5. CONCLUSIONS

We have trained and used ML models to predict the properties
of InP QDs based on synthetic conditions. The descriptor space
was defined in two ways (condensed and extended) to study the
best approach for predicting QD synthesis outcomes where the
available data is limited. We tested single-output and multi-
output ML algorithms and found that single-output models
showed enhanced performance over the multi-output models
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despite the physical relationships among the output targets
(diameter, absorption and emission wavelengths). The perform-
ance of the models was validated in different ways, including
stratified k-fold validation, comparison with nonimputed
datasets, and comparison with newly collected experimental
data. From the model estimation errors, we found that reaction
temperature, time, and the addition of zinc salts were the most
influential synthetic parameters. The same dataset preprocess-
ing, imputation, and ML training were applied to both InP and
CdSe hot injection datasets, resulting in accurate predictions for
these two cases. Furthermore, we deployed a web app that
employs our best algorithms so that external users can use them
to predict InP and CdSe synthetic outcomes. Using this web
app, we were able to test our models with newly adapted InP
syntheses that targeted and achieved desired optical properties.
The web apps also allowed us to investigate the limitations of the
ML approach in this study. Because the algorithms cannot
recognize new precursors, reaction conditions need to be closely
based on existing procedures to obtain accurate predictions.
Overall, this work provides a procedure to preprocess datasets,
train ML models, and implement models for public users in the
field of nanocrystal synthesis, especially where available datasets
are small and incomplete.

B ASSOCIATED CONTENT

@ Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640.

Additional details for data acquisition, data imputation,
Pearson correlation, datasets, code files, machine learning
modeling, and experimental methods (PDF)

B AUTHOR INFORMATION

Corresponding Author
Brandi M. Cossairt — Department of Chemistry, University of
Washington, Seattle, Washington 98195-1700, United States;
orcid.org/0000-0002-9891-3259; Email: cossairt@
uw.edu

https://doi.org/10.1021/acs.chemmater.2c00640
Chem. Mater. 2022, 34, 6296—6311


https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.2c00640/suppl_file/cm2c00640_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brandi+M.+Cossairt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9891-3259
https://orcid.org/0000-0002-9891-3259
mailto:cossairt@uw.edu
mailto:cossairt@uw.edu
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640?fig=fig17&ref=pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.2c00640?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Chemistry of Materials

pubs.acs.org/cm

Authors
Hao A. Nguyen — Department of Chemistry, University of
Washington, Seattle, Washington 98195-1700, United States;
orcid.org/0000-0001-6742-1748
Florence Y. Dou — Department of Chemistry, University of
Washington, Seattle, Washington 98195-1700, United States
Nayon Park — Department of Chemistry, University of
Washington, Seattle, Washington 98195-1700, United States
Shenwei Wu — Department of Chemistry, University of
Washington, Seattle, Washington 98195-1700, United States
Harrison Sarsito — Department of Chemical Engineering,
University of Washington, Seattle, Washington 98195-1750,
United States
Benedicte Diakubama — Department of Chemical Engineering,
University of Washington, Seattle, Washington 98195-1750,
United States
Helen Larson — Department of Chemistry, University of
Washington, Seattle, Washington 98195-1700, United States
Emily Nishiwaki — Department of Chemistry, University of
Washington, Seattle, Washington 98195-1700, United States;
orcid.org/0000-0002-3419-8604
Micaela Homer — Department of Chemistry, University of
Washington, Seattle, Washington 98195-1700, United States;
orcid.org/0000-0002-7311-2906
Melanie Cash — Department of Chemistry, University of
Washington, Seattle, Washington 98195-1700, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.chemmater.2c00640

Funding
National Science Foundation OMA-1936100 and DMR-
2019444.

Notes

The authors declare no competing financial interest.

This article is available as a preprint: Nguyen, H.; Dou, F.; Park,
N.; Wu, S.; Sarsito, H.; Diakubama, B.; Larson, H.; Nishiwaki,
E; Homer, M,; Cash, M.,; Cossairt, B. Predicting Indium
Phosphide Quantum Dot Properties from Synthetic Procedures
Using Machine Learning. ChemRxiv, 2022, DOI: 10.26434/
chemrxiv-2022-b3fgw-v2.

B ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under award numbers OMA-1936100 and
DMR-2019444. Part of this work was conducted at the
Molecular Analysis Facility, a National Nanotechnology
Coordinated Infrastructure site at the University of Washington
which is supported in part by the National Science Foundation
(grant NNCI-1542101), the University of Washington, the
Molecular Engineering & Sciences Institute, and the Clean
Energy Institute.

B REFERENCES

(1) Eren, G. O.; Sadeghi, S.; Bahmani Jalali, H.; Ritter, M.; Han, M,;
Baylam, I; Melikov, R.; Onal, A.; Oz, F.; Sahin, M.; Ow-Yang, C. W,;
Sennaroglu, A.; Lechner, R. T.; Nizamoglu, S. Cadmium-Free and
Efficient Type-II InP/ZnO/ZnS Quantum Dots and Their Application
for LEDs. ACS Appl. Mater. Interfaces 2021, 13, 32022—32030.

(2) Sadeghi, S.; Bahmani Jalali, H.; Melikov, R.; Ganesh Kumar, B.;
Mohammadi Aria, M.; Ow-Yang, C. W,; Nizamoglu, S. Stokes-Shift-
Engineered Indium Phosphide Quantum Dots for Efficient Lumines-
cent Solar Concentrators. ACS Appl. Mater. Interfaces 2018, 10, 12975—
12982.

6309

(3) Saeboe, A. M; Nikiforov, A. Yu.; Toufanian, R; Kays, J. C.; Chern,
M,; Casas, J. P.; Han, K,; Piryatinski, A.; Jones, D.; Dennis, A. M.
Extending the Near-Infrared Emission Range of Indium Phosphide
Quantum Dots for Multiplexed In Vivo Imaging. Nano Lett. 2021, 21,
3271-3279.

(4) Kim, Y.; Chang, J. H.; Choi, H.; Kim, Y.-H.; Bae, W. K_; Jeong, S.
11—V Colloidal Nanocrystals: Control of Covalent Surfaces. Chem. Sci.
2020, 11, 913-922.

(5) Mici¢, O. L; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J.
Synthesis and Characterization of InP Quantum Dots. J. Phys. Chem. A
1994, 98, 4966—4969.

(6) Battaglia, D.; Peng, X. Formation of High Quality InP and InAs
Nanocrystals in a Noncoordinating Solvent. Nano Lett. 2002, 2, 1027—
1030.

(7) Gary, D. C.; Flowers, S. E.; Kaminsky, W.; Petrone, A.; Li, X,
Cossairt, B. M. Single-Crystal and Electronic Structure of a 1.3 Nm
Indium Phosphide Nanocluster. J. Am. Chem. Soc. 2016, 138, 1510—
1513.

(8) Cossairt, B. M. Shining Light on Indium Phosphide Quantum
Dots: Understanding the Interplay among Precursor Conversion,
Nucleation, and Growth. Chem. Mater. 2016, 28, 7181—7189.

(9) Gerbec, J. A; Magana, D.; Washington, A; Strouse, G. F.
Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis. J. Am.
Chem. Soc. 2008, 127, 15791—15800.

(10) Tessier, M. D.; Dupont, D.; De Nolf, K; De Roo, J.; Hens, Z.
Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se)
Colloidal Quantum Dots. Chem. Mater. 2018, 27, 4893—4898.

(11) Harris, D. K; Bawendi, M. G. Improved Precursor Chemistry for
the Synthesis of III-V Quantum Dots. J. Am. Chem. Soc. 2012, 134,
20211-20213.

(12) Vinokurov, A. A.; Dorofeev, S. G.; Znamenkov, K. O.; Panfilova,
A. V,; Kuznetsova, T. A. Synthesis of InP Quantum Dots in
Dodecylamine from Phosphine and Indium(III) Chloride. Mendeleev
Commun. 2010, 20, 31-32.

(13) Bang, E.; Choi, Y.; Cho, J.; Suh, Y.-H.; Ban, H.W.; Son, J.. S.; Park,
J. Large-Scale Synthesis of Highly Luminescent InP@ZnS Quantum
Dots Using Elemental Phosphorus Precursor. Chem. Mater. 2017, 29,
4236—4243.

(14) Schmidt, J.; Marques, M. R. G.; Botti, S.; Marques, M. A. L.
Recent Advances and Applications of Machine Learning in Solid-State
Materials Science. Npj Comput. Mater. 2019, S, No. 83.

(15) Jensen, Z.; Kim, E.; Kwon, S.; Gani, T. Z. H.; Romén-Leshkov, Y.;
Moliner, M.; Corma, A.; Olivetti, E. A Machine Learning Approach to
Zeolite Synthesis Enabled by Automatic Literature Data Extraction.
ACS Cent. Sci. 2019, 5, 892—899.

(16) Mukaddem, K. T.; Beard, E. J; Yildirim, B.; Cole, J. M.
ImageDataExtractor: A Tool To Extract and Quantify Data from
Microscopy Images. J. Chem. Inf. Model. 2020, 60, 2492—2509.

(17) Li, Z.; Najeeb, M. A; Alves, L.; Sherman, A. Z.; Shekar, V.; Cruz
Parrilla, P.; Pendleton, I. M.; Wang, W.; Nega, P. W.; Zeller, M.; Schrier,
J; Norquist, A. J; Chan, E. M. Robot-Accelerated Perovskite
Investigation and Discovery. Chem. Mater. 2020, 32, 5650—5663.

(18) Masood, H.; Toe, C. Y.; Teoh, W. Y.; Sethu, V.; Amal, R.
Machine Learning for Accelerated Discovery of Solar Photocatalysts.
ACS Catal. 2019, 9, 11774—11787.

(19) Vasylenko, A.; Gamon, J.; Duff, B. B.; Gusev, V. V.; Daniels, L.
M.; Zanella, M.; Shin, J. E.; Sharp, P. M.; Morscher, A.; Chen, R.; Neale,
A. R; Hardwick, L. J.; Claridge, J. B.; Blanc, F.; Gaultois, M. W.; Dyer,
M. S.; Rosseinsky, M. J. Element Selection for Crystalline Inorganic
Solid Discovery Guided by Unsupervised Machine Learning of
Experimentally Explored Chemistry. Nat. Commun. 2021, 12,
No. 5561.

(20) Epps, R. W.; Bowen, M. S; Volk, A. A.; Abdel-Latif, K.; Han, S.;
Reyes, K. G.; Amassian, A.; Abolhasani, M. Artificial Chemist: An
Autonomous Quantum Dot Synthesis Bot. Adv. Mater. 2020, 32,
No. 2001626.

(21) Zhou, Z.; Li, X; Zare, R. N. Optimizing Chemical Reactions with
Deep Reinforcement Learning. ACS Cent. Sci. 2017, 3, 1337—1344.

https://doi.org/10.1021/acs.chemmater.2c00640
Chem. Mater. 2022, 34, 6296—6311


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hao+A.+Nguyen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6742-1748
https://orcid.org/0000-0001-6742-1748
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Florence+Y.+Dou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nayon+Park"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shenwei+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Harrison+Sarsito"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Benedicte+Diakubama"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Helen+Larson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Emily+Nishiwaki"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3419-8604
https://orcid.org/0000-0002-3419-8604
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Micaela+Homer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7311-2906
https://orcid.org/0000-0002-7311-2906
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Melanie+Cash"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00640?ref=pdf
https://doi.org/10.1021/acsami.1c08118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.1c08118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.1c08118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.7b19144?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.7b19144?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.7b19144?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.1c00600?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.1c00600?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C9SC04290C
https://doi.org/10.1021/j100070a004?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl025687v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl025687v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.5b13214?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.5b13214?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.6b03408?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.6b03408?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.6b03408?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja052463g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.5b02138?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.5b02138?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja309863n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja309863n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.mencom.2010.01.012
https://doi.org/10.1016/j.mencom.2010.01.012
https://doi.org/10.1021/acs.chemmater.7b00254?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.7b00254?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1021/acscentsci.9b00193?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.9b00193?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00734?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00734?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c01153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c01153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.9b02531?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-021-25343-7
https://doi.org/10.1038/s41467-021-25343-7
https://doi.org/10.1038/s41467-021-25343-7
https://doi.org/10.1002/adma.202001626
https://doi.org/10.1002/adma.202001626
https://doi.org/10.1021/acscentsci.7b00492?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.7b00492?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.2c00640?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Chemistry of Materials

pubs.acs.org/cm

(22) Kim, J. Y.; Steeves, A. H.; Kulik, H. J. Harnessing Organic Ligand
Libraries for First-Principles Inorganic Discovery: Indium Phosphide
Quantum Dot Precursor Design Strategies. Chem. Mater. 2017, 29,
3632—-3643.

(23) Meng, F.; Li, Y.; Wang, D. Predicting Atomic-Level Reaction
Mechanisms for SN2 Reactions via Machine Learning. J. Chem. Phys.
2021, 155, No. 224111.

(24) Komp, E.; Valleau, S. Machine Learning Quantum Reaction Rate
Constants. J. Phys. Chem. A 2020, 124, 8607—8613.

(25) Baum, F.; Pretto, T.; Koche, A.; Santos, M. J. L. Machine
Learning Tools to Predict Hot Injection Syntheses Outcomes for II—-VI
and IV=VI Quantum Dots. J. Phys. Chem. C 2020, 124, 24298—24305.

(26) Braham, E. J.; Cho, J.; Forlano, K. M.; Watson, D. F.; Arroyave,
R.; Banerjee, S. Machine Learning-Directed Navigation of Synthetic
Design Space: A Statistical Learning Approach to Controlling the
Synthesis of Perovskite Halide Nanoplatelets in the Quantum-
Confined Regime. Chem. Mater. 2019, 31, 3281—3292.

(27) Voznyy, O.; Levina, L.; Fan, J. Z.; Askerka, M.; Jain, A.; Choi, M.-
J.; Ouellette, O.; Todorovi¢, P.; Sagar, L. K; Sargent, E. H. Machine
Learning Accelerates Discovery of Optimal Colloidal Quantum Dot
Synthesis. ACS Nano 2019, 13, 11122—11128.

(28) Vikram, A.; Brudnak, K,; Zahid, A.; Shim, M.; Kenis, P. J. A.
Accelerated Screening of Colloidal Nanocrystals Using Artificial Neural
Network-Assisted Autonomous Flow Reactor Technology. Nanoscale
2021, 13, 17028—17039.

(29) Bezinge, L.; Maceiczyk, R. M.; Lignos, L; Kovalenko, M. V.;
deMello, A. J. Pick a Color MARIA: Adaptive Sampling Enables the
Rapid Identification of Complex Perovskite Nanocrystal Compositions
with Defined Emission Characteristics. ACS Appl. Mater. Interfaces
2018, 10, 18869—18878.

(30) Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer:
New York, 2013.

(31) Guyon, L; Elisseeff, A. An Introduction to Variable and Feature
Selection. J. Mach. Learn. Res. 2003, 3, 1157—1182.

(32) Clarke, M. T.; Viscomi, F. N.; Chamberlain, T. W.; Hondow, N.;
Adawi, A. M; Sturge, J.; Erwin, S. C.; Bouillard, J.-S. G.; Tamang, S.;
Stasiuk, G. J. Synthesis of Super Bright Indium Phosphide Colloidal
Quantum Dots through Thermal Diffusion. Commun. Chem. 2019, 2,
No. 36.

(33) Suh, Y.-H,; Lee, S.; Jung, S.-M.; Bang, S. Y.; Yang, J.; Fan, X.-B,;
Zhan, S.; Samarakoon, C.; Jo,J.-W.; Kim, Y.; Choi, H. W.; Occhipinti, L.
G.; Lee, T. H; Shin, D.-W,; Kim, J. M. Engineering Core Size of InP
Quantum Dot with Incipient ZnS for Blue Emission. Adv. Opt. Mater.
2022, 10, No. 2102372.

(34) Jiang, W.; Choi, Y.; Chae, H. Efficient Green Indium Phosphide
Quantum Dots with Tris(Dimethylamino)-Phosphine Phosphorus
Precursor for Electroluminescent Devices. J. Mater. Sci. Mater. Electron.
2021, 32, 4686—4694.

(35) Riehle, F. S.; Yu, K. Role of Alcohol in the Synthesis of CdS
Quantum Dots. Chem. Mater. 2020, 32, 1430—1438.

(36) Pedregosa, F. Scikit-Learn: Machine Learning in Python. J. Mach.
Learn. Res. 2011, 12, 2825—2830.

(37) Irwin, B. W. J.; Mahmoud, S.; Whitehead, T. M.; Conduit, G. J.;
Segall, M. D. Imputation versus Prediction: Applications in Machine
Learning for Drug Discovery. Future Drug Discovery 2020, 2,
No. FDD38.

(38) Guo, C.-Y;; Yang, Y.-C; Chen, Y.-H. The Optimal Machine
Learning-Based Missing Data Imputation for the Cox Proportional
Hazard Model. Front. Public Health 2021, 9, No. 881.

(39) Borchani, H.; Varando, G.; Bielza, C.; Larrafaga, P. A Survey on
Multi-Output Regression. WIREs Data Min. Knowl. Discovery 2018, S,
216—233.

(40) Lee, S. H,; Kim, Y,; Jang, H,; Min, J. H,; Oh, J.; Jang, E.; Kim, D.
The Effects of Discrete and Gradient Mid-Shell Structures on the
Photoluminescence of Single InP Quantum Dots. Nanoscale 2019, 11,
23251-23258.

(41) Kim, H.-J.; Jo, J.-H.; Yoon, S.-Y.; Jo, D.-Y.; Kim, H.-S.; Park, B.;
Yang, H. Emission Enhancement of Cu-Doped InP Quantum Dots
through Double Shelling Scheme. Materials 2019, 12, No. 2267.

6310

(42) Stein, J. L.; Holden, W. M.; Venkatesh, A.; Mundy, M. E.; Rossini,
A. J; Seidler, G. T.; Cossairt, B. M. Probing Surface Defects of InP
Quantum Dots Using Phosphorus Ko and Kf X-Ray Emission
Spectroscopy. Chem. Mater. 2018, 30, 6377—6388.

(43) Min, C.-H.; Joo, J. Studies on the Effect of Acetate Ions on the
Optical Properties of InP/ZnSeS Core/Shell Quantum Dots. J. Ind.
Eng. Chem. 2020, 82, 254—260.

(44) Gary, D. C.; Terban, M. W,; Billinge, S.J. L.; Cossairt, B. M. Two-
Step Nucleation and Growth of InP Quantum Dots via Magic-Sized
Cluster Intermediates. Chem. Mater. 2015, 27, 1432—1441.

(45) Kirkwood, N.; De Backer, A.; Altantzis, T.; Winckelmans, N.;
Longo, A.; Antolinez, F. V.; Rabouw, F. T.; De Trizio, L.; Geuchies, J. ] ;
Mulder, J. T.; Renaud, N.; Bals, S.; Manna, L.; Houtepen, A. J. Locating
and Controlling the Zn Content in In(Zn)P Quantum Dots. Chem.
Mater. 2020, 32, 557—565.

(46) van Embden, J.; Chesman, A. S. R;; Jasieniak, J. J. The Heat-Up
Synthesis of Colloidal Nanocrystals. Chem. Mater. 2015, 27, 2246—
228S.

(47) Mici¢, O. L; Cheong, H. M.; Fu, H.; Zunger, A.; Sprague, J. R;
Mascarenhas, A.; Nozik, A. J. Size-Dependent Spectroscopy of InP
Quantum Dots. J. Phys. Chem. B 1997, 101, 4904—4912.

(48) Cho, E; Jang, H; Lee, J; Jang, E. Modeling on the Size
Dependent Properties of InP Quantum Dots: A Hybrid Functional
Study. Nanotechnology 2013, 24, No. 215201.

(49) Baskoutas, S.; Terzis, A. F. Size-Dependent Band Gap of
Colloidal Quantum Dots. J. Appl. Phys. 2006, 99, No. 013708.

(50) Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U,;
Hamad, K; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.;
Heath, J. R. Synthesis of Size-Selected, Surface-Passivated InP
Nanocrystals. J. Phys. Chem. B 1996, 100, 7212—7219.

(51) Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized Trees.
Mach. Learn. 2006, 63, 3—42.

(52) https://docs.streamlit.io/library/get-started.

(53) Stein, J. L.; Mader, E. A.; Cossairt, B. M. Luminescent InP
Quantum Dots with Tunable Emission by Post-Synthetic Modification
with Lewis Acids. J. Phys. Chem. Lett. 2016, 7, 1315—1320.

(54) Zhang, X; Lv, H; Xing, W,; Li, Y,; Geng, C; Xu, S.
Trioctylphosphine Accelerated Growth of InP Quantum Dots at Low
Temperature. Nanotechnology 2021, 33, No. 055602.

(55) Achorn, O. B.; Franke, D.; Bawendi, M. G. Seedless Continuous
Injection Synthesis of Indium Phosphide Quantum Dots as a Route to
Large Size and Low Size Dispersity. Chem. Mater. 2020, 32, 6532—
6539.

(56) Shallcross, R. C.; Graham, A. L.; Karayilan, M.; Pavlopoulous, N.
G.; Meise, J.; Pyun, J.; Armstrong, N. R. Influence of the Processing
Environment on the Surface Composition and Electronic Structure of
Size-Quantized CdSe Quantum Dots. J. Phys. Chem. C 2020, 124,
21305—21318.

(57) Wang, F.; Tang, R;; Buhro, W. E. The Trouble with TOPO;
Identification of Adventitious Impurities Beneficial to the Growth of
Cadmium Selenide Quantum Dots, Rods, and Wires. Nano Lett. 2008,
8,3521-3524.

(58) Kowalczyk, B.; Lagzi, I; Grzybowski, B. A. Nanoseparations:
Strategies for Size and/or Shape-Selective Purification of Nano-
particles. Curr. Opin. Colloid Interface Sci. 2011, 16, 135—148.

(59) Morris-Cohen, A. J.; Donakowski, M. D.; Knowles, K. E.; Weiss,
E. A. The Effect of a Common Purification Procedure on the Chemical
Composition of the Surfaces of CdSe Quantum Dots Synthesized with
Trioctylphosphine Oxide. J. Phys. Chem. C 2010, 114, 897—906.

(60) Taylor, D. A;; Teku, J. A,; Cho, S.; Chae, W.-S.; Jeong, S.-J.; Lee,
J.-S. Importance of Surface Functionalization and Purification for
Narrow FWHM and Bright Green-Emitting InP Core—Multishell
Quantum Dots via a Two-Step Growth Process. Chem. Mater. 2021, 33,
4399—4407.

(61) Vikram, A.; Zahid, A.; Bhargava, S. S.; Keating, L. P.; Sutrisno, A.;
Khare, A.; Trefonas, P.; Shim, M.; Kenis, P. J. A. Mechanistic Insights
into Size-Focused Growth of Indium Phosphide Nanocrystals in the
Presence of Trace Water. Chem. Mater. 2020, 32, 3577—3584.

https://doi.org/10.1021/acs.chemmater.2c00640
Chem. Mater. 2022, 34, 6296—6311


https://doi.org/10.1021/acs.chemmater.7b00472?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.7b00472?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.7b00472?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0074422
https://doi.org/10.1063/5.0074422
https://doi.org/10.1021/acs.jpca.0c05992?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c05992?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c05993?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c05993?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c05993?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b00212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b00212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b00212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b00212?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.9b03864?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.9b03864?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.9b03864?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D1NR05497J
https://doi.org/10.1039/D1NR05497J
https://doi.org/10.1021/acsami.8b03381?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.8b03381?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.8b03381?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1162/153244303322753616
https://doi.org/10.1162/153244303322753616
https://doi.org/10.1038/s42004-019-0138-z
https://doi.org/10.1038/s42004-019-0138-z
https://doi.org/10.1002/adom.202102372
https://doi.org/10.1002/adom.202102372
https://doi.org/10.1007/s10854-020-05206-5
https://doi.org/10.1007/s10854-020-05206-5
https://doi.org/10.1007/s10854-020-05206-5
https://doi.org/10.1021/acs.chemmater.9b04009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b04009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.4155/fdd-2020-0008
https://doi.org/10.4155/fdd-2020-0008
https://doi.org/10.3389/fpubh.2021.680054
https://doi.org/10.3389/fpubh.2021.680054
https://doi.org/10.3389/fpubh.2021.680054
https://doi.org/10.1002/widm.1157
https://doi.org/10.1002/widm.1157
https://doi.org/10.1039/C9NR06847C
https://doi.org/10.1039/C9NR06847C
https://doi.org/10.3390/ma12142267
https://doi.org/10.3390/ma12142267
https://doi.org/10.1021/acs.chemmater.8b02590?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.8b02590?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.8b02590?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jiec.2019.10.021
https://doi.org/10.1016/j.jiec.2019.10.021
https://doi.org/10.1021/acs.chemmater.5b00286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.5b00286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.5b00286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b04407?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b04407?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cm5028964?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cm5028964?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp9704731?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp9704731?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/0957-4484/24/21/215201
https://doi.org/10.1088/0957-4484/24/21/215201
https://doi.org/10.1088/0957-4484/24/21/215201
https://doi.org/10.1063/1.2158502
https://doi.org/10.1063/1.2158502
https://doi.org/10.1021/jp953719f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp953719f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10994-006-6226-1
https://docs.streamlit.io/library/get-started
https://doi.org/10.1021/acs.jpclett.6b00177?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.6b00177?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.6b00177?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/1361-6528/ac3180
https://doi.org/10.1088/1361-6528/ac3180
https://doi.org/10.1021/acs.chemmater.0c01906?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c01906?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c01906?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c05622?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c05622?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c05622?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl801692g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl801692g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl801692g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cocis.2011.01.004
https://doi.org/10.1016/j.cocis.2011.01.004
https://doi.org/10.1016/j.cocis.2011.01.004
https://doi.org/10.1021/jp909492w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp909492w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp909492w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.1c00348?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.1c00348?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.1c00348?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c00781?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c00781?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c00781?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.2c00640?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Chemistry of Materials

pubs.acs.org/cm

(62) Xie, L.; Harris, D. K; Bawendi, M. G.; Jensen, K. F. Effect of
Trace Water on the Growth of Indium Phosphide Quantum Dots.
Chem. Mater. 2015, 27, 5058—5063.

(63) Pyrz, W. D.; Buttrey, D. J. Particle Size Determination Using
TEM: A Discussion of Image Acquisition and Analysis for the Novice
Microscopist. Langmuir 2008, 24, 11350—11360.

(64) Gary, D. C.; Cossairt, B. M. Role of Acid in Precursor Conversion
During InP Quantum Dot Synthesis. Chem. Mater. 2013, 25, 2463—
2469.

6311

I Recommended by ACS

Design and Application of a Screening Set for
Monophosphine Ligands in Cross-Coupling

Tobias Gensch, Matthew S. Sigman, et al.

JUNE 16, 2022

ACS CATALYSIS READ

A Comprehensive Discovery Platform for
Organophosphorus Ligands for Catalysis

Tobias Gensch, Alan Aspuru-Guzik, et al.
JANUARY 12,2022

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY READ '

Machine Learning-Guided Discovery of Underlying
Decisive Factors and New Mechanisms for the Design of
Nonprecious Metal Electrocatalysts

Rui Ding, Jianguo Liu, et al.
JULY 19, 2021

ACS CATALYSIS READ &

A DFT Protocol for the Prediction of 3P NMR Chemical
Shifts of Phosphine Ligands in First-Row Transition-
Metal Complexes

Pierre-Adrien Payard, Ilaria Ciofini, et al.

AUGUST 25, 2020

ORGANOMETALLICS READ

Get More Suggestions >

https://doi.org/10.1021/acs.chemmater.2c00640
Chem. Mater. 2022, 34, 6296—6311


https://doi.org/10.1021/acs.chemmater.5b01626?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.5b01626?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la801367j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la801367j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la801367j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cm401289j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cm401289j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.2c00640?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/doi/10.1021/acscatal.2c01970?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acscatal.2c01970?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acscatal.2c01970?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acscatal.2c01970?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/jacs.1c09718?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/jacs.1c09718?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/jacs.1c09718?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/jacs.1c09718?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acscatal.1c01473?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acscatal.1c01473?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acscatal.1c01473?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acscatal.1c01473?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acscatal.1c01473?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acs.organomet.0c00309?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acs.organomet.0c00309?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acs.organomet.0c00309?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acs.organomet.0c00309?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acs.organomet.0c00309?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acs.organomet.0c00309?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
http://pubs.acs.org/doi/10.1021/acs.organomet.0c00309?utm_campaign=RRCC_cmatex&utm_source=RRCC&utm_medium=pdf_stamp&originated=1662383709&referrer_DOI=10.1021%2Facs.chemmater.2c00640
https://preferences.acs.org/ai_alert?follow=1

